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A B S T R A C T   

Functional near-infrared spectroscopy (fNIRS) has been established as an informative modality for understanding 
the hemodynamic-metabolic correlates of cortical auditory processing. To date, such knowledge has shown broad 
clinical applications in the diagnosis, treatment, and intervention procedures in disorders affecting auditory 
processing; however, exploration of the hemodynamic response to auditory tasks is yet incomplete. This holds 
particularly true in the context of auditory event-related fNIRS experiments, where preliminary work has shown 
the presence of valid responses while leaving the need for more comprehensive explorations of the hemodynamic 
correlates of event-related auditory processing. In this study, we apply an individual-specific approach to 
characterize fNIRS-based hemodynamic changes during an auditory task in healthy adults. Oxygenated hemo
globin (HbO2) concentration change time courses were acquired from eight participants. Independent component 
analysis (ICA) was then applied to isolate individual-specific class discriminative spatial filters, which were then 
applied to HbO2 time courses to extract auditory-related hemodynamic features. While six of eight participants 
produced significant class discriminative features before ICA-based spatial filtering, the proposed method 
identified significant auditory hemodynamic features in all participants. Furthermore, ICA-based filtering 
improved correlation between trial labels and extracted features in every participant. For the first time, this study 
demonstrates hemodynamic features important in experiments exploring auditory processing as well as the 
utility of individual-specific ICA-based spatial filtering in fNIRS-based feature extraction techniques in auditory 
experiments. These outcomes provide insights for future studies exploring auditory hemodynamic characteristics 
and may eventually provide a baseline framework for better understanding auditory response dysfunctions in 
clinical populations.   

1. Introduction 

Capturing the cortical correlates of auditory processing has improved 
the understanding of the mechanisms of normal auditory processing 
[1–3] and altered cortical processing in a number of conditions, 
including dyslexia [4,5], schizophrenia [6,7], central auditory process
ing disorder [8], and autism spectrum disorder [9,10]. Such information 
can be used alongside traditional outcome measurements to evaluate 
drug interventions [11] and inform potential therapeutic neurofeedback 
strategies [12]. Cortical correlates of auditory processing have also been 
employed to assess outcomes in individuals with cochlear implants [13] 
and could potentially facilitate the diagnosis of attention deficit 

hyperactivity disorder (ADHD) [14]. The value of cortical auditory 
neuromarkers is underscored by the breadth of potential clinical appli
cations and relevance to many conditions that affect auditory process
ing. To date, various types of neuroimaging techniques have been 
employed to advance the understanding of normal and disrupted 
cortical auditory processing activity [3,15]. Although functional mag
netic resonance imaging (fMRI) has been one of the most utilized neu
roimaging tools to observe the metabolic correlates of auditory 
processing [16–20], functional near-infrared spectroscopy (fNIRS) has 
shown promise as an alternative modality that provides distinct ad
vantages over fMRI, especially in auditory experimentation contexts due 
to its low auditory noise levels produced during recording [3]. Although 
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techniques such as sparse sampling [16] have been proposed to partially 
mitigate the effects of auditory machine noise in fMRI, all solutions thus 
far constrain experimental design [17]. fNIRS neuroimaging technology 
can be especially beneficial for auditory experimental setups as it allows 
for flexible and naturalistic experimental designs [21] in addition to its 
portability, low cost, and decent compromise it offers between temporal 
and spatial resolution [22]. This optical technology, which measures 
concentration changes of oxygenated (HbO2) and deoxygenated (HbR) 
hemoglobin in cerebral blood flow, provides an indirect measurement of 
neural activity by reflecting the metabolic needs of local neuron pop
ulations [23] important for auditory processing exploration. 

Despite distinct advantages of fNIRS over and synergies between this 
neuroimaging modality with existing modalities, limited fNIRS auditory 
processing research has been conducted. Tian et al. (2021) determined 
that sound localization information was encoded in hemodynamic re
sponses by classifying features extracted from oxygenated hemoglobin 
time series signals [24]. Shader et al. (2021) also determined significant 
activations of the left and right auditory cortices in response to 
auditory-only speech stimuli, spatially differentiating these responses 
from visual-only speech stimuli [25]. Additionally, Santosa et al. (2014) 
demonstrated that hemodynamic responses are lateralized to the right 
hemisphere while listening to music relative to noise, even when music 
was presented in the presence of noise [26]. Other works have also 
demonstrated the feasibility of classifying hemodynamic responses by 
the type of auditory stimuli presented [27,28]. In addition to the char
acterization of normal auditory processing, fNIRS has applications in 
characterizing pathological auditory processing conditions. For 
example, Issa et al. (2016) found that hemodynamic activity was 
increased in auditory and non-auditory regions in individuals with 
tinnitus when compared to healthy controls [29]. Bell et al. (2020) 
explored speech comprehension in children with hearing aids when 
compared with normally-hearing controls [30]. 

To date, fNIRS responses in auditory tasks have been characterized in 
both block design [31–33] and event-related design [34,35] paradigms. 
Event-related experiments have often been disregarded in favor of block 
design experiments; however, it has been demonstrated that event 
related experimental designs can elicit valid hemodynamic responses 
while retaining the flexibility that this experimental design approach 
offers [36]. For example, Ehlis et al. (2009) employed an auditory event 
related paradigm to explore hemodynamic correlates of sensory gating 
and their relationships with simultaneously recorded electroencepha
lography (EEG), determining a significant positive correlation between 
the hemodynamic response and sensory gating [35]. Mushtaq et al. 
(2019) found significant activation over the superior temporal cortex in 
response to speech and speech-like stimuli in normally-hearing children 
ages 6–12 [37]. Kennan et al. (2002) reported an event-related response 
in an auditory oddball task consisting of a series of standard tones with 
rare presentation of a deviant tone. In this study, the authors charac
terized the hemodynamic response to the stimulus as a peak in total 
hemoglobin concentration (HbT) with a peak latency of 5.8 s and 5.9 s 
duration measured as full width at half maximum [34]. The results of 
this study are based on group epoch averages, but do not account for 
inter-individual variability or trial level features. 

The existing body of fMRI auditory processing literature provides 
additional insights to our understanding of the metabolic correlates of 
auditory processing. Frühholz et al. (2020) were able to characterize 
infra-slow oscillations evoked by socially relevant verbal auditory 
stimuli, determining that both simple and complex auditory stimuli 
produce both a transient and a sustained blood oxygen level-dependent 
(BOLD) response [18]. BOLD response magnitude to simple auditory 
stimuli have also been shown to correlate with loudness percept [19,32]. 
Significant group differences were found between schizophrenia pa
tients and matched healthy control participants in an auditory oddball 
task that were not present in a visual oddball task [20], further 
demonstrating the need for greater understanding of the hemodynamic 
correlates of event-related auditory processing. 

Hemodynamic responses to various tasks, including motor imagery, 
hybrid visual oddball/mental arithmetic tasks, and tasks designed to 
invoke auditory processing [38–40], have demonstrated significant 
inter-individual variability [38,41,42], demonstrating the necessity of 
individual-specific feature extraction techniques sensitive to individual 
differences in hemodynamic response waveform characteristics. Deter
mining class discriminative features in auditory oddball tasks would be 
beneficial for further understanding the role of cerebral hemodynamics 
in auditory processing, and characterizing the metabolic correlates of 
neural auditory processing impairments such as tinnitus [40,43], ac
quired brain injury [44], and schizophrenia [45]. In the latter case, 
developing an understanding of the hemodynamic correlates of auditory 
processing could inform promising neurofeedback techniques to miti
gate verbal auditory hallucinations [12,46] and provide additional 
insight to characterize neural abnormalities in auditory processing in 
schizophrenic populations [15,47,48]. Characterizing auditory 
task-related hemodynamic changes could also further inform the 
development of fNIRS-based brain-computer interfaces (BCIs) as well as 
hybrid BCIs incorporating fNIRS with other modalities, such as EEG [38, 
39]. 

fNIRS feature extraction strategies can be confounded by physio
logical noise sources including Mayer waves, respiration, and heart rate 
[49,50]. To this effect, several methods have been suggested for 
denoising and subsequent extraction of task-relevant information, 
including the common average reference (CAR) [24,51], independent 
component analysis (ICA) [51–54], short-channel regression [55], and 
methods based on principal component analysis (PCA) [56,57]. Of these 
methods, ICA, which decomposes signal time courses measured across 
multiple channels into components representative of mutually inde
pendent sources [58], stands out as a unique data-driven denoising 
approach with potential feature extraction applications by separating 
neural task-related activity from physiological noise and other noise 
sources. ICA can also incorporate information from other sensors to 
improve noise removal by including more direct measures of noise 
sources, such as accelerometer readings of head motion [59], and also 
has been used in fNIRS to extract task-related components from multi
channel recordings [60]. In addition, ICA has demonstrated to be able to 
separate components containing hemodynamic responses from noise 
components, further demonstrating its promise as both a de-noising and 
feature extraction approach [54]. However, it should be noted that 
ICA-based approaches that rely on manual retention of task-related 
components can fail to remove physiological noise associated with the 
task, and methods that rely on applying ICA using only long-distance 
channels are insufficient to fully characterize the cortical hemody
namic response [61]. 

Despite previous work establishing the promise and viability of 
auditory oddball experiments, more work must be done to characterize 
healthy individuals’ task-related hemodynamic changes induced by 
auditory oddball tasks before its utility in patient populations can be 
fully explored. The most relevant study to date using fNIRS as a signal 
acquisition method was performed by Kennan et al. (2002), which 
established the presence of an auditory oddball response in the total 
hemoglobin concentration change time courses in five healthy in
dividuals and characterized some features common among participants, 
but did not characterize individual differences between participants 
[34]. 

This study aims to characterize individual-specific class discrimina
tive hemodynamic features in an event-related auditory task in a healthy 
population by recording participants’ task-related hemodynamic 
changes induced by deviant stimuli over several regions of interest in 
auditory tasks. We propose an ICA-based method to determine class 
discriminative components in an event-related auditory task. Charac
terization of auditory task-related changes in the hemodynamic time 
series would contribute to the underexplored field of auditory process
ing research using fNIRS. The outcomes from this study intend to add 
novel information to the existing sparse fNIRS auditory event-related 
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literature base as a step towards the application of such experimental 
paradigms to future experimental protocols including healthy partici
pants and eventually clinical populations suffering from auditory 
response dysfunctions. 

2. Methods 

2.1. Participants, experimental protocol, and signal acquisition 

Eight healthy participants (three female, mean age 29.25 ± 10.07 
years) with no known history of neurological or auditory processing 
disorder were recruited from the University of Rhode Island. This study 
was approved by the institutional review board (IRB) of the University of 
Rhode Island, and all participants provided informed consent before 
participation in the study. 

Participants were seated in a comfortable chair before a cap was 
placed on their heads. Cap position was determined using measurements 
relative to anatomical landmarks, with Cz positioned at the midpoints 
between the inion and nasion and between both ears, in accordance with 
the international 10–20 system. fNIRS optodes were placed according to 
the montage shown in Fig. 1 to cover the Frontal (F), Left Auditory (LA), 
and Right Auditory (RA) regions of interest (ROIs). The optode locations 
were selected using the fOLD toolbox [62]. A pair of headphones (Sony 
Group Corporation) were placed over the ears of the participant before 
calibration of the fNIRS system. 

Participants completed six experimental runs of an auditory oddball 
task. Each run consisted of 20 deviant stimuli and a randomized number 
of standard stimuli (average 122 standard stimuli per run). The final two 
deviant epochs and the associated preceding standard epochs were 
removed from further analysis due to the presence of motion artifacts in 
a number of participants, retaining 108 (6 runs x 18 deviant stimuli/run 
= 108) deviant epochs and an average of 648 (6 runs x 108 standard 
stimuli/run = 648) standard epochs per participant. Standard stimuli 
were 1 kHz tones with 500 ms duration and deviant stimuli were 40 Hz 
white noise click trains with 500 ms duration. Stimuli were presented 
with a 2 s inter-stimulus interval (ISI). Between five and seven standard 
stimuli were presented at random between subsequent deviant stimuli, 
guaranteeing a period of 15–20 s between subsequent deviant stimulus 
presentations. A diagram of the proposed experimental protocol is pre
sented in Fig. 1. Participants were instructed to count the number of 
deviant stimuli heard in each run while ignoring standard stimuli. 
Additionally, upon hearing the nth deviant stimulus in the run, partici
pants were asked to mentally count up from n to n + 4 in order to 

increase the attentional load of the task, as active auditory oddball tasks 
have been shown to activate attention-related networks that are other
wise not activated in passive auditory oddball tasks [63]. During this 
period of mental counting, participants were instructed to imagine the 
sound of the enunciation of the numbers during counting. This was 
intended to include an auditory imagery component to the task shown to 
involve attention and semantic processing networks [64]. Participants 
were instructed to avoid any changes in respiratory pattern related to 
the task to reduce potential respiratory artifacts in the hemodynamic 
signal. Hemodynamic data were acquired using a NIRScout (NIRx Inc.) 
system at a sampling rate of 7.81 Hz from 7 sources and 8 detectors over 
a total of 14 channels spread across three regions of interest (ROIs) 
indicated as F, LA, and RA.(Fig. 2). 

2.2. Signal analysis 

Optical density signals were bandpass filtered 0.005–0.7 Hz and 
converted to oxygenated and deoxygenated hemoglobin concentration 
changes (HbO2 and HbR, respectively) using the modified Beer-Lambert 
Law in the nirsLab software package (NIRx Inc.). This passband was 
selected to remove heartbeat artifacts (~1 Hz) but retain the frequency 
bands shown to contain both known artifacts such as Mayer waves 
(~0.1 Hz) and respiration artifacts (~0.2–0.5 Hz) and possible task- 
related information, as well as several cycles of the largest possible 
period of deviant stimulus presentation (18 s) [65]. Subsequent analyses 
were performed on HbO2 signals using the MATLAB software package 
(The MathWorks, Inc.). HbO2 was selected as previous work has sug
gested that features extracted from HbO2 exhibit greater reproducibility 
both spatially and temporally in event-related fNIRS experiments [66], 
though the analysis was repeated for the HbR time series. These results 
are available in Appendix A. ICA was then applied to the HbO2 signals 
using the infomax algorithm, generating 14 statistically independent 
components. These components were epoched 0–20 s relative to stim
ulus onset. 5 s sliding windows were extracted from each component 
epoch ranging from 0 to 5 s, 2–7 s, 4–9 s, 6–11 s, 8–13 s, and 10–15 s 
relative to stimulus onset, and signal slope was extracted via linear 
regression within each window. Signal slope was selected from a set of 

Fig. 1. A diagram of the proposed experimental design: Red bars indicate 
deviant stimuli and blue bars represent standard stimuli. The spaces between 
stimuli represent the inter-stimulus interval. Stimulus presentation order is 
randomized to create an auditory oddball task and reduce phase synchrony 
between deviant stimulus presentation and unrelated physiological activity. 
The first five stimuli following a deviant stimulus are standard, guaranteeing at 
least 15 s between previous deviant stimulus onset and current deviant stimulus 
onset. A following deviant stimulus may come directly after the first five stimuli 
following the previous deviant stimulus, or there may be one or two additional 
standard stimuli before the following deviant stimulus is presented, corre
sponding to a maximum delay of 20 s between previous deviant stimulus onset 
and following deviant stimulus onset. 

Fig. 2. The experimental montage utilized in this study. Green lines indicate 
fNIRS channels, red dots indicate fNIRS sources, and blue dots indicate fNIRS 
detectors. Different regions of interest are grouped by a red box and labeled. 
The regions were selected to cover the frontal (F), left auditory (LA), and right 
auditory (RA) regions. 
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explored features successfully employed in other task discrimination 
studies (maximum, minimum, skewness, kurtosis, slope) [65,67,68] for 
this analysis after it was determined that this feature produced the most 
robust outcomes. Specifically, slope was the only explored feature that 
demonstrated Spearman correlation (ρ) between features and trial labels 
(deviant and standard) with p < 0.01 in over half the participants. 
Spearman correlation calculated between trial labels and extracted 
features was used to evaluate the relationship between hemodynamic 
signal slope and the trial labels. All participants but one (S07) produced 
multiple components with features that correlated well with trial labels. 
For these participants, components containing a feature from any time 
window that correlated with the trial labels with a p-value of less than 
0.01 were retained, while all other components were rejected. This 
threshold was selected based upon visual inspection of a subset of the 
components meeting this criterion across the participant pool. However, 
for participant S07, these criteria were relaxed to include components 
containing a feature that correlates with trial labels in at least one 
window with a p-value of less than 0.05 as only one component con
tained a feature that met the original inclusion criteria, greatly reducing 
the spatially discriminative information contained in the backprojected 
data. Retained components were then projected back into the 
channel-time space, and slope features were again extracted from the 
epoched hemodynamic signal using the same 5 s sliding window (0–5 s, 
2–7 s, 4–9 s, 6–11 s, 8–13 s, and 10–15 s). Features were then averaged 
channel-wise over each region of interest and Spearman correlation was 
calculated between each averaged feature by region and trial label. The 
correlation analysis therefore represents the difference in signal slope 
time-locked to stimulus onset between deviant and standard stimuli 
where a positive ρ-value indicates increased slope in the corresponding 
time window in deviant trials relative to slope observed in that window 
time-locked to standard stimulus onset. All p-values were subjected to 
Bonferroni correction to determine statistical significance, producing an 
adjusted α level of 0.0028 (3 ROIs x 6 windows). Epochs were also 
extracted from the original signal and ICA-filtered signal − 5–20 s 
relative to stimulus onset and averaged by stimulus type to observe 
characteristics of the signal time series. 

3. Results 

Fig. 3 shows fourteen component topographies taken from the in
verse weight matrix estimated using ICA and the corresponding spectra 
of each component time course from a representative participant (S01). 
As it is seen, component spectra are mostly dominated by activity at 
~0.1 Hz, suggesting that some physiological noise is retained in most 
independent components, even those that contain class discriminative 
information. Additionally, the first components are relatively global, 
while subsequent components become more spatially localized, sug
gesting that components accounting for most of the variance in the 
signal capture global activity commonly associated with noise. 

Before ICA spatial filtering, six of eight participants demonstrated 
significant correlation between extracted slope and trial labels (S01, 
S02, S04, S05, S06, S08). Of these participants, five participants 
demonstrated significant correlation between features and trial labels in 
the frontal region (S01, S04, S05, S06, S08), whereas significant corre
lation between features and trial labels was observed in the LA regions of 
three participants (S01, S02, S04, S08) and the RA region of four par
ticipants (S01, S02, S04, S08). After applying ICA spatial filtering, all 
eight participants demonstrated significant correlation between slope in 
at least one window and region and trial labels. Among these, significant 
correlation between features and trial labels was observed in the frontal 
region of six participants (S01, S03, S04, S06, S07, S08), the LA region of 
all eight participants, and the RA region of six participants (S01, S02, 
S03, S04, S05, S06). Correlation maps for each participant are shown in 
Appendix A. 

Feature correlation maps and average HbO2 signals from the same 
representative participant (S01) are also displayed in Fig. 4. As it is seen 
in Fig. 4 (bottom), a short negative deflection precedes a longer period of 
positive slope, which is then followed by a similar period of negative 
slope (Fig. 4 bottom). The overall shape of the response is retained after 
ICA spatial filtering, though slightly altered due to removal of the non- 
class discriminative components. The correlation maps displayed in 
Fig. 4 (top) reflect these observations, as a period of significant positive 
correlation between signal slope and trial labels in the 4–9 s window is 
followed by a period of significant negative correlation between signal 

Fig. 3. Left: Fourteen component topographies (C1 to C14) from a representative participant (S01) shown in arbitrary units (au). Right: Power spectra from the same 
representative participant for all 14 components. 
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slope and trial labels in the 8–13 s and 10–15 s windows. This basic 
pattern is somewhat retained in most other participants’ responses, as 
six of eight participants (S01, S03, S04, S06, S07, S08) demonstrate 
significant positive correlation between signal slope and trial labels in 
the three earlier time windows (0–5 s, 2–7 s, 4–9 s). However, responses 
broadly differ between participants spatially and temporally, with 
maximal signal slope correlation occurring in either earlier or later time 
windows (windows ranging from 0 to 5 s and 8–13 s). Notably, S05 
produces a shorter period of positive slope followed by a much more 
pronounced period of negative slope, which was extracted as a feature 
that significantly correlates with trial labels, though there is no pre
ceding period of significant positive correlation. Additionally, S06 
demonstrates periodic oscillatory behavior, and the major periods of 
slope changes (early negative, middle positive, late positive) are 
extracted as significant features. All participants’ average responses and 
correlation maps are available in Appendix A. 

Fig. 5 displays the highest absolute value Spearman correlation (ρ) 
observed in each region for each participant before and after ICA spatial 
filtering. As shown, the proposed ICA spatial filtering method increased 
the highest observed ρ in all participants and in almost every region. The 
most pronounced improvements in correlation between extracted fea
tures and trial labels is observed in participants with the fewest com
ponents retained, such as S03 and S07 (two and three components 
retained, respectively), indicating that noise is distributed differently 
between components across participants. Marginal improvements were 

found in other participants; however, the consistency of improvement in 
correlation was notable as this occurred in all participants (only four 
instances of ρ decreasing in a given region were observed). 

Fig. 4. Top: Comparison of correlations between trial labels and features between the backprojected HbO2 waveform after ICA spatial filtering and the original 
waveform after ICA spatial filtering from a representative participant (S01)–note: in this case, five independent components were retained. Significant corrected p- 
values (p < 0.0028) are displayed in white, while non-significant p-values are displayed in black. Deeper red corresponds with positive correlation while deeper blue 
corresponds with negative correlation. Bottom: Comparison of HbO2 waveforms averaged over the RA region after and before ICA-based spatial filtering applied. 
Deviant stimulus onset is plotted with a blue dashed line, while standard stimulus onset is plotted with a red dashed line. Gray dashed lines represent stimulus onset 
that could be either deviant or standard. 

Fig. 5. Comparison of the highest absolute value Spearman correlation (ρ) 
values by region and preprocessing scheme (ICA vs. No ICA) for the HbO2 re
sults of each participant. Participants are separated by a dotted line. 
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4. Discussion 

In this study, task-related hemodynamic changes during an event- 
related auditory task were characterized across healthy individuals. 
The outcomes can provide insight to the growing field of fNIRS-based 
auditory experiments by characterizing the task-related changes in he
modynamic activity during auditory processing through the demon
stration of statistically significant changes in signal slope following 
deviant stimulus presentation relative to standard stimulus presentation. 
Our study further demonstrated improvement in the discriminative 
feature set using an ICA-based denoising strategy to retain task-related 
components and reject unrelated components. While previous work 
has characterized the hemodynamic auditory oddball response 
measured by fNIRS [34], we propose a feature extraction scheme using 
ICA-based spatial filtering that was shown to extract class discriminative 
features sensitive to individual differences in the response waveform. 
Overall, we found that signal slope significantly correlated with trial 
labels in most participants before ICA spatial filtering. All participants 
demonstrated significant correlation between trial labels and extracted 
features after ICA spatial filtering. We further demonstrated the 
importance of individual-specific feature extraction strategies to char
acterize hemodynamic changes related to auditory tasks. Sensitivity to 
individual differences in response waveforms has shown to be beneficial 
to the analysis of hemodynamic signals. For example, Hosni et al. (2020) 
and Borgheai et al. (2020) both demonstrated the benefits of using 
individual-specific hemodynamic features when developing hybrid 
EEG-fNIRS BCIs for patients with amyotrophic lateral sclerosis (ALS) 
[38,39]. Additionally, Holper et al. (2011) demonstrated significant 
inter-individual variability in the hemodynamic responses of healthy 
participants during a motor imagery task [42]. Here, we demonstrate 
important inter-individual variability both temporally and spatially in 
the hemodynamic signal changes induced by deviant auditory stimuli, 
reflecting findings in other paradigms and emphasizing the need for 
either individual-specific approaches or analyses robust to differences in 
hemodynamic patterns across participants. 

While our work also demonstrated the value of ICA as a feature 
extraction strategy in the context of fNIRS-based auditory experiments, 
ICA-based feature extraction techniques have been effectively employed 
in other fNIRS studies by other groups. For example, Akgül et al. used 
ICA to decompose hemodynamic signals recorded during a visual 
oddball paradigm and components were retained based on correlation 
with a hemodynamic response signal template [60]. Katura et al. applied 
a similar ICA-based strategy during a finger-tapping task, selecting 
class-related components using mean inter-trial cross-correlation as a 
metric to select class-related ICA components. This approach provides 
the distinct advantage of forgoing the use of a predefined hemodynamic 
response function (HRF), allowing for more flexibility when analyzing 
responses that may vary across participants [69]. We adopt a similar 
approach, using Spearman correlation between features extracted from 
component time series and trial labels to determine class discriminative 
components. We additionally project the retained components back into 
channel space in order to retain spatial information in further analyses, 
subsequently improving the interpretability of our results. Interestingly, 
this approach considerably improved correlation between features and 
trial labels in all our participants. The most remarkable improvements 
were observed in participants where fewer components were retained, 
specifically, S03 and S07. Systemic oscillatory activity was observed in 
these participants, as evidenced by the intense activity at ~0.1 Hz in 
multiple components (see Appendix A), suggesting that the current 
approach is capable of extracting features of the hemodynamic response 
from individuals that exhibit large systemic artifacts. Considering the 
fact that activity at the ~0.1 Hz frequency range is associated with the 
Mayer wave, which are oscillations caused by arterial blood pressure 
changes [70], the observed large systemic artifacts observed in these 
participants may be the likely cause of this phenomenon. It is noted that 
the spectral power of Mayer wave artifacts can negatively impact the 

ability to estimate the hemodynamic response, as demonstrated by Yücel 
et al. [71]. 

The auditory paradigm employed in this study evoked significant 
bilateral changes in signal slope in six of eight participants after ICA- 
based spatial filtering. Six of eight participants also demonstrated sig
nificant correlation between features extracted from the frontal region 
and trial labels. A possible explanation for this observation is the relative 
proximity of the frontal optodes to the prefrontal region, where oddball 
responses are found in event-related potentials [72]. Indeed, the mental 
counting task employed to ensure participant attention has been shown 
to activate the prefrontal region [68], possibly explaining the presence 
of significant attention-related features near this region. The additional 
observation of bilateral activation of the auditory cortex using fNIRS in 
auditory oddball tasks is previously unreported, as the hemodynamic 
auditory oddball response was only characterized in the left auditory 
cortex using fNIRS in the preceding work [34]. However, this observa
tion has some precedence as previous studies using fNIRS have 
demonstrated significant bilateral activation of the auditory cortex in 
response to simple auditory stimuli in block design paradigms [31,73]. 
Bilateral auditory cortex activation was also observed in auditory 
oddball studies conducted using fMRI techniques [20,74]. However, two 
participants did not exhibit significant bilateral features, and instead 
produced significant features only in the LA region. A possible expla
nation of the lack of right auditory activation in these participants is the 
role of the right auditory cortex in pitch detection [75]. While the 
pitches of each stimulus type are different, the change in pitch between 
deviant and standard tones is only one of several contextual differences 
between the tones. Further work should be conducted to quantify the 
possible hemodynamic response associated with the previously charac
terized electrical response to such stimuli. This would improve under
standing of the current results and aid in understanding the steady-state 
auditory response usually produced by such a stimulus by including 
hemodynamic signal components and the previously characterized in
crease in evoked power at auditory stimulation frequency [15]. To date, 
several studies have demonstrated the importance of cerebral hemody
namic activity associated with auditory processing in multiple clinical 
domains. While auditory fNIRS studies have found success in cases 
where this modality provides distinct advantages over other neuro
imaging modalities, the characterization of hemodynamic responses to 
auditory stimuli in healthy adults contributes to the expanding literature 
base exploring more general problems and clinical populations. For 
example, fNIRS has been used to characterize altered cortical activity in 
individuals with tinnitus, including increased oxygenated hemoglobin 
consumption in the auditory cortex and other regions [29] and altered 
functional connectivity in a population with tinnitus when compared to 
a group of healthy controls in both auditory and non-auditory regions 
during an auditory processing task [76]. Differences between healthy 
controls and schizophrenia patients were also explored using fMRI in an 
auditory oddball task by Collier et al. (2016), who found more signifi
cant differences in auditory attention tasks than in visual attention be
tween these two populations [20]. These studies provide evidence 
supporting the clinical value of measuring cerebral 
vascular-hemodynamics in individuals engaged in auditory processing 
tasks. Most notably, fNIRS has been successfully employed in charac
terizing plasticity in the auditory cortex in individuals with cochlear 
implants [77,78]. This modality is particularly suited to exploring 
auditory cortex neuroplasticity due to its compatibility with the im
plants, which is not shared with most other neuroimaging approaches, 
including fMRI [79]. fNIRS has also been used in auditory processing 
studies with young children owing to the modality’s tolerability and 
relative resistance to motion artifacts [80]. 

There are several limitations to the conclusions drawn by this study. 
This study was performed with a limited number of participants, 
limiting statistical power, and the breadth of potential inter-individual 
variability in task-related hemodynamics may not be fully character
ized. However, the purpose of this study was to apply an exploratory 
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individual-specific analysis approach to extract features characterizing 
the task-related components of the hemodynamic signal during an 
auditory task in healthy participants. The results presented demonstrate 
the inter-individual variability inherent to the hemodynamic response 
measured by fNIRS and highlight the need for analysis approaches 
capable of accounting for this variability. While we were successful in 
exploring this inter-individual variability, further exploration is war
ranted to characterize population-level hemodynamic responses to 
auditory tasks. Additionally, the limited number of optodes may influ
ence the ability of the employed noise reduction techniques to reduce or 
eliminate global noise components. Although ICA has been demon
strated to improve signal quality in similar low-density fNIRS montages 
[54], further work should be conducted that employs either sufficient 
optode coverage to characterize and remove global noise or 
short-channel recordings to remove systemic artifacts, including physi
ological noise related to the task [81], which currently may not be 
completely removed using the current ICA spatial filtering approach 
[82]. As such, this crucial step is necessary to ascertain that the features 
extracted purely reflect cortical hemodynamic changes. Other potential 
hemodynamic features could be explored, such as signal mean, slope, 
peak, minimum, maximum, skewness, kurtosis [83], or β-values from a 
generalized linear model (GLM) [84] to better characterize distinctive 
hemodynamic features. Of these potential features to explore, the GLM 
approach is most crucial due to the widespread adoption of these fea
tures in the literature base characterizing the hemodynamic response 
[85]. However, this study demonstrates significant differences in signal 
slope in response to deviant stimuli when compared to standard stimuli 
in an auditory oddball task in all participants using the window selected, 
suggesting that in many cases, this feature extraction approach can 
capture important task related hemodynamic information in these tasks. 
More research should also be done to thoroughly characterize the 
discriminative responses in healthy and pathological populations, 
informing further pathological biomarkers applicable in diagnostic 
techniques. The characterization of the hemodynamic waveform related 
to the present task also has potential closed-loop BCI applications. 
Closed-loop BCIs that rely on auditory stimuli have particular applica
tions to individuals in the late stages of ALS, where participants become 
locked-in to the point of losing voluntary eye gaze control [86]. Future 
work exploring the possibility of the extension of this paradigm to a 
closed-loop BCI application is warranted. As another future direction, 
fNIRS can also be recorded concurrently with EEG, providing additional 
insights into neural functions and responses to established EEG para
digms that have been foundational in auditory processing research [35]. 
Further multimodal exploration of these responses could expand the 
understanding of compound neural dynamics and help to characterize 
abnormal cortical patterns, as well as providing insights to neuro
modulation approaches such as transcranial direct current stimulation 
(tDCS), which has shown promise in interventional procedures 
involving patients with auditory processing dysfunctions [87]. 
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A. Norris, D.L. Levy, B.M. Cohen, D. Öngür, M.-H. Hall, Auditory steady state 
response deficits are associated with symptom severity and poor functioning in 
patients with psychotic disorder, Schizophr. Res. 201 (2018) 278–286, https://doi. 
org/10.1016/j.schres.2018.05.027. 

[16] T.M. Talavage, D.A. Hall, How challenges in auditory fMRI led to general 
advancements for the field, Neuroimage 62 (2012) 641–647, https://doi.org/ 
10.1016/j.neuroimage.2012.01.006. 

[17] F. Di Salle, F. Esposito, T. Scarabino, E. Formisano, E. Marciano, C. Saulino, 
S. Cirillo, R. Elefante, K. Scheffler, E. Seifritz, fMRI of the auditory system: 
understanding the neural basis of auditory gestalt, Magn. Reson. Imaging 21 
(2003) 1213–1224, https://doi.org/10.1016/j.mri.2003.08.023. 

[18] S. Frühholz, W. Trost, D. Grandjean, P. Belin, Neural oscillations in human auditory 
cortex revealed by fast fMRI during auditory perception, Neuroimage 207 (2020), 
116401, https://doi.org/10.1016/j.neuroimage.2019.116401. 

[19] O. Behler, S. Uppenkamp, Auditory fMRI of sound intensity and loudness for 
unilateral stimulation, Adv. Exp. Med. Biol. 894 (2016) 165–174, https://doi.org/ 
10.1007/978-3-319-25474-6_18. 

[20] A.K. Collier, D.H. Wolf, J.N. Valdez, B.I. Turetsky, M.A. Elliott, R.E. Gur, R.C. Gur, 
Comparison of auditory and visual oddball fMRI in schizophrenia, Schizophr. Res. 
158 (2014) 183–188, https://doi.org/10.1016/j.schres.2014.06.019. 

[21] M.A. Rahman, A.B. Siddik, T.K. Ghosh, F. Khanam, M. Ahmad, A narrative review 
on clinical applications of fNIRS, J. Digit. Imaging 33 (2020) 1167–1184, https:// 
doi.org/10.1007/s10278-020-00387-1. 

J. McLinden et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.neulet.2021.136148
https://doi.org/10.1111/psyp.13346
https://doi.org/10.17430/1003278
https://doi.org/10.17430/1003278
https://doi.org/10.1016/j.neubiorev.2020.06.032
https://doi.org/10.1177/0022219411436213
https://doi.org/10.1177/0022219411436213
https://doi.org/10.1177/1550059420914201
https://doi.org/10.1016/j.schres.2017.10.011
https://doi.org/10.1016/j.neuroscience.2017.01.011
https://doi.org/10.1002/aur.1821
https://doi.org/10.1002/aur.1821
https://doi.org/10.1186/s13229-020-00357-y
https://doi.org/10.1038/nrd2463
https://doi.org/10.1016/j.schres.2018.09.018
https://doi.org/10.1002/dev.21818
https://doi.org/10.1371/journal.pone.0242566
https://doi.org/10.1371/journal.pone.0242566
https://doi.org/10.1016/j.schres.2018.05.027
https://doi.org/10.1016/j.schres.2018.05.027
https://doi.org/10.1016/j.neuroimage.2012.01.006
https://doi.org/10.1016/j.neuroimage.2012.01.006
https://doi.org/10.1016/j.mri.2003.08.023
https://doi.org/10.1016/j.neuroimage.2019.116401
https://doi.org/10.1007/978-3-319-25474-6_18
https://doi.org/10.1007/978-3-319-25474-6_18
https://doi.org/10.1016/j.schres.2014.06.019
https://doi.org/10.1007/s10278-020-00387-1
https://doi.org/10.1007/s10278-020-00387-1


Behavioural Brain Research 436 (2023) 114074

8

[22] W.-L. Chen, J. Wagner, N. Heugel, J. Sugar, Y.-W. Lee, L. Conant, M. Malloy, 
J. Heffernan, B. Quirk, A. Zinos, S.A. Beardsley, R. Prost, H.T. Whelan, Functional 
near-infrared spectroscopy and its clinical application in the field of neuroscience: 
advances and future directions, Front. Neurosci. 14 (2020) 724, https://doi.org/ 
10.3389/fnins.2020.00724. 

[23] M. Ferrari, V. Quaresima, A brief review on the history of human functional near- 
infrared spectroscopy (fNIRS) development and fields of application, Neuroimage 
63 (2012) 921–935, https://doi.org/10.1016/j.neuroimage.2012.03.049. 

[24] X. Tian, Y. Liu, Z. Guo, J. Cai, J. Tang, F. Chen, H. Zhang, Cerebral representation 
of sound localization using functional near-infrared spectroscopy, Front. Neurosci. 
15 (2021), 739706, https://doi.org/10.3389/fnins.2021.739706. 

[25] M.J. Shader, R. Luke, N. Gouailhardou, C.M. McKay, The use of broad vs restricted 
regions of interest in functional near-infrared spectroscopy for measuring cortical 
activation to auditory-only and visual-only speech, Hear. Res. 406 (2021), 108256, 
https://doi.org/10.1016/j.heares.2021.108256. 

[26] H. Santosa, M.J. Hong, K.-S. Hong, Lateralization of music processing with noises 
in the auditory cortex: an fNIRS study, Front. Behav. Neurosci. 8 (2014) 418, 
https://doi.org/10.3389/fnbeh.2014.00418. 

[27] K.-S. Hong, H. Santosa, Decoding four different sound-categories in the auditory 
cortex using functional near-infrared spectroscopy, Hear. Res. 333 (2016) 
157–166, https://doi.org/10.1016/j.heares.2016.01.009. 

[28] S.-H. Yoo, H. Santosa, C.-S. Kim, K.-S. Hong, Decoding multiple sound-categories in 
the auditory cortex by neural networks: an fNIRS study, Front. Hum. Neurosci. 15 
(2021), 636191, https://doi.org/10.3389/fnhum.2021.636191. 

[29] M. Issa, S. Bisconti, I. Kovelman, P. Kileny, G.J. Basura, Human auditory and 
adjacent nonauditory cerebral cortices are hypermetabolic in tinnitus as measured 
by functional near-infrared spectroscopy (fNIRS, Neural Plast. 2016 (2016), 
7453149, https://doi.org/10.1155/2016/7453149. 

[30] L. Bell, Z.E. Peng, F. Pausch, V. Reindl, C. Neuschaefer-Rube, J. Fels, K. Konrad, 
fNIRS assessment of speech comprehension in children with normal hearing and 
children with hearing aids in virtual acoustic environments: pilot data and 
practical recommendations, Child 7 (2020), https://doi.org/10.3390/ 
children7110219. 

[31] R. Luke, E. Larson, M.J. Shader, H. Innes-Brown, L. Van Yper, A.K.C. Lee, P. 
F. Sowman, D. McAlpine, Analysis methods for measuring passive auditory fNIRS 
responses generated by a block-design paradigm, Neurophotonics 8 (2021) 25008, 
https://doi.org/10.1117/1.NPh.8.2.025008. 

[32] S. Weder, M. Shoushtarian, V. Olivares, X. Zhou, H. Innes-Brown, C. McKay, 
Cortical fNIRS responses can be better explained by loudness percept than sound 
intensity, Ear Hear 41 (2020) 1187–1195, https://doi.org/10.1097/ 
AUD.0000000000000836. 

[33] L.-C. Chen, P. Sandmann, J.D. Thorne, C.S. Herrmann, S. Debener, Association oF 
Concurrent fNIRS and EEG signatures in response to auditory and visual stimuli, 
Brain Topogr. 28 (2015) 710–725, https://doi.org/10.1007/s10548-015-0424-8. 

[34] R.P. Kennan, S.G. Horovitz, A. Maki, Y. Yamashita, H. Koizumi, J.C. Gore, 
Simultaneous recording of event-related auditory oddball response using 
transcranial near infrared optical topography and surface EEG, Neuroimage 16 
(2002) 587–592, https://doi.org/10.1006/nimg.2002.1060. 

[35] A.-C. Ehlis, T.M. Ringel, M.M. Plichta, M.M. Richter, M.J. Herrmann, A. 
J. Fallgatter, Cortical correlates of auditory sensory gating: a simultaneous near- 
infrared spectroscopy event-related potential study, Neuroscience 159 (2009) 
1032–1043, https://doi.org/10.1016/j.neuroscience.2009.01.015. 

[36] M.M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, A.J. Fallgatter, Model-based analysis 
of rapid event-related functional near-infrared spectroscopy (NIRS) data: a 
parametric validation study, Neuroimage 35 (2007) 625–634, https://doi.org/ 
10.1016/j.neuroimage.2006.11.028. 

[37] F. Mushtaq, I.M. Wiggins, P.T. Kitterick, C.A. Anderson, D.E.H. Hartley, Evaluating 
time-reversed speech and signal-correlated noise as auditory baselines for isolating 
speech-specific processing using fNIRS, PLoS One 14 (2019), e0219927, https:// 
doi.org/10.1371/journal.pone.0219927. 

[38] S.M. Hosni, S.B. Borgheai, J. McLinden, Y. Shahriari, An fNIRS-based motor 
imagery BCI for ALS: a subject-specific data-driven approach, IEEE Trans. Neural 
Syst. Rehabil. Eng. 28 (2020) 3063–3073, https://doi.org/10.1109/ 
TNSRE.2020.3038717. 

[39] S.B. Borgheai, J. McLinden, A.H. Zisk, S.I. Hosni, R.J. Deligani, M. Abtahi, 
K. Mankodiya, Y. Shahriari, Enhancing communication for people in late-stage ALS 
using an fNIRS-based BCI system, IEEE Trans. Neural Syst. Rehabil. Eng. 28 (2020) 
1198–1207, https://doi.org/10.1109/TNSRE.2020.2980772. 

[40] M. Shoushtarian, R. Alizadehsani, A. Khosravi, N. Acevedo, C.M. McKay, 
S. Nahavandi, J.B. Fallon, Objective measurement of tinnitus using functional near- 
infrared spectroscopy and machine learning, PLoS One 15 (2020), e0241695, 
https://doi.org/10.1371/journal.pone.0241695. 

[41] H. Zohdi, F. Scholkmann, U. Wolf, Individual differences in hemodynamic 
responses measured on the head due to a long-term stimulation involving colored 
light exposure and a cognitive task: A SPA-fNIRS study, Brain Sci. 11 (2021), 
https://doi.org/10.3390/brainsci11010054. 
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