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Abstract—The integration of the blockchain and Internet of
Things (IoT) systems can effectively guarantee data security in
IoT applications. To facilitate the use of blockchain on resource-
constrained IoT end devices, we propose RAFT+ with a new
leader selection scheme in this article, which is based on the dis-
tributed consensus algorithm RAFT. The design of RAFT+ aims
at mitigating the imparities between different types of IoT end
devices and enabling these devices to allow different types of IoT
end devices to participate in block consensus, thus maintaining
strong consistency of the blockchain network. The leader selec-
tion scheme is generated by a deep Q-Network (DQN), which
can make the optimal selection of the leader under various con-
ditions by leveraging the limited system resources as well as
balancing the load of the consensus mechanism on multiple IoT
end devices. Simulation results show that RAFT+ can enhance
the system performance while maintaining the security of the
system under high load conditions.

Index Terms—Blockchain, consensus mechanism, deep
Q-Network (DQN), Internet of Things (IoT), RAFT.

I. INTRODUCTION

W
ITH the rapid development of Internet of Things

(IoT) applications, the operating expense, and secu-

rity requirements of IoT systems have become important

recently. Due to the increasing number of IoT end devices,

the traditional IoT systems face the following issues, i.e., as

follows.

1) Data security issues caused by traditional databases.

The IoT data is vulnerable to be stolen, tampered, or

destroyed.

2) Performance bottleneck caused by centralized archi-

tecture. The capability is highly limited by central

servers.
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3) Resources waste caused by unbalanced workload

between central servers and edge servers.

The blockchain technology has become one of the most

promising solutions for solving these issues, thanks to its char-

acteristics of immutability and decentralization [1]. With the

deployment of blockchain, the data in IoT systems are guar-

anteed to be consistent and secured [2]. One feasible way

to integrate IoT systems with the blockchain is to build a

multilayer blockchain network to meet the different capabili-

ties of the IoT modules [3]. The multilayer blockchain network

can improve the scalability of IoT systems and enable the

deployment of services on different layers. Meanwhile, the

multilayer blockchain network can meet the privacy needs of

different services and ensure the security of data. Generally,

the private blockchain is suitable for IoT systems since the

data is transmitted and stored privately [4]. As a decentralized

scheme, the blockchain requires a consensus mechanism to

ensure the consistency of data [5]. The main goal of the con-

sensus mechanism is to reach an agreement on the generation

of new blocks among all the participants. However, to avoid

the impact of faulty and malicious nodes, the consensus mech-

anism needs to be crash-fault-tolerant or even byzantine fault

tolerant without trusted third party’s verification [6]. Usually,

an IoT system mainly includes three types of modules, i.e., the

central servers, the base stations, and the end devices. As the

core module of data processing in IoT systems, central servers

have plenty of computing resources to handle the tasks for the

deployment of the blockchain [7].

To make full use of the available resources of end devices

and base stations, this article proposes a blockchain architec-

ture for IoT applications that requires security assurance. In

the proposed architecture, the IoT system is divided into three

layers, i.e., the cloud layer, the edge layer, and the end-device

layer. IoT end devices are divided into strong end-devices and

weak end-devices based on their computing abilities. In the

proposed architecture, the IoT modules are layered to distin-

guish their performance and meet the construction require-

ments of a multilayer blockchain network. The multilayer

blockchain network is consists of a blockchain network on

the cloud and several local blockchain networks. Meanwhile,

the local blockchain network is constructed by strong end

devices and base stations. The multilayer blockchain network

needs to use a proper consensus mechanism to alleviate

the load caused by the deployment of blockchain nodes

on end devices with different abilities. Common consensus

algorithms, such as Proof of Work (PoW) [8] and practical
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Byzantine fault tolerance (PBFT) [9], [10], are not suit-

able for the blockchain network in the proposed architecture

due to their high computation or communication require-

ments for modules. Lightweight consensus algorithms, such

as the RAFT algorithm [11], provide a feasible solution to

alleviate the computing load caused by the deployment of

blockchain nodes. The RAFT algorithm has the characteristic

of selecting a leader regularly and the leader is responsible

for replicating the blocks of nodes, which makes it suit-

able for IoT systems [12], [13]. The RAFT algorithm divides

the system running time into terms, and each node in the

network switches among three states, i.e., leader, follower,

and candidate. The Leader selection in the RAFT algorithm

is triggered by the missing of heartbeat packets. In each

term, the candidate that reaches the quorum of votes becomes

the leader. Then, the leader sends heartbeat packets to other

nodes to establish leader authority and terminate the selec-

tion process. However, the RAFT algorithm does not take into

account the different resources in IoT end devices, because it

is a purely random mechanism. Therefore, there are resource

wastes when use the RAFT algorithm in IoT-blockchain

systems.

Therefore, we propose RAFT+, an improved algorithm

based on the RAFT algorithm with a new leader selec-

tion scheme. First, RAFT+ collects computing resources

of each end device and samples the time-variant commu-

nication environment of the system as the parameters of

the leader selection. Then, a central node is chosen in the

blockchain network to collect selection parameters and select

the leader. Considering the computing resources of differ-

ent IoT modules, base stations are the central nodes in the

local blockchain networks. Finally, all blockchain nodes par-

ticipate in leader selection as candidates. The purpose of the

above improvements is to make the optimal leader choice

considering the current status of the system resources. The

performance metric of leader selection is the block generation

latency, which is defined as the sum of the block packag-

ing latency and the block consensus latency. The optimization

problem is formulated as a Markov decision process (MDP)

model, which is solved by the deep Q-Network (DQN) algo-

rithm. The main contributions of this article are summarized

as follows.

1) A multilayer blockchain architecture is proposed for

IoT systems. By layering an IoT network on top of a

blockchain network, we explain that this layered struc-

ture has good adaptability to the multilayer blockchain

network. Meanwhile, the blockchain networks are

formed by multiple types of IoT modules to make

efficient use of different IoT modules.

2) Based on the blockchain architecture, RAFT+ is

proposed as the consensus mechanism of the blockchain

network, which selects a leader by considering the

time-variant communication environment and computing

resources of each end device.

3) The leader selection scheme in RAFT+ is based

on the DQN algorithm, which improves the original

leader selection mechanism and maintains the fault-

tolerance performance of the original RAFT algorithm.

The optimal selection strategy is generated by neural

networks.

The remainder of this article is organized as fol-

lows. Section II overviews the existing work related to

this article. Section III gives the system model and

problem formulation. Section IV provides the MDP for-

mulation and a detailed description of the DQN-based

RAFT+. Section V analyzes the fault-tolerant performance

of RAFT+. In Section VI, the performances of RAFT+

are evaluated by simulations. Conclusions are drawn in

Section VII.

II. RELATED WORK

In the traditional IoT systems, end devices, and base stations

are responsible for data reporting and forwarding, respectively,

while computing services and databases are deployed on the

central servers [14], [15]. The disadvantage of the centralized

data processing structure is that system efficiency completely

depends on the performance of the central servers [16], [17].

Meanwhile, there are security problems, such as privacy

leakage [18].

Liu et al. [19] transferred part of the computing tasks to

base stations, utilizing the computing resources of base sta-

tions to alleviate the load pressure on the central server and

improve the efficiency of the system. Security challenges are

generally addressed by combining IoT systems and blockchain

in the existing research. In the blockchain network built for

IoT systems, Guo et al. [20] utilized resources of all the

IoT modules in the system to improve system efficiency. In

specific IoT scenarios, the blockchain network needs to be

designed according to the characteristics of scenarios to main-

tain the stable operation of the systems [21], [22]. In the

industrial IoT (IIoT) scenario, network security is particularly

important [23], [24]. Most IIoT infrastructures are based on a

centralized architecture which is easier to manage but does not

effectively support validation services between multiple par-

ties. The blockchain-based IIoT architecture provides effective

validation services and data storage schemes for resource-

constraint IIoT infrastructures [25]. However, many prior

works adopt common consensus algorithms, such as PoW,

without considering the performance differences between the

IoT modules. Due to the use of common consensus algorithms,

a heavy workload is placed on end devices. With the operation

of the system, end devices may stop working, thus affecting

the integrity of the blockchain network and the efficiency of

the system.

To maintain the stable state of end devices in the blockchain

network, a lightweight blockchain consensus algorithm needs

to be developed based on the performance characteristics of

end devices. Existing research on lightweight consensus algo-

rithms can be divided into two categories. One category is to

improve the common consensus algorithms [26], [27]. Based

on PoW, Alhejazi and Mohammad [28] proposed a novel

algorithm adapted from the concept of the weighted major-

ity algorithm in ensemble learning, called WMCA, which

enhanced the detection of malicious anomalies, thus improving

the security level of IoT systems. Similarly, Huang et al. [29]
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proposed a credit-based PoW mechanism for IIoT scenario.

To protect sensory data confidentiality, a data authority man-

agement method was designed in [29] based on directed

acyclic graph-structured blockchains. Li et al. [30] proposed

an improved PBFT consensus mechanism based on reward

and punishment strategy. Meanwhile, a storage optimization

scheme based on RS erasure code was proposed to reduce

the cost of blockchain storage. Choi et al. [31] replaced

the PoW sin PoW with the proof of trust accumulated

by nodes working continuously in the blockchain network.

Meanwhile, Zaman et al. [32] replaced the PoW with

the proportion of the resources paid by the nodes to the

resources they have. Although the above- improved methods

can retain the mature algorithm flow of PoW, it is difficult

to reduce the computational load caused by the consensus

mechanism.

The other category is to design new consensus algorithms

for specific application scenarios. Biswas et al. [33] simplified

the consensus process into two steps, transaction verification

and consensus formation. Peers were merged according to the

number of nodes participating in the consensus to reduce the

computing time required to reach consensus. For the con-

sortium blockchain, Wang et al. [34] proposed a consensus

fusion scheme based on trust levels to complete collabora-

tive learning. The candidates with higher trust levels played

a more important role in the consensus. Similarly, Kaci and

Rachedi [35] proposed a new reputation-based blockchain

named PoolCoin based on a distributed trust model for

mining pools. The trust model provided a machine learn-

ing module to assess the capabilities of mining machines,

allowing pool managers to select trusted miners in their min-

ing pools. In [36], each IoT sensor generated its unique

tag and broadcasts it to the blockchain network. After a

trusted node in the blockchain network authenticates the sen-

sor, the sensor hashes the authenticated block through the

lightweight hash function and adds the block to the blockchain.

However, the RAFT algorithm has good adaptability to the

blockchain network for IoT applications due to its algorithm

characteristics [37], [38].

The RAFT algorithm divides the system running time into

multiple terms, and the beginning of each term is leader selec-

tion. During the leader selection, each node in the network

switches among three-node states according to leader selection

results. The leader selection in the RAFT algorithm is trig-

gered by the heartbeat mechanism. When any follower fails to

receive the heartbeat packet sent by the leader within the fixed

time, the follower converts to a candidate and triggers leader

selection. In the selection, all the followers who fail to receive

the heartbeat packet are selected as candidates. At the begin-

ning of the selection, each candidate sends requests in parallel

to obtain the votes of followers, and each follower votes for

the candidate whose request it receives first. The candidate

who obtains the votes of the majority nodes becomes the new

leader. Additionally, the new leader sends heartbeat packets to

other nodes in the network to establish leader authority and

terminate the selection.

In a blockchain network with the RAFT algorithm as the

consensus mechanism, the leader is responsible for packaging

Fig. 1. Blockchain architecture for IoT applications.

transactions to generate blocks, and blocks are sent to follow-

ers for endorsement. After receiving a new block, the followers

endorse the block and return confirmation responses contain-

ing the endorsement results to the leader. The leader notifies

nodes in the network to update the new block synchronously

after receiving enough confirmation responses. The efficiency

of this consensus algorithm is determined by the performance

of the leader and the communication environment [11]. The

block consensus method of the RAFT algorithm can avoid

heavy computing burdens, while the unique leader ensures

the consistency of data in the network [39]. However, the

RAFT algorithm does not take into account the limited system

resources in IoT applications since its selection parameters are

fixed. Moreover, leader selection causes a large communica-

tion loss, and there is a randomness in the leader selection

process. To be implemented, the RAFT algorithm needs to be

modified to fit the characteristics of various IoT scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The proposed IoT-blockchain system is shown in Fig. 1,

it consists of a blockchain network on the cloud and several

local blockchain networks. The local blockchain network con-

structed in this article consists of a base station and strong end

devices in the coverage area of the base station. Meanwhile,

the blockchain network on the cloud consists of the central

servers. The local blockchain network uses RAFT+ as the

consensus mechanism, which stipulates that the leader gen-

erates blocks and impels block consensus. When a block is

generated in the local blockchain network, the leader notifies

nodes in the network to update the new block synchronously.

The base station reports the generated new block to the central

server in the blockchain network on the cloud.

A. Scenario Description

Assuming an IoT system with a single-base station cov-

erage scenario, as shown in Fig. 1, where the number of

strong end devices and the number of weak end devices

are I and J, respectively. Strong end devices are indexed by

i, i ∈ {1, 2, . . . , I}. A base station and strong end devices

form a blockchain network, of which the number of nodes is

I + 1. The base station and strong end devices are regarded

as the central node and candidates of leader, respectively. The
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communication environment and computing resources of each

strong end device are considered during leader selection. After

leader selection, the selected leader is represented by l and the

remaining nodes become followers. Weak end devices collect

and report data to the nearest strong end device, while strong

end devices forward the collected data to leader l. Following

the consensus algorithm, the data received by leader l is pack-

aged in the form of transactions into blocks, and the new

blocks are replicated to the blockchain ledger of each node

in the blockchain network.

B. Communication Model

End devices collect and report data at fixed intervals. Each

end device collects data for only one application type. The

system time is divided into multiple epochs, and each epoch

starts with the end of previous block consensus. Let n represent

the number of data packets reported by each end device in an

epoch, which follows the Poisson distribution and is given as

follows:

p(n) =
λn

n!
e−λ (1)

where λ is the average number of data packets collected by

the end device in an epoch. Dm is the size of data packets,

and the amount of data reported by the end device in an epoch

is nDm.

During the data transmission process between the IoT mod-

ules, only large-scale fading including path loss is considered

in the wireless channel model. The transmission rate between

the IoT modules based on the Shannon formula is given as

follows:

rl,i =
B

I
log2

(

1 + γl,i

)

(2)

where B is the bandwidth used for block consensus in the

system, and γl,i is the signal-to-noise ratio (SNR) of data

transmission between leader l and follower i, i.e.,

γl,i =
PCONd

−β

l,i �

BN0
(3)

where PCON is the total transmission power that is equally

divided for the followers for block consensus, N0 represents

the average power spectral density of white noise, dl,i repre-

sents the distance between leader l and follower i, β stands for

the path loss ratio, and � ∼ LN (0, σ 2) denotes the shadow

fading which follows a log-normal distribution. An I×I matrix

is used to represent the SNR of data transmission between the

IoT modules in the blockchain network, which is given as

follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝
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...

γI−1,I

γI,1 γI,2 · · · γI,I - 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

C. Leader Selection Model

To enhance the overall communication efficiency in the pro-

cess of block consensus, RAFT+ selects a central node in the

blockchain network to collect the parameters of other nodes

and selects the leader. If the leader does not receive a suf-

ficient number of confirmation responses with endorsement

results during the longest block consensus time tCON
max , block

consensus is considered failed and the leader selection pro-

cess will be triggered. There could be two reasons that leads

to such a scenario, i.e., as follows.

1) Hardware Failure: Hardware failure is defined as a hard-

ware failure of the leader. Since if any follower has a

hardware failure, the rest of the followers can still return

confirmation responses and the blocks can reach consen-

sus. A hardware failure of the leader causes the leader

to fail to receive confirmation responses, resulting in a

failed block consensus. The probability of such a fault

is represented by phard.

2) Communication Failure: Data transmission rate rl,i

between leader l and follower i is determined by the

SNR, and SNR γl,i between leader l and follower i

changes with the time-variant communication environ-

ment of the system. When data transmission rate rl,i

falls below the minimum rate requirement, the com-

munication between nodes is interrupted. Data trans-

mission rate rl,i falls below the minimum requirement,

which means SNR γl,i falls below the minimum SNR

requirement. The communication interruption probabil-

ity pc(l, i) between leader l and follower i is expressed

as follows:

pc(l, i) = Pr
(

γl,i < γ0

)

=

∫ γ0

0

f (x)dx (5)

where γ0 represents the minimum SNR requirement for

data transmission between nodes and f (x) is the prob-

ability density function of SNR. If more than �I/2�

followers meet the communication interruption with the

leader, communication failure occurs in the blockchain

network. Let Btr represent the set of all followers at

timestamp t, and Ber represent the set of followers which

meet the communication interruption during data trans-

mission at timestamp t, Ber ⊆ Btr. When the number of

elements in set Ber is more than �I/2�, the probability

pcom of communication failure due to communication

interruption is expressed as follows:

pcom =
∏

j∈Ber

pc(l, j) ·
∏

m/∈Ber∩m∈Btr

[

1 − pc(l, m)
]

. (6)

The probability of triggering the leader selection process by

various faults is expressed as follows:

pe = phard + pcom − phard · pcom. (7)

After completing leader selection, the central node sends the

selection result to nodes in the blockchain network. Each node

updates its node status and resends the reported but unpack-

aged data to the new leader. The new leader completes block

packaging and block consensus tasks.
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Fig. 2. Basic block consensus flow.

D. Block Consensus Model

The basic block consensus flow of RAFT+ is shown in

Fig. 2. The data reported by weak end devices and forwarded

by strong end devices is stored in the cache pool of the leader

in the form of transactions. The leader packages all transac-

tions in the cache pool at the packaging interval to generate

blocks. The number of transactions contained in the block is

determined by the amount of data reported by each end device.

After the block is generated, the leader sends it to the follow-

ers in the blockchain network for endorsement. Each follower

returns a confirmation response containing the endorsement

result. After the leader receives �I/2� confirmation responses,

the generation of the block reaches a consensus within the

blockchain network and the leader notifies the followers to

synchronously update the block. The block generation pro-

cess is mainly divided into two steps, i.e., block packaging

and block consensus.

During a block consensus process, if the leader fails to

receive enough confirmation responses, block consensus will

be invalid and leader selection will be triggered. There are

two main reasons for the above situation, one is the leader’s

hardware failure, and the other is the poor communication

environment of the system. When the new leader is selected

through the leader selection scheme, followers will report the

data that fails to generate the block to the new leader. The new

leader will package the data to generate a new block and start

block consensus. Leader selection in RAFT+ is dominated by

the central node, which collects the parameters of each node

in the blockchain network and selects the new leader. The new

leader collects and packages data in the form of transactions to

generate a new block. After the new block is generated, block

consensus is carried out in the network. The specific process

is shown in Fig. 3.

In the proposed blockchain architecture, a block is com-

posed of a block header and a block body. The block header

mainly stores metadata for identifying blocks and the Merkle

root is calculated based on the transactions stored in the block.

Specifically, the Merkle root is generated by the Merkle tree,

and each leaf node in the Merkle tree represents a transaction

stored in the block. For block k containing nk transactions,

the number of hash values ns contained in the Merkle root is

Fig. 3. Block consensus flow when leader failures occur.

given as follows:

ns = 2nk − 1. (8)

The block body stores specific data in the form of trans-

actions. The amount of data reported by strong end device i

received in block k is represented by nk,i, and the number of

transactions stored in block k is given as follows:

nk =

I
∑

i=1

nk,i. (9)

Let ηl indicate the number of central processing unit (CPU)

cycles available for leader l in a unit time, and ξh represent the

number of CPU cycles required to calculate a hash value from

the hash function for a transaction. For block k with nk transac-

tions, nk − 1 times of hash operations are required to generate

the Merkle root. The number of CPU cycles required for a

hash operation to generate the Merkle root is ξm. Combine

the above variables, the block packaging latency is given as

follows:

tPACK
l,k =

nkξh + (nk − 1)ξm

ηl

. (10)

In the RAFT algorithm, the leader sends heartbeat packets

to followers in the blockchain network to maintain the state of

each node. In RAFT+, the new blocks are regularly packaged

by leader l and reported to followers also serve to maintain

the state of each node. The data transmission process of block

consensus includes two parts, which are 1) the leader sends the

new block to the followers and 2) the followers return con-

firmation responses containing the endorsement results. The

block consensus latency between leader l and follower i can

be expressed as follows:

tCON
i,k =

nkDt + nsDh

rl,i

+
Df

ri,l

=
nkDt + nsDh + Df

rl,i

(11)

where Dt represents the data size of a transaction, Dh rep-

resents the data size of a hash value, and Df represents

the data size of a confirmation response. Assuming that the
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confirmation response returned by follower i is the �I/2�th

confirmation response received by the leader, the generation

latency for block k is given as follows:

tGEN
l,k = tPACK

l,k + tCON
i,k . (12)

E. Objective

The optimization goal of the system is to obtain the optimal

leader selection strategy π∗ for RAFT+. In the strategy, selec-

tion parameters are comprehensively analyzed to choose a

leader that can minimize the average block generation latency.

The specific optimization problem can be defined as follows:

minEτ

[

1

K

K
∑

k=1

{

(1 − pe)t
GEN
l,k + pe

(

tmaxCON + tGEN
z,k

)}

]

s.t. C1 : l ∈ {1, 2, . . . , I}, z ∈ {1, 2, . . . , I}

C2 : l 
= z, 0 ≤ pe ≤ 1 (13)

where z represents the new leader selected by the central node.

The confirmation response returned by follower i is the �I/2�th

confirmation response that the leader has received. tGEN
l,k rep-

resents the block generation latency of block k generated by

leader l, and tGEN
z,k represents the block generation latency of

block k generated by new leader z.

IV. DQN BASED RAFT+ ALGORITHM

The optimization problem (13) is formulated as an MDP

model which consists of a state set S , an action set A, and

a reward function R : S × A → R. Let τ denote the epoch

when the leader starts to generate a new block. Without extra

explanations, the symbol τ is omitted for simplicity, i.e., Sτ :=

S, Aτ := A. The DQN algorithm is adopted to find the optimal

policy π∗ by a training procedure.

A. MDP Model Formulation

1) State Set: System state S is defined as follows:

S = (M, L, P, N, E) (14)

where M represents the number of data received by the leader.

Let Mi represent the number of data received by each strong

end device at epoch τ . M can be specifically expressed as

follows:

M =
∑

i∈{1,2,...,I}

Mi. (15)

L represents the serial number of the leader in the blockchain

network, i.e., L = l. P represents the probability of hardware

failure occurred at the leader, i.e., P = phard. N represents

the SNR values between the leader and the followers in the

blockchain network during data transmission, which can be

obtained from (4). E represents the node state of the leader

at epoch τ : E = 0 means that the leader does not need to

be replaced, and E = 1 means that the leader needs to be

replaced.

2) Action Set: In this model, action A taken at epoch τ is

defined as the serial number of the selected leader, which can

be expressed as follows:

A = l (16)

where l ∈ {1, 2, . . . , I}. The block packaging interval is rep-

resented by tp and the model generates actions at intervals of

tp. If more than �I/2� followers return confirmation response

in the process of block consensus, the leader is functioning

normally and action Aτ remains the same as action Aτ−1 at

the last epoch. All possible actions form action set A.

3) State Transition Function: With an action A at a given

state S, the following state S′ can be determined via the state

transition function. The system state Nτ+1 at the next epoch

can be expressed as follows:

Nτ+1 =
{

γ τ+1
l,i |i ∈ Btr

}

. (17)

According to system states Lτ , Nτ+1 and Pτ+1, the failure of

leader l is examined, thus system state Eτ+1 at the next epoch

is determined. The specific system state Eτ+1 can be expressed

as follows:

Eτ+1 =

{

0, normal

1, error.
(18)

Assuming that the selected leader at epoch τ is Aτ , the state

transition function of system state L can be obtained according

to Eτ+1, which can be expressed as follows:

Lτ+1 =

{

Lτ , Eτ+1 = 0

Aτ , Eτ+1 = 1.
(19)

4) Reward Function: The instant reward is defined as

the block generation latency at epoch τ , which consists of

the block packaging latency and the block consensus latency.

The reward function is given as follow:

R(τ ) =

{

tGEN
l,k + tCON

i,k , Eτ = 0

tCON
max + tGEN

z,k + tCON
i,k , Eτ = 1.

(20)

B. Leader Selection Scheme

In the MDP model established in this article, the system

states are discrete and the number of the states is limited.

Meanwhile, the size of the action set is determined by the

number of strong end devices. So this article adopts the DQN

algorithm to learn function Q and strategy π∗. The DQN

algorithm combines reinforcement learning with deep neu-

ral networks and utilizes an experience replay strategy to

eliminate the correlation between input sequences. The DQN

algorithm includes two neural networks, i.e., the estimation

network and the target network. The estimation network is

trained in real time according to a properly defined loss func-

tion. The target network uses the weights of the estimation

network at intervals to update its network parameters, and the

target network is used to calculate the objective function value.

The two neural networks are used independently to eliminate

the correlation between the estimated Q value and the target

Q value. As the central node, the base station collects selec-

tion parameters stored in each follower and selects the leader
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Fig. 4. Example of block inconsistency.

according to strategy π∗, which can be expressed as follows:

π∗(S, A) = arg max
A∈A

Q(S, A). (21)

The DQN algorithm uses the following formulas to update the

parametric loss function L(θ) during iterations:

L(θ) = E

[

(

Q(S, A, θ) − QTar

)2
]

(22)

QTar = R(S, A) + γ max
A′∈A

Q
(

S′, A′, θ̂
)

(23)

where θ represents the parameters of the estimation network,

θ̂ represents the parameters of the target network, γ is a dis-

count coefficient, 0 ≤ γ ≤ 1. S′ and A′ are the system state

and the action at the next epoch. RAFT+ is based on the

DQN algorithm, which is shown in Algorithm 1. After suffi-

cient training, neural networks can generate the optimal leader

selection strategy.

V. FAULT-TOLERANT PERFORMANCE ANALYSIS

In the RAFT algorithm, the leader is responsible for block

generation and dominating block consensus. After a new block

is generated, the leader sends the new block to the follow-

ers for endorsement to reach a consensus on the new block.

The followers then send confirmation responses containing the

endorsement results to the leader. When the leader receives

a sufficient number of confirmation responses, an agreement

has been achieved for the new block within the blockchain

network. A synchronous block update message is reported to

the followers by the leader. In the RAFT algorithm, leader

selection is triggered by the heartbeat mechanism. If any

follower fails to receive the heartbeat packet reported by

the leader as scheduled, leader selection will be triggered.

Meanwhile, the RAFT algorithm provides a data synchro-

nization mechanism controlled by the leader to solve the

problem of block inconsistency between different nodes with

less computation required.

A. Block Inconsistency

In the blockchain network with the RAFT algorithm as the

consensus mechanism, the blocks between nodes may not be

synchronized, as shown in Fig. 4. The number in each block

indicates the term of the block.

RAFT+ modifies the trigger conditions of the leader selec-

tion and combines leader selection with block consensus. The

leader in the blockchain network sends the new block to the

Algorithm 1 DQN-Based RAFT+ Algorithm

Input: Initialize phard, � and the number of end-devices.

Initialize neural network parameters ε, γ , θ , θ̂ , and learning

rate α. Set start time of iteration and the total iteration time

τmax. Set update timestep te of the target network.

Output: strategy π∗

1: Initialize a starting action A = A0 = 0 and a starting state

S = S0 = (M0, L0, P0, N0, E0), building neural Networks.

2: while τ 
= τmax do

3: Update the real-time SNRs of data transmission

between end-devices;

4: Update the state N according to the SNRs;

5: According to the system state, determine whether the

system has a hardware failure or communication failure;

6: if Hardware failure or communication failure then

7: Update state E, generate random number e, start

leader selection;

8: if e ≥ ε then

9: Generate Q values corresponding to all actions

according to the estimation network;

10: A new leader is selected according to the (21)

from Q values;

11: else

12: Randomly select new a leader as action Aτ ;

13: end if

14: Update state Lτ = Aτ ;

15: else

16: Keep the same action as the previous epoch;

17: Update state Lτ = Lτ−1

18: end if

19: Each end-device execute action Aτ and leader observe

R and Sτ+1;

20: Push the observation sequence (Sτ , Aτ , R, Sτ+1) into

the experience replay pool;

21: Sample S, S′, A and R from the experience replay pool;

22: The estimation network and the target network respec-

tively predict Q value according to S and S′;

23: Update the corresponding Q value in the estimation

network based on R and predicted Q values according to

(22);

24: Update loss function L(θ) and parameter θ of the

estimation network according to (23);

25: if τ mod te = 0 then

26: Update the target network parameter θ̂ according

to the estimation network parameter θ ;

27: end if

28: Set τ + 1 → τ and Sτ+1 → Sτ ;

29: end while

followers to maintain the node state of the followers. The fol-

lowers endorse the block and return confirmation responses

including the endorsement results. If the leader receives more

than �I/2� confirmation responses reported by the followers,

an agreement is reached for the generation of the block in

the network. During the block consensus process, a follower’s
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failure to return confirmation response means the commu-

nication interruption occurs between the follower and the

leader, and the follower is not able to update the block syn-

chronously. During the operation of the system, the followers

receive new blocks sent by the leader and return confirmation

responses containing the endorsement results. After receiv-

ing a confirmation response, the leader checks the related

data contained in the confirmation response. The data syn-

chronization mechanism is triggered if the leader finds the

index of the block contained in the confirmation response

is inconsistent with the index stored by itself. To maintain

data consistency between the leader and the follower, the

leader traverses both ledgers to find the closest consistent

block. After the closest consistent block is found, the leader

sends a command to delete all blocks after that block in

the follower’s ledger. Then, all blocks in the leader’s ledger

after that block are sent to the follower to complete the data

synchronization.

In RAFT+, the leader selection is triggered by hard-

ware failure or communication failure. Communication failure

means that more than �I/2� followers and the leader have

communication interruptions. After leader selection is trig-

gered, the central node in the blockchain network collects the

parameters of each follower to select a new leader. The new

leader collects the ledger of each follower and compares it

with its ledger. The different parts of the follower’s ledger

will be covered according to the leader’s ledger. Meanwhile,

each follower reports the data that has been reported but not

stored in the ledger to the new leader. As a part of block

consensus, the new leader generates a block and sends it to

the followers. After block consensus is approved, the follow-

ers update the block synchronously at the time determined by

the new leader. Therefore, RAFT+ can solve the problem of

block asynchronization among nodes that may occur in the

blockchain network.

B. Network Fragmentation

During the operation of an IoT-blockchain system using the

RAFT algorithm as the consensus mechanism, it may occur

that several followers cannot receive the heartbeat packets at

the same time and are converted to candidates. Several candi-

dates send vote requests in parallel to compete for the votes of

the followers in the network. The followers then vote for the

candidate whose vote request they receive first (the candidate

shall meet the requirements of selection parameters, such as

term). Each candidate may have a random chance of gaining

votes from the followers due to factors, such as communica-

tion environment and distance between nodes. If no candidate

receives more than half of the votes, the vote will be invalid

and the leader selection will be restarted. In this case, the

nodes in the blockchain network cannot work normally until

a new leader is selected. The RAFT algorithm stipulates that

only one leader can exist in a network to avoid network frag-

mentation. An example of network fragmentation is shown in

Fig. 5, where the simultaneous existence of multiple leaders

directly results in a split of the network and the independent

generation of blocks. After the original network is split into

Fig. 5. Example of independent block generation after network
fragmentation.

multiple networks, each network will be independent of the

others.

The blockchain networks require data consistency between

nodes, the block asynchronization caused by network fragmen-

tation is unacceptable. To deal with the problem of network

fragmentation in the blockchain networks, RAFT+ modifies

the process that several candidates send vote requests in paral-

lel to compete for the votes of the followers in leader selection.

First, RAFT+ determines whether to select a new leader

based on the failure situation of the original leader. Second,

RAFT+ considers all followers as candidates for leader selec-

tion, so that the optimal leader choice can be made in each

term. Finally, RAFT+ selects a central node in the blockchain

network to collect the parameters of each follower. The cen-

tral node selects the unique leader by combining the original

leader selection parameters in the RAFT algorithm with the

unique parameters under the IoT application scenarios, such as

the computing resources of end devices and the time-variant

communication environment of the system. This kind of the

leader selection method can effectively avoid the existence

of multiple leaders in the network at the same time, thus

preventing network fragmentation.

Based on the above analysis, it can be seen that RAFT+

proposed in this article can effectively avoid network frag-

mentation and maintain the fault-tolerant performance of the

original RAFT algorithm.

VI. SIMULATION RESULTS AND ANALYSIS

To evaluate the performance of RAFT+, we developed a

simulation platform based on python. In the simulations, IoT

end devices collect and report perception data according to

preset intervals. Meanwhile, the location of IoT end devices

is fixed and all IoT end devices are directly connected to the

power supply. The amount of data generated in the area within

a fixed time is constant, and this article assumes that the energy

consumption generated by each IoT end-device performing the

block packaging task is the same. In the blockchain network

with RAFT+ as the consensus mechanism, blockchain nodes

do not need to participate in mining, thus reducing the num-

ber of computing tasks for each node and greatly reducing
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TABLE I
SYSTEM SIMULATION PARAMETERS AND VALUES

the system energy consumption. Due to the limited storage

resources of IoT end devices, this article adopts the method of

building a multilayer blockchain network to control the scale

of the local blockchain network to minimize the amount of

data that strong end devices need to store. The number of

strong end devices is determined by the specific simulation

settings. Meanwhile, the number of weak end devices is con-

sistent with the number of strong end devices. End devices

are randomly distributed in the simulation area with a radius

of 100 m to collect sensory data at fixed intervals. Weak

end devices collect and report the data to the closest strong

end devices, and strong end devices forward the data to the

leader in the blockchain network. At each packaging time,

the leader packages the data received since the last pack-

aging time to generate a block and sends the block to the

blockchain network. RAFT+ serves as the consensus mecha-

nism of the blockchain network. The total available bandwidth

of the system is 10 MHz. The system bandwidth is used

for data reporting by weak end devices, data forwarding by

strong end devices, and data transmission between the leader

and the followers when block consensus occurs. The SNR

of data transmission between the leader and each follower is

determined by system state N at that epoch. Only the large-

scale fading propagation is considered in our simulations, and

path loss is considered in the wireless channels. The main

simulation parameters of the IoT system are shown in Table I.

Each training round of the system completes 106 epochs

(steps). In order to achieve optimal simulation results within a

long-simulation epoch, the learning rate of neural networks

in DQN is set as 10−3. The specific parameters of neural

networks are listed in Table II.

As the number of iterations increases, the leader selection

strategy obtained by neural networks is gradually approaching

the optimal strategy. Fig. 6 shows the values of loss under

different numbers of end devices, where I represents the num-

ber of strong end devices in the simulations. The smaller the

loss value, the closer the predicted value to the target value.

It means that more training steps are required for the conver-

gence of the loss function with the increase of end devices

in the system. Since there are two neural networks in the

DQN algorithm for independent training and regular updat-

ing of neural network parameters, as well as the SNR values

between end devices are randomly distributed, the loss val-

ues fluctuate to a certain extent after the convergence of the

loss function. Simulation results show that the loss values of

TABLE II
NEURAL NETWORK PARAMETERS AND VALUES

Fig. 6. Convergence of estimation network with different numbers of end
devices.

the estimation network are from 104 to 102, and the average

number of iterations is about 105.

In order to show the impact of different consensus mech-

anisms of the blockchain network on system performance,

RAFT+ is compared with two baseline schemes, i.e., as

follows.

1) Random Selection Scheme: Before each block packag-

ing moment, the leader is selected randomly from all

the nodes in the blockchain network to complete block

generation and lead block consensus.

2) RAFT: The original RAFT algorithm determines whether

the leader fails at each block packaging time. In partic-

ular, when the original RAFT algorithm is used as the

consensus mechanism of the blockchain network, all fol-

lowers are selected as candidates to make an intuitive

comparison. If the original leader fails, the leader is res-

elected according to certain parameters, such as term

and index.

For the sake of comparison, data rollback is defined as the

case that a follower’s data is overwritten due to data inconsis-

tency between the leader and the followers. In the blockchain

network, data rollbacks may occur due to hardware failure or

communication failure. During the block consensus process,

if the leader notices that the blocks stored in a follower are
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Fig. 7. Probability of data rollback under different schemes.

Fig. 8. Average block generation latency with different amount of data
reported by each end device.

inconsistent with the leader, the inconsistent blocks in the fol-

lower will be deleted. Meanwhile, the follower’s ledger will

be updated to be consistent with the leader’s ledger. Fig. 7

shows the probability of data rollbacks under different consen-

sus mechanisms. Due to the unique leader selection scheme,

the RAFT algorithm can significantly reduce the probability of

data rollbacks with the number of end-devices increases. The

random selection scheme cannot limit data rollbacks, result-

ing in data loss. RAFT+ inherits the characteristics of the

RAFT algorithm, which can minimize the possibility of data

rollbacks.

Fig. 8 shows the impact of different consensus mechanisms

of the blockchain network on the average block generation

latency. In the simulations, the amount of data reported by

each end device is gradually increased. In Fig. 8, I repre-

sents the number of strong end devices in the simulations.

It is shown that the average block generation latency rises

gradually with the amount of data reported by end devices

increases. Compared with the RAFT algorithm, RAFT+ can

reduce the average block generation latency by 10% to 21%.

Meanwhile, with the increased amount of data reported by

the end devices, the impact of RAFT+ on reducing the aver-

age block generation latency becomes gradually obvious. The

Fig. 9. Average block generation latency with different numbers of strong
end devices.

Fig. 10. Possibility of selecting different end devices as the leader with
different numbers of strong end devices.

above results indicate that RAFT+ as the consensus mecha-

nism can effectively improve the operating efficiency of the

system and the load capacity of the blockchain network.

Fig. 9 shows the impact of different consensus mechanisms

of the blockchain network on the average block generation

latency under different numbers of IoT end devices. In the

simulations, the number of strong end devices is increased

from 3 to 12, and each end device reports two data units in

each epoch. In the simulations, the computing resources of

each strong end device are independently selected in a certain

range, which directly results in the fluctuation of the average

block generation latency. Though the amount of data rises with

the increase of end devices, the computing resources of strong

end device still affect the block packaging latency and lead to

the fluctuation of the average block generation latency. As the

number of strong end devices is increased, RAFT+ can main-

tain a low average block generation latency. When IoT end

devices have stronger computing resources, the system effi-

ciency is further improved. RAFT+ provides an approximately

15% performance improvement over the RAFT algorithm. The

performance improvement is achieved because the computing

resources of strong end devices and the time-variant communi-

cation environment of the system are not taken into account in
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the RAFT algorithm. However, the leader selection scheme in

RAFT+ comprehensively considers the IoT system resources

and obtains the optimal strategy through neural network train-

ing. It can be seen that the minimum average block generation

latency can be obtained by using RAFT+ according to Figs. 8

and 9. The simulation results indicate that RAFT+ is scal-

able. Considering the composition of the local blockchain

network and the limited computing resources of IoT end

devices, the number of nodes in the blockchain network is

limited. Meanwhile, with the increase of the number of IoT

end devices, the simulation time increases dramatically. From

the simulation results, the RAFT+ is capable of adapting to

blockchain networks with IoT end devices within the order

of 102.

Fig. 10 shows the probability of selecting different strong

end devices as the leader under different numbers of strong

end devices. Numbers on the histograms represent the serial

numbers of strong end devices as the leader. It can be seen that

RAFT+ is able to select the optimal leader in the blockchain

network according to the computing resources of IoT end

devices and the time-variant communication environment of

the system.

VII. CONCLUSION

In this article, a multilayer blockchain architecture was

designed to utilize the resources of IoT end devices while

balancing the loads among blockchain networks consisting of

end devices and base stations. The architecture divided an

IoT system into three layers to improve the adaptability to

the multilayer blockchain networks. Based on the architec-

ture, RAFT+ was proposed as the consensus mechanism of

the blockchain network, which can significantly reduce the

communication loss and computing load caused by block con-

sensus. Moreover, RAFT+ incorporated a DQN-based leader

selection scheme, which inherits the workflow of the original

leader selection mechanism. Meanwhile, the leader selec-

tion scheme improved the fault-tolerance performance of the

blockchain network and effectively avoided network fragmen-

tation. In this article, a performance evaluation was conducted

based on simulations to eliminate unstable factors during

system operation. Simulation results showed that the average

block generation latency of RAFT+ was reduced by 10% to

21% compared with the original RAFT algorithm under dif-

ferent conditions. It means that RAFT+ is able to complete

block consensus with low latency, so as to improve the effi-

ciency of the system and maintain its stability under high-load

conditions. In the next steps, the proposed consensus mecha-

nism will be implemented in an IoT-blockchain system in real

scenarios to verify the effectiveness.
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