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Abstract—Participation in Open Source Software (OSS)
projects offers real software development experience for students
and other newcomers seeking to develop their skills. However,
onboarding to an OSS project brings various challenges, includ-
ing finding a suitable task among various open issues. Selecting
an appropriate starter task requires newcomers to identify the
skills needed to solve a project issue and avoiding tasks too
far from their skill set. However, little is known about how
effective newcomers are in identifying the skills needed to resolve
an issue. We asked 154 undergrad students to evaluate issues
from OSS projects and infer the skills needed to contribute.
Students reported a total of 94 skills, which we classified into
10 categories. We compared the students’ answers to those
collected from 6 professional developers. In general, students
misidentified and missed several skills (f-measure=0.37). Students
had results closer to professional developers for skills related to
database, operating infrastructure, programming concepts, and
programming language, and they had worse results in identifying
skills related to debugging and program comprehension. OQur
results can help educators who seek to use OSS as part of their
courses and OSS communities that want to label newcomer-
friendly issues to facilitate onboarding of new contributors.

Index Terms—Open-source software, Newcomers, Skills, Ex-
pertise.

I. INTRODUCTION

To provide students experience with real software develop-
ment problems, educators are increasingly using Open Source
Software (OSS) projects as a training ground [1]-[4]. There
are many OSS projects to choose from, ranging in different
domains, sizes, and complexity [5], [6], giving educators a
wide range of projects to train their students on. Such use
of OSS as a training ground allows students to not only
learn real-world technical skills but also learn about team
communication, communication styles, and attitudes, which
might, in turn, increase their confidence when applying for
industry jobs [2], [7]-[9]. Successful participation in OSS
projects also helps (student) newcomers gain visibility among
their peers [10], [11], benefit society by developing a product
used by many users [12], and have a higher chance to achieve
professional success [11], [13], [14].

However, newcomers face a plethora of challenges [15],
including choosing a task to start contributing [16], [17].
Newcomers are expected to be able to find a task on their
own that they can complete. They have to figure out which
task is appropriate from a set of open issues that require

different skills and are of varying complexity. However, it
is not easy to infer the skills (or expertise) required for a
task solely from the task description. And very few projects
annotate tasks to signal their appropriateness for newcomers.
Skills in this context can represent technical knowledge or
knowledge about the contribution process. When the gap
between newcomers’ skills and those needed to accomplish
the task is too wide, it demotivates them causing them to
dropout [16], [18], [19]. This particularly impacts students,
who typically have a limited skill set and experience when
first contributing to an OSS project.

So far, little is known about how effective (newcomer)
students are in identifying the skills needed to resolve an issue
based only on the information available on the issue tracker.
In this paper, we seek to understand how effective students are
in identifying the skills needed to work on an issue through
the following research questions:

RQ.1: How similar are the skills identified by students
and professional developers when analyzing OSS issues?

RQ.2: Which types of skills are students capable of iden-
tifying?

To answer these research questions, we tasked 154 under-
graduate students to evaluate issues from 47 OSS projects
and report which skills they considered necessary to close
the issue. We recruited six professional software developers to
assess the issues reported by the students. Then, we compared
professional and students’ responses using traditional informa-
tion retrieval measures: recall, precision, and F-measure.

Our contributions in this paper include:

« characterization of how capable students are in identify-
ing skills needed to work on OSS issues as compared to
professional developers;

« identification and classification of a set of 94 skills into
10 higher-level categories;

« identification of the categories of skills where students are
better (e.g., database, operating infrastructure, program-
ming concepts, and programming language) or worse
(e.g., debugging and program comprehension);

These results are particularly relevant for educators who

use OSS in their courses, OSS communities that want to



label the issues to facilitate new contributors’ onboarding, and
researchers who aim to propose technical approaches to help
identify skills in issues.

II. RELATED WORK

OSS in education: Bringing OSS projects into the context
of a classroom has been studied from diverse perspectives [6],
[8], [20]. Smith et al. [20] reported the search for suitable
OSS projects to teach an introductory SE course with a focus
on maintenance and evolution. Morgan and Jensen [8] detailed
the experience of teaching a SE course based on OSS projects.
Their work compares and contrasts two different models
and discusses the outcomes, lessons learned, and guidance
to those developing their courses on this topic. Pinto et al.
investigate the benefits, challenges, and opportunities from
the professor’s [3] and student’s [2] perspectives. With our
work, we want to understand the difficulty newcomers have
in identifying skills from OSS task descriptions in the issue
tracker, which is a critical part of the contribution process.

Onboarding newcomers: A newcomer is a developer try-
ing to place their first code contributions into the project [21].
Newcomers often face hostile and unfamiliar landscapes when
onboarding to an OSS project. According to Fogel [22], if
a project does not make a good first impression, newcomers
may wait a long time before giving it a second chance. This is
especially pertinent for most students in software engineering
classes as they are still novices and are developing their skills.
Newcomers need proper orientation to navigate the project and
correctly make a contributions [23]. Motivating, engaging, and
retaining new developers in a project is essential to sustain a
healthy OSS community [24]. Dagenais et al. [25] compare
newcomers to explorers in a hostile environment where they
need to self-guide through the tasks and obstacles in OSS.

Several empirical studies have focused on how newcomers
join community-based OSS projects [17], [19], [21], [26],
[27]. Other works have focused on understanding the barriers
that influence newcomers’ onboarding experiences [16], [28].
Developers indicated that the lack of awareness and guidance
during their first steps (setup and choosing the right starter
task) discouraged further contributions in OSS projects [29].
Researchers [16], [18], [30] have reported problems associated
with the “difficulty to find a task to start with.” Being able
to identifying the right skills required to work on an issue
can help newcomers find the right task and be successful
in their first contribution. Our work investigates this topic
deeper, identifying to what extent students can identify skills
as compared to professional developers.

Skill identification: In our context, a skill is the knowledge
needed for a newcomer to solve a task in an OSS project.
Identifying skills is important ti choose a task [16], [19]. Some
studies propose solutions to support task selection, including
automated recommendation systems [31], [32]. Anvik and
Murphy [31] use machine learning in the project history
to recommend the expert for a given artifact. Macdonald
and Ounis [32] apply data fusion techniques using a voting
heuristic-based approach to analyze the change history of

artifacts related to a task. Balasubramanyan et al. [33] propose
a search tool called DebugAdvisor, which allows users to
search through software repositories to recommend developers
based on expertise on the source code related to the task. Costa
et al. [34] identify the expert most suited to merge changes
based on past work. However, these systems only suggest tasks
to developers who have previous interactions in the project,
and thus cannot support newcomers. Newcomers would need
additional help to choose an appropriate set of tasks. Research
thus far has not focused on models that articulate the skills
necessary to contribute to an OSS project or on how to model
skill acquisition trajectories.

Other studies focused on tools to support newcomers’
onboarding. Cubrani¢ et al. [35], for example, developed a tool
called Hipikat used to assist newcomers by building a group
memory and recommending source code, mail messages, and
bug reports. Park and Jensen [17] showed that visualization
tools could support the first steps of newcomers to OSS
projects, helping them to find information more quickly. Wang
and Sarma [19] created an approach to enable newcomers
explore the socio-technical dependencies and the resources
needed to fix a bug by providing information about similar past
bugs. Steinmacher et al. [23] proposed and evaluated FLOSS-
coach, a web portal created to support the first contributions of
newcomers to OSS projects. Results indicate that FLOSScoach
played an important role in guiding newcomers and in lower-
ing barriers related to the orientation and contribution process,
whereas it was not effective in lowering technical barriers.

To complement the existing literature, in our work, we
investigate how accurate are newcomer students in identifying
skills from open source issues (as compared to professional
developers) and indicate the skills categories that newcomers
have more difficulty in identifying.

III. RESEARCH METHOD

We answer the research questions in this paper (see Sec-
tion I) through the following set of five activities, as illustrated
in Figure 1. In this study, we focus on undergraduate students,
as educators have been using OSS to train students and
these students are potential OSS project contributors [23]. In
fact, multiple programs (e.g., Google Summer of Code [36],
Facebook Open Academy) focus on attracting students to open
source.

Activity 1 - Identification of skills by students. We recruited
154 undergraduate students who were junior or senior and had
sufficient knowledge to fix bugs in software projects. They
were enrolled in four different editions of software engineering
courses from two different universities between 2016 and
2019. We asked the students to choose any OSS project from
OpenHub1 and select one issue. In total, the 154 students chose
a variety of 47 OSS projects. After they selected the project
and an issue, we asked them an open question: “Based only
on the description of the issue and your knowledge about the

Uhttps://www.openhub.net/



Methodology
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Figure 1. Research method overview.

project, what skills do you believe are necessary to solve the
issue?”

Activity 2 - Qualitative analysis of skills: Based on the
answers from Activity 1, we performed a qualitative analysis
of the skills reported by the students. Before our analysis, we
cleaned the data to remove invalid responses. We removed
seven responses from the dataset because they either: (i) did
not provide clear information about the skills required to solve
the issue (4 responses), e.g. “This bug is very complex and a
large team is required to fix it.”’; or (ii) they were empty (3
responses). In the end, we received 147 valid responses that
correspond to 131 different OSS issues. The issues and the
responses are available in the supplementary material®.

The analysis process started by selecting a random sample
of issues in the dataset, and two of the authors independently
coded the students’ responses and grouped them into higher-
level categories, following the open coding procedure [37].
The researchers evaluated a small set of responses, then
compared and discussed the labels, to establish a common
understanding. After three rounds of labeling and discussion
the researchers independently categorized the 147 responses
and got an agreement of 92.3%. The disagreements were
individually discussed until finding consensus.

Then, we grouped the skills identified in the higher level
categories. For example, we grouped skills such as, C, C++,
Java, Python as “programming language”. In total, we identi-
fied 94 different skills and categorized them into the following
10 categories: database, debugging, external libraries, oper-
ating infrastructure, program comprehension, programming
concepts, programming language, project architecture, project-
specific concepts, and testing.

Activity 3 - Identification of skills by professionals: In this
step, we provided to professionals the same issues analyzed by
the students and asked them to identify the skills required to
solve the issues. We asked the professionals to evaluate only

Zhttps://zenodo.org/record/5574248#.YXC_ytnMJb8

the projects/issues in which they had confidence or had worked
in the past. Afterwards, we asked professionals to assess the
students’ responses and fill out a form to provide feedback
about the analysis performed.

We recruited 6 professionals, from well-established and
widely-used OSS projects, who had at least two years of
experience. To recruit the professionals, we first searched for
contributors who worked on the projects related to the issues
chosen by the students. After a professional completed the
study task, we asked them to recommend another qualified
OSS contributor for us to contact. All of the professionals
received a gift card as a token of appreciation for their
participation.

The participants represent diverse OSS projects and have
distinct backgrounds. As shown in Table I, the professionals
who participated in our study had on average more than ten
years of experience with software development and expertise
with languages such as Java, JavaScript, Python, R, Lua, C,
SQL, Delphi, Cobol, Pascal, among others. All the profession-
als had experience contributing to OSS projects (e.g., JabRef,
Linux Kernel, Smatch, Dolphin emulator, Burger, Audacity).
We also asked them their area of expertise. Responses show
a diverse range of knowledge within the software develop-
ment spectrum (e.g., programming, management, software
testing, software architecture/design, software optimization,
static analysis, debugging, reverse-engineering, and databases).

Activity 4 - Skill matching: To evaluate the skills identified
by students, we compared them with the professionals’ re-
sponses. To this end, we used traditional information retrieval
measures: recall, precision, and F-measure [38]. To calculate
these metrics we considered the data from the professionals
as our ground truth.

Recall and precision enable us to evaluate the matches
between the skills identified by students and our ground truth
(i.e., professionals’ responses). If the precision is low, the skills
reported by students present many false positives. If the recall



Table 1
PROFESSIONALS DEMOGRAPHICS

R Years of Experience | OSS Project [ . .
ID ‘ Gender Age ‘ Educational Level 055 | Industry | Role I Name l Professionals Expertise
P1 M 41-50 Bachelor 19 19 Developer Linux Kernel, Smatch Linux kernel, static analysis
P2 M 20-25 Bachelor 4 6 Developer JavaScript Software arc.thect}lre/deS{gn,
Software optimization, Testing
P3 M Above 50 MSc degree 3 30 Contributor JabRef, NAU-OSL Programming, Databases
P4 M 2025 Bachelor 6 8 Contributor Dolphin emulator, Programming, Debugging,
Burger (reverse-engineering tool) Reverse-engineering
PS5 M 31-40 Bachelor 2 12 Tech Lead Audacity Programming, Technical management
P6 M 26-30 Bachelor 2 6 Developer JabRef, NAU-OSL Programming, Leading, Testing

is low, there are too many false negatives. The F-measure is
the harmonic mean of precision and recall. We calculate the
F-measure using the following formula:

Precision * Recall

F— =2
measure Precision + Recall

Activity 5 - Open questions analysis: To collect insights
about how professionals identified the skills, we asked them
the following questions:

1) How did you choose tasks that fit your expertise?

2) What advice do you recommend for newcomers when
they have to identify skills from GitHub issues? What
information should they look at?

3) How did you identify the skills from GitHub issues?

4) Which issues from the categories defined in our research
do you think are more difficult to identify?

The data gathered in the survey was quantitatively and
qualitatively analyzed. Each survey response was analyzed by
one author and reviewed by the other authors. We grouped
the professionals’ responses into main topics, applying open
coding to classify and gain insights about how professionals
identified skills from issue descriptions.

IV. RESULTS

In this section we present the results of our study, answering
the RQs and presenting the analysis of the feedback from the
professional developers.

A. RQ.1. How similar are the skills identified by students and
professional developers when analyzing OSS issues?

Our data shows that students identify skills with a precision
of 36% and recall of 38%. We can observe from these results
that the students’ provide a non-negligible number of false
negatives and positives. These results show that students have
a hard time identifying the skills in OSS issues.

Additionally, we calculated the Hamming loss® metric to
measure the fraction of the wrong skills identified as compared
to the total number of identified skills. Hamming loss metric
has been originally used to evaluate text classification algo-
rithms. It calculates the average number of times a label in the
test set is incorrectly classified, including cases where an event
(here skill) is missing its correct label (e.g., debugging) or if

3https://scikit-learn.org/stable/modules/generated/sklearn. metrics.
hamming_loss.html
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Figure 2. Distribution of skills categories.

an instance has been incorrectly associated with a “wrong”
label (e.g., database) [39]. The smaller the value of Hamming
loss, the greater the similarity between the two label sets and
the better the classification performance. The hamming loss
metric results show that students incorrectly identified 21% of
the skills.

We then calculated the exact match ratio, which is a
strict measure of the classification performance—counting the
number of issues that have exact label matches (with no false
positives or false negatives). A drawback of this measure is
that is does not consider issues with partially correct labels,
which in our case would result if students identified only
one skill opposed to two skills identified by professionals.
In our case, the exact match rate was 10% (15 issues out
of 148). We compare the distribution of the number of skills
identified by students and professionals per issue. We present
the distribution using the violin plot in Figure 2.

Our results also show that in 73 issues (49% of our data set),
students had not been able to identify any correct skills. These
results highlight the severe challenge that students face when
trying to identify the skills needed to solve an issue. We also
have a higher number of false positives (162 occurrences on
22 issues) that occurred when students report incorrect skills.
This means that students may misjudge their ability to solve an
issue if they incorrectly identify the skill needed, and become
frustrated or disillusioned when trying to solve the issue when
they do not possess the skills needed for the task. Students



also had false negatives (148 occurrences on 17 issues), that
is, cases where students did not identify skills reported by the
professional.

RQ.1 Summary. Students’ overall performance compared
to professionals’ is subpar. They achieved low results—
precision (36%), recall (38%), and hamming loss (21%)—
in correctly identifying the skills needed to complete an
issue in OSS projects.

B. RQ.2 - Which types of skills are students capable of
identifying?

Students identified 94 different types of skills further clas-
sified into 10 categories (see Table II).

The skill categories that were most frequently reported
by students were operating infrastructure (25 instances) and
programming concepts (22 instances). Other skills mentioned
by students comprise the knowledge required about program-
ming languages (10 instances) to start contributing to an OSS
project and program comprehension (5 instances) to help in the
understanding of the code, how it behaves, and how the student
can assist in the project evolution. The need to understand the
project was also pointed out by students when they identified
skills related to project architecture (8 instances) and project-
specific concepts (5 instances). Other skills categories related
to testing (3 instances) and debugging (2 instances) were
reported as relevant skills in solving specific types of issues.
Finally, skills regarding how to use databases (3 instances)
to manage OSS project data and how to leverage external
libraries (9 instances) to improve software performance were
also mentioned.

We also calculated the frequency with which issues were
tagged with skill categories (Figure 3). As per the students,
there were 56 times when issues were tagged with “pro-
gramming language” skills and 55 times with “operating in-
frastructure” skills. While compared with professionals’ view,
the most frequent skill categories are programming concepts
(77 times), programming languages (60 times), and operating
infrastructure (55 times). Therefore, we posit that students
who want to contribute to OSS projects should know the
programming concepts and programming language in which
the project was built, and learn some aspects that involve the
environment in which the software was developed.

Table III presents the results from precision and recall
grouped by skill category. For instance, professionals identified
26 issues in the database category, whereas students identified
8 issues, out of which only 6 were correct, as shown in the
correct column. Five categories show zero responses (e.g., ex-
ternal libraries, program comprehension, project architecture,
project specific concepts, and testing); this happened because
even if the student identified an issue from one of those
categories, their response was incorrect when compared with
the same response from the professional. For example, in the
project architecture category, professionals indicated that only
1 issue in our data set is related to this category compared with

students’ responses that show 27 issues from that category.
None of the issues indicated by students in this category are
correct when compared to professionals’ classification.

In general, our results indicate that students do not perform
well in identifying skills from issues in OSS projects. The re-
sults precision of the classification varied between 0.12 to 0.75
and recall between 0.50 to 0.58. The categories where students
had better success were: database, operating infrastructure,
programming concepts, and programming language. However,
our manual evaluation of the issues in these categories revealed
that these issues had explicit mentions to concepts related
to databases (e.g., MySQL, tables, columns), the software
environment necessary to develop the software (e.g., operating
systems, git), or explicitly mentioned specific programming
concepts (e.g., object orientation, data structures) or the spe-
cific programming language used to build the software (e.g.,
Java, PHP, Python).

Our results show that students have difficulty in identifying
issues in the categories of debugging and program comprehen-
sion. These categories highlight software analysis concepts to
detect and remove possible bugs and skills related to software
behavior (e.g., code comprehension, static analysis).

We did not have sufficient data on issues related to the
following five categories: external libraries, program compre-
hension, project architecture, project-specific concepts, and
testing). However, our data shows that students often incor-
rectly identify skills from these categories. For example, in
an issue from MySQL* project, the student identified the skill
required as “testing”, but the professional identified the skills
of database and programming concepts (and did not mention
testing).

RQ.2 Summary. Our results suggest that students do not
perform well in identifying skills from issues in OSS
projects. Their responses frequently diverge from profes-
sionals. Students were better able to identify skills about:
database, operating infrastructure, programming concepts,
and programming language, and worse about debugging
and program comprehension.

C. Professionals feedback

After we asked the professionals to identify skills in the
same issues that the students analyzed, we also asked them to
complete a survey to get their feedback about their experience
in selecting tasks to work on. We discuss their responses next.

Task Selection. Professionals answered the survey question:
How do you choose tasks that fit your expertise? Table IV
presents their responses. Professionals reported that they select
issues that are related to the programming language they are
conformable with. As mentioned by P2, “I selected projects
that utilize the languages I know best.”

However, professionals also tend to select issues that rep-
resent an exciting challenge to improve and hone their skills.

“https://bugs.mysqgl.com/bug.php?id=24762



Table 11
SKILLS MODELLING CATEGORIES

Skills . .
Total Categories Definition Examples
A collection of data stored and accessed
3 Database electronically from a computer system. MySQL, RQG tests, SQL
. Process of finding and resolving .
2 Debugging defects or problems within a computer program. Code tracing, Reproduce the bug
9 External Related to the libraries used by the software DX10, DX11, ggit-1.0 library, glib-2.0 library, Gravatar, GTK.ScrolledWindow,
Libraries or in the development process. GTK+, GTKBuilder, Libmetis libraries, Redshift GTK
Apache server, Compilers, Deployment, Git, GNOME, Hardware components, HTTP
o . Related to aspects that involve hardware and protocols, Input/Output, Installation, Internet of things, Linux, Linux Kernals
perating . . . - L . . .
25 infrastructure software environment in which the software security’s common capability, Mac OS X, Memory (comsuption, handling, mapping
will run as well as installation and deployment. input/output), Network, NPROC, Operating systems design, Preloaded Public Key
Pinning, Runtime monitoring, Security, Software backup files, Ubuntu, wxGTK 3.0x
5 Program_ [tis the activity of.understandmg software Code comprehension, Code parsing, Ohloh analysis, Software analysis, Static analysis
comprehension code and its behavior.
Button, Concurrency, Error handling, Files handling, Graphics design, Graphics
” Programming Knowledge related to specific areas of the programming, Image processing, Menu, Modal dialog, Object Orientation, Parser,
concepts programming discipline. Privacy, Reactive, Shortcuts, String handling, Threads, Tooltip, UI coding, Unicode,
Usability, Video programming, Web programming
10 Programming A formal language comprising a set of instructions C, C++, HTML & CSS, Java, Javascript, PHP, Python, Vala, XML
language that produce various kinds of output.
Project Describe the aspects of how the project is Adopted Deglgn patterns, Archltegture, Browser interaction with plugins, Project
8 . . . component: input data, Configuration files, External packages, Level of customer
architecture built and implemented. b .
service, Project structure
Project specific ~ Information related to the domain, the documentation . . . .
5 concepts and other artifacts used in the software. GIMP project, GUI Facebook, Project UI, Pygame project, VLC documentation
3 Testing Related to techniques and methods to test the software. ~ Diagnostics tests, Testing environment, Unit testing
Skills Reported by Newcomers Skills Reported by Professionals
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Figure 3. Frequency of skills categories (students and professionals).

P4 mentioned that “I look at a feed of new issues, and if I see
something interesting, then I look into it further.”

Recommendations to newcomers. We use the responses
to questions: What advice do you recommend for newcomers,
when they have to identify skills from GitHub issues? and
What information should they look at? helped collect pro-
fessionals’ recommendations for newcomers (see Table V).
Most professionals recommend reading the issues carefully,
paying particular attention to the issue title, description, and
possible labels to gather any new information about the issue
(mentioned by P3, P4, P5, P6). P3 said: “read and comprehend
title and description, search for familiar terms or sentences.

Look at the possible tags that other members have given the
issue.”

They also recommended reading in detail the README
file to understand how the project works (P3). Another pro-
fessional (PS) recommend looking for issue tags used in the
project: “Search for ‘good first issue’ tag! That is what GitHub
recommends itself.”

Identifying skills from issues. We collected this data from
participant responses to the question: How did you identify the
skills from GitHub issues? (see Table VI). Professionals follow
different approaches to identify the skills from GitHub issues,
but they have some commonalities. Professionals mentioned
that they would look into the title, description, comments, and



Table IIT
SKILLS CATEGORIES CORRECTLY IDENTIFIED BY STUDENTS

Table VI
STRATEGIES TO IDENTIFY SKILLS FROM ISSUES

. # of identified skills - ID Recommendation
Categories P S C " Precision Recall F-measure
orrec P1 Contact people experienced in the project.
Database 26 8 6 0.75 0.23 0.35 P2, P3, P4, Read the issue (e.g., title, description, comments) to measure
Debugging 6 24 3 0.12 0.5 0.19 P5, P6 the impact and complexity.
E?cterqal 1 10 0 0 0 0 P3. PS Rea_d the project documentation and try to reproduce
Libraries the issue reported.
_ Operating 55 48 kY) 0.66 0.58 0.61
infrastructure
Program 4 28 1 0.03 0 0
comprehension : libraries (P3, P4, P6); (v) programming concepts (P4); (vi)
P“;if::;;“g 79 28 18 0.64 0.22 0.32 testing (P4); and (vii) project architecture (P35, P6).
- T3 . .
Pr?fgdgméng 64 60 4 0.56 0.53 054 As obserYed by P2: “Operating mfrastructyre and program
Pr‘ije i comprehension. Both of those can be more difficult to discern
architecture bz 0 0 0 0 from a GitHub issue due to the amount of work involved to
Pmlce:n‘cigel:‘“c 113 0 0 0 0 understand what needs to be done. The rest seem to be pretty
Testing 0 4 0 0 0 0 clear through reading the description of the issues”, and, as
Legend: P = Professionals, S = Students mentioned by P1 “The most tricky problems are the ones where
two Operating Infrastructures interact and both sides blame
Table IV the other.”
STRATEGIES TO IDENTIFY TASK WITH PROFESSIONALS EXPERTISE We observe that some of these categories of skills are the
D Strategy ones where students had more difficulty as well. It points
PI, P2, P3 Selected projects that use specific programming languages. to new research direction on how to make the skills from

P4, P5, P6  Search for issues exciting and challenging.

labels of the issues and try to reproduce the issue to evaluate
the cause of the bug and from that gauge if they have the
required expertise (mentioned by P2, P3, P4, PS5, P6).

Some professionals mentioned that they would look for
certain keywords to identify the skills. With that information,
they then attempt to identify the issue type, the time needed
to solve it, and assess if they have the required knowledge. As
mentioned by P3, “I look for keywords like languages, possible
components, classes, and tools that are possibly required to
solve the issue. Using these keywords, I try to identify the type
of the issue, how long to solve it and whether or not I can
do it with my knowledge. Next, I read some documentation to
verify how to contribute and install the app. Finally, doing this
[ install the app to verify the reproducibility of the environment
and the problem in my machine.”

Skills that are difficult to identify. Table VII collates the
responses to the question: Which issues from the categories
defined in our research, do you think are more difficult to
identify? Professionals mentioned that they found it difficult
to identify issues from the following categories: (i) operating
infrastructures (P1, P2, P3); (ii) program comprehension (P2,
P3); (iii) project specific concepts (P3, P4, P5); (iv) external

Table V
ADVICE TO NEWCOMERS TO IDENTIFY ISSUES FROM ISSUES
1D Recommendation
P1, P3, P6 Read project documentation (e.g., README file).
P2 Try to make small contributions.
P2 Be aware of your motivation for the chosen project.
P3, P4, P5, P6 Read the labels, tags, titles, and descriptions of the issues.

Search for tags indicated for the newcomers

P> (e.g., good first issue tag).

those categories easier to identify for professionals as well as
newcomers.

Table VII
SKILLS CATEGORIES DIFFICULT FOR PROFESSIONALS TO IDENTIFY
ID Recommendation
P1, P2, P3  Operating Infrastructures
P2, P3 Program comprehension
P3, P4, PS5  Project specific concepts
P3, P4, P6 External Libraries
P4 Programming concepts
P4 Testing
PS5, P6 Project architecture

V. DISCUSSION

Contributing to OSS requires different types of skills, where
the skills could pertain to technical knowledge or knowledge
about OSS processes. Technical knowledge can encompass
knowledge about specific programming concepts (e.g., inher-
itance or event handling), language-specific constructs (e.g.,
Java Annotations, Java Collections), frameworks or API usage
(e.g., Maven, Node.js), or project-specific concepts (e.g., code
functionality, specific classes or methods). Additionally, new-
comers may also need knowledge about tooling for specific
development life cycles (e.g., build management or DevOps).

Our results show 10 main categories of skills needed to
work on OSS issues. The categories that appeared more
frequently included skills related to programming language
and operating infrastructure. This is expected as newcomers
need to know on how to program using the programming
language used in the project. However, to make a successful
contribution, it is not enough to just have programming skills.
Newcomers also need to understand the different components
and tools of the operating infrastructure. As reported by
Steinmacher et al. [15], setting up the workspace is one of



the most recurrent barriers faced by newcomers. The initial
setup of the development environment requires specific skills
such as knowledge on server configuration, operating systems,
hardware, and network protocols.

In the following, we discuss possible research directions that
emerged from our results, related literature, and implications.

Implications for educators. Using OSS contributions as part
of Software Engineering courses is becoming more common.
Having students contribute to open source as part of their
training is a win win for the students as well as OSS projects.
Contributing to a real project gives students valuable real-life
experience and allows them to add this experience to their
resume. For OSS projects, students participation provides an
opportunity to recruit new contributors.

However, it is difficult for newcomers to figure out whether
they have the right skills to contribute to a project and even
after selecting a project, it is not easy to identify what can
be an appropriate issue to resolve. If there is a mismatch
between the skills required to resolve an issue and that which
the student possesses, it can discourage and demotivate them
from making future OSS contributions.

Our results highlight that students have difficulty in identi-
fying skills from issues in OSS projects. Students in our study
were better able to identify skills related to database, operat-
ing infrastructure, programming concepts, and programming
language; and had difficulty in identifying skills related to
debugging and program comprehension.

This suggests that although students had been trained in
software engineering, they require additional training in un-
derstanding how large, real-life projects work and how their
code is structured. We posit that students might also need
further training in how live projects use debugging tools.
testing infrastructure, and DevOps technology, as these were
skills that students had difficulty identifying.

Our study has provided a classification of different skills
required to contribute to OSS. Educators can use this classifi-
cation, as well as the lower-level skills identified in the paper,
to verify that students are being appropriately trained in these
areas to better prepare them for industry.

Educators should also consider how to better scaffold the
introduction of students to OSS. The professionals in our
study recommended specific guidelines on how to identify the
skills required for a task, a key part of which is to reproduce
an issue. A systematic guideline of how to select an issue,
including different ways to reproduce an issue would help
students get a deeper understanding of the issue and the project
characteristics

Finally, contributing to OSS projects can be high-risk, as
contributions and communication are public and persistent.
Making a contribution to a large, active project provides a
great experience, but can also be stressful, especially for those
who have low computer self-efficacy and whose first language
is not English. Educators can curate a set of OSS projects
that different universities can use to train their students. These
projects need to be sufficiently large, but not too complex
and include programming language and software engineering

technology that is being taught in universities. It is possible
that universities open source their capstone projects, which can
then accept contributions from more junior students, who can
be mentored by the senior students.

Implications for research. Understanding how newcomers
identify skills in OSS projects highlights diverse research
opportunities. Our results showed which categories were stu-
dents are better (e.g., database, operating infrastructure, pro-
gramming concepts, and programming language) and which
skills they have difficulty identifying (e.g., debugging, program
comprehension). This result points to research directions on
how we can improve newcomers’ ability to identify skills from
OSS issues and investigate what makes it difficult for students
to identify the skills.

Given the difficulty in identifying skills by newcomers,
future research that is able to automatically extract and label
issues with the skills needed to complete a task would be
useful. recent work by Santos et al. [40] takes a first step
in automatically labeling the issues in an OSS project with
relevant APIs (or libraries) for that issue. Further research is
needed to automate the identification of the skills identified in
our work.

Implications for OSS communities. Academic research as
well as OSS sponsored initiatives (e.g., Up For Grabs, Mozilla,
Audacity, etc.) have identified best practices to facilitate
newcomer onboarding. One such practice is to gather and
tag issues with labels as “first good issue” or ‘“newcomer
friendly” issue. However, simply labeling an issue with such
tags doesn’t guarantee that the issue matches the newcomer’s
skills. An issue tagged with “Newcomer friendly” label may
still involve technology or concepts that a newcomer doesn’t
possess and can be misleading. Therefore, in addition to
identifying newcomer friendly issues, contributors should also
tag such issues with the skills needed to resolve them.

For a newcomer to be able to correctly identify skills
needed in an issue, it is expected that the issue provides
enough information. According to our results, professionals
recommend that newcomers carefully read the issue details
(e.g., title, description, tags) to better understand the problem
reported and identify the issue complexity. Thus, OSS projects
should invest in improving the project description and their
contribute.md to reflect the technology used, and the skills
they expect from their contributors. The projects should also
ensure that the issue description contains sufficient details.

Our results describe how professionals identify skills from
issues. For example, professionals reproduce the issue, which
is a good practice because the attempt to reproduce the issue
can lead to a deeper understanding of the issue and project
characteristics. Thus, OSS projects should provide systematic
guidelines on how to reproduce an issue with the project
technology to help newcomers onboard. The project should
also provide guidelines (to current contributors) on how to
report issues, such that there is enough depth to the issue
description.

Finally, previous studies related to onboarding developers in
software teams have investigated how to provide customized



tasks to help new developers in their onboarding process [41].
This can be a good direction for OSS projects too, where
some issues could be designed to facilitate a newcomer’s
first interaction with the project, providing description of
the skills required to complete the task and mechanisms to
reproduce the error. Such “tutorial” tasks can encourage a
newcomer to easily complete their first issue helping them
become familiar with the project and its technology as well as
boosting confidence [2], [6].

V1. THREATS TO VALIDITY

We asked students to identify the skills necessary to con-
tribute to open source in various projects available on GitHub.
From the data gathered, we cannot generalize that the skills
identified represent all the skills and knowledge required to
contribute to OSS.

We collected data from professionals with different back-
grounds and continued assessing the issues until we had
100% of the total issues analyzed by students labeled. The
professionals who participated in our study have on average
more than ten years of experience with software development
and had a diverse range of knowledge within the computer
science spectrum (e.g., programming, management, software
testing, software architecture/design, software optimization,
static analysis, debugging, reverse-engineering, and databases).
To mitigate this, we asked them to fill a follow-up survey to
give us feedback about how they perform the skills identifica-
tion and provide a deeper understanding of the task completed.
Moreover, the respondents mentioned that they were confident
about the accuracy of the labels provided, when we asked them
about that.

We compare the number of skills reported by students
against the skills reported by professionals. Some of the
professionals who participated in the study have some previous
knowledge about the project analyzed. In future work, we plan
to compare professionals against students on a project that both
of them never contributed.

Data interpretation can also lead to bias. To mitigate sub-
jectivity, we employed two researchers independently coding
the answers and then we discussed and resolved any conflict.

VII. CONCLUSION

OSS projects offer students real software engineering set-
tings to learn skills. Among their characteristics, OSS projects
are available online and foster open contributions from individ-
uals who want to learn and be part of a software community.
Correctly identifying the right skills to solve an issue can
help newcomers thrive in their first attempt to contribute to an
OSS project. However, newcomers need additional information
about the tasks or support from the community to identify a
task suited to their skills. Research thus far has not focused on
models that articulate the skills necessary to contribute to an
OSS project or on how to model skill acquisition trajectories.
Therefore, in this study, we investigate what student newcom-
ers consider as skills and how their perception matches with
those of software engineering professionals.

Based on our analysis, we identified a set of 94 skills
that were classified into 10 higher-level categories. This skill
categorization can help other studies organize skills in GitHub
issues. Among the issues analyzed, the categories that had
more mentions were programming languages and operating
infrastructure.

Our results highlight that student performance is not optimal
in identifying skills from issues in our dataset of 47 OSS
projects. We also identified the skill categories where students
performed better (e.g., database, operating infrastructure, pro-
gramming concepts, and programming language) and worse
(e.g., debugging and program comprehension).

In future work, we intend to conduct observational studies
to better understand how professionals identify issues to work
on. Such an understanding will help us create a systematic pro-
cess to guide newcomers and even experienced developers in
identifying skills correctly. Further, we plan to use the results
from this study to build tools that will help in automatically
tagging issues with more accurate information about the skills
needed to resolve the issue [6]. Such skill labeling will help
newcomers identify issues that are more suited to their current
knowledge, aiding their work and bringing more newcomers
to contribute to OSS projects.
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