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Abstract—With the development of Radio-Frequency (RF)
sensing techniques, RF based 3D human pose estimation has
attracted increasing interest recently. Unlike video camera based
techniques, RF sensing has the unique strength of preserving
user privacy. However, due to the complex wireless channels
indoors, a well-trained RF sensing system is usually hard to
generalize to new environments. In this paper, we propose an
environment adaptive solution for Radio-Frequency Identification
(RFID) based 3D human skeleton tracking systems. We first ana-
lyze the challenges in environment adaptation for RFID based
sensing systems. Following the analysis, we then propose a meta-
learning approach for RFID-based 3D human pose tracking,
termed Meta-Pose. The system is implemented with off-the-shelf
RFID devices and can well adapt to new environments with few-
shot fine-tuning, thus greatly simplifying the deployment of the
trained system. We conduct extensive experiments in different
indoor scenarios to validate the high adaptability and accuracy
of the Meta-Pose system.

Index Terms—3D human pose tracking, few-shot fine-tuning,
generalization, meta-learning, RFID sensing.

I. INTRODUCTION

H
UMAN pose tracking has attracted great interest in

recent years, because it is useful for numerous applica-

tions such as human-computer interaction, video surveillance,

and somatosensory games. The advances in human pose track-

ing have been mainly driven by the new developments in

computer vision, from two-dimensional (2D) systems [1] to

three-dimensional (3D) realtime systems [2]. However, the

vision-based techniques often raise concerns of security and

privacy. For example, many wireless security cameras are eas-

ily hacked by malicious users [3]. The collected video data

for pose tracking could also be illegally intercepted. Several

radio frequency (RF) sensing schemes have been proposed

to address the privacy concern in human pose tracking,

using various RF sensing techniques such as Frequency-

Modulated Continuous Wave (FMCW) radar [4], millimeter
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wave (mmWave) radar [5], WiFi [6], [7], and RFID [8]–[10].

Compared with vision-based techniques, RF sensing-based

human pose tracking requires neither sufficient lighting, nor a

line-of-sight path between the subject and camera (i.e., capa-

ble of getting around obstacles or even through walls), and

more important, the privacy of users can be better protected.

In RF sensing-based systems, deep learning has been

widely adopted to translate captured RF data to human poses.

However, such techniques usually have the generalization

problem, i.e., the inference performance usually degrades

greatly when applying a well-trained deep learning model to

a new, un-trained environment. Since RF signals propagate in

the open air, the received RF signal is usually highly sen-

sitive to the specifics of the deployed environment, such as

the placement of the antennas, the layout (e.g., walls) of the

room, the obstacles in the surroundings, and the movement of

objects and/or subjects nearby. When there are variations in

the environment, the same human subject performing the same

activity could generate considerably different RF features. It

has become a great challenge to develop human pose tracking

schemes that are adaptive to the environment.

Researchers have proposed several solutions to address the

environment adaptation challenge. The most straightforward

approach is to simply increase the size and variety of the train-

ing dataset, i.e., to train the deep learning model with vast

amounts of data measured in many types of environments.

When applying the trained model to a new environment, it

is likely that new environment will be similar to an environ-

ment that exists in the training dataset, and thus the inference

performance would not degrade much. However, this approach

requires considerable efforts and incurs high costs in collecting

large amounts of training data. In addition, more sophisticated

schemes leverage the idea of adversarial learning to improve

feature extraction [11], [12]. Rather than training using data

collected from numerous RF environments, adversarial learn-

ing incorporates a domain discriminator to distinguish features

from different environments (i.e., domains). When the model is

trained such that it is capable of fooling the discriminator, the

features that are common to all the domains will be extracted.

The domain adversarial network can effectively reduce the

requirement on training data.

Alternatively, when applying the well-trained (or, pre-

trained) model to a new, unknown domain, we can fine-tune

the model by further training it with new data collected from

the new environment, such that the pretrained model can

better capture the specific features of the new domain. The
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fine-tuning technique has been shown effective to address the

generalization problem found in other deep learning applica-

tions [13]. Fine-turning still requires new data measured from

the unknown domain. However, such new data should be as

few as possible; otherwise, it will still incur great efforts and

a high cost, which hinder the easy deployment of the tech-

nique in practice. To this end, meta-learning, a.k.a. “learning to

learn” [14], provides an effective solution. Meta-learning opti-

mizes the deep learning model using different learning tasks

or datasets [15], so that the model will be appropriately initial-

ized and be amenable to adapt to new domains. When applied

to a new RF environment, the meta-learning model will only

require a few training examples from the new environment for

fine-tuning (i.e., few-shot fine-tuning), while still achieving a

satisfactory performance.

In this paper, we tackle the environment/domain adapta-

tion challenge with a meta-learning approach [16]. We propose

a novel environment-adaptive, RFID based 3D human skele-

ton tracking system termed Meta-Pose. As in our prior work

RFID-Pose [9], RFID tags are attached to the human body

and interrogated by an RFID reader, such that the movements

of human joints will be captured by analyzing the phase

information in received RFID responses. Meta-Pose is also

a vision-assisted scheme, where Kinect captured video data of

the same human activity is used for supervised training. Note

that the vision data will only be used for training the deep

learning model; it will not be needed in the inference stage.

Therefore the use of Kinect does not cause privacy concerns.

To address the generalization problem, we first analyze the

main causes for the divergence of RFID data in different RF

environments. Based on the analysis, we then propose a novel

Meta-Pose initialization algorithm to pretrain the model with

RFID data sampled from a few different environments. With

few-shot fine-tuning, the Meta-Pose system will be able to

accurately track 3D human skeleton in a new, unknown envi-

ronment. Extensive experiments are conducted to validate the

high environment adaptation ability and high accuracy of the

proposed Meta-Pose system.

The main contributions of this paper are summarized below.

• To the best of our knowledge, Meta-Pose is the first

environment-adaptive system for 3D human pose track-

ing, which is designed using off-the-shelf RFID reader

and tags. Meta-Pose can be easily deployed to estimate

and track 3D human poses with RFID data in different

RF environments.

• We analyze the divergence of RFID data measured in

different propagation environments and identify the main

challenges to the generalization problems, including sen-

sitivity divergence of RFID tags and phase distortion in

different sampling environments.

• We propose a novel Meta-Pose initialization algorithm

based on meta-learning algorithms (i.e., model-agnostic

meta-learning (MAML) and Reptile) to pretrain the deep

learning model with a limited number of training datasets

sampled from several known environments. We develop

the initialization approaches based on both Reptile and

MAML. A domain fusion technique is incorporated to

generate more synthesized (or, fake) environments for

model pretraining, to allow the pretrained model be

quickly adapted to a new environment.

• We develop a prototype with off-the-shelf RFID tags and

reader, and use Kinect 2.0 to measure the ground truth

data for training the model and for performance evalu-

ation. The performance of Meta-Pose is validated with

extensive experiments as well as a comparison study

with a baseline scheme termed RFID-Pose developed

in our prior work [9]. The experimental results show

that the proposed Meta-Pose system can accurately track

3D human poses while achieving high environmental

adaptability simultaneously.

In the remainder of this paper, Section III briefly summa-

rizes and contrasts with related works. The background of

the proposed system is presented in Section III. Section IV

examines the challenges of the domain adaptation problem.

Section V presents our meta-learning based solution to these

challenges. Our implementation and experimental study are

presented in Section VI. Section VII summarizes this paper.

II. RELATED WORK

In this section, we examine the related work on human

pose estimation and tracking, which can be roughly classi-

fied into video camera-based schemes, WiFi-based schemes,

radar-based schemes, and RFID-based schemes.

A. Traditional Pose Tracking Systems

A strength of the traditional camera, WiFi, and radar-based

systems is that they are “markerless” methods, which are

less intrusive. Video camera was first used to detect human

poses in [17], [18]. With deep learning models, such systems

localized the coordinates of human joints in the captured

video frames, using, e.g., 2D RGB cameras [1], [19] or 3D

depth cameras [20]. The most accurate 3D pose tracking

performance was achieved, so far, by the Vicon system [21],

which has been widely used for production of 3D movies.

However, such video based schemes usually raise privacy con-

cerns, as discussed, and their performance is usually limited

by poor illumination, cluttered background, or poor camera

angles.

To address the privacy concerns and mitigate the depen-

dency on lighting and background, several RF pose tracking

techniques have been proposed. Since such systems record no

vision data and the RF data is not visible, user privacy can be

better preserved. Furthermore, RF sensing systems perform

well in poorly lighted environments and are able to detect

human poses through obstacles and walls [5], [22]. FMCW

Radar was first utilized to construct both 2D and 3D human

poses by incorporating a vision-aided teacher-student deep

learning model [4], [22]. As another type of non-intrusive

sensor, WiFi channel state information (CSI) has also been

analyzed to extract 2D and 3D human poses [6], [7]. Most

existing RF sensing systems incorporate a deep learning model

with vision data supervised training. Furthermore, due to the

relatively wide transmission range of the radio signals, such

systems are susceptible to interference from the operating envi-

ronment. Usually radar-based techniques are more resistant to
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environmental interference than WiFi-based schemes, but their

customized hardware, e.g., the FMCW radar implemented on

the Universal Software Radio Peripherals (USRP) platform,

usually incurs a higher cost.

B. RFID-Based Pose Estimation Systems

RFID tags can serve as low-cost and light-weight wearable

sensors to attach to the human body, which provides a promis-

ing solution for human pose estimation. Several RFID sensing

techniques have been developed in recent years, such as human

vital sign monitoring [23]–[26], mechanical vibration sens-

ing [27], user authentication [28], material identification [29],

and temperature sensing [30], Furthermore, RFID has also

been utilized for indoor localization [31]–[34] and drone

navigation [35]–[37].

Using RFID tags as wearable sensors, such systems are

usually more robust to interference from the operating envi-

ronment than other RF sensing techniques (e.g., WiFi). This

feature inspires the development of several RFID based human

pose tracking systems as well. For example, RF-Wear [38]

and RF-Kinect [39] were developed to track the movements

of a single human limb, while RFID-Pose [9] and Cycle-

Pose [10] were developed to track 3D human poses in realtime.

However, although the near-field RFID communications are

more resilient to environmental interference, the locations of

the tags and antennas still have a big impact on how the tags

are sampled by the reader, and thus on the performance of the

human pose tracking system.

In [40], the authors presented a domain adversarial tech-

nique to adapt to changes in the environment by uti-

lizing a domain discriminator, which can constrain the

unnecessary feature extraction from different environments.

However, the proposed learning model may not be able

to obtain the optimal variables when applied in a new

RF environment, because all the training variables are

determined by the datasets from a limited number of

environments.

Inspired by the existing human pose tracking systems, we

propose the Meta-Pose system in this paper, which is based

on the meta-learning framework for greatly enhanced environ-

mental adaptability. The proposed system incorporates a novel

initialization algorithm to pretrain the deep learning model

using a limited amount of training data, so that the system

can be quickly fine-tuned with a small amount of new data

when applied to a new environment, while still achieving a

satisfactory performance.

III. PRELIMINARIES OF RFID-BASED

HUMAN POSE TRACKING

The Meta-Pose system is proposed to estimate 3D human

pose with RFID data collected from the passive RFID tags

attached to the human subject. An overview of the Meta-

Pose system is shown in Fig. 1. The Meta-Pose system

comprises three key components, i.e., (i) RFID phase data col-

lection, (ii) RFID phase preprocessing, and (iii) a deep neural

network.

Fig. 1. Overview of the proposed RFID pose tracking system.

A. RFID Phase Data Collection and Preprocessing

In the RFID pose tracking system, the human pose is learned

from RFID phase data, which is obtained by interrogating the

tags attached to the human body using the RFID Low Level

Reader Protocol (LLRP) [41]. The received RFID signal on a

channel c can be written as [41]:

H =

M
∑

m=1

αmej{2π2Rmfc/v+�c}, (1)

where v represents the speed of light, M is the total number of

RF signal propagation paths, αm and Rm represent the signal

strength and distance of each multipath component, respec-

tively, fc is the current channel frequency, and �c is the initial

phase offset caused by the circuit of both the antenna and the

tag on channel c. Due to the limitation of the Gen2 protocol

used in the current commodity RFID systems, only one phase

value of H could be directly sampled by the system. Due to the

multipath effect, deriving the phase value of the line-of-sight

(LOS) component from (1) is difficult. The reported phase

value may not accurately depict the relationship between prop-

agation distance and received phase. Fortunately, the polarized

reader antenna operates as both the transmitter and receiver,

and the interference caused by multipath reflections is not

strong. Thus, we can assume that each propagation environ-

ment has at least one dominant path, and the received phase

is given by:

� = 2π2Rfc/v + �c, c = 1, 2, . . . , 50, (2)

where R is the distance of the dominant path between the

reader antenna and tag. while the channel index c changes

from 1 to 50 for every 200ms on each channel following the

FCC regulation [41].

The LOS typically contributes significantly to the received

signal for the following two reasons. First, in a passive RFID

system, the only source of power utilized to send a response to

the RFID reader is the tag antenna. The signal strength from

reflection paths is typically much weaker than that of the LOS

path. Additionally, the RFID reader uses a power threshold for

packet detection, which means that if there is no LOS path

between the antenna and the tags, the interrogation is likely

to fail. Second, the RFID phase data shall be prepossessed

to mitigate the impact of the randomness in �c on different

channels. To this end, using the phase variation � between two
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Fig. 2. Structure of the deep learning model used in RFID based 3D human
pose tracking.

adjacent samples from the same channel would be effective to

cancel most of the randomness, which is given by:

�(n) = �(n) − �(n − 1)

= 2π2(R(n) − R(n − 1))fc/v, c = 1, . . . , 50, n > 1,

(3)

where n is the sample index on each channel and R(n) is

the propagation distance corresponding to the nth sample on

channel c. As (3) shows, the impact of the random channel

hopping offset �c (see (1)) is effectively canceled, except for

the first sample on each channel (which is discarded). The

phase variation only depends on the changes in the range of

the dominant propagation path �R(n) = R(n) − R(n − 1).

Therefore, the sequence of phase variations {�2,�3, . . . , }
can be translated into a sequence of antenna-tag distance vari-

ations {�R1,�R2,�R3, . . . , }, which captures the realtime

movements of the RFID tags. Consequently, with the RFID

phase variations for the attached tags can be leveraged to

reconstruct the human skeleton and track 3D human poses

in realtime.

B. Multi-Modal Deep Neural Network

Although phase variation can effectively capture the

movements of the tags attached to human body, the translation

from phase variation data to 3D human pose is still a challenge.

In the few existing RFID based human pose tracking systems,

the transformation is mostly accomplished using deep learning

techniques [9], [10], which is mainly composed of a recurrent

autoencoder and a forward kinematic layer. The brief structure

of the deep learning model is presented in Fig. 2. As the fig-

ure shows, the network is designed to generate a sequence of

3D human poses, consisting of coordinate data of the RFID

tags extracted from received RFID phase data. Specifically,

the recurrent encoder is to extract both long-term and short-

term features from the RFID phase data sequence, which are

then fed into the following recurrent decoder. With a given

initial skeleton, the decoder layer will transfer the features of

the RFID data sequence to a quaternion sequence. Finally, the

Forward Kinematics module will construct the human pose

sequence using the quaternion sequence, which is a widely

used technique in robotics and 3D animation [42].

Rather than using RF signals to generate a confidence map

for human skeleton reconstruction as in prior works [1], [6],

our RFID-based human pose tracking system is designed to

estimate human pose with the forward kinematic technique,

which has been widely used in robotics and 3D animation [42].

This is because the information rate (or, the sampling rate) of

the RFID system is too low to generate a useful confidence

map with an acceptable resolution. However, the forward kine-

matic technique only requires the quaternions of the human

skeleton joints, which indicates the 3D rotation angle of each

human limb. Compared with AoA based localization tech-

niques, the output human pose does not contain the global

position of each human joint, but the location relative to the

root joint (pelvis). The ambiguity in AoA based localization

techniques is not an issue because continuous human pose esti-

mation mainly focuses on monitoring the relative movement

of human limbs. As a tradeoff, the additional constraint is that

the initial human skeleton should be the input to the system,

which contains the length of each human limb, so that the

the precise relative joint location can be estimated based on

rotation angles.

As in RFID-Pose [9] and Cycle-Pose [10], vision data col-

lected by a Kinect 2.0 camera is used as labels for supervised

training of the deep learning model. The model is trained with

a loss function that computes the difference between the esti-

mated pose and the labeled vision data sampled simultaneously

when the RFID data is collected, so the well-trained network

can effectively transform RFID data sequence to a sequence

of 3D human poses [9].

IV. CHALLENGES IN DOMAIN ADAPTATION

RF-based systems can better protect users’ privacy and

do not require sufficient lighting, compared to vision based

approaches. However, they also bring about several unique

challenges. Unlike vision data, the RF signal is usually sam-

pled with unrelated noise from the system itself and the

environment, which is hard to mitigate. The same test subject

performing the same activity could generate very different RF

data when being sampled in different environments, making it

hard to reconstruct poses using a model well trained offline.

To improve the adaptability of the system to different envi-

ronments, generalization of the deep learning model is a big

challenge needs to be addressed. To analyze the influence of

the environment, we use the term data domain to denote a spe-

cific wireless propagation environment in this paper. Since the

tags are attached to the human body, different data domains

could be generated by the following ways. First, we fix the

antennas and change the position of the subject. Second, we

fix the subject position but change the antenna deployment.

Finally, we could change the surrounding around the subject

or the antenna. The wireless propagation environment depends

on the characteristics of all the propagation paths, which could

be significantly different in a different data domain.
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Fig. 3. Illustration of data domains in RFID sensing systems.

However, the passive tags are merely powered by the inci-

dent signal from the reader, while the reader has a threshold

for received power needed for a successful tag interroga-

tion. Following FCC regulations, the effective radiated power

of RFID should be less than 1watt. Therefore, we usually

need to ensure that all tags are within 5 meters from the

antenna. Compared to other long-range systems, e.g., WiFi and

Radar, the RFID system is considered as a near-field system,

and the environmental interference is relatively weaker. The

data domain of RFID sensing systems is mainly determined

by the relative position between the subject (i.e., the tags)

and the reader antenna. As shown in the left plot in Fig. 3,

when the subject stands at different positions, i.e., P1 or P2, the

sampled phase data will come from two different data domains

denoted by Dp1 and Dp2, respectively. The divergence of dif-

ferent data domains is mainly caused by: (i) the divergence

in successful interrogation probability, and (ii) the distortion

in RFID phase data, which are analyzed in the rest of this

section.

A. Successful Interrogation Probability Divergence

The first cause of data divergence in different domains is

the variation in Successful Interrogation Probability. When

multiple tags are scanned by a reader, some tags are more

likely to be detected, while some others may hardly be

scanned. We define Successful Interrogation Probability as the

probability for a tag to be successfully interrogated by the

reader, which mainly depends on the received power strength

from the tag. Following the Friis model, the received power

Sr from a passive RFID tag can be written as [43]:

Sr = GAnGTagγ (λc/(4πR))4St, (4)

where St is the reader’s transmit power; GAn and GTag are

the gains of the transmit antenna and the tag, respectively; γ

represents the aggregated attenuation coefficient, accounting

for the losses incurred in the antenna cable and polarization,

etc. during the transmission process; λc is the wavelength of

the current channel c; and R is the LOS path range as in (2).

Eq. (4) shows that with the same antenna and tag, the received

power strength is degraded by an increased LOS path distance

R and the attenuation loss γ , as:

Sr = Kcγ R−4St, (5)

where Kc is the product of all other coefficients other than γ

and R, which takes different values in different tag and antenna

deployment scenarios.

Fig. 4. Phase distortion in RFID data collected in two different data domains.

For example, see Fig. 3. When the subject is in the P1

position, the LOS path distances for Tag 1 and Tag 2 sat-

isfy R1 > R2. Because of the limited scanning range of the

polarized antenna, the polarization loss γ of Tag 1 is also

higher than that of Tag 2. Referring to (5), on the same chan-

nel c, the received power from Tag 1, denoted by S
Tag1
r , should

be smaller than that from Tag 2, denoted by S
Tag2
r . However,

when the subject is sampled in position P2, we will have

S
Tag1
r > S

Tag2
r . In RFID systems, tags with a higher Sr are

more likely to be successfully interrogated than tags with a

lower Sr, especially when multiple tags are scanned by a sin-

gle antenna. Consequently, when multiple tags are attached

to the human body, the sensitivity of the tags could be very

different in different data domains.

The influence of Success Interrogation Probability diver-

gence in different data domains could be considerable for

RFID based pose tracking using a deep learning model. Since

the tags with a higher sensitivity are more likely to be sam-

pled, the training dataset will be mostly composed of the data

from such tags. Thus, the training variables in the deep learn-

ing model will be mostly trained by the data from the tags

with higher sensitivity. When applying a trained deep learning

model to a different data domain, the inference performance

could be poor, since the Success Interrogation Probability in

the new data domain could be very different from that where

the model was originally trained.

B. Phase Distortion in Different Data Domains

The second cause of data domain divergence is the phase

distortion caused by different antenna deployment scenarios.

As (2) shows, the phase data of each tag is determined by

the LOS propagation path distance R, which is the length of

the space vector �R. For the tags attached to a moving human

body, we can consider the overall space vector as the sum of

two subspace vectors as: �R = �Rs + �Rd, where �Rs is the static

vector determined by the deployment scenario and �Rd is the

dynamic vector generated by the subject’s movements.

Fig. 4 plots 30 sequentially received phase data from 10

RFID tags attached to the human body, where the phase value

is represented by different colors. Two antennas are used to

interrogate the tags simultaneously. We change the antenna
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deployment positions to create two different data domains.

From the figure, we can observe considerable divergence in

the collected phase values from the two data domains.

According to (2), the sampled phase � is affected by both
�Rs and �Rd as:

� = 2π2|�Rs + �Rd|fc/v + �c, c = 1, 2, . . . , 50. (6)

Even if we have an identical �Rd in the two data domains (i.e.,

the same subject and the same movement), the sampled phase

could still be very different when the antennas are deployed

differently (which leads to a different �Rs). Consequently, dif-

ferent antenna deployment scenarios will have an impact on

the RFID phase distortion, causing considerable divergence

between the datasets sampled from different environments.

Unlike Success Interrogation Probability divergence, a

change in the operating environment usually causes consid-

erable phase distortions in all sampled phase data. Thus, the

model variables in the deep learning network should be trained

and optimized to combat such phase distortion. Given all kinds

of possible deployment environments, it is a big challenge

to generate a well-optimized deep learning model, which is

generalizable to all different environments.

V. META-LEARNING BASED SOLUTIONS

A. Meta-Learning for Domain Adaptation

The adaptation problem to new data domains or new tasks

has been investigated in prior works. On one hand, researchers

try to optimize the model variables, so that the network can

achieve good adaptation in different data domains. The most

straightforward approach is to train the model using datasets

from more and more data domains. However, to achieve a

good generalization performance, the training data should

cover numerous data domains, incurring an overly high cost

on obtaining labeled training data. To address this issue, the

adversarial learning approach has been proposed to improve

network adaptability by training using a limited number of

data domains with the generative adversarial network (GAN)

model [11], [12]. A domain discriminator is leveraged to

constrain the loss function of the neural network, in order

to combat the unrelated features from different data domains.

The advantage of this approach is that the network does not

need to be trained again when applied to a new data domain,

but the network variables are not well optimized when only

considering the specific known data domains.

On the other hand, the network variables can be fine-tuned

in the new data domain. Rather than addressing the data diver-

gence issues in the well-trained network, this approach relies

on additional training data for fine-tuning. The purpose is to let

the network be further optimized in the specific new domain

with a small amount of new training data sampled from the

new domain. For typical pose tracking applications, e.g., video

gaming or long-term pose monitoring, such light calibration

is usually acceptable. Therefore, fine-tuning has been recog-

nized as a promising way to improve generalization. With this

approach, the network variables should first be well initialized

in the pretraining stage, and then the fine-tuning process will

Algorithm 1: Reptile Based Initialization Algorithm

1 Input: Sampled data sets from the four known data domains
(denoted by D1, D2, D3, and D4);

2 Output: Optimally initialized variables Xt for the pretrained
network.

3 Randomly initialize the training variable as X;
4 for i = 1:n do
5 Generate di by randomly sampling from D1, D2, D3, and

D4;
6 Randomly sample k batches from di;
7 Set the inner loop training variables: Xin ← X;
8 for j = 1:k do
9 Update the variables in Xin with loss function L as:

X′
in = U1

di
(Xin), Xj = X′

in − Xin, Xin ← X′
in;

10 end

11 Calculate the outer loop gradient as: Ŵi =
∑k

j=1 Wj;

12 Update the outer loop variables X as: X ← X + εŴi;
13 end
14 Set Xt ← X;

Algorithm 2: MAML Based Initialization Algorithm

1 Input: Sampled data sets from the four data domains (denoted
by D1, D2, D3, and D4);

2 Output: Optimally initialized variables Xt for the pretrained
network.

3 Randomly initialize the training variables as X;
4 for i = 1:n do
5 Generate di by randomly sampling from D1, D2, D3, and

D4;
6 Randomly sample 2 batches B1 and B2 from di;
7 Set the inner loop training variables: Xin ← X;
8 Update the variables in Xin with loss function L and dataset

B1 as: X′
in = U1

di
(Xin);

9 Update the variables in X′
in with loss function L and dataset

B2 as: X′′
in = U1

di
(X′

in);

10 Calculate the outloop gradient as: Ŵi = X′′
in − X′

in;

11 Update variables X as: X ← X + εŴi;
12 end
13 Set Xt ← X;

be performed quickly with only a few additional data from the

new data domain.

Meta-learning has been proved to be an effective technique

for model pretraining so that a pretrained model can be quickly

adapted for a new data domain [14]. In the case of the RFID

based pose tracking, when data is sampled from an untrained

domain, the performance of the previously trained model will

usually degrade. New training data sampled from the new data

domain is necessary to fine-tune the model for the new domain.

The MAML algorithm is a representative meta-learning algo-

rithm to pre-train the model for a satisfactory initialization

before fine-tuning [15]. The Reptile algorithm [44] is another

representative meta-learning algorithm for model pretraining,

which has been shown to achieve a similar performance as

MAML but at a lower computational complexity. We leverage

these two algorithms in Meta-Pose to adapt the model to a

new, unknown environment with few-shot fine-tuning using a

few new training data. In the Meta-Pose system, we implement

both meta-learning algorithms for network initialization, and
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Fig. 5. Training framework of the proposed Meta-Pose system.

then fine-tune the pretrained network for a new data domain

using only a few data examples. These three key components

are presented in the remainder of this section.

B. Meta-Learning Framework With Domain Fusion

The objective of meta-learning is to determine the satis-

factory initial model variables through network initialization,

which can then be adapted to a new data domain with a few

training examples. With appropriately trained initial variable

x, the network loss for data domain D should be minimized

after few steps of fine-tuning. Thus, the optimization problem

for network initialization can be formulated as:

min
X

ED

[

L
(

Uk
D(X)

)]

, (7)

where L(·) denotes the loss function of the network, and

Uk
D(X) denotes the gradient descent operation that updates

variables X for k times using the data sampled from D, which

is the Adam algorithm.

Equation (7) shows that, the meta-learning algorithm con-

siders the gradient descent process as optimization target.

Thus, rather than the normal training process based on the

gradient of the loss function �L(X), meta-learning calculates

the gradient of the gradient descent �L(Uk
D(X)) in each train-

ing step. From the equation we can see that the performance

of meta-learning can be determined by the amount of training

data domain in D. However, it is highly costly to directly sam-

ple a large amount of human pose data from numerous data

domains. Therefore we develop a domain fusion based meta-

learning algorithm for model pretraining. The domain fusion

algorithm randomly selects samples from the four known

domains to form new domains, in order to increase the number

of known domains for pretraining.

Figure 5 represents the brief structure of the training pro-

cedure of the proposed Meta-Pose system, which consists of

network initialization and fine-tuning in a new domain. As

shown in the figure, the deep learning model is first pre-

trained using datasets from a few (e.g., four) known data

domains, which are sampled when the subject is standing

at four different positions. The network is pretrained with

two different meta-learning algorithms. Since the second-

order gradient �L(Uk
D(X)) is hard to calculate in prac-

tice, we leverage the first-order approximation instead to

update the training variables. Based on the divergence in the

first-order approximation, we develop two different initial-

ization approaches based on Reptile and MAML algorithms,

respectively. When transferring the learning task to a target

data domain Dt, we only need to collect very few examples

in the target domain to fine-tune the generalized network.

C. Reptile-Based Network Initialization

In the Reptile-based algorithm, we first fuse the four

data domains (i.e., D1, D2, D3, and D4) into a larger num-

ber of fused data domains (i.e., d1, d2, . . . , dn). Specifically,

each di contains 40 batches of data randomly sampled from

D1, D2, D3, and D4. To solve the optimization problem (7), we

need to find the gradient of any fused data domain �L[Uk
di
(X)],

so the gradient descent algorithm can be applied to find X by

recursive updating. With the Reptile learning algorithm [44],

we first calculate �L[U1
di
(X)] for each iteration in the inner

loop as:

�L
[

U1
di
(Xin)

]

= U1
di
(Xin) − Xin = X′

in − Xin, (8)

where Xin is the set of variables used in the inner loop. In the

algorithm, denote the one-step gradient �L[U1
di
(Xin)] as Wj.

The overall gradient after k iterations is calculated as:

�L
[

Uk
di
(X)

]

=

m
∑

j=1

Wj. (9)

�L[Uk
di
(X)] is denoted as Ŵi for each data domain di. In the

algorithm, we set k = 8 for effective training in each data

domain. With gradient Ŵi, we solve problem (7) by recursively

training variable X in the outer loop iterations as:

X ← X + εŴi, (10)

where ε is the learning rate, which is set to 0.1 in the system.

We repeat the updating process for 5,000 times (i.e., setting

n = 5,000), so the final training result Xt could satisfy the

initialization requirement of problem (7).

D. MAML-Based Network Initialization

With MAML based initialization, we leverage the same

method to generate fused data domains di for each iteration

in the outer loop updates. Unlike the Reptile algorithm,

�L(Uk
D(X)) is approximated by two-step training [15]. Thus,

for each iteration, we firstly sample two batches of data B1 and

B2 from the fused data domain di and update the variables Xi

with one-step gradient descent using batch data B1 to obtain

X′
in. In the MAML-based learning algorithm, we set k = 1 to

reduce the training complexity. So the outer loop gradient can

be approximated by:

�L
[

U1
di
(X)

]

= �L
[

X′
in

]

= U1
di

(

X′
in

)

− X′
in. (11)

We next update X′
in by one more step of gradient descent

using another batch data B2 and generate X′′
in = U1

di
(X′

in).

Accordingly, the outer loop gradient is estimated as the gradi-

ent of the second step training, which is calculated by X′′
in−X′

in.

With the outer loop gradient found by the MAML based algo-

rithm, the training variables X is initialized by recursively
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Fig. 6. Experiment configuration of the Meta-Pose system.

updating it in the outer loop following (10), where the learning

rate ε is also set to 0.1. The update is also iterated for 5,000

times, so a large number of fake data domains will be used

in model pretraining. After initialization training, the network

will be able to be quickly fine-tuned using a few shots of data

sampled from a new data domain.

E. Few-Shot Fine-Tuning

After an appropriate initialization of X, the fine-tuning

process only requires a very small dataset from the new

data domain. Since the training data are all in the form of

data sequences, including RFID phase data and Kinect vision

data [10], the data shots are defined specifically in the Meta-

Pose system. We divide the data sequence into small segments

during the training process, each consisting of 30 consecutive

data samples sampled within a window of 6s. We consider

one such data batch as a shot in Meta-Pose, and less than 5

shots of data from the new data domain will be leveraged for

fine-tuning. We also find that the type of activities also affects

the fine-tuning performance and will discuss this further in

Section VI.

VI. IMPLEMENTATION AND EVALUATION

A. System Implementation

To evaluate the performance of Meta-Pose, we develop a

prototype system using an off-the-shelf Impinj R420 reader,

which is equipped with three S9028PCR polarized antennas,

as shown in Fig. 6. ALN-9634 (HIGG-3) RFID tags are used

in Meta-Pose operating in the Ultra High Frequency (UHF)

band. The vision data, used for training supervision as well

as ground truth for evaluating the precision of inference, is

collected using an Xbox Kinect 2.0 device. As shown in the

figure, we attach 12 RFID tags to the 12 joints of the subject,

including neck, pelvis, left hip, left knee, right hip, right knee,

left shoulder, left elbow, left wrist, right shoulder, right elbow,

and right wrist. With the three reader antennas placed at dif-

ferent positions with different heights, every RFID tag can be

interrogated by at least one of the antennas.

Fig. 7. Illustration of the data domains used in the Meta-Pose experiments.

TABLE I
PERFORMANCE EVALUATION FOR DIFFERENT SUBJECTS

Environment adaption is validated using RFID data

collected from eight different data domains, which are

generated by specific deployments of the subject and anten-

nas as illustrated in Fig. 7. Seven data domains are sampled

in a computer lab, and the eighth data domain is sampled

in an empty corridor. Each domain is a 0.6 × 0.6 m2 square

area, where the subject shall stand inside performing certain

activities during data collection. With the 900 MHz frequency

and 0.33 m wavelength used in the proposed RFID system, a

0.6 m interval is sufficient to generate considerable divergence

to create different data domains. Among these domains, D1 to

D4 are used for model pretraining, where 70% of the sampled

data from each domain is used for training, and the rest 30% is

used for testing. D5 to D8 are considered as new data domains

for evaluating the generalization performance, where 50% of

the data from each of these domains is used for fine-tuning,

and the rest 50% is used for testing.

RFID phase data is collected when the subject stands in

front of the antennas and repeatedly performs specific activities.

Different types of activities are sampled in all the data domains,

such as walking, body twisting, deep squatting, and moving

a single limb. Five subjects participate in the experiments for

sufficient data diversity, including one female and four males.

The sampling rate of the antenna is 110 Hz. However, due to the

collision avoidance protocol, when the reader is interrogating

multiple tags, only one randomly chosen tag could respond

to the reader at a time. The sampling rate for each tag of

a multi-tag system is not even nor constant, depending on

the relative location of each tag, interference, and the mutual

coupling effect [31]. To deal with the low sampling rate and

sparse RFID data, we firstly construct a tensor with the sampled

raw data, and then leverage tensor completion to interpolate

the missing data. Finally, the calibrated data is downsampled

to 5 Hz for processing in realtime.
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Fig. 8. Overall performance in terms of mean estimation error in the eight
different data domains.

B. Overall Performance Evaluation

To demonstrate the overall system performance, we use the

3D human pose data collected by Kinect 2.0 as ground truth.

For each video frame, we calculate the mean error 
all of all

the 12 joints as:


all =
1

12

12
∑

n=1

∥

∥

∥
T̂n − Ṫn

∥

∥

∥
, (12)

where T̂n represents the estimated 3D position of joint n, Ṫn

is the ground truth, and ‖T̂n − Ṫn‖ is the Euclidean distance

between the two 3D positions.

The overall performance (i.e., mean error) of the fine-tuned

network for all the eight data domains is presented in Fig. 8.

Recall that only the first four data domains are used for model

pretraining, while the other four domains are used for testing.

In addition, we also present the accuracy of the pretrained

network in the figure (i.e., without fine-tuning using additional

data from the new data domain). As shown in the figure, the

maximum error of the fine-tuned network is 4.83 cm achieved

in D6, while the minimum error is 3.46 cm achieved in D8. The

minimum pretraining error for the new data domain (i.e., D5 to

D8) is 4.91 cm in D8, which is higher than that of all the pre-

trained domains (i.e., D1 to D4). The higher pretrained errors

imply the large divergence between the known and new data

domains. However, with few-shot fine-tuning, the mean error

for all the four new data domains is reduced to 3.98cm, which

is very similar to that of the known data domains. The con-

siderable error reduction in D5, D6, D7, and D8 is due to the

Meta-Pose initialization algorithm. With the well optimized

training variables, the deep learning model can be effectively

fine-tuned for new data domains. Compared to the height of the

subject and range of motions, the 3D human pose estimation

errors are all small and negligible. These results demonstrate

the high adaptability of the Meta-Pose system.

C. Fine-Tuning for the Two Pretrain Algorithms

For most effective fine-tuning, we conduct experiments to

investigate the impact of the number of shots and the type

of activities on different initialization algorithms. Fig. 9 illus-

trates the accuracy of human pose tracking in the four new data

Fig. 9. Fine-tuning performance of Reptile based initialization using different
shots of new data.

Fig. 10. Fine-tuning performance of MAML based initialization using
different shots of new data.

domains with Reptile initialization, which are fine-tuned with

different numbers of data shots ranging from 1 to 5. Fig. 10

shows similar fine-tuning results but with MAML based ini-

tialization. As defined earlier, one-shot of data in Meta-Pose

is defined as a consecutive data sequence within a time win-

dow of 6 s. It can be seen that, after 5-shot fine-tuning after

Reptile initialization, the minimum error 3.49 cm is achieved

in D8, while the error in D6 is the highest (i.e., 4.68 cm).

For MAML based initialization, the minimum error 3.53 cm

is achieved in D7, and the max error is 4.34cm achieved in

D6. From the performance of different data domains shown in

Figs. 9 and 10, it can be seen that both Reptile and MAML

are able to compute satisfactory initial learning variables. Both

models can be adapted to different new data domains within

five shots of fine-tuning.

In addition, although the final estimation accuracy is differ-

ent in the four data domains, the performance of fine-tuning

is generally improved as more data shots are used. However,

as the figure shows, the improvement becomes not obvious

beyond four shots of data for both algorithms. Thus, four-shot

fine-tuning will be sufficient when the Meta-Pose system is

transferred to a new environment.

We also examine the impact of different types of activities

based on the accuracy of tracking different types activities. In
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Fig. 11. Fine-tuning performance of Reptile based initialization for different
activities in new data domain D5.

Fig. 12. Fine-tuning performance of MAML based initialization for different
activities in new data domain D5.

Fig. 11, we present the n-shot fine-tuning results of Reptile

based initialization in the specific data domain D5 with dif-

ferent types of activities, including walking, body twisting,

standing still, and arm waving. We also provide the n-shot fine-

tuning result of MAML initialization in Fig. 12 for comparison

purpose.

Figure 11 shows that, after 5-shot fine-tuning, the minimum

error 4.04 cm of Reptile based initialization is achieved when

the system is fine-tuned for the walking activity, while stand-

ing has the maximum error of 5.41 cm. For MAML based

initialization, the minimum error 3.94 cm is also achieved by

the walking activity. We also find that fine-tuning is not as

effective for arm-waving and standing for both initialization

algorithms. This is because simple activities, such as standing

and arm waving, contain less information than the more com-

plicated activities, such as walking. Generally, fine-tuning will

be more effective when more information is carried in the new

data shots. Thus, we conclude that fine-tuning is more effective

for more complicated activities, no matter which algorithm is

used for network pretraining.

D. Effect of the Domain Fusion Algorithm

The superiority of the domain fusion algorithm used in

meta-learning based pretraining is demonstrated by the next

Fig. 13. Fine-tuning performance of the domain fusion algorithm and typical
meta-learning algorithm.

Fig. 14. Pretraining comparison with the baseline method RFID-Pose [9]
without fine-tuning.

experiment. As shown in Fig. 5, we randomly sample training

data from the four known data domains to generate more vir-

tual data domains, i.e., the di’s, to enhance the performance of

the meta-learning algorithms. Fig. 13 illustrates the fine-tuning

performance of the domain fusion algorithm and the two rep-

resentative meta-learning algorithms. The figure presents the

four-shot fine-tuning results with different initialization algo-

rithms for all the four untrained data domains. As the figure

shows, without the domain fusion algorithm, the minimum

estimation error is 5.51 cm, and the maximum estimate error

is 7.93 cm, which are quite high for 3D human pose tracking.

In contrast, with the domain fusion algorithm, the minimum

error is reduced to 3.36 cm while the maximum error is only

4.83 cm now. Thus, the greatly reduced errors prove that, the

domain fusion algorithm could effectively enhance the model

pretraining and reduce the cost of obtaining training data.

E. Comparison With a Baseline Scheme

Finally, we conduct a comparison study using our recent

RFID based pose tracking system RFID-Pose as a baseline

scheme [9]. As in Meta-Pose, we leverage the same training

dataset collected from D1 to D4 to pretrain the RFID-Pose

model. The estimation error for all the domains are presented

in Fig. 14 without fine-tuning. The figure validates that both
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Fig. 15. Comparison results for a pretrained data domain D4.

Fig. 16. Comparison results after 4-shot fine-tuning for new data domain D5.

systems achieve a good, comparable performance for the

known domains (i.e., D1 to D4). However, RFID-Pose has rel-

ative larger errors when applied to the four unknown domains

(i.e., D5 to D8). The maximum error of RFID-Pose is 8.84 cm

and the mean error of all the new data domains is 7.21 cm.

In contrast, the mean error of Meta-Pose for the unknown

domains is 6.12 cm without fine-tuning. These results indicate

that the Meta-Pose initialization algorithm finds better initial

model variables for the new data domains than RFID-Pose.

The superiority of the Meta-Pose initialization algorithm is

further demonstrated with the fine-tuned results. Fig. 15 illus-

trates examples of estimated poses obtained by Meta-Pose and

RFID-Pose for a pretrained data domain D4. The ground truth

shown on the left is generated by Kinect. The middle and

the right poses are estimated by RFID-Pose and Meta-Pose

after pretraining, respectively. Fig. 16 depicts the estimated

poses for an unknown data domain D5 following a four-shot

fine-tuning. As demonstrated in these two examples, for a pre-

trained data domain, the predicted human poses by RFID-Pose

and Meta-Pose are both similar to the ground truth. However,

for the new data domain, the Meta-Pose generated pose is

still close to the ground truth, while the traditional method

generated pose looks obviously different from the ground

truth.

Fig. 17 illustrates the performance of RFID-Pose for the

untrained data domains (D5 ∼ D8), while different numbers

of data shots are used for fine-tuning. The figure shows that the

traditional system requires considerably more data for adapta-

tion to new environments. For example, at least 300 data shots

are needed for fine-tuning when adapting RFID-Pose to new

untrained data domain D5, while D6 and D7 require 250 and

200 data shots, respectively. However, as illustrated in Fig. 9

Fig. 17. Fine-tuning performance of the baseline method RFID-Pose in
different data domains.

Fig. 18. The CDF curves of the four-shot fine-tuning results of RFID-Pose
and Meta-Pose.

and Fig. 10, four data shots are sufficient for Meta-Pose. As

defined before, one-shot data consists of 6s of consecutive

data samples, and so four data shots mean the system needs

to collect 24 seconds of training data for a new data domain.

However, with 200 training data shots for D7, the traditional

system requires at least 20 minutes of new training data for

domain adaptation, while D5 and D6 need 30 and 25 min-

utes of new training data, respectively. The large difference in

the amount of training data show that Meta-Pose effectively

reduces the expense of new environmental adaption.

The Cumulative distribution functions (CDF) of the estima-

tion errors of the two systems are plotted in Fig. 18. The figure

presents the estimation error after four-shot fine-tuning for all

untrained data domains. The figure shows that the median esti-

mation error of RFID-Pose is 6.87cm, whereas the median

error of Meta-Pose is 3.94cm. Furthermore, we observe that

the overall estimation error of RFID-Pose is considerably

higher than the Meta-Pose system.

Table II presents the mean estimation error for each

untrained data domain. As the table shows, the mean error

of RFID-Pose for all the new data domains is 6.27 cm, while

the mean errors of Meta-Pose with Reptile and MAML based

pretraining are 3.97 cm and 4.03 cm, respectively. We find
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TABLE II
PERFORMANCE COMPARISON AFTER FINE-TUNING

that the RFID-Pose error is also reduced by fine-tuning, but

its estimation error for new data domains is still quite high.

The experiments show that larger datasets sampled in the

new environments are needed for RFID-Pose to achieve a satis-

factory fine-tuning performance, which considerably increases

the training data collection effort and cost. In contrast, the

error of Meta-Pose can be effectively reduced by few-shot

fine-tuning, because the meta-learning-based algorithms have

suitably initialized the model variables based on the known

data domains. Meta-Pose is able to quickly optimize its train-

ing variables for untrained data domains with a few data

examples. Through these experiments, we demonstrate that

Meta-Pose can better adapt to unknown environments com-

pared with the baseline scheme. Thus it can be easily deployed

in practice in different application environments.

VII. CONCLUSION

In this paper, we proposed an RFID based realtime 3D

pose tracking system, termed Meta-Pose, that is environment-

adaptive. A novel Meta-Pose initialization algorithm was

proposed to pretrain the network with several known data

domains, and few-shot fine-tuning was then utilized to adapt to

unknown data domains. The Meta-Pose system was developed

with two different meta-learning algorithms, i.e., Reptile and

MAML. The Meta-Pose system was implemented using off-

the-shelf RFID reader and tags. Extensive experiments were

conducted with ground truth provided by Kinect 2.0 vision

data. Meta-Pose’s high accuracy and adaptability to new envi-

ronments were demonstrated by our experimental results and

a comparison study with a state-of-the-art baseline scheme.
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