
Not All Tasks Are Created Equal:
Adaptive Resource Allocation for

Heterogeneous Tasks in Dynamic Workflows
Thanh Son Phung1, Logan Ward2, Kyle Chard3, and Douglas Thain1

1Department of Computer Science and Engineering, University of Notre Dame
2Data Science and Learning Division, Argonne National Laboratory

3Department of Computer Science, University of Chicago

Abstract—Users running dynamic workflows in distributed

systems usually have inadequate expertise to correctly size the

allocation of resources (cores, memory, disk) to each task due to

the difficulty in uncovering the obscure yet important correlation

between tasks and their resource consumption. Thus, users

typically pay little attention to this problem of allocation sizing

and either simply apply an error-prone upper bound of resource

allocation to all tasks, or delegate this responsibility to underlying

distributed systems, resulting in substantial waste from allocated

yet unused resources. In this paper, we will first show that

tasks performing different work may have significantly different

resource consumption. We will then show that exploiting the

heterogeneity of tasks is a desirable way to reveal and predict

the relationship between tasks and their resource consump-

tion, reduce waste from resource misallocation, increase tasks’

consumption efficiency, and incentivize users’ cooperation. We

have developed two info-aware allocation strategies capitalizing

on this characteristic and will show their effectiveness through

simulations on two modern applications with dynamic workflows

and five synthetic datasets of resource consumption. Our results

show that info-aware strategies can cut down up to 98.7% of

the total waste incurred by a best-effort strategy, and increase

the efficiency in resource consumption of each task on average

anywhere up to 93.9%.

I. INTRODUCTION

Complex workflows consisting of a large number of parallel
tasks run on clusters are central to computational science
today. Workflow management systems are used widely in fields
as diverse as bioinformatics, high energy physics, molecu-
lar dynamics, machine learning, and more [1] [5] [8]. An
emerging class of systems is dynamic workflows, in which
a high-level application generates task definitions at runtime
and passes them to an underlying execution system. A dynamic
workflow, by definition, does not state in advance the number
and types of tasks to be encountered; these only become
apparent at runtime as the application evolves.

A significant problem in the design of dynamic workflows
and workflow systems is resource allocation: for each task to
be executed, what quantity of resources (e.g. cores, memory,
disk) should be allocated to that task? The sizes of these
allocations are important for the end user: allocate too little,
and a task fails; allocate too much, and resources are wasted.
The allocation sizes are also important to the underlying

scheduling systems: a small allocation is easy to place into a
busy cluster, while a large allocation may require preempting
other jobs, or simply waiting until a large space becomes free.

Further, whose job it is to select appropriate resource
allocations? It is easier to design a system in which the user
tells the system what resources to allocate, but the end user
may not have the time or expertise to make accurate and
confident measurements or predictions [6] [10]. The under-
lying workflow system or batch system is better positioned
to measure tasks as they run, but has little insight into the
high-level goals and needs of the user.

We believe that the key to efficient resource allocation lies
in a smooth cooperation between users and distributed systems
by incentivizing users to disclose sufficient information about
workflows for the distributed systems to make good automated
decisions. Consequently, an intuitive question we pose and
attempt to answer is: what type of information would both
maximize the performance of resource allocation to tasks and
minimize users’ potential costs or efforts in acquiring it?

In this paper, we will formalize the problem of resource
allocation to tasks in workflows, and show that utilizing
information about workflows can help guide the process of
resource allocation and reduce its potential waste. While dif-
ferent types of information have different sets of assumptions,
degree of practicality, and effectiveness in decreasing waste
of resources, we will show that exploiting information about
the heterogeneity of tasks in workflows is desirable due to the
following reasons:

1) Observation: Tasks are not necessarily of the same
type and might perform different work. This may create
a considerable gap in resource consumption between
different types of tasks and present an opportunity to
optimize the process of resource allocation.

2) Opportunity: Users are likely to have some knowl-
edge of the heterogeneous nature of tasks, such as
the number of task types or even the specific type of
each task in a workflow. Consequently, users can have
the freedom and opportunity to cooperate and provide
different amounts of information about the heterogeneity
of tasks in workflows to resource allocation schemes



Fig. 1: Architecture of Dynamic Workflows.
A top level application (e.g. Colmena) generates tasks for
a workflow manager (e.g. Parsl), which sends ready tasks
to a scheduler (e.g. Work Queue), which dispatches tasks to
workers, running in individual allocations.

depending on users’ willingness and knowledge without
much expertise and effort in advance.

3) Solution: We have developed info-aware allocation
strategies that are not only able to predict tasks’ resource
consumption at run time given users’ knowledge of
the heterogeneity of workflows, but also independent
from yet integrable to both applications and distributed
systems’ resource allocation schemes.

4) Performance: Our strategies show considerable savings
on resources and boost in tasks’ efficiency in consuming
allocated resources as to be described below.

We evaluate the performance of info-aware allocation strate-
gies through simulations on two real datasets and five syn-
thetic datasets of resource consumption. The two real datasets
are collected from resource consumption reports from ac-
tual executions of two applications with dynamic workflows:
Colmena-XTB [3], with molecular simulation and inference
tasks, and TopEFT [7], with physics event processing and
analysis tasks. As the distributions of resource consumption
of these two datasets might not reflect a wide range of
possible distributions, we additionally generate five synthetic
datasets following five different distributions: uniform, normal,
exponential, bimodal, and trimodal. We further quantify the
performances of our strategies when provided with different
levels of information about the heterogeneity of workflows,
from the scenario where no information is given, to the
scenario where users specify the associated type of task for
every task in a workflow.

Our results show that, depending on the amount of infor-
mation provided, info-aware allocation strategies can reduce
waste anywhere from 2.4% to 98.7% compared to the total
waste incurred by a best-effort strategy. Moreover, while the
oracle-like allocation strategy can perfectly predict every task’s
consumption and achieve 100% average task efficiency, our
allocation strategies can reach anywhere from 16.1% to 93.9%.

(a) Colmena (b) TopEFT

Fig. 2: Visualization of memory consumption of tasks in
Colmena-XTB and TopEFT.
Each point is a task’s peak consumption. (Top) Chronological
memory consumption ordered by tasks’ finish time. (Bottom)
Distributions of memory consumption of tasks.

II. APPLICATIONS AND DATASETS

A. Applications

Figure 1 shows the general architecture of applications
considered in this paper. At the top level, an application-
specific layer written in Python generates tasks in the form
of calls to conventional Python functions that perform sim-
ulation, modeling, data analysis, etc. The function calls and
their arguments are passed to the workflow manager at the
middle layer that arranges tasks in a graph, and determines
when each task is ready to run based on the availability
of its inputs. Ready tasks are passed to the bottom layer,
which schedules independent tasks to available worker nodes.
Worker nodes then statically allocate their available resources
to tasks, enforce the allocations, and record tasks’ resource
consumption.

Colmena-XTB is one example of an application designed
in this style. This application combines machine learning
techniques with traditional molecular dynamics in order to
perform efficient steering of molecular design. It is built using
Colmena [3], a Python library allowing users to build AI-
driven applications that steer large ensembles of simulation
tasks. Colmena’s design revolves around a Thinker application,
which includes two main agents: producers and consumers.
In this setting, producers create both simulation tasks to
perform and inference tasks to choose which simulations to
perform next, while consumers retrieve and record results
from completed tasks. Colmena hands off individual tasks
to Parsl [5], a workflow system that enables scalable parallel
executions of Python functions and programs. Parsl translates
function invocations into a dynamic graph of tasks, relying



(a) Normal
µ: 8, �: 2

# types of tasks: 1

(b) Uniform
a: 10, b: 40

# types of tasks: 1

(c) Exponential
�: 10

# types of tasks: 1

(d) Bimodal with 2 normal
distributions

µ1: 32, �1: 0.5
µ2: 8, �2: 0.2

# types of tasks: 2

(e) Trimodal with 3 normal
distributions
µ1: 32, �1: 4
µ2: 16, �2: 4
µ3: 11, �3: 1

# types of tasks: 3

Fig. 3: Memory consumption of tasks in five synthetic datasets.
Each point is a task’s peak consumption. (Top) Chronological memory consumption ordered by tasks’ finish time. (Bottom)

Distributions of memory consumption of tasks.

on futures to represent pending data items, and sends ready
tasks to Work Queue [8] on distributed worker nodes. Work
Queue is a master-worker distributed programming framework
that implements dynamic and fine-grained task generation and
deployment, results collection, and resource management of
workflows over a variety of distributed systems.

TopEFT is another example of an application written in
this style. TopEFT is designed to search for new physics that
affects top-quark production by making use of the effective
field theory (EFT). It operates by consuming a large number of
events produced by the Large Hadron Collider (LHC) contain-
ing signatures that arise from the production of top quarks in
association with W, Z, or Higgs particles. The top level of the
software defines two functions: one for processing individual
events, and another for accumulating results from multiple
events into a complex multi-level histogram. These functions
are given to Coffea [2], a general-purpose data processing
framework for high energy physics. Coffea logically partitions
the input datasets and generates tasks, each one invoking a
function on a portion of the dataset or a partially accumulated
result. Ready tasks are given to Work Queue for scheduling
on worker nodes, as above.

B. Datasets

We collected resource consumption data from tasks in
Colmena-XTB and TopEFT workflows using the Resource
Monitor [4] tool from the CCTools [16] package, which
monitors tasks’ resource consumption by tracking a hierar-
chy of processes spawned by individual tasks and observing
snapshots of such processes’ resource consumption taken from
the proc filesystem. Colmena-XTB generates 228 tasks of

two types (simulation and inference), and TopEFT generates
1883 tasks of three types (preprocessing, processing, and
accumulating).

Both Colmena-XTB and TopEFT exhibit substantial vari-
ations in task memory consumption, as shown in Figure
2 (we skip discussions on cores and disk consumption for
convenience.) Colmena-XTB shows variations between two
fundamentally different task types and also within each type,
as the simulation and model parameters have a direct effect
on the size of data structures. TopEFT also shows substantial
variations between event processing and results accumulating
tasks (The first 136 tasks partition data.) We further see
the variations in event processing tasks where some data
partitions contain fewer events of interest than others. Hence,
the memory consumption of each task also varies with the
heterogeneity of the input data.

To simulate how other heterogeneous applications might
behave, we generated five additional datasets of resource
consumption of tasks with different levels of heterogeneity
and distributions by random sampling from respective distri-
butions, each with 2,000 data points, as shown in Figure 3.
We only vary memory consumption of tasks in these synthetic
datasets, for simplicity.

III. INFORMATION-PERFORMANCE TRADEOFFS

Figure 4a shows how serious memory waste can be in
a possible scenario where users running the Colmena-XTB
application delegate the responsibility of allocating resources
to tasks to underlying distributed systems. In this scenario,
we assume that the underlying systems simply allocate a
machine with 64 GBs of memory to each task (we will skip the



(a) Whole machine allocation (b) Over-allocation with 5% error

Fig. 4: Memory Consumption Efficiency of Tasks in Colmena-
XTB
(Left) Users allocate each task with a whole machine of 64
GBs of memory. (Right) Users give each task an allocation of
5% larger than the maximum consumption of any task.

discussion on cores and disk and assume that tasks have equal
execution time for convenience.) With this default strategy,
tasks in the Colmena-XTB workflow only consume 15.8% of
the total allocated memory in their execution process.

If we relax the above scenario and assume that users have
some information about workflows such that they can derive
a near perfect upper bound for all tasks with only 5% mispre-
diction error, we still see that tasks only consume about one-
third of their total allocated memory due to the exponential-
like distribution of memory consumption, as shown in Figure
4b. Moreover, despite gaining a more than two-fold im-
provement in memory consumption efficiency, users are very
unlikely to precisely and confidently derive such prediction
by guesswork alone, and thus must pay extra costs or efforts
in acquiring information about the workflow. For example,
users can approximate the resource consumption of tasks with
high confidence and accuracy by using information on the
resource consumption of a workflow similar to Colmena-XTB.
However, this too implies the undesirable cost of executing
such similar workflow.

We believe that the key to alleviating waste from resource
misallocation to tasks lies in the users’ knowledge about
the nature of workflows and willingness to cooperate with
distributed systems by providing such information. That is,
the more workflow-specific information users are able to
provide to allocation schemes, the better the performance these
allocation schemes can achieve. However, as stated above,
acquiring information about workflows may be costly as such
information might not be readily available.

Exploiting the heterogeneity of tasks in workflows is a
candidate solution to this problem. This is because users are
likely to have some knowledge about tasks in workflows
in advance through either actual development of workflows
or expert understanding of how tasks in workflows operate,
and thus don’t have to spend extra efforts acquiring such
information. As we will show for the rest of this paper,
exploiting the heterogeneity of tasks in workflows is even more
desirable as it substantially decreases the waste due to mis-
allocation, increases tasks’ efficiency in resource consumption,

Fig. 5: The Resource Allocation Problem
A machine’s memory can be divided into different allocations,
each of which limits a task’s memory consumption. Under-
allocating resources results in waste of unusable resources
due to terminated tasks, while over-allocating results in waste
of unused resources.

and seamlessly integrates such information into our developed
allocation strategies as described in Section V.

IV. RESOURCE ALLOCATION PROBLEM

Now we provide a formal statement of the problem of
resource allocation. We will hold the following assumptions
throughout this section:

1) Resource allocations to tasks are static: they are deter-
mined in advance and don’t change over the course of
tasks’ executions.

2) A task’s execution is terminated immediately if it ex-
ceeds its allocation, and is either scheduled to rerun with
a larger allocation, or returned to users as a failure.

The problem of allocating resources of a cluster to tasks is
then comprised of two main entities: the tasks’ peak resource
consumption, and their allocations on machines. We will
define a task to be an executable program that, when executed,
consumes at most c cores, m MBs of memory, and d MBs of
disk in t consecutive seconds. Thus, a task is characterized by
a 4-tuple (c,m, d, t). A task T is allocated on some machine
M if T is ready to execute on M and M is ready to commit
ca cores, ma MBs of memory, and da MBs of disk in ta
seconds to serving T . Then, a successful allocation of T on
M happens when all of the following conditions are true:

1) T runs on M in t seconds, and t  ta.
2) There’s no interruption, eviction, etc. in T ’s execution.
3) T ’s peak resource consumption does not exceed its

allocation in M , and its allocation in M does not exceed
the maximum capacity of M .

The last condition can be represented by these inequalities:
1) cM � ca � c
2) mM � ma � m
3) dM � da � d

where cM ,mM , dM are the maximum capacity of machine M
in cores, memory, and disk, respectively. Figure 5 visualizes
this allocation problem with memory as an example.



In the optimal case, we will have that, for each task, c =
ca, m = ma, d = da, and t = ta. That is, a task’s peak
consumption is exactly equal to its allocation. If we are to
achieve these conditions, then no further actions can be taken
to increase the performance of a workflow. This is because, in
this state, the waste due to mis-allocation is minimized, and
tasks’ efficiency in resource consumption is maximized. Thus,
the goal of this problem naturally is to minimize, for each task,
ca�c, ma�m, da�d, and ta�t. That is, we want to allocate
the amount of resources as close as possible to a given task’s
peak resource consumption. While we can easily minimize
ta � t by terminating a task’s allocation as soon as it finishes
its execution, the problem of choosing ca, ma, and da such that
ca�c, ma�m, da�d are minimized is nontrivial and important
in saving unnecessary waste of resources and boosting tasks’
consumption efficiency, as demonstrated in Figure 4.

V. STRATEGIES

In this section, we will present five resource allocation
strategies of two types: info-oblivious and info-aware. Info-
oblivious strategies will allocate resources to tasks without
requiring and using any information prior to or during the
execution of workflows. On the other hand, info-aware strate-
gies will allocate resources to tasks based on users’ guesswork
or provided information on the heterogeneity of tasks in
workflows and resource consumption reports of completed
tasks. All strategies will hold the following assumptions:

• All machines in a given distributed system have the same
configuration in the amount of cores, memory, and disk.

• No task will consume more resources than a machine’s
capacity.

• There are no interruptions during a task’s execution.

A. Info-Oblivious Strategies
1) Whole machine: In this strategy, each task is allocated

with a whole machine during its execution. This strategy
is straightforward to implement as we will allocate a free
machine to each task, and tasks will execute successfully in
the first try by the assumptions above. However, tasks are
likely to consume much less than the capacity of a machine,
as demonstrated in Figure 4. Thus, a large portion of resources
of a machine will be unused for the entire duration of a task’s
execution. Instead of allocating a machine per task, there are
good chances that several tasks can be packed into a single
machine to avoid unnecessary waste of resources and speed
up workflows.

2) Double allocation: This strategy doubles the allocation
of a task whenever it fails by over-consuming its current
allocation. For example, if a task is allocated with 1/8th

of a machine and fails, then such task is re-allocated with
1/4th of a machine and so on before finally being forced
to run on a whole machine. Under the assumption that a
machine can serve multiple tasks at a time, then this strategy
is an improvement over the whole machine strategy since
tasks will be allocated at most 1/8 + 1/4 + 1/2 = 7/8th

of a machine before finally being forced to run on a whole

machine. However, this strategy requires the initial value of
allocation as a hyper-parameter that must be configured prior
to workflows’ executions.

B. Info-Aware Strategies
1) User declaration: In this strategy, users allocate the

same amount of resources for each task in a workflow.
Any task failing due to over-consumption is retried using a
whole machine. While this strategy incorporates users’ prior
knowledge about the workflow, users’ predictions of tasks’
resource consumption are prone to errors, costly to acquire,
and thereby potentially increase the waste due to resource
mis-allocation as tasks that fail by incorrect guess must be
executed on a whole machine.

2) Quantized bucketing: Figure 6a demonstrates how quan-
tized bucketing works on the Colmena-XTB dataset. For each
type of resources (cores, memory, disk), this strategy aims
to find a sequence of increasing amount of resources to
allocate a new task given a list of resource consumption
of completed tasks. A task is initially allocated with the
smallest amount of resources in the sequence. Whenever a
task fails due to under-allocation of any types of resources, it
is allocated with the next amount of resources in the sequence,
for all types of resources, until it has to be allocated with
a whole machine. This strategy acquires the list of resource
consumption of completed tasks by first executing a small
number of tasks, with each task being allocated following the
whole machine strategy. To find the sequence of increasing
amount of resources, quantized bucketing first sorts the list
of resource consumption of completed tasks in increasing
order and divides it evenly into some pre-defined number of
buckets, and then forms the sequence based on these buckets.
Specifically, if we have n buckets, each of which has a lower
and upper delimiter, then the ith bucket’s lower delimiter is
the (i � 1)th bucket’s upper delimiter, and the ith bucket’s
upper delimiter is whatever value of resource consumption
sitting at the (i/n)th percentile. The sequence is then formed
by collecting all buckets’ upper delimiters in increasing order.
Picking the right number of buckets n is a nontrivial sub-
problem, but in this paper, we simply set it to be the number
of types of tasks. During the execution of a workflow, the
list of completed tasks is updated whenever a task finishes its
execution and reports its peak resource consumption.

In this strategy, a new task’s resource consumption is
predicted using the distribution of completed tasks’ resource
consumption. Under the assumption that the prior distribution
is similar to the distribution of the entire workflow, then
each task is expected to fall into one of n buckets with an
equal probability of 1/n. Thus, on average, each task is tried
1
n ⇤ (n⇤(n+1)

2 ) = n+1
2 times.

3) K-means bucketing: Figure 6b shows how k-means
bucketing works on the Colmena-XTB dataset. Similar to the
quantized bucketing strategy, the k-means bucketing strategy
also aims to find a sequence of increasing amount of resources
to allocate a new task based on a list of completed tasks’
resource consumption, but it tries to divide the list based



(a) Quantized bucketing (b) K-means bucketing

Fig. 6: Bucketing strategies with 2 buckets on the Colmena-XTB dataset (memory only).
Each point represents a task’s peak memory consumption. Each line represents a bucket’s upper delimiter. Tasks are given

incremental allocations as shown by lines until they successfully finish their executions.

on the potential clusters of tasks rather than evenly. This
strategy also obtains an initial list of completed resource
consumption by executing a small number of tasks, and divides
the list into n even buckets, where n is a hyper-parameter.
However, in each iteration after obtaining the initial list of
tasks’ consumption, this strategy computes the mean of all
values in each bucket, and reassigns all completed tasks to
whichever bucket that has the closest mean. The sequence is
then obtained by collecting the maximum values of all buckets
in increasing order. If a task’s peak resource consumption
exceeds all values in the sequence, then that task will be
allocated a whole machine. Again, the list of completed tasks
is updated whenever a task completes its computation and
reports its resource consumption, and the hyper-parameter n
is simply set to the number of types of tasks.

VI. EVALUATION

In this section, we will evaluate different allocation strate-
gies under different assumptions of users’ cooperation. While
our allocation strategies can operate with no information
provided from users, these strategies will excel when they are
supplied with at least some information about the heterogene-
ity of workflows. Thus, our evaluations are performed under
three levels of users’ cooperation:

• Lv1: No information provided
• Lv2: The number of types of tasks in a workflow pro-

vided
• Lv3: The associated type for each task provided
While info-oblivious strategies and the user declaration

strategy don’t respond to different levels of information, the
two bucketing strategies will respond as follows:

• Lv1: With no information, bucketing strategies assume
that all tasks are of the same type and set the hyper-
parameter n to 1.

• Lv2: Bucketing strategies set the hyper-parameter n to
the number of types of tasks.

• Lv3: Bucketing strategies group up tasks of the same
type, for all types of tasks, and set the hyper-parameter
n to 1 for each group.

We set other hyper-parameters for our simulations and
strategies as follows:

• All strategies are given machines with a maximum ca-
pacity of 16 cores, 64 GBs of memory, and 64 GBs of
disk.

• The double allocation strategy uses 1/8th of a machine
capacity as the initial default.

• The user declaration strategy always derives an upper
bound with 5% misprediction error to represent a high-
quality guess from users.

• The bucketing strategies always execute 10 tasks follow-
ing the whole machine strategy to obtain an initial list of
resource consumption.

We will define the allocation, consumption, and waste of a
resource for a task T as follows:

• allocation a = ra ⇤ t, where ra is the amount of resource
allocated to T , and t is the execution time of T .

• consumption c = r ⇤ t, where r is the peak amount of
resource consumed by T .

• There are two sources where resource waste of a task
T can originate: internal fragmentation, and failed al-
location. We define internal fragmentation to be wif =
(ra� r) ⇤ t when task T executes successfully, and failed
allocation to be wfa = ⌃k

i=1(ai ⇤ t) when task T fails
with k previous allocation attempts. Thus,
w = wif + wfa = (ra � r) ⇤ t+ ⌃k

i=1(ai ⇤ t).
Finally, we use two metrics to evaluate our results as

follows:
1) Waste Reduction Ratio (WRR): this metric measures the

relative waste reduction of our strategy compared to the



TABLE I: Waste Reduction Ratio - Unit: percentage (the higher the better)

Strategies
Datasets Colmena TopEFT Normal Uniform Exponential Bimodal Trimodal

Whole Machine 0 0 0 0 0 0 0
Double Allocation 72.9 88.1 71.4 -7 57.1 17.7 30.3
User Declaration 63.5 99.8 84.9 56.5 0 65.3 42.8

Quantized Bucketing - lv1 62.8 98.7 88.4 61.1 2.4 68.9 48.5
Quantized Bucketing - lv2 60.3 97.9 88.4 61.1 2.4 43.4 49.3
Quantized Bucketing - lv3 N/A 98.7 88.4 61.1 2.4 96.5 80.8

K-means Bucketing - lv1 62.8 98.7 88.4 61.1 2.4 68.9 48.5
K-means Bucketing - lv2 65.1 98.1 88.4 61.1 2.4 87.0 48.9
K-means Bucketing - lv3 N/A 98.7 88.4 61.1 2.4 96.5 80.8

TABLE II: Average Task Efficiency - Unit: percentage (the higher the better)

Strategies
Datasets Colmena TopEFT Normal Uniform Exponential Bimodal Trimodal

Whole Machine 15.8 0.60 12.4 39.1 15.7 31.3 30.7
Double Allocation 51.9 4.90 33.1 41.6 27.6 37.4 43.3
User Declaration 33.2 69.1 48.4 59.6 15.7 56.7 43.7

Quantized Bucketing - lv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
Quantized Bucketing - lv2 41.9 45.3 56.3 62.4 16.1 43.4 57.8
Quantized Bucketing - lv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

K-means Bucketing - lv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
K-means Bucketing - lv2 43.9 45.9 56.3 62.4 16.1 84.2 57.5
K-means Bucketing - lv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

whole machine strategy, and is defined to be:

WRR(S,W ) = 1� WS

WW
,

where S and W denote the given strategy and the whole
machine strategy, and WS and WW are the aggregate
waste of resources across all tasks in a workflow from
the given strategy and the whole machine strategy,
respectively.

2) Average Task Efficiency (ATE): this metric measures
how efficient a task consumes its allocation on average,
and is defined to be:

ATE(S) =
1

n

nX

i=1

ci
ai
,

where n is the number of tasks in a workload, and ci and
ai are task i’s consumption and allocation, respectively,
as defined above.

Tables I and II show the performances of strategies in
allocating memory to tasks for considered datasets under
different levels of users’ cooperation (we skip cores and disk
for the convenience of discussion.)

Workflows with tasks’ resource consumption following the
exponential distribution like Colmena-XTB or exponential
tend to cause more waste due to their outliers. The double
allocation strategy excels when given such workflows by
giving most tasks a small and sufficient allocation while
catching the outliers’ resource consumption by doubling their
allocations before resorting to a whole machine. In the ex-
ponential dataset, our info-aware bucketing strategies barely
improve upon the whole machine strategy as all tasks in
this dataset are of the same type. However, in the Colmena-
XTB workflow with two types of tasks, we can observe the

considerable improvements in the bucketing strategies as more
information about the heterogeneity of tasks is provided (We
lost the level-3 information of the Colmena-XTB workflow
due to framework incompatibility.)

In the uniform and normal datasets where tasks have the
same type of functionality, our bucketing strategies outperform
other strategies even though the information on the heterogene-
ity of tasks meets our assumption at level 1 and thus doesn’t
give us any advantages on levels 2 and 3. This is because our
bucketing strategies also use the historical data from completed
tasks, and consequently perform slightly better.

The bucketing strategies excel the most when provided with
the associated type of task for every task in heterogeneous
datasets (TopEFT, bimodal, trimodal). In the TopEFT dataset,
although the bucketing strategies underperform when com-
pared to the user declaration strategy in the WRR metric, these
strategies predict most tasks’ consumption very accurately,
resulting in 91.0% average task consumption efficiency. In
the bimodal and trimodal datasets, with the exception of the
quantized bucketing strategy at level 2, bucketing strategies
at any level outperform all other strategies. Additionally, the
more information on the heterogeneity of tasks supplied by
users these strategies acquire, the better these strategies can
allocate resources to tasks.

VII. RELATED WORK

Several research groups have surveyed and compiled a
substantial number of possible strategies to boost a workload’s
efficiency. Witt et al. [18] provided a comprehensive study
on predicting tasks’ consumption using black-box modeling
and machine learning methods. Pupykina et al. [11] surveyed
different techniques for managing tasks’ memory consumption
in HPC and cloud systems.



While our paper emphasizes the importance of the hetero-
geneity of tasks, many works focused on other properties of a
workflow. Witt et al. [19] trained a regression-based model to
predict tasks’ consumption given their input sizes. Rodrigo
et al. [12] used information about the internal dependency
structure of tasks in a workflow to reduce wait times between
tasks and increase the workflow’s utilization. Rodrigues et al.
[13] embedded a machine learning-based tool into the LSF
batch scheduler that provides predictions on tasks’ memory
consumption given their specifications. Tanash et al. [15]
implemented an ensemble of several regression-based methods
to predict a task’s memory consumption and run time using
the metadata and resource consumption of tasks.

Several works used historical data from previous executions
of workflows or resource consumption of completed tasks to
perform predictions of allocations. Tovar et al. [17] introduced
methods that minimize waste and maximize throughput by
allowing one retry of resource allocation per task before
allocating a whole machine. Zhang et al. [20] developed a
cluster-based method that analyzes resource consumption of
tasks of a workflow to derive an optimal resource allocation
for future workflows. Fan et al. [9] focused on the problem
of task scheduling and trained a deep reinforcement learning
agent to dynamically choose which tasks to be allocated and
executed next. Salim et al. [14] packaged tasks into a large
job to leverage scheduling policies that favor larger jobs, but
required that tasks’ consumption must be specified in advance.

VIII. CONCLUSIONS

We have developed resource allocation strategies that can
leverage users’ knowledge about the nature of tasks in work-
flows to predict tasks’ resource consumption without placing
a burden on users. These strategies yield substantial im-
provements in reducing waste and boosting tasks’ resource
consumption efficiency, thereby showing that exploiting the
heterogeneity of tasks in workflows is desirable in solving
the resource allocation problem. Future work to solve the re-
source allocation problem might include: development of new
allocation strategies and enhancement of current strategies;
exploration of other properties of workflows that might help in
predicting resource consumption of tasks; implementation of
several chosen strategies into allocation engines of distributed
systems or frameworks.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation
grant OAC-1931348. We thank Ben Tovar and Tim Shaffer
from the University of Notre Dame for comments on the draft,
and Kelci Mohrman and Kevin Lannon from the University of
Notre Dame for their generosity in providing us the necessary
programs and resource consumption reports for the TopEFT
workflow.

REFERENCES

[1] Apache airflow, 2021 [Online]. Apache Software Foundation. Available:
https://airflow.apache.org/docs/apache-airflow/stable/.

[2] Coffea, 2021 [Online]. Fermi National Accelerator Laboratory. Avail-
able: https://github.com/CoffeaTeam/coffea.

[3] Colmena, 2021 [Online]. ExaLearn and Parsl Teams. Available: https://
colmena.readthedocs.io/en/latest/index.html.

[4] Resource monitor, 2021 [Online]. University of Notre Dame. Available:
https://cctools.readthedocs.io/en/latest/resource monitor/.

[5] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K. Chard.
Parsl: Pervasive parallel programming in python. In Proceedings of
the 28th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’19, page 25–36, New York, NY, USA,
2019. Association for Computing Machinery.

[6] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are user
runtime estimates inherently inaccurate? In Proceedings of the 10th
International Conference on Job Scheduling Strategies for Parallel Pro-
cessing, JSSPP’04, page 253–263, Berlin, Heidelberg, 2004. Springer-
Verlag.

[7] A. Basnet et al. Topeft/topcoffea: Topcoffea 0.1 (v0.1), (2021). Zenodo.
Available: https://doi.org/10.5281/zenodo.5258003.

[8] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work
Queue + Python: A Framework For Scalable Scientific Ensemble
Applications. In Workshop on Python for High Performance and Sci-
entific Computing (PyHPC) at the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

[9] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka. Deep
reinforcement agent for scheduling in hpc, 2021.

[10] C. B. Lee and A. Snavely. On the user–scheduler dialogue: Studies of
user-provided runtime estimates and utility functions. The International
Journal of High Performance Computing Applications, 20(4):495–506,
2006.

[11] A. Pupykina and G. Agosta. Survey of memory management techniques
for hpc and cloud computing. IEEE Access, 7:167351–167373, 2019.

[12] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakrishnan. En-
abling workflow-aware scheduling on hpc systems. In Proceedings of
the 26th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’17, page 3–14, New York, NY, USA,
2017. Association for Computing Machinery.

[13] E. R. Rodrigues, R. L. F. Cunha, M. A. S. Netto, and M. Spriggs.
Helping hpc users specify job memory requirements via machine learn-
ing. In 2016 Third International Workshop on HPC User Support Tools
(HUST), pages 6–13, 2016.

[14] M. A. Salim, T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath,
and M. E. Papka. Balsam: Automated scheduling and execution of
dynamic, data-intensive hpc workflows, 2019.

[15] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, and A. Okanlawon.
Improving hpc system performance by predicting job resources via
supervised machine learning. In Proceedings of the Practice and
Experience in Advanced Research Computing on Rise of the Machines
(Learning), PEARC ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[16] D. Thain. Cctools, 2021 [Online]. University of Notre Dame. Available:
https://cctools.readthedocs.io/en/stable/install/.

[17] B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain,
and M. Livny. A Job Sizing Strategy for High-Throughput Scientific
Workflows. IEEE Transactions on Parallel and Distributed Systems,
29(2):240–253, 2018.

[18] C. Witt, M. Bux, W. Gusew, and U. Leser. Predictive performance
modeling for distributed batch processing using black box monitoring
and machine learning. Information Systems, 82:33–52, May 2019.

[19] C. Witt, J. van Santen, and U. Leser. Learning low-wastage memory
allocations for scientific workflows at icecube. In 2019 International
Conference on High Performance Computing Simulation (HPCS), pages
233–240, 2019.

[20] Q. Zhang, N. Kremer-Herman, B. Tovar, and D. Thain. Reduction
of workflow resource consumption using a density-based clustering
model. In 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS), pages 1–9, 2018.


