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ABSTRACT 

The development of new technologies and advanced nodes is capitally intensive due to process design strategies that 
involve dependent unit processes with different yields and performances. This has led to the exploration of model-based 
optimization to cut the cost and time of recipe creation; however, computational optimization of semiconductor processes 
is quite challenging due to multi-dimensional parameter spaces and limited experimental data. SandBox Studio™ AI is a 
computational tool that automatically builds a hybrid physics-based and machine learning model that can be used to predict 
optimal process recipes and explore novel process changes such as different incoming mask geometries and step durations. 
Herein, we show the utilization of SandBox Studio™ AI to build a computational representation of a cyclic etch and 
deposition process of a high aspect ratio channel etch with the following detrimental effects – bowing, resist over-etching, 
clogging via deposition, and twisting. The model was calibrated to a synthetic data set of thirteen experiments with five 
varying process parameters. Then, an optimal recipe was predicted that minimized the observed detrimental effects. The 
model was then used to explore different incoming mask geometries and step durations to improve the recipe even further. 
This capability is made possible by the software’s foundational physics-based model and is not possible using conventional 
statistics and machine learning based tools.  

Keywords: Etch, Deposition, Experimental Design, Process Optimization, High Aspect Ratio, Recipe Creation, 
Computation, Twisting, Clogging 

1. INTRODUCTION
The continuous demand for device scaling and density improvements has led to significant development challenges across 
the semiconductor industry, which necessitate quantitative and qualitative advances in manufacturing techniques. Whether 
scaling is achieved by a shrinking of the process or three-dimensional design, the need for robust control of etching 
processes has emerged as a key prerequisite for progress on the state-of-the-art demands. In particular, the development of 
3D NAND devices was proposed as a strategy for increasing areal density by stacking memory cells vertically [1], which 
entails the well-controlled etch of high-aspect ratio (HAR) structures. Etch at aspect ratios exceeding 50:1 faces unique 
difficulties and adequate device performance hinges on the ability to fabricate channels free of defects such as bowing, 
clogging, and twisting. 

The compounding challenges of optimizing etch processes involving complex, multiscale, multi-physics phenomena have 
driven the development and use of computational tools to facilitate recipe development and alleviate some of the processing 
obstacles. Traditional machine learning/purely statistical techniques have shown themselves inadequate to the task. The 
complexity of the physics and chemistry of plasma etch processes together with the high dimensionality of process 
parameter spaces demands a large amount of training data that is time-consuming and expensive to acquire. At the same 
time, the deployment of purely physics-based models is hindered by industry secrecy, inadequate chamber characterization, 
and tool variability. A successful modeling approach must therefore be attuned to the realities of sparsely available 
experimental data and limited characterization of the relevant physics. 
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Here we present an automated, high-throughput optimization strategy of multistep and cyclic etch and deposition processes 
using SandBox Studio™ AI. This software package uses a hybrid physics and machine learning approach to untangle the 
complex relationships between process parameters and critical dimensions of complex feature level profiles using a limited 
amount of experimental data. These relationships are then used to predict optimal process recipes. 

2. METHODOLOGY AND MODEL INPUTS
SandBox Studio™ AI was used to develop a fully automated computational model of a 2D high aspect ratio channel etch 
consisting of a cyclic process that alternates etch and deposition steps each with a duration of 1 second. The incoming 
stack comprised a 300 nm tall hard mask with an aperture width of 50 nm on top of 3000 nm of substrate material (Figure 
1a). The model was calibrated to a set of 13 synthetic experiments with five varying process parameters and used to 
optimize four critical dimensions: mask height, channel depth, bow width, and twist (Figure 1b). The process parameters 
and critical dimensions for each experiment were input to the software in tabular form and used to calibrate the model. 

The optimization of twist deserves special mention. Twisting is a poorly understood process of a stochastic character [2], 
manifesting as a misalignment between the top and bottom of the channel. This is quantified as the (absolute) horizontal 
distance between the top and bottom of the channel. To treat the problem with a deterministic modeling strategy, we adopt 
a policy for selecting representative twist values for each combination of process parameters, which are then treated as 
deterministic calibration targets. For example, the standard deviation or 3σ value could be used as this representative. The 
key assumptions for the validity and usefulness of this procedure are that this chosen value faithfully represents variability 
in the distribution of twist measurements (which is straightforward if these values are normally distributed), and that the 
distribution of twists depends on the process parameters. This assures that twisting can be minimized without the need for 
a full characterization of its statistical behavior. 

(a) Incoming profile (b) Target CDs

     Figure 1. (a) Schematic of the incoming profile used to calibrate the model and (b) the target critical dimensions of interest. 
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3. MODEL CALIBRATION
Using the input data described in section 2, a SandBox Studio™ AI model was automatically built using the provided 
experimental process parameters and critical dimensions. The key governing mechanisms associated with the complex 
cyclic etch and deposition behavior were selected using a hybrid physics and machine learning approach. The calibrated 
model captured key defects that occurred in the experimental profiles, namely substrate under-etching, resist over-etching, 
bowing, clogging via deposition, and twisting. Visualization of the model prediction vs the experimental profiles for three 
of the experiments is shown in Figure 2. The model correctly replicated the deposition, bowing, and twisting effects. Parity 
plots of predicted CDs vs experiment for all thirteen data points is shown in Figure 3. 

(a) Run 4 (b) Run 7 (c) Run 9
Experiment Predicted Experiment Predicted Experiment Predicted 

     Figure 2. Comparison of experimental and predicted profiles. SBS AI predicts critical profile features including (a) bowing, (b) 
twisting, and (c) clogging 
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     Figure 3. Parity plots of predicted critical dimensions vs experiment for all thirteen synthetic experimental runs. 

4. RESULTS

4.1 Process Recipe Optimization 
With a successfully calibrated model, SandBox Studio™ AI can be used to filter the process space and find process 
parameter combinations that achieve target critical dimensions within the required tolerances. SandBox Studio Quilt® is 
used to build process maps of each critical dimension across the process space as shown in Figure 4. These figures represent 
a flattening of the five-dimensional process parameter space into a two-dimensional density plot. This plot can be used to 
identify, for each critical dimension, the regions of process space that passes the design criteria within the required 
tolerances. These pass regions are combined, and an optimal recipe is selected from the largest region of process space 
that passes all criteria, as shown in Table 1 and Table 2.  
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(a) Bow Width (nm) (d) 

(b) Twist (nm)

(c) Pass/Fail with All CD Targets

     Figure 4. (a) Quilt process map for bow width. Low bow widths require low P3, low G2, and low G1, (b) Quilt process map for 
twist. Low P2 is required to minimize twist, (c) Pass/fail process map for all CDs of interest (  Table 2), (d) predicted profile of the 
optimized process recipe (Table 1). 

     Table 1. Predicted Process Recipe 

Process Parameter Value (Normalized) 

P1 0.75 

P2 0 

P3 0 

G1 0 

G2 0.30 
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     Table 2. Target Critical Dimensions and Recipe Performance 

Critical 
Dimension 

Target 
Value (nm) 

Experimental 
Value (nm) PASS/FAIL 

Channel Depth > 2000 nm 2151 PASS 

Mask Height > 200 nm 241 PASS 

Bow Width 40 +/- 10 nm 40 PASS 

Twist 5 +/- 5 nm 8 PASS 

4.2 Further Recipe Exploration 
Trial 1: Modifying number of cycles 

While the predicted optimized recipe meets all the target criteria, the channel has not reached the stop layer. A natural first 
attempt to push the recipe further would be to increase the etch duration by increasing the number of cycles. The calibrated 
model was used to explore this recipe alternation by running the physics-based model for a longer number of cycles than 
the predicted recipe. However, while the etch does reach the stop layer, excessive deposition results in the bow width not 
being met and the resist being over etched (Trial 1, Tables 3 and 4). 

Trial 2: Modifying etch and deposition durations 

One possible way to reduce the excessive deposition is to adjust the etch and deposition durations. In the original recipe, 
the etch and deposition phases were performed at 1 second each. In Trial 2, the calibrated model was used to explore this 
possible recipe adjustment by rerunning the model with the etch duration increased to 1.25 s and the deposition duration 
decreased to 0.75 s. This adjustment mitigated the clogging and resulted in recovering the bow width target criteria, but 
the mask resist was even further over etched (Trial 2, Tables 3 and 4). 

Trial 3: Modifying initial mask height 

Over etching of the mask might be mitigated by increasing its initial height. In the original recipe, a mask height of 300 
nm was used. In Trial 3, the calibrated model was used to explore this possible recipe adjustment by increasing the starting 
mask height from 300 nm to 400 nm and rerunning the model. This adjustment resulted in minimizing the over-etching of 
the mask and all pass criteria being met (Trial 3, Tables 3 and 4). 
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     Table 3. Recipes Performed 

Process Parameter Original Recipe Trial 1 Trial 2 Trial 3 

P1 0.75 0.75 0.75 0.75 

P2 0.00 0.00 0.00 0.00 

P3 0.00 0.00 0.00 0.00 

G1 0.00 0.00 0.00 0.00 

G2 0.30 0.30 0.30 0.30 

Etch Duration (s) 1.00 1.00 1.25 1.25 

Depo Duration (s) 1.00 1.00 0.75 0.75 

Number of Cycles 100 200 200 200 

Initial Mask Height 
(nm) 300 300 300 400 

     Table 4. Predicted Critical Dimensions. Red font indicates dimensions that are not meeting the desired criteria noted in column 1. 

Critical Dimension Original Recipe Trial 1 Trial 2 Trial 3 

Channel Depth (nm) 
(> 3000) 2151 3000 3000 3000 

Mask Height (nm) 
(> 250) 241 181 132 238 

Bow Width (nm) 
(40 +/- 10) 40 24 54 50 

Twist (nm) 
(< 10) 8 9 9 10 

5. CONCLUSIONS
SandBox Studio™ AI provides a hybrid machine-learning/physics-based toolset to accelerate etch recipe development. 
Here we demonstrated the automated development of a 2D model for a high aspect ratio channel etch. A model containing 
the key governing mechanisms was automatically selected and calibrated to a small batch of synthetic experiments with a 
high degree of accuracy. The calibrated model was used to find an optimized recipe minimizing defects such as bowing, 
clogging via deposition, and twisting. The model was then used to experiment with recipe modifications such as changes 
in the duration of etch and deposition steps and a different starting mask geometry, pushing the predicted recipe to an even 
better result. Such experimentation is not possible with purely statistical models, underscoring the power of combining 
physics with machine learning for etch recipe prediction. 
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