
Bots for Pull Requests: The Good, the Bad, and the Promising

Mairieli Wessel
m.wessel@tudelft.nl

Delft University of Technology,

Netherlands

Ahmad Abdellatif
a_bdella@encs.concordia.ca

Concordia University, Canada

Igor Wiese
igor@utfpr.edu.br

Universidade Tecnológica Federal do

Paraná, Brazil

Tayana Conte
tayana@icomp.ufam.edu.br

Federal University of Amazonas,

Brazil

Emad Shihab
eshihab@encs.concordia.ca

Concordia University, Canada

Marco A. Gerosa
marco.gerosa@nau.edu

Northern Arizona University, USA

Igor Steinmacher
igorfs@utfpr.edu.br

Universidade Tecnológica Federal do

Paraná, Brazil

Northern Arizona University, USA

ABSTRACT

Software bots automate tasks within Open Source Software (OSS)

projects’ pull requests and save reviewing time and effort (“the

good”). However, their interactions can be disruptive and noisy

and lead to information overload (“the bad”). To identify strate-

gies to overcome such problems, we applied Design Fiction as a

participatory method with 32 practitioners. We elicited 22 design

strategies for a bot mediator or the pull request user interface (“the

promising”). Participants envisioned a separate place in the pull

request interface for bot interactions and a bot mediator that can

summarize and customize other bots’ actions to mitigate noise. We

also collected participants’ perceptions about a prototype imple-

menting the envisioned strategies. Our design strategies can guide

the development of future bots and social coding platforms.

CCS CONCEPTS

•Human-centered computing→Open source software; • Soft-

ware and its engineering→ Software creation and management.

KEYWORDS

Software Bots, GitHub Bots, Human-bot Interaction, Open Source

Software, Automation, Collaborative Development, Design Fiction

ACM Reference Format:

Mairieli Wessel, Ahmad Abdellatif, Igor Wiese, Tayana Conte, Emad Shi-

hab, Marco A. Gerosa, and Igor Steinmacher. 2022. Bots for Pull Requests:

The Good, the Bad, and the Promising. In 44th International Conference on

Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3512765

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3512765

1 INTRODUCTION

Software development bots play a prominent role in the pull request

review process [66] by serving as an interface between users and

other tools [60] and reducing the workload of maintainers and

contributors. Accomplishing tasks previously solely performed by

human developers, and interacting in the same communication

channels as their human counterparts, bots have become new voices

in the pull request review conversation [42]. Bots even perform

more activities than humans in some projects [19].

Nevertheless, the introduction of bots can interfere with the

community dynamics. According to Brown and Parnin [7], the bot

interactions on pull requests can be inconvenient, leading develop-

ers to leave negative feedback or even abandon their contributions.

Indeed, the literature has shown that bots change the dynamics

of collaboration [67] and that OSS developers often perceive their

intervention as disruptive and noisy [68]. On an issue, a developer

complained about the frequency of a bot’s actions: “[..] I get about

20 notifications per day just from those bot actions and there does not

seem to be a way to ignore them.”1 Therefore, bots may overburden

developers who already suffer from information overload when

communicating online [48].

To make bots more effective at communicating to developers, de-

sign problems need to be solved to avoid repetitive notifications, pro-

vide consistency in the tasks being done, andmake bots adaptive [37,

58]. Designers should envision software bots as socio-technical

rather than purely technical applications, considering human in-

teraction, developers’ collaboration, and ethical concerns [60]. The

adoption of bots in OSS projects is a recent trend and the literature

lacks design strategies that include the end-users’ perspective to

enhance the bots interaction on social coding platforms.

In other domains, as it is hard to change third-party bots, re-

searchers have proposed meta-bots to integrate and moderate the

interactions of multiple bots [9, 17, 53]. We envision a meta-bot as

a promising approach to mitigate the information overload from

existing GitHub bots. Considering this context, the main goal of

this study is to elicit design strategies to overcome the information

1https://github.com/atom/atom/issues/18736#issue-402497317

274

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

overload caused by bots on pull requests by means of a meta-bot.

Specifically, our work investigates the following research questions:

Research Question 1

What design strategies can potentially reduce the noise cre-

ated by bots on pull requests?

Research Question 2

How do participants perceive the design strategies to reduce

the noise created by bots on pull requests?

To answer RQ1, we applied Design Fiction [5] as a participatory

design method. This technique is used to probe, explore, and cri-

tique future technologies [5]. We recruited practitioners, including

open-source maintainers, contributors, bot developers, and bot re-

searchers, to act as designers in the early stages of the envisioned

meta-bot conception. We presented to participants afi ctional story

of a meta-bot capable of better supporting developers’ interactions

on pull requests, and operating as a mediator between developers

and the existing bots. Participants answered questions to complete

the end of thefi ctional story, raising concerns about the use of bots

and discussing the design strategies for the meta-bot.

For the RQ2, we used the emerged design strategies to proto-

type a meta-bot and collect feedback from the practitioners, which

resulted in a set of improvements to the strategies. Overall, our par-

ticipants perceive the meta-bot as a layer between other bots and

the users. It should summarize and customize messages according

to the author’s context—whether the author is a new contributor

or an experienced maintainer. Participants also envision a separate

place in the pull request interface for bot interactions.

Our work contributes to the state-of-the-art by empirically iden-

tifying a set of design strategies to enhance how bots present in-

formation on pull requests and avoid noise. Researchers and tool

designers may leverage our results, obtained from the perspective

of expert practitioners, to enhance bots’ communication design,

thereby supporting human-bot interaction on social coding plat-

forms. In particular, the design strategies can benefit the larger

software engineering research community as aspects related to the

design of bots for social coding platforms are still under-explored.

We are also among thefi rst to introduce participatory designfiction

to software engineering studies.

2 RELATEDWORK

Software bots frequently reside on platforms where users work and

interact with other users [34], such as Twitter, Telegram, and Stack-

Overflow. In the software engineering domain, bots support social

and technical activities, including communication and decision-

making [60]. Open-source communities have been adopting bots to

automate a variety of repetitive tasks, including repairing bugs [42,

64], refactoring source code [69],fi xing static analysis violations [11,

54], suggesting code improvements [52], and predicting defects [29].

On the GitHub platform, bots have user profiles to interact with

the developers, executing well-defined tasks [66].

Despite the widespread adoption of bots on social coding plat-

forms, the interaction between bots and humans is still challeng-

ing [66, 68]. Analyzing the tool-recommender-bot, Brown and Parnin

[7] report that bots still need to overcome problems such as notifica-

tion overload. Mirhosseini and Parnin [41] analyzed the greenkeeper

bot and found that maintainers were often overwhelmed by noti-

fications and only a third of the bots’ pull requests were merged

into the codebase. Peng and Ma [51] studied how developers per-

ceive and work with mention bot and concluded that it does not

meet the diverse needs of users. For example, while project owners

require simplicity and stability, contributors require transparency,

and reviewers require selectivity. Results also show that developers

are bothered by frequent review notifications when dealing with a

heavy workload. These results are in line with the study conducted

byWessel et al. [68], which indicates that noise is a central problem.

Noise affects both human communication and the development

workflow by overwhelming and distracting developers. Comple-

menting the previous literature, we provide afi rst step towards

enhancing bots communication design, thereby overcoming noise.

In other contexts, researchers have proposed the use of a meta-

bot to integrate and moderate the interactions of multiple bots.

Sadeddin et al. [53] showed that a meta-bot could obtain prod-

uct information from several shopping bots and summarize the

information before presenting it to users. Previous research also

investigated the user experience of single- vs. multi-bot conversa-

tional systems. In a Wizard-of-Oz study, Chaves and Gerosa [12]

found that participants report more confusion in a multi-bot sce-

nario than when using a meta-bot. The concept of the meta-bot

also appears in the literature on software agents. Generalist agents

are usually referred to as Super Bots or meta-bots [17] since they

often combine multiple tasks and functionalities of specialist agents

into a single agent. Given this preliminary evidence obtained in

other domains, we hypothesize that a meta-bot can mitigate the

information overload created by other bots around pull requests. As

designing a meta-bot in this complex socio-technical environment

is an open problem, we conducted a participatory design study to

elicit tailored design strategies.

3 RESEARCH DESIGN

We devised a study2 split into two phases, as depicted in Figure 1.

We started by conducting a series of Design Fiction sessions with

practitioners experienced with bots, aiming to explore strategies to

overcome the information overload that bots can cause. In Phase

II, we prototyped a set of emerging design strategies and collected

feedback from practitioners. In the following subsections, we focus

on the presentation of the participatory designfi ction methodology

(Phase I). We describe the method and results from Phase II in

Section 5.

3.1 Phase I: Research Approach

We applied Design Fiction method [5, 57], which has been broadly

used in the Human-Computer Interactionfi eld [6, 20, 43]. The

Design Fiction method wasfi rst defined by Sterling [57] as “the

deliberate use of diegetic prototypes to suspend disbelief about change.”

Designfi ction can be described as making use of practices such as

prototyping and narrative elements to envision and explain plau-

sible futures, while reflecting upon the present world [5, 20, 26,

35, 36, 38, 43]. Researchers have been employed this method in an

2The research protocol was approved by our institutional review board

275



Phase I - Participatory Design Fiction

Fictional 
Story

Creation

Sandbox
Sessions

Participants
Recruitment

Qualitative
Analysis

Meta-bot
Concept

Envisioned
Strategies

Phase II - Suitability Study

Prototyping Semi-structured
Interviews + Survey

Data
Analysis

Envisioned
strategies from
Design Fiction

Tim
e

Noise 
theory

Design 
Fiction

Sesions

Suggested
Improvements

Figure 1: Overview of the Research Design

empirical way to elicit information from participants [8, 49] and

communicate their insights [23, 31]. The speculative nature of this

technique amplifies critical views of current social and technolog-

ical developments, creating afi ctional context narrated through

designed artifacts [16]. This approach facilitates exploring bound-

less thoughts and open discussions on a particular subject [6]. For

instance, many researchers use designfi ction to anticipate issues [6],

while others focus on values related to new technologies [15, 44]

and anticipate users’ needs [14, 20, 49].

Past studies applied Design Fiction as a participatory method to

unveil design strategies for development technologies in a narrative

format [8, 22, 46]. According to Muller [45], narratives in partici-

patory work may be told by users as part of their contribution to

specifying what products or services should do. Candello et al. [8],

for example, applied Design Fiction to explore the expectations of

science museum guides when teaching robots how to answer mu-

seum visitors questions. Candello et al. [8] crafted afi ctional story

describing the dilemma of buying such robots to work as guides

and participants answered questions about their expectations about

these futuristic robots. Following Candello et al. [8]’s approach, we

used narratives and follow-up questions to speculate on the design

of the meta-bot for social coding platforms.

Design Fiction distinguishes itself in the way the designed arti-

facts bring context-specific meaning and social relevance [4] to the

envisioned technology [30]. In this work, the use of Design Fiction

enables the practitioners to envision a bot mediator and its envi-

ronment, rather than focusing on the current technical limitations.

3.2 Phase I: Method

In the following, we describe thefi ctional story we used and how

we conducted sandboxing, recruiting, and analysis for Phase I.

3.2.1 The Fictional Story. The story description follows the key

idea raised by the noise theory of Wessel et al. [68]: information

overload generated by the bots’ interaction on pull requests dis-

rupts both human communication and development workflow. The

story describes the experience of an open-source maintainer who

adopted bots to reduce her workload on pull request activities. After

adopting a few bots, the information overload generated by the bots’

noise became evident to other team members. At that point, her

team brainstormed and decided to apply some countermeasures to

overcome the noise. Their idea was to implement a meta-bot to act

as a mediator between the existing bots and human developers. We

told participants that thefi ctional story takes place approximately

ten years in the future to let them be less constrained by current

technological limitations.

After creating thefi ctional story, we produced a 3-minute ani-

mated video to report it to our participants in a standardized way.

The story’s characters are Ada, an overwhelmed open-source main-

tainer, and three members of her team: Ellie, John, and Anne. The

fictional story that served as a baseline for the video creation and

the video are publicly available within the supplemental material3.

3.2.2 Sandbox Sessions. We conducted sandbox sessions with a

small sample of participants to adjust thefi ctional story and the

session instrument. We invited three participants who had expe-

rience contributing to and maintaining open source projects on

GitHub. We asked for feedback on the 3-minute video, verifying

whether the participants could capture the intended message of the

fictional story. In addition, we validated the script and confirmed

whether the session wouldfi t in a 1-hour time slot. The sandbox

participants watched the video, answered all the questions, and pro-

vided us with feedback about thefl ow of the script. The participants

suggested a few minor adjustments, which were incorporated to

the instruments. We also analyzed the answers to ensure that they

provided data to answer our research question. The data collected

during these sandbox sessions were discarded.

3.2.3 Participants Recruitment. We recruited 32 practitioners expe-

rienced with OSS bots (contributors, maintainers, bot developers, or

researchers). We employed three strategies to recruit participants.

First, we leveraged our existing connections to the OSS community

(n=20 participants,�62.5% of the sample).We also advertised the call

on social media platforms frequently used by developers [1, 55, 59],

including Twitter, Facebook, and Reddit (n=2, �6.5% of the sam-

ple). Finally, we asked participants to refer us to other qualified

participants (n=10, �31% of the sample).

We conducted the designfi ction sessions with 32 participants—

identified here as P1–P32. Table 1 shows the demographic attributes

of our participants. The majority (28) are men (�85%), while three

are women (�12%), and one is non-binary (�3%). Participants are

geographically distributed across Europe (EU, �44%), North Amer-

ica (NA, �34%), and South America (SA, �22%). Their experience

with open source software development is diverse: between 4 and 5

years (�28%), 5 and 10 (�24%), more than 10 (�18%), 3 years (�15%),

1 year (�9%), 2 years (�3%), and zero (�3%). When it comes to their

experience with bots, 28 (�87.5%) are experienced with bots as an

open-source project maintainer, 25 (�78.1%) as a contributor, 13

(�40.6%) as a researcher, and 13 (�40.6%) as a bot developer.

3.2.4 Design Fiction Sessions. We conducted a series of synchro-

nous designfi ction sessions. The motivation behind this approach,

instead of asking the participants to watch the story and write its

end [8, 43], was to engage the participants and ask questions during

and after the debriefing. The sessions provided thefl exibility to

delve deeper into unforeseen information and enabled researchers

to explore topics that emerged during the session [27]. Before each

session, we shared a consent form with the participants asking for

their permission to video record. We also sent our participants a

3https://zenodo.org/record/5428540

276



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

Table 1: Demographics of Design Fiction Participants (Y =

Years of experience with OSS development; L = Location;

BD = Bot developer; M = Maintainer; C = Contributor; R =

Researcher)

ID Gender Y L Experienced with bots as
BD M C R

P1 Man 5-10 EU � � � �
P2 Man 4-5 SA �
P3 Man > 10 EU � �
P4 Woman 1 NA � � �
P5 Man 4-5 SA � �
P6 Man 4-5 NA � � � �
P7 Man 5-10 EU � �
P8 Man 4-5 NA � � �
P9 Man > 10 SA � � � �
P10 Man 3 NA � � � �
P11 Non-Binary > 10 NA � �
P12 Man > 10 NA � � �
P13 Man 5-10 NA � � �
P14 Woman 3 EU �
P15 Man 4-5 SA � �
P16 Man > 10 NA � � �
P17 Man 1 SA �
P18 Man 4-5 EU � � �
P19 Man 3 EU � �
P20 Man 2 SA � �
P21 Woman 4-5 EU � �
P22 Man 5-10 NA � � �
P23 Man 5-10 SA � � �
P24 Man 5-10 EU � � �
P25 Man > 10 NA � � �
P26 Man 3 EU � � �
P27 Man 5-10 EU � � �
P28 Man 4-5 EU � �
P29 Man 5-10 EU �
P30 Woman Zero EU �
P31 Man 1 EU � �
P32 Man 3 NA � �

short survey containing demographic questions to capture their

familiarity with open-source development and bots on GitHub.

We started the sessions with a short explanation about the re-

search objectives and guidelines, giving the participant an overview

of the Design Fiction approach. The participant then watched the

3-minute fictional story’s video. After watching the video, we clari-

fied questions and followed up with four scenarios to explore how

they would design the meta-bot to mitigate noise. We created the

scenarios based on a theory of how human developers perceive bot

behaviors as noise [68]. This theory shows that bot messages are

perceived as noisy by newcomers due to their lack of experience

(“Human previous experience”); developers might be interrupted by

notifications (“Frequency and timing of actions”) – or overloaded

by verbose messages (“Verbosity”); and bots might present bugs

or create spam (“Perform unrequested tasks”). Thus, we used these

scenarios to characterize problems we aimed to alleviate with the

meta-bot. Next, we present the investigated scenarios:

Scenario One (S1) – Newcomers. This scenario describe a situa-

tion that occurs when a developer submits theirfi rst contribution

to an open-source project. As soon as the newcomer submits a pull

request, bots start posting their respective comments. Newcomers

might perceive the bot information as noise because of their lack

of experience dealing with bots’ messages.

Scenario Two (S2) – Notifications’ interruptions. This scenario

describes when a core developer is working on a priority task and

does not want to be interrupted. As described in the noise theory

we drew from [68], in some cases the noise leads to a notification

overload that interrupts the development workflow at the wrong

time.

Scenario Three (S3) – Information overload. This scenario rep-

resents the case when bots inflate pull requests with repetitive or

verbose messages. According to Wessel et al. [68], this might occur

for several reasons, including decisions inherent to the bot design.

Scenario Four (S4) – Unexpected bugs or spam. Similar to the

previous scenario, this scenario describes a specific case of infor-

mation overload when a bot performs an unsolicited action on a

pull request because of a bug or spam.

The participants acted as storytellers, answering questions to

support the conclusion of the fictional story. For each scenario,

we asked them to describe how they envision the meta-bot in an

ideal scenario, not limited by current technology. Depending on the

participants’ response, we followed up with specific questions: for

example, asking for more information about the the features that

the participant mentioned. The detailed session script is publicly

available4. Each session was conducted remotely by thefi rst author

and lasted on average 54 minutes. The participants received a 25-

dollar gift card as a token of appreciation for their time.

3.2.5Qu alitative Analysis. Each session recording was transcribed

by this paper’sfi rst or second author. To qualitatively analyze

the session transcripts, we applied open and axial coding proce-

dures [63] throughout multiple rounds of analysis. We started by

applying open coding, whereby we identified the envisioned fea-

tures for the meta-bot or its environment. Thefi rst author of this

paper conducted a preliminary analysis, identifying the main codes.

More specifically, the researcher performed an iterative process of

inductively coding one transcript at a time and built post-formed

codes as the analysis progressed and associated them to respective

parts of the transcripts. Then, thefi rst and second authors discussed

the emergent codes and reached a negotiated agreement [24] in

weekly hands-on meetings. During these meetings, the researchers

refined the code set by checking the code names, merging codes

together, or identifying a different granularity level for a code.

These discussions aimed to increase the reliability of the results

and mitigate bias [50, 62]. Then, the analysis was presented and

discussed with the other authors. During the data analysis pro-

cess, we employed a constant comparison method [25], wherein

we continuously compared the emerging codes from one session

with those obtained from the previous ones. Afterward, thefirst

author further analyzed and revised the transcripts to identify re-

lationships between concepts that emerged from the open coding

analysis (axial coding).

We do not share the session transcripts due to confidentiality

reasons. However, we made our complete code book publicly avail-

able within the supplemental material. The code book includes all

code names, descriptions, and examples of quotes.

4https://zenodo.org/record/5428540

277



Bots for Pull Requests: The Good, the Bad, and the Promising ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

4 PHASE I: DESIGN FICTION FINDINGS

In this section, we present the strategies to mitigate bots’ noise de-

rived from the analysis of the participatory designfi ction sessions

(see Section 3). The participants discussed several design strategies

to mitigate noise created by bots, as presented in Table 2. We or-

ganized those strategies in terms of the potential features for the

meta-bot and improvements for the underlining platform (GitHub).

In summary, we found 22 design strategies, organized intofi ve

categories: information management (IMi), newcomers’ assistance

(NAi), notification management (NMi), spam and failures manage-

ment (SMi), and platform support (PSi). In the following, we present

thesefi ve main categories. We describe the categories in bold, and

provide the number of participants we assigned to each category

(in parentheses).

Table 2: Envisioned Design Strategies for the Meta-bot and

the GitHub Platform (# = Number of participants we as-

signed to each category)

Meta-bot’s Design Strategies #

Information
Management

IM1. Summarization of bot comments 11
IM2. Aggregating bot comments 9
IM3. Prioritization based on tasks 9
IM4. Prioritization based on issues 7
IM5. Keep the most recent information 7
IM6. Categorization of bot comments 5
IM7. Interacting with users through natural language 4
IM8. Internationalization 2

Newcomers’
Assistance

NA1. Explaining rules, instructions, and requirements 8
NA2.Welcoming message 8
NA3. Provide information interactively 5
NA4. Newcomers pull request notification 3

Notification
Management

NM1. Notify through pre-specified communication channel 8
NM2. Schedule bot notifications 7
NM3. Notify developers in their idle times 7
NM4. Notifying only interested developers 5
NM5. Do not notify maintainers until the condition is satisfied 2

Spam and
Failures
Management

SM1. Prevent repetitive bot activities 8
SM2. Spam messages notification 4
SM3. Bugs report 2

GitHub Interface’s Design Strategies #

Platform
Support

PS1. Separating bot comments 11
PS2. Bots configuration dashboard 4

Information management. The strategy summarization of

bot comments (11) was frequently mentioned by the participants

as a way to mitigate information overload. Summaries should be

concise and report an overview of the pull request status: “Give me a

context report or summary. I expect the meta-bot to be just one partic-

ular comment with some points. Just one comment with everything as

a conscious report” [P26]. However, this strategy also imposes some

technical challenges when it comes to implementation. According

to P31, “it is difficult to summarize [other bot comments], because,

although the message is created by a bot, it’s supposedly based on

a template.” In terms of its implementation, the easiest strategy

to reduce noise would be aggregating bot comments (9). In this

specific case, the meta-bot would merge bots outputs into a single

comment on a pull request. This strategy is usually mentioned in

conjunction with summarizing the bots outputs: “it could possibly

summarize [bot comments] and put them in a single message” [P6].

In both cases, the meta-bot creates a single output for all bots, how-

ever, it does not imply implementing the merging strategy always

based on the summarized version of each bot output.

Another strategy concerned the order that the information is

presented to the developers. Participants suggest a prioritization

of bot outputs within the summary the meta-bot provides, such

that the meta-bot has the capacity to treat some bot comments

as more important than others. Basically, participants mentioned

two different types of prioritization: based on tasks (9) and based

on issues (7). For the prioritization based on tasks, the meta-bot

would sort the most important bot comments based on the task

implemented in the pull request: “it would also be able to sort of

filter out what is useful and what is not useful based on the task the

developer is actually working on” [P10]. The prioritization might

also take into account the pull request problems raised by bots, sort-

ing by the level of criticality of bot notifications, as mentioned by

P21: “if any critical problem happens, then I would like to be notified

with a specific bot report, I would receive a critical notification.” To

complement prioritization,fi ve participants also suggested the cat-

egorization of bot comments (5). The Meta-bot would group the

bot outputs based on their types (e.g., testing, security, information)

before reporting in the pull request. With a categorization of bot

comments, developers “know if [they] need[] to look at [a specific

bot comment] or not” [P27].

To avoid inflating the pull requests with several comments from

the meta-bot, one suggested strategy is to keep the most recent

information (7). Participants suggested that the meta-bot creates

a single comment and keeps updating it with new information

from other bots: “the meta-bot just creates one comment and keeps

updating it” [P16]. It should also keep the comment up-to-date: “if

[the developer] commit[s] again, the meta-bot updates the comment.

If [the developer]fi xes Lint’s errors, for example, the meta-bot will

remove the warning from the comment.” [P23]

Participants also mentioned other additional aspects of the meta-

bot communication unrelated to mitigating noise. For example, par-

ticipants envision the meta-bot interacting with users through

natural language (4) by providing an interface for communicat-

ing with developers to understand their requests and answer their

questions. To promote diversity and inclusion, the meta-bot can

provide Internationalization (2) and support different languages

(e.g. German).

Newcomers’ assistance. The newcomers’ scenariowe presented

to participants led them to think about how the information pre-

sented by the current bots might affect newcomers’ perceptions

and success. As a result, we found four main strategies that might

assist newcomers, of which explaining rules, instructions, and

requirements (8) was one of the most frequent. According to par-

ticipants, the meta-bot could guide the newcomers and inform them

about the project’s rules and the requirements to approve the pull

request. For example, P13 explains the importance of providing

such explanations: “[the newcomers] do not understand the rules yet

and ... don’t understand which rules are important. ” Thus, “the meta-

bot would do an excellent job for a newcomer by explaining why these

rules exist” [P13]. The meta-bot could also refer to the contribu-

tion guidelines to assist a newcomer developers’fi rst contribution,

as well as include a welcoming message in the meta-bot’s com-

ment on newcomers’ pull request (8). The meta-bot might post a

comment, for example, “ ‘Hi, welcome! I just saw this is yourfirst

contribution. Are you aware of the rules of this repository?’ or ‘the

278



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

rules of this community’?” [P2]. These greetings could be used “to

let [newcomers] know that they are welcome into the community”

[P10]; however, it is also important to keep the message concise

and direct: “the message should be short. If newcomers see the bot

several times in different projects, it will annoy them, and they are

going to discard the whole information the bot provides.”

Concerning the strategies to display bot information to newcom-

ers, participants envision the meta-bot providing information

interactively (5). As mentioned by P5, the meta-bot might guide

the new contributor by showing the information from other bots

“step by step.” Interviewees deemed this strategy a potential solution

to reduce the impact of receiving several different bot notifica-

tions at once. P20 offered an exemplary case of how this strategy

would apply to a real scenario: “If the newcomer has not updated

the README or the documentation, it shows ‘You need to update the

documentation’ and waits for the newcomer to take action. When

the newcomerfi xes the documentation by creating a new commit,

the bot informs the documentation is now okay and then shows the

next message.” Another strategy regards notifying maintainers

about new pull requests from newcomers (3). Since newcom-

ers might prefer other humans to interact, a few participants also

see the meta-bot as an approach to “ping a developer to look at it

[newcomers’ pull request]” [P1] aiming at “encouraging more human

activity from the maintainer” [P6].

Notification management. Participants also reported design

strategies to allow the meta-bot to control different aspects of

bots’ notification. First, the meta-bot should notify developers

through a pre-specified channel (8), which means it would send

the notifications wherever the developer wants to receive the no-

tification (e.g., email, GitHub notifications). As mentioned by P1,

this strategy would help the meta-bot to send the notifications to

“a channel that the developers do not ignore.”

Participants also proposed strategies related to the frequency

and timing of notifications. One approach would be to schedule

bot notifications (7), in which the meta-bot would avoid notifying

developers according to (customizable) timeframes indicating when

they do not want interruptions. This may be implemented, for

example, using a “do not disturb” [P8] mode. Another approach

would be notify developers in their idle times (7). The meta-bot

would not interrupt the developers during critical tasks: “Do not

notify the developer if [the meta-bot] is aware that [the developer] is

currently working. That is also what other humans would not do” [P1].

In this approach the meta-bot would learn the developers’ schedule

and adapt to them. Another option is not to notify maintainers

until the condition is satisfied (2). Therefore, themeta-botwould

notify the developers only when the predefined conditions are met,

as stated by P16: “I want to be notified about new pull requests after all

my tests have passed. And after the bots commented, and if everything

is green, then I want to be notified.

To avoid overload with unrelated notifications, we found that it

is also important to notify only interested developers (5). The

meta-bot should notify only developers who are interested in mon-

itoring activities related to a particular repository, issue, or pull

request. According to P25, for example, maintainers and contribu-

tors have different needs when it comes to being notified by bots:

“if I’m a contributor, I want to know that notification about my con-

tribution. But as a maintainer, I don’t need to be reminded about

every contribution that happened when I release a new version of my

project." [P25].

Spam and failures management. We also identified three de-

sign strategies to provide control over unforeseen problems created

by bot interactions. To prevent repetitive bot activities (8), the

meta-bot bot would detect bots that are generating repetitive out-

comes and prevent them from acting on pull requests; this can avoid

duplicate messages and spam: “it has the ability to control which

bots comment often, then it would be easy to say ‘no, you already

have this comment and I see that your next comment is exactly the

same’ ” [P1]. There would be also a mechanism for spammessages

notification (5), wherein the meta-bot would notify developers

about repetitive bot messages that might be considered spam. And,

if there is a bug with a specific bot, the meta-bot can “contact the

bot maintainers” [P10] to provide a bug report (3).

Platform support. Participants envision a few modifications

in the platform interface to improve its integration with bots. One

potential modification is to separate bot comments (11) by rel-

egating them to a space reserved for bot interactions. As stated

by P32 “developers do not like bots to come in the middle of their

conversations. So, bots having their own space or their own channel

would be the best [option].” This dedicated space for bots would

present the bot messages that are “dead-ended” [P2]: that is, the

ones that do not require any response from the developer. Addi-

tionally, they suggest implementing mechanisms to collapse the

bot outputs: “then, you can collapse all messages. If you want to read

a message, you have to expand it” [P2].

The participants also proposed the implementation of a bot con-

figuration dashboard (4), in which developers can customize their

preferences for viewing bot interactions. This dashboardwould help

developers who work on several repositories to have a common

interface to monitor bots’ actions, as illustrated by P3 “when [the

developer] end[s] up with tons of repositories, and bots are working

on it, [the developer] need some overview picture of it.”

Research Question 1

What design strategies can potentially reduce the noise cre-

ated by bots on pull requests?

As a result of the designfi ction methodology, we identified a

series of design strategies regarding the meta-bot and its in-

tegration with the social coding platform. More specifically,

participants envision strategies for information management,

newcomers’ assistance, notification management, spam/failure

managements, and platform support.

5 PHASE II: SUITABILITY STUDY

In this phase, we aim at validating our interpretation of the strate-

gies proposed by the designfi ction participants and evaluating the

proposed implementation. To further refine the strategies elicited

via the designfi ction method, we developed a prototype and col-

lected participants’ perceptions of it. Understanding the perceptions

of the subject-matter experts—practitioners who face the problems

279



Bots for Pull Requests: The Good, the Bad, and the Promising ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

in the daily life and have large experience with software bots—

supports evaluation of the suitability of the proposed solutions.

5.1 Phase II: Method

5.1.1 Prototyping. We developed a prototype to receive feedback

about the most cited strategies. We applied the prototype to a

scenario created from the Reakit5 project. This project uses four

bots to support the pull request review process and all bots report

their outputs using comments on the pull request. Each of them is

responsible for a different task:

• CodesandBox – provides an isolated test environment for

the validation of the code modified by the pull request.

• Compressed-size-action – reports data referring to the

difference in size offi les modified in the pull request.

• Codecov bot – provides code coverage metrics, offering

tools for comparing reports between pull requests.

• Reakit bot – a project-specific bot implemented to report

deploy information.

5.1.2 Implemented Prototype. To offer different views for main-

tainers and newcomers, we split the prototype into two different

versions: the experts’ pull request interface (see Figure 2), designed

to support maintainers and experienced contributors; and the new-

comers’ pull request interface (see Figure 3). In Figure 2, we show

how we mapped the strategies onto the experts’ designed interface.

First, we used the strategy of separating bot comments (PS1) to de-

sign a specific place for bots in the pull request. We created a new

tab in the pull request interface (see Figure 2-A) called “Bots Con-

versation”. This tab contains all information and events regarding

bots in the pull request, including a timeline of bot events. As for

bot outputs, we also disambiguate the bot participants from human

participants, as shown in Figure 2-D.

Figure 2: Experts’ pull request interface

In relation to the meta-bot comments, we implemented the strate-

gies of aggregating (IM2), summarizing (IM1), prioritizing (IM4),

and categorizing (IM6) bot comments as we depicted in Figure2-C.

5https://github.com/reakit/reakit

First, the meta-bot aggregates all bots outputs in one place, and also

creates a summary with the most important information about each

one. It then groups them into categories, taking into consideration

the priority. To keep the most recent information (IM5), we include

in the summary the latest comment from each bot (Figure2-B). The

Reakit bot, for example, posted three comments in the timeline of

bot events; however, only one entry appears in the summarized

table for that bot. In addition, in the timeline of bot events, it is

possible to expand all bot comments.

We also mapped the aforementioned strategies into the new-

comers’ pull request interface. The differences between those two

versions are related to the meta-bot message. Figure 3 highlights

the designed interface for newcomers. In addition to the table sum-

marizing the outputs, we added a text-based message to fulfill the

requirement of welcoming newcomers (NA2), as shown in Figure 3-

A. Beyond presenting a welcoming message, designfi ction partici-

pants emphasized the importance of explaining rules, instructions,

and requirements (NA1) for contributors who are new to a project.

Thus, we included a link to Reakit’s contributing guidelines (see

Figure 3-B).

Figure 3: Newcomers’ pull request interface

Another important distinction is the way the meta-bot displays

the information for newcomers versus experts. In Figure 3-C, we

present the interactive process of displaying bots’ information.

Instead of presenting the complete summary, the meta-bot presents

the information one at a time (NA3) for newcomers. This approach

aims at guiding the newcomers through the requirements for the

pull request; we also provided a brief explanation of bot messages

for each step. To proceed through the interactive output, the user

has to click on the provided links. There is also an option to see all

the meta-bot outputs at once.

5.1.3 Interviews. We reached out to our 32 participants via email,

inviting them to provide feedback through an online meeting. This

process is an opportunity for participants to provide their feedback

on particular aspects of ourfi ndings [39], expressing their prefer-

ences about the elements of the designed prototype [28]. Fifteen

participants provided their feedback: P6, P7, P8, P9, P11, P13, P14,

P16, P19, P20, P23, P27, P28, P30, and P31. Each meeting lasted

about 30 minutes. During the meeting, we walked them through

the prototype, describing how we mapped the envisioned strategies

onto the designed interface, and asked for their feedback.

280



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

After transcribing the interviews, thefi rst author coded the is-

sues and suggested improvements to the designed interface. The

interview analysis process was similar to the participatory design

fiction data analysis. For each interviewee, we identified and coded

each excerpt that described an issue or an improvement. All re-

searchers met to discuss the results of the coding for each interview

to reach a negotiated agreement. All interviewees provided rich

feedback, although we reached information saturation after the

fourth interview, i.e. after we identified no new suggested improve-

ments to the design interface.

5.1.4 Technology Acceptance Model. To assess the participants per-

ception about the designed interface, we also applied the Technol-

ogy Acceptance Model (TAM) [18] by conducting a questionnaire

immediately after concluding each interview. TAM is a model to

assess the user’s perception about a technology’s usefulness and

ease of use, thus determining a user’s technology acceptance be-

havior. This instrument is frequently used in software engineering

literature (e.g., [13, 56]).

Table 3: Scale items for measuring usefulness, ease of use

and self-predicted future use

Perceived usefulness - (PU)

U1. Using the designed interface would enable me to accomplish tasks more quickly.
U2. Using the designed interface would improve my performance.
U3. Using the designed interface would increase my productivity.
U4. Using the designed interface would increase my effectiveness.
U5. Using the designed interface would make it easier to do my job.
U6. I wouldfi nd the designed interface useful.

Perceived ease of use - (PEOU)

E1. Learning to operate the designed interface would be easy for me.
E2. I wouldfi nd it easy to get the designed interface to do what I want it to do,
to mediate the actions of other bots and present it on the pull request.
E3.My interaction with the designed interface would be clear and understandable.
E4. It would be easy for me to become skillful at using the designed interface.
E5. It is easy to remember how to perform tasks using the designed interface.
E6. I wouldfi nd the designed interface easy to use.

Self-prediction of Future Use (SPFU)

S1. Assuming the designed interface would be available,
I predict that I will use it in the future.
S2. I would prefer using the designed interface to the existing interface.

The questions are organized to measure each of the three main

constructs of TAM: perceived usefulness (Ui); ease of use (Ei), and

self-predicted future use (Si). Table 3 shows our assessment model

which was adapted from previous literature [2, 18]. We used a 5-

point Likert scale to measure participants’ agreement with each

statement, ranging from “Strongly disagree” to “Strongly agree”

and including a neutral value.

5.2 Phase II: Results

In the following subsections, we describe the results from Phase II.

5.2.1 Developers’ perceptions of the design strategies. The partici-

pants who gave feedback were, overall, positive about the prototype.

For instance, P11, an experienced open-source maintainer, reported:

“I’m very resistant to bots; however, I liked it a lot for a couple of

reasons.” He explained that he appreciated the creation of a specific

place for bots in the pull request, and the “compressed information”

[P11] displayed by the meta-bot, since he does not “need to open a

CI page to know what happened” [P11]. According to P30, when bot

comments appear in between human comments, it is easy to miss

a piece of interesting information. She stated that our approach

would help to avoid that. P16 also described our modifications to

the pull request interface in a positive light: “I liked it that you have

removed the restraints of what the interface looks like today and just

changed them to what would be better.”

Table 4: Suggested improvements to the prototype (# = Num-

ber of participants we assigned to each category).

Suggested Improvements #

Include timeline references for bots 10

Quoting bot comments on the main conversation 5

Enhance newcomers bot message 4

Move summary to the main conversation 4

Interactive comments as opt-out feature 3

Replace bots tab name 2

Filtering bot interactions 1

In addition to the positive comments, we found that some design

elements needed improvements, as shown in Table 4. During the

analysis we could identify seven potential points of improvement

reported by the participants. Next, we further explain the reasoning

behind those suggestions.

Include timeline references for bots. According to the partic-

ipants, one problem with having a separate tab for bot comments

is the loss of context. Since we moved all information related to

bots to the new tab, developers might lose track of which event

triggered the bot action. As stated by P9, the timeline references

might be implemented by including a short line in the timeline of

the main conversation with a link to the respective bot comment:

“a notification like ‘a bot comment has occurred here’ so the user can

click to switch tabs.” To avoid noise, P9 also mentioned the creation

of grouped bot references in the timeline to deal with cases of pull

requests with more than one bot comment in a sequence: “GitHub

interface could simply merge them into one: ’there were lots of bot

comments here,’ since one of the goals is also to remove the noise.”

Quoting bot comments on the main conversation. Also re-

lated to the loss of context due to the creation of the bot tab, four

interviewees suggested the possibility of quoting bot comments on

human conversation. Participants mentioned that in some cases a

bot comment might trigger a discussion in the human conversation

tab. Therefore, it is important to refer to the bot comment, and en-

able the possibility of including a bot quotation within the human

comment.

Enhance newcomers bot message. Participants also suggested

a few adjustments in themessage themeta-bot shows to newcomers.

As cited by P9 and P27, the interactivity we implemented in the

comments using a link is not explicit. P9 suggested that replacing

the link with a button would be a better option. For P27, an even

better option would be showing all steps hidden by default and

providing an easy way to expand and collapse them to remove

the need to click on links or buttons. In addition, they suggested

including more visual clues in the table and in the text to call the

user’s attention to important points. For example, it is possible to

281



“reuse the icons of the bots a little bit and kind of show visually from

which bot is the warning coming from” [P16].

Interactive comments as opt-out feature. According to the

interviewees, choosing between the interactive or static versions

of the meta-bot message might depend on personal preferences.

Therefore, they recommended including an interactive version of

meta-bot summary as an opt-out feature, as highlighted by P30:

“even if the person is new to the repository, maybe [she] is a contributor

who is very used to contributing to other repositories. So then it’s good

that you can opt-out.”

Move summary to the main conversation. Another problem

that might occur when separating bot comments is that contrib-

utors, especially newcomers, might be unaware of the presence

of bots on a pull request. To overcome this problem, interviewees

proposed moving the summary provided by the meta-bot to the main

conversation. P27 suggested that the meta-bot should appear in

the human conversation “like a side panel. Then, the summary can

always be visible. And all the detailed information could be in the bot

conversation.”

Replace bots tab name. Although less recurrent, two partici-

pants recommended replacing the name of the bots’ tab. As explained

by P11, the term “bots conversation” implies a dialog between bots,

which is not the case of these bots. For P27, the designed bots’ tab

“is more like history.” They suggested terms such as “bots history”,

“bots reports”, or any other name that includes ”automated.”

Filtering bot interactions. Still related to the bots tab, P16 sug-

gested offering an option tofi lter out the interactions in the bots’

timeline. First, they would like to have access to interface elements

that allow them to selectively show interactions of a single bot, for

example. It might be helpful if a bot posted multiple comments in

the bots’ timeline, reducing the workload of searching for them.

P16 mentioned that “if there are multiple comments from Reakit bot,

for example, then I would like to see a thread only with chronological

comments. Then, I can follow only this bot, and I don’t need to go

through it manually.”

5.2.2 Perceived usefulness, ease of use, and potential future use. In

the following, we present the results for the TAM questionnaire

in terms of the designed interface’s perceived usefulness, ease of

use, and prediction of future use. As a measure of consistency,

we checked the questionnaire items’ reliability. A precise, reliable,

and valid instrument ensures collection of accurate information.

Therefore, we conducted the reliability analysis to ensure the in-

ternal validity and consistency of the items used for each factor,

using Cronbach’s Alpha [3]. Carmines and Zeller [10] suggest that

a Cronbach’s Alpha reliability level that exceeds a minimum of 0.70

indicates a reliable measure. According to the results, the Alpha

values exceeded the threshold, with 0.84 and 0.72 for usefulness

and ease of use items, respectively.

Usefulness of the Designed Interface. Most participants found the

designed interface useful. We present each item’s detailed results in

Figure 4. None of the participants disagreed with any item related

to the usefulness of the designed interface—all items had more than

50% of agreement or strong agreement. In particular, quickness

0%

0%

0%

0%

0%

0%

93%

93%

87%

67%

67%

53%

7%

7%

13%

33%

33%

47%

Useful (U6)

Makes job easier (U5)

Effectiveness (U4)

Increase productivity (U3)

Improve performance (U2)

Work more quickly (U1)

0 25 50 75 100

Response Strongly diagree Disagree Neutral Agree Strongly agree

Figure 4: Responses to the 5-point Likert-scale items for Per-

ceived Usefulness

0%

0%

0%

0%

0%

7%

100%

93%

87%

87%

80%

67%

0%

7%

13%

13%

20%

27%

Easy to use (E6)

Easy to remember (E5)

Easy to become skillful (E4)

Clear and understandable (E3)

Easy to perform (E2)

Ease to learn (E1)

0 25 50 75 100

Response Strongly diagree Disagree Neutral Agree Strongly agree

Figure 5: Responses to the 5-point Likert-scale items for Per-

ceived Ease of Use

(U1), easier job (U5), and usefulness (U6) had more than 85% of

agreement or strong agreement.

Ease of Use of the Designed Interface. In Figure 5, we can observe

the answers’ distribution per item related to the ease of use. More

than 67% of the participants agreed or strongly agreed with the

items. In addition, all participants agreed that the designed interface

is easy to use (E6). Only one participant disagreed with the designed

interface’s ease for performing his desired tasks (E2). In section 5.2.1,

we highlighted the suggestions to improve the design interface,

which are likely to affect the ease of use positively.

Self-predicted Future Use. Figure 6 reports self-predicted future

use of the designed interface. We observe that 14 (93%) partici-

pants agreed or strongly agreed that if the designed interface were

available in the future, they would use it (S1). Compared to the cur-

rent approach employed by GitHub, a large number of participants

(13) agreed with a preference for the designed interface. Only one

participant disagreed, i.e., he preferred the traditional interface.

Research Question 2

How do participants perceive the design strategies to reduce

the noise created by bots on pull requests?

We found seven potential improvements for our designed inter-

face. Participants perceived the designed interface as a useful

and easy to use interface, and would potentially use it in the

future, indicating the suitability of the design strategies.

282



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

0%

7%

93%

87%

7%

7%Prefer to use Designed Interface (S2)

Predicted Future Use (S1)

0 25 50 75 100

Response Strongly diagree Disagree Neutral Agree Strongly agree

Figure 6: Responses to the 5-point Likert-scale items for Self-

predicted Future Use

6 DISCUSSION

Identifying design strategies to reduce the noise created by bots

on pull requests is relevant since developers often complain about

the information overload caused by repetitive bot behavior on pull

requests [7, 21, 41, 51, 68]. Employing Design Fiction as a method to

prototype a technology [32], we gained insights to refine the design

of a meta-bot and the underlining platform, taking into account the

perceptions of practitioners experienced with bots on social coding

platforms.

According to our participants, the meta-bot should act as a gate-

keeper: a layer between other bots and the users. As a gatekeeper,

the meta-bot helps to mitigate information overload by curating

and presenting in a structured way the other bots’ outputs. By re-

ducing the cognitive effort to process incoming information [40],

concise and well-organized information might help developers to

leverage bots outputs.

In line with Erlenhov et al. [21]’s results, our study indicates

that a combination of three different characteristics appears to be

relevant for the meta-bot: intelligence, adaptability, and autonomy.

However, intelligence and adaptability are not yet widely present

on bots that work on GitHub [66]. Our participants mentioned

several strategies for the meta-bot that rely on learning from past

experiences and adapting its behavior. One example is the ability

to notify developers only on their idle times. To do so, the meta-bot

must be smart enough to learn developers’ preferences and adapt

accordingly. Making smarter decisions (e.g., notifying developers

on their idle times) would require bots to be enriched with learn-

ing models for the target context. This topic was also explored

in other domains. For example, some bots in the educationfield

learn from previous interactions and estimate students’ interest

level [47] or learning styles [33], adapting their interactions to im-

prove collaboration. Similar models could be used in open-source

development.

In the following, we discuss how our results lead to practical

implications for practitioners and insights and suggestions for re-

searchers.

Implications for Bot Developers: Our study results provide

insights for bot developers who want to mitigate noise, laying a

foundation for designing better bots. For example, ourfindings

indicate the OSS developers would like to customize aspects of the

bot interaction (e.g., notifications frequency and timing). Therefore,

it is important for bot developers to design a highly customized bot,

providing project maintainers control over bot actions. In addition,

our research can also help bot designers by providing guidelines and

insights to support the design of bot messages. Instead of providing

the information aggregated, bot developers should consider other

possibilities, such as customizing the message or providing the

information interactively. Applying one of those strategies might

help developers deal with and interpret the information from bots.

Implications for Researchers: Our results can serve as a ref-

erence to guide further research. For example, we found several

strategies to present the bot information to developers (e.g., sum-

marization, categorization, prioritizing, interactively). Additional

effort is still necessary to investigate how these strategies might

influence the way developers interpret the bot comments’ con-

tent. How developers think, perceive, and remember information

(i.e. their cognitive style) is likely to affect how they handle bot

messages and learn from them [65]. Future research can further

investigate these differences and inform a set of guidelines on how

to design effective messages for different developer profiles. Further,

our work can inspire researchers to use designfi ction, a method

still rarely used in software engineering studies but that has been

shown to be effective in other domains.

Implications for Social Coding Platforms: The preliminary

implementation of the meta-bot revealed some limitations imposed

by the GitHub platform that restrict the design of bots. Wessel

et al. [68] already mentioned some examples of those technical

challenges in their hierarchical categorization of bot problems. In

short, the platform restrictions might limit both the extent of bot

actions and the way bots are allowed to communicate. It is essential

to provide a morefl exible way for bots to interact on the platform.

In addition, to reduce information overload, participants suggested

removing bot interactions from the main conversation interface and

creating a dedicated place for them. We prototyped this strategy of

separating bot events by designing a new tab in the pull request

interface; this idea can be leveraged to reshape the interface and

better accommodate bot interactions.

7 LIMITATIONS

In this section, we discuss the potential threats to the validity of

ourfi ndings and how we addressed or mitigated them.

Generalizability of the results. Since we recruited practition-

ers experienced with bots on the GitHub platform, ourfindings

may not necessarily apply to other social coding platforms, such as

GitLab and Bitbucket. Although we do not anticipate big differences

in these platforms, additional research is necessary to investigate

the transferability of the results.

Data representativeness. Although we conducted the partici-

patory designfi ction with a substantial number of practitioners,

we likely did not discover all possible strategies or provide full

explanations of the strategies. We are aware that each bot as well as

each project has its singularities and that the open-source universe

is expansive. Our strategies to keep collecting data until reach-

ing information saturation and to consider different practitioner

profiles and identify recurrent mentions of design strategies from

multiple perspectives aimed to alleviate this issue. Anyway, our

283



Bots for Pull Requests: The Good, the Bad, and the Promising ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

findings reflect the perspective of practitioners experienced with

bots. Therefore, we acknowledge that additional research is nec-

essary to consider the perspective of those who do not have any

experience with bots on social coding platforms.

Applicability of the results. The strategies presented in this

paper came from participats’ insights, hence, additional research

is necessary to test the strategies in practice. Moreover, conducted

both phase I and II with the same participants. However, the partici-

pants were exposed to strategies proposed by the other participants,

providing an opportunity for them to provide feedback expressing

their preferences about the elements of the designed prototype and

for all strategies.

Information saturation. We continued recruiting participants

and conducting interviews until we came to an agreement that no

new significant information was found. As posed by Strauss and

Corbin [61], sampling may be discontinued once the collected data

is considered sufficiently dense and data collection no longer gener-

ates new information. As previously mentioned, we also made sure

to interview different groups with different perspectives on bots

before deciding whether saturation had been reached. In particular,

we interviewed researchers, bot developers, and developers who

are contributors and/or maintainers of open-source projects.

Reliability of results. To improve the reliability of ourfindings,

we employed a constant comparison method [25]. In this method,

each interpretation is constantly compared with existingfindings

as it emerges from the qualitative analysis. In addition, we also

developed a prototype and collected feedback from the participants.

To check the reliability of the TAM instrument, we performed a

reliability check on the questionnaire items. Additionally, to direct

data collected, we carefully designed a 3-minute animated video

and guided participants through four scenarios as a starting point

for thinking about the future, constantly reminding them that they

were not constrained by current technological limitations.

8 CONCLUSION

In this paper, we took thefi rst steps toward overcoming information

overload created by bots. By capturing the expectations of main-

tainers, contributors, bot developers, and experienced researchers,

we elicited design strategies for the creation of a meta-bot. We

presented participants with afi ctional story of a meta-bot capable

of better supporting developers’ interactions on pull requests and

operating as a mediator between developers and the existing bots.

Participants answered questions to complete the end of thefictional

story, raising concerns around the use of bots and discussing the

design strategies to mitigate noise.

Grounded in participatory designfi ction, we used the emerged

design strategies to implement a prototype of the meta-bot. Par-

ticipants perceived the prototype as a useful and ease-to-use tool

to overcome noise, and indicated a potential future use of the de-

signed interface. Compared to the previous literature, thesefindings

provide a comprehensive understanding and exploration of design

ideas to enhance the integration between bots, humans, and social

coding platforms.

ACKNOWLEDGMENTS

This work was partially supported by the Coordenação de Aper-

feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Fi-

nance Code 001; CNPq grants 141222/2018-2, 314174/2020-6, and

313067/2020-1; the National Science Foundation under Grant num-

bers 1815503 and 1900903; the Dutch science foundation NWO

through the Vici “TestShift” project (No. VI.C.182.032); the Emerg-

ing Leaders in the Americas Program (ELAP); and UTFPR-Campo

Mourão. We also thank the Open Source developers and researchers

who spent their time to participate in our research.

REFERENCES
[1] Mauricio Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,

Margaret-Anne Storey, and Marco Aurelio Gerosa. 2018. How modern news
aggregators help development communities shape and share knowledge. In
ICSE’18. 499–510.

[2] Muhammad Ali Babar, Dietmar Winkler, and Stefan Biffl. 2007. Evaluating the
usefulness and ease of use of a groupware tool for the software architecture evalu-
ation process. In First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007). IEEE, 430–439.

[3] J Martin Bland and Douglas G Altman. 1997. Statistics notes: Cronbach’s alpha.
Bmj 314, 7080 (1997), 572.

[4] Julian C Bleecker. 2004. The reality effect of technoscience. University of California,
Santa Cruz.

[5] Mark Blythe. 2014. Research through designfi ction: narrative in real and imag-
inary abstracts. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 703–712.

[6] Mark Blythe and Enrique Encinas. 2016. The co-ordinates of designfiction:
extrapolation, irony, ambiguity and magic. In Proceedings of the 19th international
conference on supporting group work. ACM, 345–354.

[7] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for
Effective Recommendations. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (BotSE).

[8] Heloisa Candello, Mauro Pichiliani, Mairieli Wessel, Claudio Pinhanez, and
Michael Muller. 2019. Teaching Robots to Act and Converse in Physical Spaces:
Participatory Design Fictions with Museum Guides. In Proceedings of the Halfway
to the Future Symposium 2019. ACM, 15.

[9] Heloisa Candello, Marisa Vasconcelos, and Claudio Pinhanez. 2017. Evaluating
the conversationfl ow and content quality of a multi-bot conversational system.
In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems.

[10] E.G. Carmines and R.A. Zeller. 1979. Reliability and Validity Assessment. Number
no. 17 in 07. SAGE Publications. http://books.google.com.br/books?id=BN_
MMD9BHogC

[11] A. Carvalho, W. Luz, D. Marcílio, R. Bonifácio, G. Pinto, and E. Dias Canedo. 2020.
C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 161–171.

[12] Ana Paula Chaves and Marco Aurelio Gerosa. 2018. Single or multiple conversa-
tional agents? An interactional coherence comparison. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–13.

[13] Hui Hui Chen,Ming Che Lee, Yun LinWu, Jing YaoQiu, ChengHe Lin, Hong Yong
Tang, and Ching Hui Chen. 2012. An analysis of moodle in engineering education:
The TAM perspective. In Proceedings of IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE) 2012. H1C–1–H1C–5. https:
//doi.org/10.1109/TALE.2012.6360324

[14] EunJeong Cheon and Norman Makoto Su. 2017. Configuring the User: "Robots
Have Needs Too". In Proceedings of the 2017 ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW
’17). ACM, New York, NY, USA, 191–206. https://doi.org/10.1145/2998181.2998329

[15] EunJeong Cheon and Norman Makoto Su. 2018. Futuristic Autobiographies:
Weaving Participant Narratives to Elicit Values Around Robots. In Proceedings of
the 2018 ACM/IEEE International Conference on Human-Robot Interaction (Chicago,
IL, USA) (HRI ’18). ACM, New York, NY, USA, 388–397. https://doi.org/10.1145/
3171221.3171244

[16] Paul Coulton, Joseph Lindley, Miriam Sturdee, and Mike Stead. 2017. Design
Fiction as World Building. In Proceedings of Research Through Design Conference
2017.

[17] Meric Dagli. 2018. Designing for Trust: Exploring Trust and Collaboration in
Conversational Agents for E-commerce. Master’s thesis. School of Design, Carnegie
Mellon University.

[18] Fred D Davis. 1989. Perceived usefulness, perceived ease of use, and user accep-
tance of information technology. MIS quarterly (1989), 319–340.

284



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mairieli Wessel et al.

[19] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, andAudrisMockus. 2020. Detecting and Characterizing Bots That Com-
mit Code. In Proceedings of the 17th International Conference on Mining Software
Repositories (Seoul, Republic of Korea) (MSR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 209–219. https://doi.org/10.1145/3379597.3387478

[20] Enrique Encinas andMark Blythe. 2016. The solution printer: magic realist design
fiction. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM, 387–396.

[21] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2016. An
Empirical Study of Bots in Software Development–Characteristics and Challenges
from a Practitioner’s Perspective. In Proceedings of the 2020 28th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2020).

[22] Laura Forlano and Anijo Mathew. 2014. From designfi ction to design friction:
Speculative and participatory design of values-embedded urban technology.
Journal of Urban Technology 21, 4 (2014), 7–24.

[23] Jonas Fritsch, Morten Breinbjerg, and Ditte Amund Basballe. 2013. Ekko-
maten—exploring the echo as a designfi ction concept. Digital Creativity 24,
1 (2013), 60–74.

[24] D Randy Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kap-
pelman. 2006. Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability. The internet and higher education 9, 1 (2006), 1–8.

[25] Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Routledge.

[26] Ellie Harmon, Chris Bopp, and Amy Voida. 2017. The Design Fictions of Phil-
anthropic IT: Stuck Between an Imperfect Present and an Impossible Future.
7015–7028. https://doi.org/10.1145/3025453.3025650

[27] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from conducting semi-
structured interviews in empirical software engineering research. In 11th IEEE
International Software Metrics Symposium (METRICS’05). IEEE, 10–pp.

[28] Alvin D Jeffery, Laurie L Novak, Betsy Kennedy, Mary S Dietrich, and Lorraine C
Mion. 2017. Participatory design of probability-based decision support tools for
in-hospital nurses. Journal of the American Medical Informatics Association 24, 6
(2017), 1102–1110.

[29] Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Ji-
rayus Jiarpakdee, Chakkrit Tantithamthavorn, Morakot Choetkiertikul, Chaiy-
ong Ragkhitwetsagul, and Thanwadee Sunetnanta. 2020. JITBot: An Explainable
Just-in-Time Defect Prediction Bot. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (Virtual Event, Australia)
(ASE ’20). Association for Computing Machinery, New York, NY, USA, 1336–1339.
https://doi.org/10.1145/3324884.3415295

[30] David Kirby. 2010. The future is now: Diegetic prototypes and the role of popular
films in generating real-world technological development. Social Studies of Science
40, 1 (2010), 41–70.

[31] Ben Kirman, Conor Linehan, Shaun Lawson, and Dan O’Hara. 2013. CHI and
the future robot enslavement of humankind: a retrospective. In CHI’13 Extended
Abstracts on Human Factors in Computing Systems. 2199–2208.

[32] Eva Knutz and ThomasMarkussen. 2014. The role offi ction in experiments within
design, art & architecture-towards a new typology of designfiction. Artifact:
Journal of Design Practice 3, 2 (2014), 8–1.

[33] Annabel M Latham, Keeley A Crockett, David A McLean, Bruce Edmonds, and
Karen O’Shea. 2010. Oscar: An intelligent conversational agent tutor to estimate
learning styles. In International Conference on Fuzzy Systems. IEEE, Washington,
DC, USA, 1–8.

[34] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software
Bots. IEEE Software 35, 1 (2018), 18–23.

[35] Joseph Lindley, Paul Coulton, and Emmett L Brown. 2016. Peer Review and
Design Fiction: “Honestly, they’re not just made up.”. CHI Extended Abstracts
(Alt. CHI). ACM (2016).

[36] Conor Linehan, Ben J Kirman, Stuart Reeves, Mark A Blythe, Joshua G Tanen-
baum, Audrey Desjardins, and Ron Wakkary. 2014. Alternate endings: using
fiction to explore design futures. In CHI’14 Extended Abstracts on Human Factors
in Computing Systems. ACM, 45–48.

[37] Dongyu Liu, Micah J. Smith, and Kalyan Veeramachaneni. 2020. Understanding
User-Bot Interactions for Small-Scale Automation in Open-Source Development.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3334480.3382998

[38] Ellen Lupton. 2017. Design is storytelling.
[39] Sharan B Merriam. 1998. Qualitative Research and Case Study Applications in

Education. Revised and Expanded from" Case Study Research in Education.". ERIC.
[40] George A Miller. 1956. The magical number seven, plus or minus two: Some

limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[41] SamimMirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-date Dependencies?. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA,
84–94. http://dl.acm.org/citation.cfm?id=3155562.3155577

[42] Martin Monperrus. 2019. Explainable Software Bot Contributions: Case Study
of Automated Bug Fixes. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 12–15. https://doi.org/10.1109/BotSE.2019.00010

[43] Michael Muller and Thomas Erickson. 2018. In the Data Kitchen: A Review (a
Design Fiction on Data Science). In Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems (Montreal QC, Canada) (CHI EA ’18).
ACM, New York, NY, USA, Article alt14, 10 pages. https://doi.org/10.1145/
3170427.3188407

[44] Michael Muller and Q Vera Liao. 2017. Exploring AI Ethics and Values
through Participatory Design Fictions. Human Computer Interaction Con-
sortium (2017). https://www.slideshare.net/traincroft/hcic-muller-and-liao-
participatory-design-fictions-77345391

[45] Michael J Muller. 2007. Participatory design: the third space in HCI. In The
human-computer interaction handbook. CRC press, 1087–1108.

[46] Larissa Vivian Nägele, Merja Ryöppy, and Danielle Wilde. 2018. PDFi: partic-
ipatory designfi ction with vulnerable users. In Proceedings of the 10th Nordic
Conference on Human-Computer Interaction. 819–831.

[47] Kazuaki Nakamura, Koh Kakusho, Tetsuo Shoji, and Michihiko Minoh. 2012.
Investigation of a Method to Estimate Learners’ Interest Level for Agent-based
Conversational e-Learning. In International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems. Springer, Berlin,
Heidelberg, 425–433.

[48] Azadeh Nematzadeh, Giovanni Luca Ciampaglia, Yong-Yeol Ahn, and Alessandro
Flammini. 2016. Information overload in group communication: From conver-
sation to cacophony in the twitch chat. Royal Society open science 6, 10 (2016),
191412.

[49] Renee Noortman, Britta F. Schulte, Paul Marshall, Saskia Bakker, and Anna L.
Cox. 2019. HawkEye - Deploying a Design Fiction Probe. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 422, 14 pages. https:
//doi.org/10.1145/3290605.3300652

[50] Michael Quinn Patton. 2014. Qualitative research& evaluationmethods: Integrating
theory and practice. Sage publications.

[51] Zhenhui Peng and Xiaojuan Ma. 2019. Exploring how software developers work
with mention bot in GitHub. CCF Transactions on Pervasive Computing and
Interaction 1, 3 (01 Nov 2019), 190–203. https://doi.org/10.1007/s42486-019-
00013-2

[52] Purit Phan-udom, Naruedon Wattanakul, Tattiya Sakulniwat, Chaiyong
Ragkhitwetsagul, Thanwadee Sunetnanta, Morakot Choetkiertikul, and
Raula Gaikovina Kula. 2020. Teddy: Automatic Recommendation of Pythonic Id-
iom Usage For Pull-Based Software Projects. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 806–809.

[53] KhaledW Sadeddin, Alexander Serenko, and James Hayes. 2007. Online shopping
bots for electronic commerce: the comparison of functionality and performance.
International Journal of Electronic Business 5, 6 (2007), 576.

[54] Dragos Serban, Bart Golsteijn, Ralph Holdorp, and Alexander Serebrenik. 2021.
SAW-BOT: Proposing Fixes for Static Analysis Warnings with GitHub Sugges-
tions. InWorkshop on Bots in Software Engineering. IEEE Computer Society, United
States.

[55] Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software
engineering at the speed of light: how developers stay current using Twitter. In
36th ICSE. 211–221.

[56] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurelio
Gerosa. 2016. Overcoming Open Source Project Entry Barriers with a Portal
for Newcomers. In Proceedings of the 38th International Conference on Software
Engineering (ICSE).

[57] Bruce Sterling. 2009. Cover Story Designfiction. interactions 16, 3 (2009), 20–24.
[58] Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas

Zimmermann, and James D. Herbsleb. 2020. BOTse: Bots in Software Engineering
(Dagstuhl Seminar 19471). Dagstuhl Reports 9, 11 (2020), 84–96.

[59] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te Cheng.
2010. The impact of social media on software engineering practices and tools. In
FSE/SDP workshop on Future of Softw Eng Research. 359–364.

[60] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. In Proceedings of the 2016 24th ACMSIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
ACM, New York, NY, USA, 928–931. https://doi.org/10.1145/2950290.2983989

[61] Anselm Strauss and Juliet M Corbin. 1997. Grounded theory in practice. Sage.
[62] Anselm Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research :

Techniques and Procedures for Developing Grounded Theory (3rd ed.). SAGE
Publications.

[63] ANSELM L Strauss and JM Corbin. 1998. Basics of qualitative research: Tech-
niques and procedures for developing grounded theory Sage Publications. SAGE
Publications (1998).

[64] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How
to Design a Program Repair Bot?: Insights from the Repairnator Project. In
Proceedings of the 40th International Conference on Software Engineering: Software

285



Bots for Pull Requests: The Good, the Bad, and the Promising ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). ACM, New York,
NY, USA, 95–104. https://doi.org/10.1145/3183519.3183540

[65] Mihaela Vorvoreanu, Lingyi Zhang, Yun-Han Huang, Claudia Hilderbrand, Zoe
Steine-Hanson, and Margaret Burnett. 2019. From Gender Biases to Gender-
Inclusive Design: An Empirical Investigation. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300283

[66] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power of Bots:
Characterizing and Understanding Bots in OSS Projects. Proceedings of the ACM
Conference on Computer Supported Cooperative Work Social Computing 2, CSCW,

Article 182 (Nov. 2018), 19 pages. https://doi.org/10.1145/3274451
[67] Mairieli Wessel, Alexander Serebrenik, Igor Scaliante Wiese, Igor Steinmacher,

andMarco Aurelio Gerosa. 2020. Effects of Adopting Code Review Bots on Pull Re-
quests to OSS Projects. In IEEE International Conference on Software Maintenance
and Evolution. IEEE Computer Society.

[68] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and Marco A. Gerosa. 2021. Don’t
Disturb Me: Challenges of Interacting with Software Bots on Open Source Soft-
ware Projects. Procidings of ACM Human-Computer Interaction CSCW (2021).

[69] Marvin Wyrich and Justus Bogner. 2019. Towards an Autonomous Bot for Auto-
matic Source Code Refactoring. In Proceedings of the 1st International Workshop
on Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE
Press, Piscataway, NJ, USA, 24–28. https://doi.org/10.1109/BotSE.2019.00015

286


