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ABSTRACT

Functional near-infrared spectroscopy (fNIRS) has been established as an informative modality for understanding
the hemodynamic-metabolic correlates of cortical auditory processing. To date, such knowledge has shown broad
clinical applications in the diagnosis, treatment, and intervention procedures in disorders affecting auditory
processing; however, exploration of the hemodynamic response to auditory tasks is yet incomplete. This holds
particularly true in the context of auditory event-related fNIRS experiments, where preliminary work has shown
the presence of valid responses while leaving the need for more comprehensive explorations of the hemodynamic
correlates of event-related auditory processing. In this study, we apply an individual-specific approach to
characterize fNIRS-based hemodynamic changes during an auditory task in healthy adults. Oxygenated hemo-
globin (HbO3) concentration change time courses were acquired from eight participants. Independent component
analysis (ICA) was then applied to isolate individual-specific class discriminative spatial filters, which were then
applied to HbO, time courses to extract auditory-related hemodynamic features. While six of eight participants
produced significant class discriminative features before ICA-based spatial filtering, the proposed method
identified significant auditory hemodynamic features in all participants. Furthermore, ICA-based filtering
improved correlation between trial labels and extracted features in every participant. For the first time, this study
demonstrates hemodynamic features important in experiments exploring auditory processing as well as the
utility of individual-specific ICA-based spatial filtering in fNIRS-based feature extraction techniques in auditory
experiments. These outcomes provide insights for future studies exploring auditory hemodynamic characteristics
and may eventually provide a baseline framework for better understanding auditory response dysfunctions in
clinical populations.

1. Introduction

hyperactivity disorder (ADHD) [14]. The value of cortical auditory
neuromarkers is underscored by the breadth of potential clinical appli-

Capturing the cortical correlates of auditory processing has improved
the understanding of the mechanisms of normal auditory processing
[1-3] and altered cortical processing in a number of conditions,
including dyslexia [4,5], schizophrenia [6,7], central auditory process-
ing disorder [8], and autism spectrum disorder [9,10]. Such information
can be used alongside traditional outcome measurements to evaluate
drug interventions [11] and inform potential therapeutic neurofeedback
strategies [12]. Cortical correlates of auditory processing have also been
employed to assess outcomes in individuals with cochlear implants [13]
and could potentially facilitate the diagnosis of attention deficit
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cations and relevance to many conditions that affect auditory process-
ing. To date, various types of neuroimaging techniques have been
employed to advance the understanding of normal and disrupted
cortical auditory processing activity [3,15]. Although functional mag-
netic resonance imaging (fMRI) has been one of the most utilized neu-
roimaging tools to observe the metabolic correlates of auditory
processing [16-20], functional near-infrared spectroscopy (fNIRS) has
shown promise as an alternative modality that provides distinct ad-
vantages over fMRI, especially in auditory experimentation contexts due
to its low auditory noise levels produced during recording [3]. Although
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techniques such as sparse sampling [16] have been proposed to partially
mitigate the effects of auditory machine noise in fMRI, all solutions thus
far constrain experimental design [17]. fNIRS neuroimaging technology
can be especially beneficial for auditory experimental setups as it allows
for flexible and naturalistic experimental designs [21] in addition to its
portability, low cost, and decent compromise it offers between temporal
and spatial resolution [22]. This optical technology, which measures
concentration changes of oxygenated (HbO) and deoxygenated (HbR)
hemoglobin in cerebral blood flow, provides an indirect measurement of
neural activity by reflecting the metabolic needs of local neuron pop-
ulations [23] important for auditory processing exploration.

Despite distinct advantages of fNIRS over and synergies between this
neuroimaging modality with existing modalities, limited fNIRS auditory
processing research has been conducted. Tian et al. (2021) determined
that sound localization information was encoded in hemodynamic re-
sponses by classifying features extracted from oxygenated hemoglobin
time series signals [24]. Shader et al. (2021) also determined significant
activations of the left and right auditory cortices in response to
auditory-only speech stimuli, spatially differentiating these responses
from visual-only speech stimuli [25]. Additionally, Santosa et al. (2014)
demonstrated that hemodynamic responses are lateralized to the right
hemisphere while listening to music relative to noise, even when music
was presented in the presence of noise [26]. Other works have also
demonstrated the feasibility of classifying hemodynamic responses by
the type of auditory stimuli presented [27,28]. In addition to the char-
acterization of normal auditory processing, fNIRS has applications in
characterizing pathological auditory processing conditions. For
example, Issa et al. (2016) found that hemodynamic activity was
increased in auditory and non-auditory regions in individuals with
tinnitus when compared to healthy controls [29]. Bell et al. (2020)
explored speech comprehension in children with hearing aids when
compared with normally-hearing controls [30].

To date, fNIRS responses in auditory tasks have been characterized in
both block design [31-33] and event-related design [34,35] paradigms.
Event-related experiments have often been disregarded in favor of block
design experiments; however, it has been demonstrated that event
related experimental designs can elicit valid hemodynamic responses
while retaining the flexibility that this experimental design approach
offers [36]. For example, Ehlis et al. (2009) employed an auditory event
related paradigm to explore hemodynamic correlates of sensory gating
and their relationships with simultaneously recorded electroencepha-
lography (EEG), determining a significant positive correlation between
the hemodynamic response and sensory gating [35]. Mushtaq et al.
(2019) found significant activation over the superior temporal cortex in
response to speech and speech-like stimuli in normally-hearing children
ages 6-12 [37]. Kennan et al. (2002) reported an event-related response
in an auditory oddball task consisting of a series of standard tones with
rare presentation of a deviant tone. In this study, the authors charac-
terized the hemodynamic response to the stimulus as a peak in total
hemoglobin concentration (HbT) with a peak latency of 5.8 s and 5.9 s
duration measured as full width at half maximum [34]. The results of
this study are based on group epoch averages, but do not account for
inter-individual variability or trial level features.

The existing body of fMRI auditory processing literature provides
additional insights to our understanding of the metabolic correlates of
auditory processing. Friihholz et al. (2020) were able to characterize
infra-slow oscillations evoked by socially relevant verbal auditory
stimuli, determining that both simple and complex auditory stimuli
produce both a transient and a sustained blood oxygen level-dependent
(BOLD) response [18]. BOLD response magnitude to simple auditory
stimuli have also been shown to correlate with loudness percept [19,32].
Significant group differences were found between schizophrenia pa-
tients and matched healthy control participants in an auditory oddball
task that were not present in a visual oddball task [20], further
demonstrating the need for greater understanding of the hemodynamic
correlates of event-related auditory processing.
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Hemodynamic responses to various tasks, including motor imagery,
hybrid visual oddball/mental arithmetic tasks, and tasks designed to
invoke auditory processing [38-40], have demonstrated significant
inter-individual variability [38,41,42], demonstrating the necessity of
individual-specific feature extraction techniques sensitive to individual
differences in hemodynamic response waveform characteristics. Deter-
mining class discriminative features in auditory oddball tasks would be
beneficial for further understanding the role of cerebral hemodynamics
in auditory processing, and characterizing the metabolic correlates of
neural auditory processing impairments such as tinnitus [40,43], ac-
quired brain injury [44], and schizophrenia [45]. In the latter case,
developing an understanding of the hemodynamic correlates of auditory
processing could inform promising neurofeedback techniques to miti-
gate verbal auditory hallucinations [12,46] and provide additional
insight to characterize neural abnormalities in auditory processing in
schizophrenic populations [15,47,48]. Characterizing auditory
task-related hemodynamic changes could also further inform the
development of fNIRS-based brain-computer interfaces (BCls) as well as
hybrid BCIs incorporating fNIRS with other modalities, such as EEG [38,
39].

fNIRS feature extraction strategies can be confounded by physio-
logical noise sources including Mayer waves, respiration, and heart rate
[49,50]. To this effect, several methods have been suggested for
denoising and subsequent extraction of task-relevant information,
including the common average reference (CAR) [24,51], independent
component analysis (ICA) [51-54], short-channel regression [55], and
methods based on principal component analysis (PCA) [56,57]. Of these
methods, ICA, which decomposes signal time courses measured across
multiple channels into components representative of mutually inde-
pendent sources [58], stands out as a unique data-driven denoising
approach with potential feature extraction applications by separating
neural task-related activity from physiological noise and other noise
sources. ICA can also incorporate information from other sensors to
improve noise removal by including more direct measures of noise
sources, such as accelerometer readings of head motion [59], and also
has been used in fNIRS to extract task-related components from multi-
channel recordings [60]. In addition, ICA has demonstrated to be able to
separate components containing hemodynamic responses from noise
components, further demonstrating its promise as both a de-noising and
feature extraction approach [54]. However, it should be noted that
ICA-based approaches that rely on manual retention of task-related
components can fail to remove physiological noise associated with the
task, and methods that rely on applying ICA using only long-distance
channels are insufficient to fully characterize the cortical hemody-
namic response [61].

Despite previous work establishing the promise and viability of
auditory oddball experiments, more work must be done to characterize
healthy individuals’ task-related hemodynamic changes induced by
auditory oddball tasks before its utility in patient populations can be
fully explored. The most relevant study to date using fNIRS as a signal
acquisition method was performed by Kennan et al. (2002), which
established the presence of an auditory oddball response in the total
hemoglobin concentration change time courses in five healthy in-
dividuals and characterized some features common among participants,
but did not characterize individual differences between participants
[34].

This study aims to characterize individual-specific class discrimina-
tive hemodynamic features in an event-related auditory task in a healthy
population by recording participants’ task-related hemodynamic
changes induced by deviant stimuli over several regions of interest in
auditory tasks. We propose an ICA-based method to determine class
discriminative components in an event-related auditory task. Charac-
terization of auditory task-related changes in the hemodynamic time
series would contribute to the underexplored field of auditory process-
ing research using fNIRS. The outcomes from this study intend to add
novel information to the existing sparse fNIRS auditory event-related
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literature base as a step towards the application of such experimental
paradigms to future experimental protocols including healthy partici-
pants and eventually clinical populations suffering from auditory
response dysfunctions.

2. Methods
2.1. Participants, experimental protocol, and signal acquisition

Eight healthy participants (three female, mean age 29.25 + 10.07
years) with no known history of neurological or auditory processing
disorder were recruited from the University of Rhode Island. This study
was approved by the institutional review board (IRB) of the University of
Rhode Island, and all participants provided informed consent before
participation in the study.

Participants were seated in a comfortable chair before a cap was
placed on their heads. Cap position was determined using measurements
relative to anatomical landmarks, with Cz positioned at the midpoints
between the inion and nasion and between both ears, in accordance with
the international 10-20 system. fNIRS optodes were placed according to
the montage shown in Fig. 1 to cover the Frontal (F), Left Auditory (LA),
and Right Auditory (RA) regions of interest (ROIs). The optode locations
were selected using the fOLD toolbox [62]. A pair of headphones (Sony
Group Corporation) were placed over the ears of the participant before
calibration of the fNIRS system.

Participants completed six experimental runs of an auditory oddball
task. Each run consisted of 20 deviant stimuli and a randomized number
of standard stimuli (average 122 standard stimuli per run). The final two
deviant epochs and the associated preceding standard epochs were
removed from further analysis due to the presence of motion artifacts in
a number of participants, retaining 108 (6 runs x 18 deviant stimuli/run
= 108) deviant epochs and an average of 648 (6 runs x 108 standard
stimuli/run = 648) standard epochs per participant. Standard stimuli
were 1 kHz tones with 500 ms duration and deviant stimuli were 40 Hz
white noise click trains with 500 ms duration. Stimuli were presented
with a 2 s inter-stimulus interval (ISI). Between five and seven standard
stimuli were presented at random between subsequent deviant stimuli,
guaranteeing a period of 15-20 s between subsequent deviant stimulus
presentations. A diagram of the proposed experimental protocol is pre-
sented in Fig. 1. Participants were instructed to count the number of
deviant stimuli heard in each run while ignoring standard stimuli.
Additionally, upon hearing the n™ deviant stimulus in the run, partici-
pants were asked to mentally count up from n to n + 4 in order to

Deviant

Standard

500ms 2000ms 500ms 2000ms

Fig. 1. A diagram of the proposed experimental design: Red bars indicate
deviant stimuli and blue bars represent standard stimuli. The spaces between
stimuli represent the inter-stimulus interval. Stimulus presentation order is
randomized to create an auditory oddball task and reduce phase synchrony
between deviant stimulus presentation and unrelated physiological activity.
The first five stimuli following a deviant stimulus are standard, guaranteeing at
least 15 s between previous deviant stimulus onset and current deviant stimulus
onset. A following deviant stimulus may come directly after the first five stimuli
following the previous deviant stimulus, or there may be one or two additional
standard stimuli before the following deviant stimulus is presented, corre-
sponding to a maximum delay of 20 s between previous deviant stimulus onset
and following deviant stimulus onset.
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increase the attentional load of the task, as active auditory oddball tasks
have been shown to activate attention-related networks that are other-
wise not activated in passive auditory oddball tasks [63]. During this
period of mental counting, participants were instructed to imagine the
sound of the enunciation of the numbers during counting. This was
intended to include an auditory imagery component to the task shown to
involve attention and semantic processing networks [64]. Participants
were instructed to avoid any changes in respiratory pattern related to
the task to reduce potential respiratory artifacts in the hemodynamic
signal. Hemodynamic data were acquired using a NIRScout (NIRx Inc.)
system at a sampling rate of 7.81 Hz from 7 sources and 8 detectors over
a total of 14 channels spread across three regions of interest (ROIs)
indicated as F, LA, and RA.(Fig. 2).

2.2. Signal analysis

Optical density signals were bandpass filtered 0.005-0.7 Hz and
converted to oxygenated and deoxygenated hemoglobin concentration
changes (HbO5 and HbR, respectively) using the modified Beer-Lambert
Law in the nirsLab software package (NIRx Inc.). This passband was
selected to remove heartbeat artifacts (~1 Hz) but retain the frequency
bands shown to contain both known artifacts such as Mayer waves
(~0.1 Hz) and respiration artifacts (~0.2-0.5 Hz) and possible task-
related information, as well as several cycles of the largest possible
period of deviant stimulus presentation (18 s) [65]. Subsequent analyses
were performed on HbO, signals using the MATLAB software package
(The MathWorks, Inc.). HbO5 was selected as previous work has sug-
gested that features extracted from HbO, exhibit greater reproducibility
both spatially and temporally in event-related fNIRS experiments [66],
though the analysis was repeated for the HbR time series. These results
are available in Appendix A. ICA was then applied to the HbO signals
using the infomax algorithm, generating 14 statistically independent
components. These components were epoched 0-20 s relative to stim-
ulus onset. 5 s sliding windows were extracted from each component
epoch ranging from O to 5, 2-7 s, 4-9s, 6-11s, 8-13 s, and 10-15s
relative to stimulus onset, and signal slope was extracted via linear
regression within each window. Signal slope was selected from a set of

Fig. 2. The experimental montage utilized in this study. Green lines indicate
fNIRS channels, red dots indicate fNIRS sources, and blue dots indicate fNIRS
detectors. Different regions of interest are grouped by a red box and labeled.
The regions were selected to cover the frontal (F), left auditory (LA), and right
auditory (RA) regions.
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explored features successfully employed in other task discrimination
studies (maximum, minimum, skewness, kurtosis, slope) [65,67,68] for
this analysis after it was determined that this feature produced the most
robust outcomes. Specifically, slope was the only explored feature that
demonstrated Spearman correlation (p) between features and trial labels
(deviant and standard) with p < 0.01 in over half the participants.
Spearman correlation calculated between trial labels and extracted
features was used to evaluate the relationship between hemodynamic
signal slope and the trial labels. All participants but one (S07) produced
multiple components with features that correlated well with trial labels.
For these participants, components containing a feature from any time
window that correlated with the trial labels with a p-value of less than
0.01 were retained, while all other components were rejected. This
threshold was selected based upon visual inspection of a subset of the
components meeting this criterion across the participant pool. However,
for participant SO7, these criteria were relaxed to include components
containing a feature that correlates with trial labels in at least one
window with a p-value of less than 0.05 as only one component con-
tained a feature that met the original inclusion criteria, greatly reducing
the spatially discriminative information contained in the backprojected
data. Retained components were then projected back into the
channel-time space, and slope features were again extracted from the
epoched hemodynamic signal using the same 5 s sliding window (0-5 s,
2-7s,4-9s,6-11s, 8-13 s, and 10-15 s). Features were then averaged
channel-wise over each region of interest and Spearman correlation was
calculated between each averaged feature by region and trial label. The
correlation analysis therefore represents the difference in signal slope
time-locked to stimulus onset between deviant and standard stimuli
where a positive p-value indicates increased slope in the corresponding
time window in deviant trials relative to slope observed in that window
time-locked to standard stimulus onset. All p-values were subjected to
Bonferroni correction to determine statistical significance, producing an
adjusted o level of 0.0028 (3 ROIs x 6 windows). Epochs were also
extracted from the original signal and ICA-filtered signal — 5-20s
relative to stimulus onset and averaged by stimulus type to observe
characteristics of the signal time series.

SOl C1 c2 Cc3 C4
C5 Cé c7 Ccs8
c9 Cc10 Cc12

C13 C14
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3. Results

Fig. 3 shows fourteen component topographies taken from the in-
verse weight matrix estimated using ICA and the corresponding spectra
of each component time course from a representative participant (S01).
As it is seen, component spectra are mostly dominated by activity at
~0.1 Hz, suggesting that some physiological noise is retained in most
independent components, even those that contain class discriminative
information. Additionally, the first components are relatively global,
while subsequent components become more spatially localized, sug-
gesting that components accounting for most of the variance in the
signal capture global activity commonly associated with noise.

Before ICA spatial filtering, six of eight participants demonstrated
significant correlation between extracted slope and trial labels (SO1,
S02, S04, SO05, S06, S08). Of these participants, five participants
demonstrated significant correlation between features and trial labels in
the frontal region (S01, S04, SO5, S06, S08), whereas significant corre-
lation between features and trial labels was observed in the LA regions of
three participants (S01, S02, S04, S08) and the RA region of four par-
ticipants (S01, S02, S04, S08). After applying ICA spatial filtering, all
eight participants demonstrated significant correlation between slope in
at least one window and region and trial labels. Among these, significant
correlation between features and trial labels was observed in the frontal
region of six participants (S01, S03, S04, S06, S07, S08), the LA region of
all eight participants, and the RA region of six participants (S01, S02,
S03, S04, S05, S06). Correlation maps for each participant are shown in
Appendix A.

Feature correlation maps and average HbO; signals from the same
representative participant (S01) are also displayed in Fig. 4. As it is seen
in Fig. 4 (bottom), a short negative deflection precedes a longer period of
positive slope, which is then followed by a similar period of negative
slope (Fig. 4 bottom). The overall shape of the response is retained after
ICA spatial filtering, though slightly altered due to removal of the non-
class discriminative components. The correlation maps displayed in
Fig. 4 (top) reflect these observations, as a period of significant positive
correlation between signal slope and trial labels in the 4-9 s window is
followed by a period of significant negative correlation between signal

c1 c2 Cc3 C4
-16 16 15 15
-18 -18 -20 \/\ -20 \’\
-20 -20 -25 25
0 01 02 0 041 02 0 01 02 0 01 02
c5 cé c7 cs
15 15 15 -18
-20 J\ 20 ‘/\ -20 L/\ -20
-25 25 25 22
0 01 02 0 01 02 0 01 02 0 01 02
c9 c10 c11 c12
18 15 18 -5
-20 20 \J\ -20 -20 ‘/\
22 25 22 25
0 01 02 0 01 02 0 01 02 0 01 02
< c13 c14
s 15 15
3
e
8 20 ‘\/’\ 20 \/\
g
5 25 25
. 0 0102 0 01 02

Frequency (Hz)

Fig. 3. Left: Fourteen component topographies (C1 to C14) from a representative participant (S01) shown in arbitrary units (au). Right: Power spectra from the same

representative participant for all 14 components.
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Fig. 4. Top: Comparison of correlations between trial labels and features between the backprojected HbO, waveform after ICA spatial filtering and the original
waveform after ICA spatial filtering from a representative participant (S01)-note: in this case, five independent components were retained. Significant corrected p-
values (p < 0.0028) are displayed in white, while non-significant p-values are displayed in black. Deeper red corresponds with positive correlation while deeper blue
corresponds with negative correlation. Bottom: Comparison of HbO, waveforms averaged over the RA region after and before ICA-based spatial filtering applied.
Deviant stimulus onset is plotted with a blue dashed line, while standard stimulus onset is plotted with a red dashed line. Gray dashed lines represent stimulus onset

that could be either deviant or standard.

slope and trial labels in the 8-13 s and 10-15 s windows. This basic
pattern is somewhat retained in most other participants’ responses, as
six of eight participants (S01, S03, S04, S06, SO7, S08) demonstrate
significant positive correlation between signal slope and trial labels in
the three earlier time windows (0-5 s, 2-7 s, 4-9 s). However, responses
broadly differ between participants spatially and temporally, with
maximal signal slope correlation occurring in either earlier or later time
windows (windows ranging from O to 5s and 8-13s). Notably, SO5
produces a shorter period of positive slope followed by a much more
pronounced period of negative slope, which was extracted as a feature
that significantly correlates with trial labels, though there is no pre-
ceding period of significant positive correlation. Additionally, S06
demonstrates periodic oscillatory behavior, and the major periods of
slope changes (early negative, middle positive, late positive) are
extracted as significant features. All participants’ average responses and
correlation maps are available in Appendix A.

Fig. 5 displays the highest absolute value Spearman correlation (p)
observed in each region for each participant before and after ICA spatial
filtering. As shown, the proposed ICA spatial filtering method increased
the highest observed p in all participants and in almost every region. The
most pronounced improvements in correlation between extracted fea-
tures and trial labels is observed in participants with the fewest com-
ponents retained, such as S03 and SO7 (two and three components
retained, respectively), indicating that noise is distributed differently
between components across participants. Marginal improvements were

03
0.25
0.2

abs(Spearmanp)

u|CA =NoICA
i
0.15 :

gl iy h |
0.05 : :
Sl e

F LARAF LARAF LARAF LARAF LARAF LARA F LARA F LARA
S01 S02 S03 S04 S05 S06 S07 S08

Participant/Region

Fig. 5. Comparison of the highest absolute value Spearman correlation (p)
values by region and preprocessing scheme (ICA vs. No ICA) for the HbO, re-
sults of each participant. Participants are separated by a dotted line.

found in other participants; however, the consistency of improvement in
correlation was notable as this occurred in all participants (only four
instances of p decreasing in a given region were observed).
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4. Discussion

In this study, task-related hemodynamic changes during an event-
related auditory task were characterized across healthy individuals.
The outcomes can provide insight to the growing field of fNIRS-based
auditory experiments by characterizing the task-related changes in he-
modynamic activity during auditory processing through the demon-
stration of statistically significant changes in signal slope following
deviant stimulus presentation relative to standard stimulus presentation.
Our study further demonstrated improvement in the discriminative
feature set using an ICA-based denoising strategy to retain task-related
components and reject unrelated components. While previous work
has characterized the hemodynamic auditory oddball response
measured by fNIRS [34], we propose a feature extraction scheme using
ICA-based spatial filtering that was shown to extract class discriminative
features sensitive to individual differences in the response waveform.
Overall, we found that signal slope significantly correlated with trial
labels in most participants before ICA spatial filtering. All participants
demonstrated significant correlation between trial labels and extracted
features after ICA spatial filtering. We further demonstrated the
importance of individual-specific feature extraction strategies to char-
acterize hemodynamic changes related to auditory tasks. Sensitivity to
individual differences in response waveforms has shown to be beneficial
to the analysis of hemodynamic signals. For example, Hosni et al. (2020)
and Borgheai et al. (2020) both demonstrated the benefits of using
individual-specific hemodynamic features when developing hybrid
EEG-fNIRS BCIs for patients with amyotrophic lateral sclerosis (ALS)
[38,39]. Additionally, Holper et al. (2011) demonstrated significant
inter-individual variability in the hemodynamic responses of healthy
participants during a motor imagery task [42]. Here, we demonstrate
important inter-individual variability both temporally and spatially in
the hemodynamic signal changes induced by deviant auditory stimuli,
reflecting findings in other paradigms and emphasizing the need for
either individual-specific approaches or analyses robust to differences in
hemodynamic patterns across participants.

While our work also demonstrated the value of ICA as a feature
extraction strategy in the context of fNIRS-based auditory experiments,
ICA-based feature extraction techniques have been effectively employed
in other fNIRS studies by other groups. For example, Akgiil et al. used
ICA to decompose hemodynamic signals recorded during a visual
oddball paradigm and components were retained based on correlation
with a hemodynamic response signal template [60]. Katura et al. applied
a similar ICA-based strategy during a finger-tapping task, selecting
class-related components using mean inter-trial cross-correlation as a
metric to select class-related ICA components. This approach provides
the distinct advantage of forgoing the use of a predefined hemodynamic
response function (HRF), allowing for more flexibility when analyzing
responses that may vary across participants [69]. We adopt a similar
approach, using Spearman correlation between features extracted from
component time series and trial labels to determine class discriminative
components. We additionally project the retained components back into
channel space in order to retain spatial information in further analyses,
subsequently improving the interpretability of our results. Interestingly,
this approach considerably improved correlation between features and
trial labels in all our participants. The most remarkable improvements
were observed in participants where fewer components were retained,
specifically, SO3 and SO7. Systemic oscillatory activity was observed in
these participants, as evidenced by the intense activity at ~0.1 Hz in
multiple components (see Appendix A), suggesting that the current
approach is capable of extracting features of the hemodynamic response
from individuals that exhibit large systemic artifacts. Considering the
fact that activity at the ~0.1 Hz frequency range is associated with the
Mayer wave, which are oscillations caused by arterial blood pressure
changes [70], the observed large systemic artifacts observed in these
participants may be the likely cause of this phenomenon. It is noted that
the spectral power of Mayer wave artifacts can negatively impact the
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ability to estimate the hemodynamic response, as demonstrated by Yiicel
etal. [71].

The auditory paradigm employed in this study evoked significant
bilateral changes in signal slope in six of eight participants after ICA-
based spatial filtering. Six of eight participants also demonstrated sig-
nificant correlation between features extracted from the frontal region
and trial labels. A possible explanation for this observation is the relative
proximity of the frontal optodes to the prefrontal region, where oddball
responses are found in event-related potentials [72]. Indeed, the mental
counting task employed to ensure participant attention has been shown
to activate the prefrontal region [68], possibly explaining the presence
of significant attention-related features near this region. The additional
observation of bilateral activation of the auditory cortex using fNIRS in
auditory oddball tasks is previously unreported, as the hemodynamic
auditory oddball response was only characterized in the left auditory
cortex using fNIRS in the preceding work [34]. However, this observa-
tion has some precedence as previous studies using fNIRS have
demonstrated significant bilateral activation of the auditory cortex in
response to simple auditory stimuli in block design paradigms [31,73].
Bilateral auditory cortex activation was also observed in auditory
oddball studies conducted using fMRI techniques [20,74]. However, two
participants did not exhibit significant bilateral features, and instead
produced significant features only in the LA region. A possible expla-
nation of the lack of right auditory activation in these participants is the
role of the right auditory cortex in pitch detection [75]. While the
pitches of each stimulus type are different, the change in pitch between
deviant and standard tones is only one of several contextual differences
between the tones. Further work should be conducted to quantify the
possible hemodynamic response associated with the previously charac-
terized electrical response to such stimuli. This would improve under-
standing of the current results and aid in understanding the steady-state
auditory response usually produced by such a stimulus by including
hemodynamic signal components and the previously characterized in-
crease in evoked power at auditory stimulation frequency [15]. To date,
several studies have demonstrated the importance of cerebral hemody-
namic activity associated with auditory processing in multiple clinical
domains. While auditory fNIRS studies have found success in cases
where this modality provides distinct advantages over other neuro-
imaging modalities, the characterization of hemodynamic responses to
auditory stimuli in healthy adults contributes to the expanding literature
base exploring more general problems and clinical populations. For
example, fNIRS has been used to characterize altered cortical activity in
individuals with tinnitus, including increased oxygenated hemoglobin
consumption in the auditory cortex and other regions [29] and altered
functional connectivity in a population with tinnitus when compared to
a group of healthy controls in both auditory and non-auditory regions
during an auditory processing task [76]. Differences between healthy
controls and schizophrenia patients were also explored using fMRI in an
auditory oddball task by Collier et al. (2016), who found more signifi-
cant differences in auditory attention tasks than in visual attention be-
tween these two populations [20]. These studies provide evidence
supporting  the  clinical value of measuring cerebral
vascular-hemodynamics in individuals engaged in auditory processing
tasks. Most notably, fNIRS has been successfully employed in charac-
terizing plasticity in the auditory cortex in individuals with cochlear
implants [77,78]. This modality is particularly suited to exploring
auditory cortex neuroplasticity due to its compatibility with the im-
plants, which is not shared with most other neuroimaging approaches,
including fMRI [79]. fNIRS has also been used in auditory processing
studies with young children owing to the modality’s tolerability and
relative resistance to motion artifacts [80].

There are several limitations to the conclusions drawn by this study.
This study was performed with a limited number of participants,
limiting statistical power, and the breadth of potential inter-individual
variability in task-related hemodynamics may not be fully character-
ized. However, the purpose of this study was to apply an exploratory
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individual-specific analysis approach to extract features characterizing
the task-related components of the hemodynamic signal during an
auditory task in healthy participants. The results presented demonstrate
the inter-individual variability inherent to the hemodynamic response
measured by fNIRS and highlight the need for analysis approaches
capable of accounting for this variability. While we were successful in
exploring this inter-individual variability, further exploration is war-
ranted to characterize population-level hemodynamic responses to
auditory tasks. Additionally, the limited number of optodes may influ-
ence the ability of the employed noise reduction techniques to reduce or
eliminate global noise components. Although ICA has been demon-
strated to improve signal quality in similar low-density fNIRS montages
[54], further work should be conducted that employs either sufficient
optode coverage to characterize and remove global noise or
short-channel recordings to remove systemic artifacts, including physi-
ological noise related to the task [81], which currently may not be
completely removed using the current ICA spatial filtering approach
[82]. As such, this crucial step is necessary to ascertain that the features
extracted purely reflect cortical hemodynamic changes. Other potential
hemodynamic features could be explored, such as signal mean, slope,
peak, minimum, maximum, skewness, kurtosis [83], or $-values from a
generalized linear model (GLM) [84] to better characterize distinctive
hemodynamic features. Of these potential features to explore, the GLM
approach is most crucial due to the widespread adoption of these fea-
tures in the literature base characterizing the hemodynamic response
[85]. However, this study demonstrates significant differences in signal
slope in response to deviant stimuli when compared to standard stimuli
in an auditory oddball task in all participants using the window selected,
suggesting that in many cases, this feature extraction approach can
capture important task related hemodynamic information in these tasks.
More research should also be done to thoroughly characterize the
discriminative responses in healthy and pathological populations,
informing further pathological biomarkers applicable in diagnostic
techniques. The characterization of the hemodynamic waveform related
to the present task also has potential closed-loop BCI applications.
Closed-loop BClIs that rely on auditory stimuli have particular applica-
tions to individuals in the late stages of ALS, where participants become
locked-in to the point of losing voluntary eye gaze control [86]. Future
work exploring the possibility of the extension of this paradigm to a
closed-loop BCI application is warranted. As another future direction,
fNIRS can also be recorded concurrently with EEG, providing additional
insights into neural functions and responses to established EEG para-
digms that have been foundational in auditory processing research [35].
Further multimodal exploration of these responses could expand the
understanding of compound neural dynamics and help to characterize
abnormal cortical patterns, as well as providing insights to neuro-
modulation approaches such as transcranial direct current stimulation
(tDCS), which has shown promise in interventional procedures
involving patients with auditory processing dysfunctions [87].
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