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Natural honey is a promising material for hardware components of nonvolatile memory and artificial synaptic
devices in emerging renewable and biodegradable neuromorphic systems. The resistive switching properties of
these devices are closely correlated with device process conditions. In this paper, honey based resistive random
access memory (RRAM) devices were fabricated with different metal electrodes and drying temperature and
duration. SET and RESET voltages were measured and used as dataset to train machine learning algorithms. Four
machine learning models were applied to process data and demonstrated an average accuracy of 89.9 % to 91.6
% to predict the SET voltages in the range of [0 V, 6 V]. This study established a useful practice for fabrication of
RRAM devices based on honey and can be extended to other natural organic materials.

1. Introduction

Nonvolatile memory device is an essential hardware unit for infor-
mation processing and data storage in emerging neuromorphic systems.
Nonvolatile memory devices based on phase change memory [1],
resistive switching memory [2], electrochemical devices [3], 2D devices
[4], etc. have been demonstrated. Among these device technologies,
resistive random access memory (RRAM) has been identified as a
promising technology. A variety of natural organic materials mainly
from protein and polysaccharide such as silk [5], gelatRRAMin [6],
albumen [7], chitosan [8], cellulose nanofiber [9], starch [10], Aloe
vera [11], glucose [12], fructose [13], etc. have demonstrated resistive
switching properties. However, one of the challenges in the develop-
ment of RRAM based on natural organic materials is that the resistive
switching property is a strong reliance on process conditions [11] of the
resistive switching thin film and electrode materials.

In this paper, we report a new approach to efficiently correlate
natural organic RRAM process conditions with resistive switching
characteristics by both experimental study and machine learning. Spe-
cifically, the film process conditions, film properties and device char-
acteristics collected by experimental study were used as dataset to train
machine learning algorithms, which was then able to make predictions
and optimization on process condition. The natural material used for
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this study was honey, a natural sweet product [14] represented mainly
by sugar, i.e. monosaccharides and disaccharides. Recently we have
developed RRAM devices based on honey with promising bipolar
resistive switching characteristics [15-17]. In this study, honey thin
films were fabricated by a solution process with different process con-
ditions of drying temperature and duration, and different bottom elec-
trodes for comparison. SET and RESET voltages of honey-based RRAMs
were tested and their values were correlated with process conditions.
These process parameters and test results were used as training data for
machine learning algorithm. Instead of many “trial and error” fabrica-
tion and testing cycles, machine learning can be utilized to more accu-
rately and efficiently optimize the fabrication process.

2. Experimental

Five glass slides were used as the substrates of honey-RRAMs and
cleaned in acetone, isopropyl alcohol and deionized water (D.I. water),
each for 10 mins in an ultrasonic bath. Cu film was deposited on 2 slides
and ITO was deposited on 3 slides by sputtering (Kurt Lesker Nano36).
Honey solution was prepared by mixing commercially purchased honey
in D.I. water with a 30 % concentration by weight. The solution was kept
in a vacuum desiccator for overnight to make sure honey is dissolved
completely in water and no air bubbles exist in the solution. Spin coating
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at 3000 rpm for 90 s was applied to coat the honey film on all 5 samples,
followed by baking on a hotplate at different temperatures and dura-
tions. During baking, Cu film was oxidized to CuyO to form Cu,O/Cu
bottom electrode (BE) while ITO BE doesn’t change since it is thermal
stable. Final Al film was deposited by sputtering through a stencil mask
with circular opening windows on the dried honey film to form top
electrode (TE). Fig. 1 showed the process flow, photographs of two
samples after fabrication, and sample numbers with process conditions.

Resistive switching characteristics were measured in air and at room
temperature on a Signatone probe-station. A Keithley 4200 semi-
conductor characterization system was used to supply voltage sweeps
and measure currents in the devices. The bias voltages were applied on
the TE of the honey devices while the BE was grounded during switching
tests. After SET and RESET voltages were obtained from 5 samples, they
were used for a statistical analysis and to train machine learning algo-
rithms. Four classification models, K-nearest Neighbors [18], Support
Vector Machine [19], Decision Trees [20] and Random Forest classifier
[21] were applied for data processing and prediction.

3. Results and discussion

Fig. 2(a-e) showed typical current-voltage (I-V) characteristics of
honey RRAM devices from each sample. The bias voltage was swept at a
rate of 1 V/s. A current compliance of 10 nA was applied in the SET
process to prevent dielectric breakdown of the honey film. All 5 devices
exhibit forming-free bipolar resistive switching behaviors. In positive
voltage sweep, current increased gradually till compliance at the SET
voltage (Vge), which indicates the change of the honey thin film from
high resistance state (HRS) to low resistance state (LRS). In negative
voltage sweep, current compliance was removed and the current
maintained at a high level since the honey film was still at LRS but
dropped abruptly when the bias reached the RESET voltage (Vieset),
when the honey film changed from LRS back to HRS. As summarized in
Fig. 2(f), these 5 devices have different Vgt and Vieser and therefore
different values of read memory window (Ve-Vryeset) in which the device
can be “read” without changing the memory state. The currents in HRS,
Iyrs measured at the read voltage which is 1/10 or larger of Vg, were
also different. Such difference can be attributed to their different BE and
drying temperature and duration of the honey film.

As a mixture of sugars and other carbohydrates, honey is main-
ly fructose (about 38 %) and glucose (about 32 %). Current conduction
in honey-based RRAM can be potentially explained by formation and
rapture of conductive filaments as in RRAM devices based on glucose
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[12] and glucose [13]. The proposed resistive switching mechanism is
schematically presented in Fig. 3. During drying of the honey film, the
thermal energy was sufficiently high to break covalently bonded back-
bone molecules of glucose and fructose chains to form numerous
structural defects in the pristine honey film. These structural defects
acted as shallow trap centers. Main chemical functional groups such as
—OH group originated from either water and/or polysaccharides com-
pounds in honey such as glucose, fructose, sucrose, etc. and C—O group
from monosaccharides compounds also dissociated from poly-
saccharides of honey. These functional groups also formed interstitial
spaces to trap charges. The defect sites by structural defects and inter-
stitial traps are shown Fig. 3(a). Under the positive bias in HRS, Al atoms
from the top electrode oxidized to Al ions which drifted along the bulk
honey film through these defect sites toward the bottom electrode
[Fig. 3(b)] under the electric field. When reaching the bottom ITO or
CuxO/Cu electrode, Al ions reduced to Al atoms and stacked up [Fig. 3
(©)]. At Vg, Al atoms reached the top electrode and formed a continuous
path by conductive filaments for current conduction [Fig. 3(d)], and
honey-RRAM transited from HRS to LRS. As the voltage sweep was
reversed with negative bias on the top Al electrode, LRS was maintained
until voltage equaled V,¢set Wwhen filaments were ruptured [Fig. 3(e)] due
to Joule heating. Since defect sites in the honey film play a key role for
drifting of Al ions in the filament formation process, and drying tem-
peratures and durations of the honey film affect the concentration of
structural defects, this mechanism can be used to explain those different
switching characteristics of honey-RRAMs due to different drying con-
ditions in Fig. 2. The effect of CuyO and ITO bottom electrode is still
under investigation. One potential explanation is attributed to CuyO
since it was reported that Cu,O film also has resistive switching prop-
erties [22].

To investigate each design in Fig. 1(c), up to 100 devices on each
sample were tested, and statistical analysis on SET and RESET voltages
of the 5 samples was applied. Fig. 4 summarized the probability of the
Vset and Vieser Values in different voltage ranges from each sample using
probability density function (PDF), a useful tool to show the likelihood
that random variables fall within a particular range of values. As shown
in Fig. 4, the 5 samples clearly demonstrated different characteristics of
peak value and width of the curve, indicating that different process
conditions in Fig. 1(c) have impact on the resistive switching behaviors
of the devices. Clear peak values are shown for each sample which in-
dicates that a relatively large number of measurements fall into the
corresponding voltage ranges.

Statistical results in Fig. 4 showed that the process conditions clearly
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Fig. 1. (a) Schematic process flow of Al/honey/ITO and Al/honey/Cu,O/Cu RRAMs: (i) deposition of ITO or Cu on glass substrate, (ii) after ITO and Cu deposition,
(iii) spin coating and baking honey film on ITO or Cu,O, (iv) deposition of Al through a stencil mask, (v) finished device. (b) Photographs of honey RRAMs with
CuxO/Cu or ITO BE and Al TE. (¢) Summary of sample numbers and process conditions.
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Fig. 2. Bipolar resistive switching characteristics of 5 honey-RRAM devices from each sample: (a) sample 1, (b) sample 2, (¢) sample 3, (d) sample 4 and (e) sample 5.

(f) Summary of Vg, Vyeser and Iyrs of the devices in (a)-(e).
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Fig. 3. Resistive switching mechanism of honey-RRAM: (a) pristine device after fabrication with defect sites in the honey film, (b) Al° oxidized to Al* which drifted
to BE through defect sites, (c) Al" reduced to Al® at BE and stacked up, and Al filaments were (d) formed at Vg, and () ruptured at Vyeger.

impact resistive switching characteristics of devices. Therefore, pre-
dicting the optimal process conditions is critical. To the end, machine
learning techniques were applied to make such predictions by formu-
lating the problem into a binary classification. The machine learning
model takes the process conditions as input to predict whether the target
value falls in a pre-defined specific range. Specifically in this study, the
input features included the bottom electrode material, the top electrode
material, baking temperature and duration, as in Fig. 1(c). The focused

targets were SET and RESET voltage. The classification models used to
process the data included K-nearest Neighbors [18], Support Vector
Machine [19], Decision Trees [20] and Random Forest classifier [21].
These models were chosen because they represent different classifica-
tion algorithms. K-nearest Neighbors is a voting-based classification
where results are computed by a majority vote of the k nearest neighbors
of each data point. Support Vector Machine generates a hyperplane
which separates different classes. Decision Trees produce a set of rules to
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Fig. 4. Per-sample probability density functions (PDF) for (a) SET voltage and (b) RESET voltage.

classify data. Random Forest classifier is a meta-estimator that utilizes
multiple decision trees to make predictions.

For SET voltage, the range of [0 V, 6 V] was applied as the target
range for testing purposes, and this range can be adjusted based on the
needs of the prediction. The k-fold cross validation (k = 4) was used in
the model. As an example, Fig. 5 showed the analysis results using the
model of K-nearest Neighbors. The performance of the machine learning
model was stable across 5 samples and baking conditions. Notably, the
prediction accuracy for data points at a baking time of 4 h was slightly
lower than others as shown in Fig. 5(c), which was consistent with the
per-sample accuracy for sample 2 in Fig. 5(a). Machine learning
methods are data-driven, and collecting sufficient amount of data
required for training has been a well-known challenge in research

K-nearest Neighbor Accuracy

domains such as microfabrication and material science [23]. Due to the
fact that sample 2 is the only sample which was baked for 4 h, the
training data for this particular baking time is limited. Nonetheless, the
overall performance of the machine learning model demonstrated an
average accuracy close or above 90 %. The per-sample, per-temperature,
and per-baking time accuracy of the K-nearest Neighbor model is shown
in Fig. 5(d). The learning results by 4 classification models were sum-
marized in Fig. 5(d) with similar performance and accuracy ranging
from 89.9 % to 91.6 %. This testified the potential of leveraging machine
learning techniques to predict device switching characteristics, and
comparing to the traditional trial-and-error approach, machine learning
is more efficient in process development. To further improve the accu-
racy of prediction, a larger scale of training dataset with more process
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Fig. 5. Classification performance of K-n.earest neighbors: (a) accuracy vs samples; (b) accuracy vs baking temperature; (c) accuracy vs baking time. (d) Summary of
K-nearest Neighbors accuracy. (e) Summary of the accuracy of 4 classification models on predicting SET voltages.
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conditions and a hybrid approach combining machine learning and
statistical modeling are currently under investigation.

As suggested by extensive studies in the literature [24,25], the ac-
curacy of machine learning algorithms is largely dependent on the
quality and size of the training samples. In many research fields,
including microfabrication, collecting training data is costly. Therefore,
training machine learning models with a moderate amount of data is
ideal. In this paper, we were able to achieve high accuracy (~90 %) with
a small dataset. There are still rooms for further improvement such as
training the models with a bigger dataset by more process conditions
and voltage values from more devices, etc. which are currently under
investigation.

4. Conclusion

Process conditions and resistive switching characteristics of natural
organic RRAM were correlated through experimental study and ma-
chine learning. Bottom electrodes, drying temperature and duration of
the honey films were varied by 5 combinations to fabricate honey RRAM
devices, with SET and RESET voltages from up to 100 devices of each
process condition measured and used to train machine learning algo-
rithms. Four classification models of K-nearest Neighbors, Support
Vector Machine, Decision Trees and Random Forest classifier were
applied to process the data and accuracy of 89.9 % to 91.6 % were ob-
tained for predicting SET voltage.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Feng Zhao and Xinghui Zhao acknowledge the support from the
National Science Foundation, United States (ECCS-2104976).

References

[1

—

Le Gallo M, Sebastian A. An overview of phase-change memory device physics.

J Phys D Appl Phys 2020;53:213002. https://doi.org/10.1088/1361-6463/
ab7794.

[2] Shi T, Wang R, Wu ZH, Sun YZ, An JJ, Liu Q. A review of resistive switching
devices: performance improvement, characterization, and applications. Small
Struct 2021;2:2000109. https://doi.org/10.1002/sstr.202000109.

Tang JS, Bishop D, Kim SY, Copel M, Gokmen TF, Todorov T, et al. ECRAM as
Scalable Synaptic Cell for High-Speed. IEEE International Electron Devices Meeting
(IEDM): Low-Power Neuromorphic Computing; 2018. https://ieeexplore.ieee.org/
document/8614551.

Bertolazzi S, Bondavalli P, Roche S, San T, Choi SY, Colombo L, et al. Nonvolatile
memories based on graphene and related 2D materials. Adv Mater 2019;31:
1806663. https://doi.org/10.1002/adma.201806663.

[5] Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK. A natural silk fibroin protein-
based transparent bio-memristor. Adv Funct Mater 2012;22:4493-9. https://doi.
org/10.1002/ADFM.201200073.

[3

=

[4

=

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Solid State Electronics 197 (2022) 108463

Chang YC, Wang YH. Resistive switching behavior in gelatin thin films for
nonvolatile memory application. ACS Appl Mater Interfaces 2014;6:5413-21.
https://doi.org/10.1021/AM500815N.

Chen YC, Yu HC, Huang CY, Chung WL, Wu SL, Su YK. Nonvolatile bio-memristor
fabricated with egg albumen film. Sci Rep 2015;5:1-12. https://doi.org/10.1038/
srepl10022.

Hosseini NR, Lee JS. Biocompatible and flexible chitosan-based resistive switching
memory with magnesium electrodes. Adv Funct Mater 2015;25:5586-92. https://
doi.org/10.1002/ADFM.201502592.

Nagashima K, Koga H, Celano U, Zhuge F, Kanai M, Rahong S, et al. Cellulose
nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 2014;4:1-7.
https://doi.org/10.1038/srep05532.

Raeis-Hosseini N, Lee JS. Controlling the resistive switching behavior in starch-
based flexible biomemristors. ACS Appl Mater Interfaces 2016;8:7326-32. https://
doi.org/10.1021/ACSAMIL.6B01559.

Lim ZX, Cheong KY. Effects of drying temperature and ethanol concentration on
bipolar switching characteristics of natural Aloe vera-based memory devices. Phys
Chem Chem Phys 2015;17:26833-53. https://doi.org/10.1039/C5CP04622.J.
Park SP, Tak YJ, Kim HJ, Lee JH, Yoo H, Kim HJ. Analysis of the bipolar resistive
switching behavior of a biocompatible glucose film for resistive random access
memory. Adv Mater 2018;30:1800722. https://doi.org/10.1002/
ADMA.201800722.

Xing Y, Sueoka B, Cheong KY, Zhao F. Nonvolatile resistive switching memory
based on monosaccharide fructose film. Appl Phys Lett 2021;119:163302. https://
doi.org/10.1063/5.0067453.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. Honey: chemical
composition, stability and authenticity. Food Chem 2016;196:309-23. https://doi.
org/10.1016/J.FOODCHEM.2015.09.051.

Sivkov AA, Xing Y, Cheong KY, Zeng X, Zhao F. Investigation of honey thin film as
a resistive switching material for nonvolatile memories. Mater Lett 2020;271:
127796. https://doi.org/10.1016/J.MATLET.2020.127796.

Sueoka B, Cheong KY, Zhao F. Study of synaptic properties of honey thin film for
neuromorphic systems. Mater Lett 2022;308:131169. https://doi.org/10.1016/J.
MATLET.2021.131169.

Kim H, Hwang S, Sueoka B, Zhao F. Memristive synaptic device based on a natural
organic material—honey for spiking neural network in biodegradable
neuromorphic systems. J Phys D Appl Phys 2022;55:225105. https://doi.org/
10.1088/1361-6463/AC585B.

Peterson L. K-nearest neighbor. Scholarpedia 2009;4:1883. 10.4249/
scholarpedia.1883.

Noble WS. What is a support vector machine? Nat Biotechnol 2006;24:1565-7.
https://doi.org/10.1038/nbt1206-1565.

Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol 2008;26:1011-3.
https://doi.org/10.1038/nbt0908-1011.

Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens
2005;26:217-22. https://doi.org/10.1080/01431160412331269698.

Rehman S, Hur JH, Kim DK. Resistive switching in solution-processed copper oxide
(CuxO) by stoichiometry tuning. J Phys Chem C 2018;122:11076-85. https://doi.
org/10.1021/acs.jpcc.8b00432.

Zhang Y, Ling C. A strategy to apply machine learning to small datasets in materials
science. NPJ Comput Mater 2018;4:1-8. https://doi.org/10.1038/541524-018-
0081-z.

Tam VH, Kabbara S, Yeh RF, Leary RH. Impact of sample size on the performance
of multiple-model pharmacokinetic simulations. Antimicrob Agents Chemother
2006;50:3950-2. https://doi.org/10.1128/AAC.00337-06.

Kalayeh HM, Landgrebe DA. Predicting the required number of training samples.
IEEE Trans Pattern Anal Mach Intell 1983;6:664-7. https://doi.org/10.1109/
TPAMI.1983.4767459.

Feng Zhao received his PhD degree in Electrical Engineering
from University of Colorado at Boulder. He is currently an
associate professor of electrical engineering at the School of
Engineering and Computer Science, Washington State Univer-
sity, Vancouver, WA, USA. His research focuses on natural
organic materials based memory and artificial synaptic devices
for biodegradable neuromorphic systems, wide bandgap semi-
conductors, MEMS/NEMS, solar cells, microneedle and neural
interface devices.


https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/10.1002/sstr.202000109
http://refhub.elsevier.com/S0038-1101(22)00234-9/h0015
http://refhub.elsevier.com/S0038-1101(22)00234-9/h0015
http://refhub.elsevier.com/S0038-1101(22)00234-9/h0015
http://refhub.elsevier.com/S0038-1101(22)00234-9/h0015
https://doi.org/10.1002/adma.201806663
https://doi.org/10.1002/ADFM.201200073
https://doi.org/10.1002/ADFM.201200073
https://doi.org/10.1021/AM500815N
https://doi.org/10.1038/srep10022
https://doi.org/10.1038/srep10022
https://doi.org/10.1002/ADFM.201502592
https://doi.org/10.1002/ADFM.201502592
https://doi.org/10.1038/srep05532
https://doi.org/10.1021/ACSAMI.6B01559
https://doi.org/10.1021/ACSAMI.6B01559
https://doi.org/10.1039/C5CP04622J
https://doi.org/10.1002/ADMA.201800722
https://doi.org/10.1002/ADMA.201800722
https://doi.org/10.1063/5.0067453
https://doi.org/10.1063/5.0067453
https://doi.org/10.1016/J.FOODCHEM.2015.09.051
https://doi.org/10.1016/J.FOODCHEM.2015.09.051
https://doi.org/10.1016/J.MATLET.2020.127796
https://doi.org/10.1016/J.MATLET.2021.131169
https://doi.org/10.1016/J.MATLET.2021.131169
https://doi.org/10.1088/1361-6463/AC585B
https://doi.org/10.1088/1361-6463/AC585B
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1021/acs.jpcc.8b00432
https://doi.org/10.1021/acs.jpcc.8b00432
https://doi.org/10.1038/s41524-018-0081-z
https://doi.org/10.1038/s41524-018-0081-z
https://doi.org/10.1128/AAC.00337-06
https://doi.org/10.1109/TPAMI.1983.4767459
https://doi.org/10.1109/TPAMI.1983.4767459

	Correlation of natural honey-based RRAM processing and switching properties by experimental study and machine learning
	1 Introduction
	2 Experimental
	3 Results and discussion
	4 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


