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Abstract—Going beyond the one-type-fits-all design philosophy,
the future 5G radio access network (RAN) with network slicing
methodology is employed to support widely diverse applications
over the same physical network. RAN slicing aims to logically
split an infrastructure into a set of self-contained programmable
RAN slices in which each slice built on top of the underlying
physical RAN (substrate) is a separate logical mobile network and
delivers a set of services with similar characteristics. Each RAN
slice is constituted by various virtual network functions (VNFs)
distributed geographically in numerous substrate nodes. A RAN
configuration scheme for the network is imperative to embed
VNFs in substrate nodes. In this paper, we propose to design new
algorithms to enhance the stability of RAN slicing by addressing
the resources allocation and VNF embedding problem, referred
to as RS-configuration. Specifically, we establish the theoretical
foundation for using RS-configuration to construct a VNF map-
ping plan for all VNFs with two efficient algorithms, including
Group-based Algorithm (GBA) and Group-Connectivity-based
Algorithm (GCBA). Through rigorous analysis and experimen-
tation, we demonstrate that the proposed algorithms perform
well within reasonable bounds of computational complexity.

Index Terms—RAN slicing, VNF embedding, resource alloca-
tion.

I. INTRODUCTION

With ever more devices connected to the Internet and the

creation of new services, such as mobile broadband, video

streaming, the massive Internet of Things, and autonomous

vehicle management, demands for diverse vertical industry

applications are growing rapidly to expand the wireless mar-

ket. To address the various application demands, Radio Access

Network (RAN) slicing has become one of the most promising

architectural technologies for the forthcoming 5G era [1], [2].

RAN slicing completely overturns the traditional model of

a single ownership of all network resources and brings a

new vision where the physical infrastructure resources are

shared across many RAN slices. Each slice built on top of

the underlying physical RAN (substrate) is a separate logical

mobile network, which delivers a set of services with similar

characteristics and is isolated from others [3], [4]. Leveraged

by network function virtualization (NFV), a RAN slice is

constituted by various virtual network functions (VNFs) and

Tu N. Nguyen was with the Department of Computer Science at Purdue
University Fort Wayne at the time of submission.

virtual links that are embedded as instances on substrate nodes

[5]. RAN enforcement mechanisms enable a highly efficient

resource management service and maximizes the resources

configured [6]. Efficient resource allocation and VNF em-

bedding serve as one of the critical aspects in RAN slicing

technologies. The resource allocation and VNF embedding

problem is considered under a variety of constraints [6].

Motivation. Conventional configuration schemes1 in RAN

slicing that underpin much of exiting designs are primarily re-

source allocation-based, in which only allocating resources of

substrate nodes to VNFs is considered [7], [8], [9]. However,

a configuration scheme will not only hinge on substrate nodes

resource allocation but also rely on the connection between

the substrate nodes. Since there is a specific connection

between VNFs, it thus requires a corresponding connection

between substrate nodes when the VNFs are mapped onto the

nodes, and, obviously the mappings are also bounded by the

bandwidth requirement of the virtual links between VNFs [10]

(see §II-A). Furthermore, a configuration process comes at an

operating cost, delay, and high impact to the entire network.

Thus, most existing RAN enforcement algorithms for RAN

slicing do not explicitly consider the requirements of RAN

slices (e.g., bandwidth and connectivity requirements) while

mapping VNFs, nor do they attempt to consider the interde-

pendency property to mitigate the impact of the configuration

process on the entire network.

Contributions. Going beyond resource allocation-based

configuration schemes, in this paper we advocate a novel

configuration scheme−dubbed RAN slicing-configuration (RS-

configuration). Mathematically, a RS-configuration is an or-

dered set of mappings of VNFs onto substrate nodes. Instead

of considering only available resources, we consider the in-

terdependence between all possible mappings and rearrange

resource allocation to attain a higher VNF embedding perfor-

mance what we refer to as a (mapping plan) RS-configuration

for RAN slicing. RS-configuration also aims to mitigate the

impact of the configuration process on the entire network and

enable us to analyze and reason VNF embedding and RAN

configuration trade-offs.

1Some other works refer to them as RAN enforcement.
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Fig. 1: Resources allocation and embedding VNFs in a RAN

slicing with a) a random mapping and b) RS-configuration

algorithms (best viewed in color).

The proposed research will focus on two fundamental

tasks: i) establishing the theoretical foundation for using RS-

configuration to construct a VNF mapping plan for RAN slice

embedding optimization; ii) developing a scheme and algo-

rithms needed to map/embed VNFs efficiently. In the following

sections, the PI describes the specific context and contributions

of this project and the proposed plan for completing this work.

Organization: The paper is organized as follows. In §II,

we present the network model of the network slicing. In this

section, we also discuss the problem definition. We present

related formulation, metric, and resource allocation algorithms

in §III. In §IV, we evaluate the performance of the proposed

algorithms. Finally, we make key concluding remarks in §V.

II. NETWORK MODEL AND RESEARCH PROBLEM

In the following sections, the basic mathematical notations

are initially introduced and simple examples are used to

present the key ideas behind the proposed RS-configuration

paradigm and illustrate its advantages over the conventional

resource allocation-based enforcement algorithm in §II-A. We

then provide a general problem formulation and highlight the

major objectives of the proposed paradigm in §II-B.

A. Network Model: Basic Notations and Illustration

Given a substrate network GS = (NS , ES), let NS and

ES denote the set of substrate nodes and links, respectively.

Considering a node s ∈ NS , the total available resources at

node s is defined as Rs. Namely, any node s in NS can

allocate a maximum amount Rs of resources to VNFs. A

VNF in a specific slice is not available and accessible by other

network slices for the isolation purpose.

Let GV be the set of RAN slices running over the substrate

network GS , where GV = {GV1 , GV2 , . . . , GV�}. For empha-

sis, we will denote a single RAN slice as GVi (1 ≤ i ≤ �)

and drop i when the context is clear. We define a RAN slice

GVi = (NVi , EVi) ∈ GV , where NVi and EVi are the set of

VNFs and the set of virtual links between VNFs, respectively.

For any VNF u ∈ NV , it needs an amount �u of available

resources at a substrate node to be embedded. For any virtual

link (u, v) ∈ EV , it requires a bandwidth b(u,v) for data flows

between VNF u and VNF v. Likewise, instead of making

the entire substrate network GS available for routing traffic,

we consider a more general case: we are restricted to the

substrate network GS with the capacity constraint matrix C for

all substrate links (s, t) ∈ ES , which specifies the maximum

bandwidth C(s,t) that can be allocated to all virtual links

mapped onto (s, t). We introduce a binary mapping variable

Mu
s to indicate the decision that the VNF u is mapped onto

the substrate node s when Mu
s = 1, and Mu

s = 0 otherwise.

In the first place of setting up the network, all VNFs must

be mapped (embedded) onto substrate nodes. To ensure that

all VNFs will be embedded, the value of the binary mapping

variable can be obtained as follows:
∑

s∈NS

Mu
s = 1 for all

u ∈
�⋃

i=1

NVi . However, due to the limited capacity at substrate

nodes (available resources) and links (maximum bandwidth),

a VNF u can actually be mapped onto a substrate node s

if the available resources at s are sufficient (�u ≤ Rs) and

meet bandwidth and connectivity conditions such that b(u,v) ≤
C(s,t), (s, t) ∈ ES for all s, t ∈ NS , v ∈ Nu, and φv

t = 1,

where Nu is the set of VNF u’s neighbors. In addition, we use

a variable ψ
(u,v)
(s,t) to represent a simultaneous mapping of two

VNFs u and v onto two substrate nodes s and t, respectively.

In particular, Mu
s +Mv

t − ψ
(u,v)
(s,t) ≤ 12.

Fig. 1(a) shows an example of VNFs embedded in substrate

nodes of the RAN slicing. The substrate network consists

of five base stations (BSs). Each BS provides four resource

blocks (RBs) (two frequency units during two-time slots) to

RAN slices. In the figure, there are also two RAN slices,

and each consists of various VNFs. Both slices utilize the

same substrate cellular network resources. We consider the

VNF’s resource requirement, as each needs a certain amount of

resources at a substrate node to be embedded, where Ru1
= 2

RBs, Ru1
= Rp2

= Rp3
and Rp2

= 1 RB (25% resources of

a substrate node). In other words, if a VNF requires 25% of

the spectrum resources, the substrate node should make 25%

of the RBs to the VNF. In the figure, the solid link between

any two VNFs in a slice indicates that they are neighbors

(e.g., (u1, u2), (p1, p2), (p1, p3) and (p2, p3)). Such a relation

as above implies that for any VNF u ∈
�⋃

i=1

NVi , the target

substrate nodes that the VNFs can be embedded in must be the

substrate nodes OR one of the neighbors of the substrate nodes

on which the VNFs neighbors are embedded. This connectivity

constrain make u1 cannot be embedded in the substrate node

s1 even though there are sufficient available resources.

As illustrated by the simple example above, existing works

that focus on mapping VNFs by considering only the available

resource of substrate nodes may fail to fully embed all VNFs.

Moreover, they cannot leverage the maximum number of

VNFs embedded, resulting in malfunction in RAN slices.

Therefore, it is vital to come up with efficient algorithms

to handle this resources allocation and embedding processes.

The resources allocation algorithms will allow us to attain

higher flexibility and embedding performance simultaneously,

2Such relations help avoid the quadratic constraint.
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without needing further resources. To illustrate how resources

allocation are handled in this case, consider again the simple

example in Fig. 1(b) with a mapping plan to embed VNFs

following a strict order. The result is that all VNFs are

successfully embedded in the substrate network. We remark

that the embedding algorithm should guarantee that all mapped

VNFs meet the bandwidth and connectivity requirements.

B. RS-Configuration: Research Problem

Clearly embedding VNF strategy will not only hinge on

substrate nodes resource allocation but also rely on the sub-

strate connection set ES of the substrate network and the

bandwidth requirement of the virtual links between VNFs.

This is a key research challenge we will tackle in this paper.

In particular, for an RS-configuration in a cellular network,

we would like to explicitly account for the mapping plan

of VNFs, with the goal of providing a high performance

for RAN slicing-based applications in terms of resources

allocation for embedding VNFs in substrate node. A high

performance in this stage is reflected through the number of

successfully embedded VNFs. This is in contrast to many

existing studies where no recoverable and stable performance

is assured under failures for RAN slicing-based applications,

nor is any attempt made to mitigate the impact of the RAN

configuration process on the entire network. We observe that,

in general, the enhanced embedding performance is achieved

at the expense of increased configuration units the substrate

network resources.

INSTANCE: Suppose we are given a substrate network

GS = (NS , ES) with a set of substrate nodes and links,

respectively. Each substrate node s ∈ NS can allocate to

VNFs an amount Rs of resources. We consider a general

case: we are restricted to the substrate network GS with an

available capacity constraint matrix C for all (s, t) ∈ ES ,

which specifies the maximum bandwidth C(s,t) that can be

allocated to all virtual links mapped onto (s, t). Also, a set

of RAN slices GV = {GV1 , GV2 , . . . , GV�} is running over

the substrate network GS . For any VNF, u ∈ NVi requires

an amount �u of available resources at a substrate node to

be embedded. For any virtual link (u, v) ∈ EVi , it requires a

bandwidth b(u,v) for data flows between two VNFs u and v.

QUESTION: Does a mapping plan (MP) for all VNFs

exist in the RAN slicing, such that the number of successfully

embedded VNFs is not less than k? Mathematically, we for-

mulate the following RS-configuration optimization problem:

maximize
Mu

s

∑

s∈NS

∑

u∈
�⋃

i

NVi

Mu
s (1)

Here, the set of variables MP = {Mu
s} represents one

possible mapping/embedding plan solution for VNFs in the

RAN slicing. The objective function is to maximize the total

number of mappings of VNFs, which means that the number of

VNFs embedded is maximized. In addition, to ensure that one

VNF can only be mapped onto at most one substrate node, they

must meet the mapping convergence constraint at the first end

s,
∑
t

∑
v

ψ
(u,v)
(s,t) = Mu

s , at the other end t,
∑
s

∑
u

ψ
(u,v)
(s,t) = Mv

t ,

and at both ends simultaneously, Mu
s +Mv

t −ψ
(u,v)
(s,t) ≤ 1, for

all s, t ∈ NS , u, v ∈ NVi , and Mu
s , M

v
t , ψ

(u,v)
(s,t) ∈ {0, 1}.

Apart from enhancing the embedding performance, we

believe that latency is another key performance metric that

must be accounted for in the design of the mapping plan for the

RS-configuration. For example, delayed packets can cause the

TCP timeout, resulting in unnecessary packet retransmissions,

thus reducing overall application throughput. We, therefore,

desire to bound the bandwidth variability in the mappings

of VNFs as follows:
∑

u,v∈GV |Mu
s=Mv

t=1

b(u,v) ≤ C(s,t) for

all (s, t) ∈ ES . Namely, the total allocated bandwidth on a

substrate link does not exceed its link capacity. Likewise, the

available resources at any substrate node s must be sufficient,

that is,
∑

u∈GV |Mu
s=1

�u ≤ Rs for all s ∈ NS . On the other

hand, to conserve the virtual connection between VNFs, the

mapping must also meet the connectivity constraint in which

for any mapping of a VNF u onto a substrate node s and

the other VNF v onto the other substrate node t, for all

(u, v) ∈ EV , s and t must be physically connected in the

substrate network, that is, (s, t) ∈ ES . Thus, the mapping

plan achieves the goal of a good embedding performance.

III. RESOURCE ALLOCATION ALGORITHMS

The objective function in the equation 1 lays out the RS-

configuration optimization problem thereby giving a better

understanding of the design of the resource allocation algo-

rithms which achieve the given optimization. In the following

sections, the Group-Connectivity-based Algorithm (GCBA)

and Group-based Algorithm (GBA) seek to maximize the em-

bedding performance without being subject to a specific time

constraint function. As part of each algorithm subsection, an

overview and pseudocode are provided, along with a detailed

description of the key idea behind the designed algorithms for

the orderings and metrics involved.

A. Group-Connectivity-based Algorithm (GCBA)

Given a substrate network GS = (NS , ES), the major

challenge becomes how to select available resources and

allocate them to suitable VNFs to achieve the highest number

of embedded VNFs. In this section we propose a high per-

formance algorithm, referred to as Group-Connectivity-based

Algorithm (GCBA) to attain the highest number of embedded

VNFs, without being subject to the time complexity constraint.

GCBA achieves a good performance by considering VNFs in

a specific list of clusters, namely LV . We then find the best

matching substrate group for a cluster set Nu
+

i
∀ Nu

+

i
∈ LV .

To embed the VNFs in a given cluster set (Nu
+

i
) onto the

appropriate substrate node, GCBA performs the three step

MP set generation process as follows:

1) Firstly, we construct the descending-order list of VNF

cluster sets LV based on the size of each cluster set.

2) We then construct the ordered-set of substrate nodes LS

per VNF u such that Rt ≥ �u ∀ t ∈ LS and u ∈ LV .
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Algorithm 1 Group-Connectivity-Based Algorithm

Input: GS ,GV

Output: MP

1: Initializing an empty set of mappings: MP = ∅.

2: Constructing a descending-order (based on the size of each

set) list of clusters LV , where LV = {Nu
+

i
, . . . ,Nu

+

j
}

such that Nu
+

i

⋂
Nu

+

j
= ∅.

3: while LV �= ∅ do

4: Let Nu
+

i
be the first element in LV

5: for u ∈ Nu
+

i
do

6: EmbeddingGroup(u,MP)
7: end for

8: LV = LV − {Nu
+

i
}

9: end while

10: return MP;

3) Finally, we embed the mutually exclusive cluster sets in

LV to the substrate network.

As specified in algorithm 1, we construct the list of VNF

cluster sets in line 2. This process is carried out by the iterative

addition of the VNF cluster head v followed by its respective

neighbor set Nv . The representation of the set LV is expressed

by the following mathematical relation:

LV = [{vi
⋃

v′i}, {vj
⋃

v′j}, . . . , {vk
⋃

v′k}] (2)

where |Nvi
| ≥ |Nvj

| ≥ |Nvk
| ∀ v′i ∈ Nvi

, v′j ∈ Nvj
,

and v′k ∈ Nv+k We construct the set of substrate nodes

LS , containing the substrate nodes which satisfy the resource

constraint Rt ≥ �u ∀ t ∈ NS and u ∈ LV . To optimize the

embedding performance, we define the neighborhood resource

cumulative property x(T ) for all the VNFs and substrate nodes

so as to improve the selection process of the best possible

substrate node. Given the VNF v and the substrate node

s ∀ v ∈ LV and s ∈ LS , the x(T ) property for v and s

is computed as follows:

v(T�) = �v +
∑

v′∈Nv

�v′ ,

s(TR) = Rs +
∑

s′∈Ns

Rs′

(3)

In equation 3, the replacement of x in x(T ) with v and s

along with addition of � and R as subscripts to T , allows

for greater clarity while determining which element the x(T )
property is being computed for. In procedure Embedding-

Group, we evaluate the x(T ) property (lines 3–4) after the

embedding process is separated into two cases. For each case,

the substrate node is picked based on x(T ).
Specifically, we first compute the difference s(TR)−v(T�)

(lines 6 and 11), after that the substrate node s, with the

positive difference value closest to 0 is selected. In the case of

only negative differences, the substrate node with the smallest

negative difference is selected for embedding. The idea behind

this metric (computing the difference) is to find the substrate

node s with the highest probability of supporting the VNF u as

well as the neighbor set Nu. We select the substrate node with

the difference value closest to 0 to minimize the possibility of

the available resources being wasted. In addition, prioritizing

the positive difference ensures maximum embedding (based

on the resource constraint) of all the VNFs u′ in Nu+ ,

for all Nu+ ∈ LV . Finally, if LV consists of substrate

nodes producing solely negative differences, the substrate node

with the smallest difference is chosen so as to increase the

probability of the maximum number of VNFs being embedded.

The three steps to obtain the optimal MP set are therefore

completed, thereby determining MP .

B. Group-based Algorithm (GBA)

Algorithm 2 Group-Based Algorithm

Input: GS ,GV

Output: MP

1: Initializing an empty set of mappings: MP = ∅.

2: Evaluate the value v(T�) for all VNFs v in NVi

3: Constructing a descending-order (based on the value of

v(T�)) list of clusters LV , where LV = {Nu
+

i
, . . . ,Nu

+

j
}

such that Nu
+

i

⋂
Nu

+

j
= ∅.

4: while LV �= ∅ do

5: Let Nu
+

i
be the first element in LV

6: for u ∈ Nu
+

i
do

7: EmbeddingGroup(u,MP)
8: end for

9: LV = LV − {Nu
+

i
}

10: end while

11: return MP;

While the set MP is obtained by the GCBA, we consider

a second algorithm, Group-based Algorithm (GBA) that can

be done with the similar computational complexity as well

as provide a better embedding performance. The essential

idea behind GBA is to order the VNF cluster sets based

on the neighborhood resource cumulative property (x(T )).
Specifically, to achieve the enhanced optimization, we change

the basis of ordering the set of VNFs LV . Instead of ordering

the VNF cluster sets based on the degree of cluster heads,

descending-order cluster sets are constructed, based on the the

neighborhood resource cumulative value (x(T )) of the cluster

heads. In doing so, the cluster sets with the greatest isolation

of resources are embedded onto the substrate layer first.

As shown in the algorithm 2, the step one (line 2) shows

the improvement of GBA comparing to GCBA. Steps two and

three, similar to the algorithm 1, are carried out with the help

of the procedure EmbeddingGroup. The following steps are

strictly followed the three steps of the embedding process.

Hence, the MP set is obtained.

IV. PERFORMANCE EVALUATION

In this section, we present simulations to demonstrate

our approaches’ efficiency by firstly implementing the pro-

posed algorithms for constructing a embedding plan for RS-
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1: procedure EMBEDDINGGROUP(u, MP)

2: Constructing a set LS of substrate nodes such that

Rt′ ≥ �u ∀ t
′ ∈ NS .

3: Evaluate the value s(TR) for all substrate nodes s in

LS

4: Evaluate the value u(T�)
5: if Mv′

t′ = 0 ∀ v′ ∈ Nu, t
′ ∈ NS then

6: Let t be a substrate node in LS with the minimum

difference s(TR)− u(T�) ∀ s ∈ LS

7: Rt = Rt −�u

8: MP = MP
⋃
{Mu

t }
9: else

10: Constructing LNu

S+ , representing the set of substrate

nodes in LS and their common neighbors, onto which the

substrate nodes are hosting v′ ∀ v′ ∈ Nu

11: Let ti be a substrate node in LNu

S+ with the

minimum difference s′′(TR) − v(T�) and b(u,v′) ≤
C(ti,tj) ∀ s′′ ∈ LNu

S+ , v ∈ Nu+ , v′ ∈ Nu, tj ∈ Nt
+

i
, where

Nt
+

i
denotes the set of ti’s neighbors and itself.

12: if ∃ ti then

13: Rti = Rti −�u

14: MP = MP
⋃
{Mu

ti
}

15: end if

16: end if

17: return MP;

18: end procedure

configuration through simulations. We consider the RAN

slicing consisting of one substrate network and a variety of

network slices. It is feasible to create different embedding

scenarios in the simulations and validate the simulation results.

The first case is to test the feasibility of the proposed algo-

rithms under the normal network condition that can provide

reasonable resources for embedding VNFs into the substrate

network, referred to as the normal case. In this case, we

generate the number of substrate nodes from the interval

[60, 100], each is initialized with an amount of resources

selected from the interval [4, 8]. The number of network slices

is randomly generated from the interval [2, 10] and the number

of VNFs on each slice is also randomly chosen based on the

number of network slices from the interval [10, 100].

In the second case, we generate the network topology with

limited resources that can test the performance of the proposed

algorithms in the resource shortage condition, referred to as

the shortage case. In this case, network resources are strictly

controlled as follows: for the number of substrate nodes, from

the interval [60, 100]; for the number of resources for each

substrate node, from the interval [2, 4]; for the number of

network slices, from the interval [2, 10]; and for the number of

VNFs on each slice, from the interval [1, 10]. In the following

sections, Fig. 2 shows results in the “normal case” test and

Fig. 3 shows results in the “shortage case” test. To ensure the

performance of the proposed algorithms are fairly verified, we

compare them with the other two approaches, which consider
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Fig. 2: Normal Case: total number of embedded VNFs when
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the resources and connectivity of VNFs as the primary factor

for the embedding process, referred to as Resource-based

Algorithm (RBA) and Connectivity-based Algorithm (CBA).
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Fig. 3: Shortage Case: total number of embedded VNFs when

varying a) the number of substrate nodes, b) number of VNFs,

c) k, and d) k′.
Results in Fig. 2 show the performance of all algorithms in

the “normal case” test. We test the proposed algorithms using

different metrics, including varying the number of substrate

nodes, changing the number of VNFs, adjusting the degree of

substrate nodes (k) and the degree of VNF (k′). Specifically,

Fig. 2(a) shows comparisons of the number of embedded

VNFs when the number of substrate nodes ranges from 60
to 140. In the figure, GBA and GCBA provide the best
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performance with a higher total number of embedded VNFs.

During the embedding process, GBA and GCBA consider not

only the required resources of a single VNF but also we take

into account of the required resources of a cluster of VNFs. In

addition, in the GCBA, we also consider the degree of VNFs

(number of neighbors) when determining the mapping plan.

The concept of cluster (interdependency) makes the GBA and

GCBA to be the best in performing embedding VNFs. The

differences are reflected through the neighborhood resource

cumulative property x(T ) considered in both GBA and GCBA.

In Fig. 2(b) we test the performance of the proposed algo-

rithms when the number of VNFs ranging from 160 to 240.

We realize that the higher the VNFs in the substrate network,

the higher the number of VNFs is successfully embedded

into the substrate network. It indicates that the algorithms

perform more efficiently when having more resources in the

network (higher number of VNFs). Likewise, in Fig. 2(c)

and Fig. 2(d) we analyze comparisons of the capability of

the proposed algorithms when varying the value of k and k′,

where k and k′ denote the degree of every substrate node in

the substrate network and the degree of VNFs in RAN slices,

respectively. In these figures, GBA and GCBA demonstrate a

better performance with a higher total number of embedded

VNFs when comparing to CBA and RBA. We also observe that

the higher k or k′, the higher the number of VNFs embedded

in the substrate network. In addition, there is higher efficiency

in performance when k or k′ is increased.

In Fig. 3 we test the performance of the proposed algorithms

in the “shortage case” test to see how the shortage resource

condition impacts to the number of VNF embedded in the

network. In Fig. 3(a) we compare the embedding performance

of the proposed algorithms to that the number of substrate

nodes ranging from 60 to 140. As shown in the figure,

GBA and GCBA have the best efficiency performance with

a higher total number of embedded VNFs. As mentioned

in the previous analysis, both GBA and GCBA consider the

neighborhood resource cumulative property x(T ). In addition,

in GBA we evaluate the x(T ) for both virtual networks and

substrate network while only the substrate network is evaluated

with the x(T ) in GCBA. These metrics make GBA and GCBA

perform better than CBA and RBA. In contrast, using CBA

and RBA, the embedding performance is lower with a lower

number of embedded VNFs. Note that for CBA and RBA,

all VNFs are scheduled to be embedded by considering only

the embedding status of the individual VNFs resource or

connectivity constraint. Likewise, in Fig. 3(b)–3(d) we test to

see how the number of VNFs, k, and k′ impact the number of

successfully embedded VNFs. GBA and GCBA demonstrate a

greater efficiency performance with a higher number of VNFs

embedded in the substrate network whereas, RBA and CBA

have a lower total number of VNFs embedded in the substrate

network. We also observe that the greater k or k′, the better

the number of VNFs embedded in the substrate network as

well. In contrast, RBA and CBA have a fewer total number of

embedded VNFs as they have a lower embedding efficiency.

V. CONCLUSION

In this paper we have established the theoretical foundation

for using RS-configuration to construct a VNF embedding

plan for the RAN slicing. We have formulated the efficient

resource allocation as an essential problem with the objective

to maximize the total number of embedded VNFs. To solve the

RS-configuration problem, we have introduced two efficient

algorithms (GCBA and GBA) and show theoretical analyses to

demonstrate the efficacy of the algorithms. Extensive simula-

tion results have been provided to evaluate the performance of

the proposed algorithms using different metrics in terms of the

embedding performance and resource utilization performance.

We have created different scenarios to test the algorithms,

including considering the network under the normal condi-

tion (normal case) and under the resource shortage condition

(shortage case). Through the results of simulations, GBA and

GCBA consistently show a better performance for embedding

VNFs in comparison to the other two approaches RBA and

CBA within reasonable bounds of computational complexity.
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