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Abstract—The integration of the blockchain and Internet of
Things (IoT) systems can effectively guarantee data security in
IoT applications. To facilitate the use of blockchain on resource-
constrained IoT end devices, we propose RAFT+ with a new
leader selection scheme in this article, which is based on the dis-
tributed consensus algorithm RAFT. The design of RAFT+ aims
at mitigating the imparities between different types of IoT end
devices and enabling these devices to allow different types of IoT
end devices to participate in block consensus, thus maintaining
strong consistency of the blockchain network. The leader selec-
tion scheme is generated by a deep Q-Network (DQN), which
can make the optimal selection of the leader under various con-
ditions by leveraging the limited system resources as well as
balancing the load of the consensus mechanism on multiple IoT
end devices. Simulation results show that RAFT+ can enhance
the system performance while maintaining the security of the
system under high load conditions.

Index Terms—Blockchain, consensus mechanism,
Q-Network (DQN), Internet of Things (IoT), RAFT.
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I. INTRODUCTION

ITH the rapid development of Internet of Things

(IoT) applications, the operating expense, and secu-
rity requirements of IoT systems have become important
recently. Due to the increasing number of IoT end devices,
the traditional IoT systems face the following issues, i.e., as
follows.

1) Data security issues caused by traditional databases.
The IoT data is vulnerable to be stolen, tampered, or
destroyed.

2) Performance bottleneck caused by centralized archi-
tecture. The capability is highly limited by central
servers.
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3) Resources waste caused by unbalanced workload

between central servers and edge servers.

The blockchain technology has become one of the most
promising solutions for solving these issues, thanks to its char-
acteristics of immutability and decentralization [1]. With the
deployment of blockchain, the data in IoT systems are guar-
anteed to be consistent and secured [2]. One feasible way
to integrate IoT systems with the blockchain is to build a
multilayer blockchain network to meet the different capabili-
ties of the IoT modules [3]. The multilayer blockchain network
can improve the scalability of IoT systems and enable the
deployment of services on different layers. Meanwhile, the
multilayer blockchain network can meet the privacy needs of
different services and ensure the security of data. Generally,
the private blockchain is suitable for IoT systems since the
data is transmitted and stored privately [4]. As a decentralized
scheme, the blockchain requires a consensus mechanism to
ensure the consistency of data [5]. The main goal of the con-
sensus mechanism is to reach an agreement on the generation
of new blocks among all the participants. However, to avoid
the impact of faulty and malicious nodes, the consensus mech-
anism needs to be crash-fault-tolerant or even byzantine fault
tolerant without trusted third party’s verification [6]. Usually,
an [oT system mainly includes three types of modules, i.e., the
central servers, the base stations, and the end devices. As the
core module of data processing in IoT systems, central servers
have plenty of computing resources to handle the tasks for the
deployment of the blockchain [7].

To make full use of the available resources of end devices
and base stations, this article proposes a blockchain architec-
ture for IoT applications that requires security assurance. In
the proposed architecture, the IoT system is divided into three
layers, i.e., the cloud layer, the edge layer, and the end-device
layer. IoT end devices are divided into strong end-devices and
weak end-devices based on their computing abilities. In the
proposed architecture, the IoT modules are layered to distin-
guish their performance and meet the construction require-
ments of a multilayer blockchain network. The multilayer
blockchain network is consists of a blockchain network on
the cloud and several local blockchain networks. Meanwhile,
the local blockchain network is constructed by strong end
devices and base stations. The multilayer blockchain network
needs to use a proper consensus mechanism to alleviate
the load caused by the deployment of blockchain nodes
on end devices with different abilities. Common consensus
algorithms, such as Proof of Work (PoW) [8] and practical
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Byzantine fault tolerance (PBFT) [9], [10], are not suit-
able for the blockchain network in the proposed architecture
due to their high computation or communication require-
ments for modules. Lightweight consensus algorithms, such
as the RAFT algorithm [11], provide a feasible solution to
alleviate the computing load caused by the deployment of
blockchain nodes. The RAFT algorithm has the characteristic
of selecting a leader regularly and the leader is responsible
for replicating the blocks of nodes, which makes it suit-
able for IoT systems [12], [13]. The RAFT algorithm divides
the system running time into terms, and each node in the
network switches among three states, i.e., leader, follower,
and candidate. The Leader selection in the RAFT algorithm
is triggered by the missing of heartbeat packets. In each
term, the candidate that reaches the quorum of votes becomes
the leader. Then, the leader sends heartbeat packets to other
nodes to establish leader authority and terminate the selec-
tion process. However, the RAFT algorithm does not take into
account the different resources in IoT end devices, because it
is a purely random mechanism. Therefore, there are resource
wastes when use the RAFT algorithm in IoT-blockchain
systems.

Therefore, we propose RAFT+, an improved algorithm
based on the RAFT algorithm with a new leader selec-
tion scheme. First, RAFT+ collects computing resources
of each end device and samples the time-variant commu-
nication environment of the system as the parameters of
the leader selection. Then, a central node is chosen in the
blockchain network to collect selection parameters and select
the leader. Considering the computing resources of differ-
ent IoT modules, base stations are the central nodes in the
local blockchain networks. Finally, all blockchain nodes par-
ticipate in leader selection as candidates. The purpose of the
above improvements is to make the optimal leader choice
considering the current status of the system resources. The
performance metric of leader selection is the block generation
latency, which is defined as the sum of the block packag-
ing latency and the block consensus latency. The optimization
problem is formulated as a Markov decision process (MDP)
model, which is solved by the deep Q-Network (DQN) algo-
rithm. The main contributions of this article are summarized
as follows.

1) A multilayer blockchain architecture is proposed for
IoT systems. By layering an IoT network on top of a
blockchain network, we explain that this layered struc-
ture has good adaptability to the multilayer blockchain
network. Meanwhile, the blockchain networks are
formed by multiple types of IoT modules to make
efficient use of different IoT modules.

2) Based on the blockchain architecture, RAFT+ is
proposed as the consensus mechanism of the blockchain
network, which selects a leader by considering the
time-variant communication environment and computing
resources of each end device.

3) The leader selection scheme in RAFT+ is based
on the DQN algorithm, which improves the original
leader selection mechanism and maintains the fault-
tolerance performance of the original RAFT algorithm.
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The optimal selection strategy is generated by neural
networks.

The remainder of this article is organized as fol-
lows. Section II overviews the existing work related to
this article. Section III gives the system model and
problem formulation. Section IV provides the MDP for-
mulation and a detailed description of the DQN-based
RAFT+-. Section V analyzes the fault-tolerant performance
of RAFT+. In Section VI, the performances of RAFT+H
are evaluated by simulations. Conclusions are drawn in
Section VII.

II. RELATED WORK

In the traditional IoT systems, end devices, and base stations
are responsible for data reporting and forwarding, respectively,
while computing services and databases are deployed on the
central servers [14], [15]. The disadvantage of the centralized
data processing structure is that system efficiency completely
depends on the performance of the central servers [16], [17].
Meanwhile, there are security problems, such as privacy
leakage [18].

Liu et al. [19] transferred part of the computing tasks to
base stations, utilizing the computing resources of base sta-
tions to alleviate the load pressure on the central server and
improve the efficiency of the system. Security challenges are
generally addressed by combining IoT systems and blockchain
in the existing research. In the blockchain network built for
IoT systems, Guo et al. [20] utilized resources of all the
IoT modules in the system to improve system efficiency. In
specific IoT scenarios, the blockchain network needs to be
designed according to the characteristics of scenarios to main-
tain the stable operation of the systems [21], [22]. In the
industrial IoT (IloT) scenario, network security is particularly
important [23], [24]. Most IIoT infrastructures are based on a
centralized architecture which is easier to manage but does not
effectively support validation services between multiple par-
ties. The blockchain-based IIoT architecture provides effective
validation services and data storage schemes for resource-
constraint IIoT infrastructures [25]. However, many prior
works adopt common consensus algorithms, such as PoW,
without considering the performance differences between the
IoT modules. Due to the use of common consensus algorithms,
a heavy workload is placed on end devices. With the operation
of the system, end devices may stop working, thus affecting
the integrity of the blockchain network and the efficiency of
the system.

To maintain the stable state of end devices in the blockchain
network, a lightweight blockchain consensus algorithm needs
to be developed based on the performance characteristics of
end devices. Existing research on lightweight consensus algo-
rithms can be divided into two categories. One category is to
improve the common consensus algorithms [26], [27]. Based
on PoW, Alhejazi and Mohammad [28] proposed a novel
algorithm adapted from the concept of the weighted major-
ity algorithm in ensemble learning, called WMCA, which
enhanced the detection of malicious anomalies, thus improving
the security level of IoT systems. Similarly, Huang et al. [29]
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proposed a credit-based PoW mechanism for IIoT scenario.
To protect sensory data confidentiality, a data authority man-
agement method was designed in [29] based on directed
acyclic graph-structured blockchains. Li et al. [30] proposed
an improved PBFT consensus mechanism based on reward
and punishment strategy. Meanwhile, a storage optimization
scheme based on RS erasure code was proposed to reduce
the cost of blockchain storage. Choi et al. [31] replaced
the PoW sin PoW with the proof of trust accumulated
by nodes working continuously in the blockchain network.
Meanwhile, Zaman et al. [32] replaced the PoW with
the proportion of the resources paid by the nodes to the
resources they have. Although the above- improved methods
can retain the mature algorithm flow of PoW, it is difficult
to reduce the computational load caused by the consensus
mechanism.

The other category is to design new consensus algorithms
for specific application scenarios. Biswas et al. [33] simplified
the consensus process into two steps, transaction verification
and consensus formation. Peers were merged according to the
number of nodes participating in the consensus to reduce the
computing time required to reach consensus. For the con-
sortium blockchain, Wang et al. [34] proposed a consensus
fusion scheme based on trust levels to complete collabora-
tive learning. The candidates with higher trust levels played
a more important role in the consensus. Similarly, Kaci and
Rachedi [35] proposed a new reputation-based blockchain
named PoolCoin based on a distributed trust model for
mining pools. The trust model provided a machine learn-
ing module to assess the capabilities of mining machines,
allowing pool managers to select trusted miners in their min-
ing pools. In [36], each IoT sensor generated its unique
tag and broadcasts it to the blockchain network. After a
trusted node in the blockchain network authenticates the sen-
sor, the sensor hashes the authenticated block through the
lightweight hash function and adds the block to the blockchain.
However, the RAFT algorithm has good adaptability to the
blockchain network for IoT applications due to its algorithm
characteristics [37], [38].

The RAFT algorithm divides the system running time into
multiple terms, and the beginning of each term is leader selec-
tion. During the leader selection, each node in the network
switches among three-node states according to leader selection
results. The leader selection in the RAFT algorithm is trig-
gered by the heartbeat mechanism. When any follower fails to
receive the heartbeat packet sent by the leader within the fixed
time, the follower converts to a candidate and triggers leader
selection. In the selection, all the followers who fail to receive
the heartbeat packet are selected as candidates. At the begin-
ning of the selection, each candidate sends requests in parallel
to obtain the votes of followers, and each follower votes for
the candidate whose request it receives first. The candidate
who obtains the votes of the majority nodes becomes the new
leader. Additionally, the new leader sends heartbeat packets to
other nodes in the network to establish leader authority and
terminate the selection.

In a blockchain network with the RAFT algorithm as the
consensus mechanism, the leader is responsible for packaging

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

:' & & & Weak end-deviee B

Cloud layer !
N + (Jstrong end-device { ] Leader!
e =

N s
-
Edge layer -
~
'~ ~ R
. Sy -
-0y ~ v
,__/i FedTT
End-device ///\ g 0 g~ T T T~
layer /& (*Q) & 0 N 7 = TN
\.\{E\é = A e Vs s
v =0 @ 0= i m & Ou -
\\\A\ = D// v =20 s 0 E///
SN = -7 ~ D E.}’ -

Fig. 1. Blockchain architecture for IoT applications.

transactions to generate blocks, and blocks are sent to follow-
ers for endorsement. After receiving a new block, the followers
endorse the block and return confirmation responses contain-
ing the endorsement results to the leader. The leader notifies
nodes in the network to update the new block synchronously
after receiving enough confirmation responses. The efficiency
of this consensus algorithm is determined by the performance
of the leader and the communication environment [11]. The
block consensus method of the RAFT algorithm can avoid
heavy computing burdens, while the unique leader ensures
the consistency of data in the network [39]. However, the
RAFT algorithm does not take into account the limited system
resources in IoT applications since its selection parameters are
fixed. Moreover, leader selection causes a large communica-
tion loss, and there is a randomness in the leader selection
process. To be implemented, the RAFT algorithm needs to be
modified to fit the characteristics of various IoT scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The proposed IoT-blockchain system is shown in Fig. 1,
it consists of a blockchain network on the cloud and several
local blockchain networks. The local blockchain network con-
structed in this article consists of a base station and strong end
devices in the coverage area of the base station. Meanwhile,
the blockchain network on the cloud consists of the central
servers. The local blockchain network uses RAFT+ as the
consensus mechanism, which stipulates that the leader gen-
erates blocks and impels block consensus. When a block is
generated in the local blockchain network, the leader notifies
nodes in the network to update the new block synchronously.
The base station reports the generated new block to the central
server in the blockchain network on the cloud.

A. Scenario Description

Assuming an IoT system with a single-base station cov-
erage scenario, as shown in Fig. 1, where the number of
strong end devices and the number of weak end devices
are I and J, respectively. Strong end devices are indexed by
i, i € {1,2,...,1I}. A base station and strong end devices
form a blockchain network, of which the number of nodes is
I + 1. The base station and strong end devices are regarded
as the central node and candidates of leader, respectively. The
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communication environment and computing resources of each
strong end device are considered during leader selection. After
leader selection, the selected leader is represented by / and the
remaining nodes become followers. Weak end devices collect
and report data to the nearest strong end device, while strong
end devices forward the collected data to leader /. Following
the consensus algorithm, the data received by leader [ is pack-
aged in the form of transactions into blocks, and the new
blocks are replicated to the blockchain ledger of each node
in the blockchain network.

B. Communication Model

End devices collect and report data at fixed intervals. Each
end device collects data for only one application type. The
system time is divided into multiple epochs, and each epoch
starts with the end of previous block consensus. Let n represent
the number of data packets reported by each end device in an
epoch, which follows the Poisson distribution and is given as
follows:

n

A
p(n) = —¢€
n!

- (1)

where A is the average number of data packets collected by
the end device in an epoch. D,, is the size of data packets,
and the amount of data reported by the end device in an epoch
is nD,,.

During the data transmission process between the IoT mod-
ules, only large-scale fading including path loss is considered
in the wireless channel model. The transmission rate between
the IoT modules based on the Shannon formula is given as
follows:

B
i = 710g2(1 + 1) 2

where B is the bandwidth used for block consensus in the
system, and y;; is the signal-to-noise ratio (SNR) of data
transmission between leader [ and follower i, i.e.,

PCONd;iﬂ\IJ 3
Yii = BN, 3)
where Pcon is the total transmission power that is equally
divided for the followers for block consensus, Ny represents
the average power spectral density of white noise, d;; repre-
sents the distance between leader / and follower i, 8 stands for
the path loss ratio, and ¥ ~ LN (0, 02) denotes the shadow
fading which follows a log-normal distribution. An / x I matrix
is used to represent the SNR of data transmission between the
IoT modules in the blockchain network, which is given as
follows:

0 V12 - VLI-1 Vi1
2,1 2.1
V3,1 V3.1
) ) “4)
Yi-1,1 Yi—-1,1
Y11 VL2 VILI-1 0
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C. Leader Selection Model

To enhance the overall communication efficiency in the pro-
cess of block consensus, RAFT+ selects a central node in the
blockchain network to collect the parameters of other nodes
and selects the leader. If the leader does not receive a suf-
ficient number of confirmation responses with endorsement
results during the longest block consensus time S9N, block
consensus is considered failed and the leader selection pro-
cess will be triggered. There could be two reasons that leads
to such a scenario, i.e., as follows.

1) Hardware Failure: Hardware failure is defined as a hard-
ware failure of the leader. Since if any follower has a
hardware failure, the rest of the followers can still return
confirmation responses and the blocks can reach consen-
sus. A hardware failure of the leader causes the leader
to fail to receive confirmation responses, resulting in a
failed block consensus. The probability of such a fault
is represented by phard-

2) Communication Failure: Data transmission rate ry;
between leader / and follower i is determined by the
SNR, and SNR y;; between leader / and follower i
changes with the time-variant communication environ-
ment of the system. When data transmission rate ry;
falls below the minimum rate requirement, the com-
munication between nodes is interrupted. Data trans-
mission rate r;; falls below the minimum requirement,
which means SNR y;; falls below the minimum SNR
requirement. The communication interruption probabil-
ity pc(l, i) between leader / and follower i is expressed
as follows:

Y0
pe(l, i) = Pr(yi < yo) = /0 f(x)dx (&)

where y represents the minimum SNR requirement for
data transmission between nodes and f(x) is the prob-
ability density function of SNR. If more than [/2]
followers meet the communication interruption with the
leader, communication failure occurs in the blockchain
network. Let By represent the set of all followers at
timestamp ¢, and Be; represent the set of followers which
meet the communication interruption during data trans-
mission at timestamp ¢, Ber © By. When the number of
elements in set Be; is more than [//2], the probability
Pcom Of communication failure due to communication
interruption is expressed as follows:

Pcom = 1_[ pel,)) - 1_[

JEBer m¢BerNMeBy,

[1 = pet.m)]. (6)

The probability of triggering the leader selection process by
various faults is expressed as follows:

Pe = Phard + Pcom — Phard * Pcom- @)

After completing leader selection, the central node sends the
selection result to nodes in the blockchain network. Each node
updates its node status and resends the reported but unpack-
aged data to the new leader. The new leader completes block
packaging and block consensus tasks.
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Fig. 2. Basic block consensus flow.

D. Block Consensus Model

The basic block consensus flow of RAFT+ is shown in
Fig. 2. The data reported by weak end devices and forwarded
by strong end devices is stored in the cache pool of the leader
in the form of transactions. The leader packages all transac-
tions in the cache pool at the packaging interval to generate
blocks. The number of transactions contained in the block is
determined by the amount of data reported by each end device.
After the block is generated, the leader sends it to the follow-
ers in the blockchain network for endorsement. Each follower
returns a confirmation response containing the endorsement
result. After the leader receives [I/2] confirmation responses,
the generation of the block reaches a consensus within the
blockchain network and the leader notifies the followers to
synchronously update the block. The block generation pro-
cess is mainly divided into two steps, i.e., block packaging
and block consensus.

During a block consensus process, if the leader fails to
receive enough confirmation responses, block consensus will
be invalid and leader selection will be triggered. There are
two main reasons for the above situation, one is the leader’s
hardware failure, and the other is the poor communication
environment of the system. When the new leader is selected
through the leader selection scheme, followers will report the
data that fails to generate the block to the new leader. The new
leader will package the data to generate a new block and start
block consensus. Leader selection in RAFT+ is dominated by
the central node, which collects the parameters of each node
in the blockchain network and selects the new leader. The new
leader collects and packages data in the form of transactions to
generate a new block. After the new block is generated, block
consensus is carried out in the network. The specific process
is shown in Fig. 3.

In the proposed blockchain architecture, a block is com-
posed of a block header and a block body. The block header
mainly stores metadata for identifying blocks and the Merkle
root is calculated based on the transactions stored in the block.
Specifically, the Merkle root is generated by the Merkle tree,
and each leaf node in the Merkle tree represents a transaction
stored in the block. For block k containing 7y transactions,
the number of hash values ny contained in the Merkle root is

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

Weak
End-device

Strong

End-device Error Leader Base Station

EA

| Collect & report | | |

messages
}—bi ] Forward
messages

Forward

—
I messages

I Generate block l

Verify & Verify &
Endorse Endorse I

I— Response —»!<+—— Response —I

| parameters

l Forward

I:lGen erate blockl

| Verify & _»I

Endorse

I

[

[

I

I

I I
| I Forward
I

I

I

[

[

I

|

I
I
—I
I
I
I
I
! —
|
I

l_ messages
|
|
I

Verify &

-—
Endorse

——
I
|
| .
| result
|
I
I
[

Resp —>|<— ] _—
Synchronous Synchronous

|
r_ update block I_ update block _>|

Fig. 3. Block consensus flow when leader failures occur.

given as follows:
ng = 2n; — 1. ()

The block body stores specific data in the form of trans-
actions. The amount of data reported by strong end device i
received in block k is represented by ng ;, and the number of
transactions stored in block & is given as follows:

1
=" ni. ©)
i=1

Let n; indicate the number of central processing unit (CPU)
cycles available for leader / in a unit time, and &, represent the
number of CPU cycles required to calculate a hash value from
the hash function for a transaction. For block & with ny transac-
tions, n; — 1 times of hash operations are required to generate
the Merkle root. The number of CPU cycles required for a
hash operation to generate the Merkle root is &,. Combine
the above variables, the block packaging latency is given as
follows:

PACK __

nk&p + (e — D&y,
tlk _— .

uli

In the RAFT algorithm, the leader sends heartbeat packets
to followers in the blockchain network to maintain the state of
each node. In RAFT+, the new blocks are regularly packaged
by leader ! and reported to followers also serve to maintain
the state of each node. The data transmission process of block
consensus includes two parts, which are 1) the leader sends the
new block to the followers and 2) the followers return con-
firmation responses containing the endorsement results. The
block consensus latency between leader / and follower i can
be expressed as follows:

ngD; + ngDy, n Dy mD; + ngDp + Dy

i ril rl,i

(10)

CON

Ly = (11)
where D; represents the data size of a transaction, Dj, rep-
resents the data size of a hash value, and Dy represents
the data size of a confirmation response. Assuming that the
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confirmation response returned by follower i is the [//2]th
confirmation response received by the leader, the generation
latency for block k is given as follows:

GEN

¢ PACK
Lk

CON
=Tk :

+1y (12)

E. Objective

The optimization goal of the system is to obtain the optimal
leader selection strategy 7 * for RAFT+. In the strategy, selec-
tion parameters are comprehensively analyzed to choose a
leader that can minimize the average block generation latency.
The specific optimization problem can be defined as follows:

K
. 1
minE, |:E Z [(1 —Pe)fzk +Pe( maxCON + tzGEN)}:|

k=1
le{l,2,...,1},ze{l,2,...,1}

:l#ZaOSPefl

s.t. Cl1:
(13)

where z represents the new leader selected by the central node.
The confirmation response returned by follower i is the [//2]th
confirmation response that the leader has received. tGEN rep-
resents the block generation latency of block & generated by
leader [, and tGEN represents the block generation latency of
block k generated by new leader z.

IV. DQN BASED RAFT+ ALGORITHM

The optimization problem (13) is formulated as an MDP
model which consists of a state set S, an action set A, and
a reward function R : S x A — R. Let 7 denote the epoch
when the leader starts to generate a new block. Without extra
explanations, the symbol 7 is omitted for simplicity, i.e., S; =
S, A; .= A. The DQN algorithm is adopted to find the optimal
policy 7* by a training procedure.

A. MDP Model Formulation
1) State Set: System state S is defined as follows:

§S=(M,L P, N,E) (14)
where M represents the number of data received by the leader.
Let M; represent the number of data received by each strong
end device at epoch t. M can be specifically expressed as
follows:

M =

> M.

ie{l,2,....1}

5)

L represents the serial number of the leader in the blockchain
network, i.e., L = [. P represents the probability of hardware
failure occurred at the leader, i.e., P = ppard. N represents
the SNR values between the leader and the followers in the
blockchain network during data transmission, which can be
obtained from (4). E represents the node state of the leader

at epoch 7 : E = 0 means that the leader does not need to
be replaced, and E = 1 means that the leader needs to be
replaced.

11967

2) Action Set: In this model, action A taken at epoch t is
defined as the serial number of the selected leader, which can
be expressed as follows:

A=1 (16)

where [ € {1,2,...,1}. The block packaging interval is rep-
resented by 7, and the model generates actions at intervals of
tp. If more than [//2] followers return confirmation response
in the process of block consensus, the leader is functioning
normally and action A; remains the same as action A;_; at
the last epoch. All possible actions form action set .A.

3) State Transition Function: With an action A at a given
state S, the following state S’ can be determined via the state
transition function. The system state N;y| at the next epoch
can be expressed as follows:

Newr = {5l € By ). (17)

According to system states Ly, N;41 and P41, the failure of
leader [ is examined, thus system state £, at the next epoch
is determined. The specific system state E;1 can be expressed
as follows:

0, normal
Ecp1 = {1, error.

Assuming that the selected leader at epoch t is A;, the state
transition function of system state L can be obtained according
to E;41, which can be expressed as follows:

L _ L, Er+l=0
T A B =L

4) Reward Function: The instant reward is defined as
the block generation latency at epoch t, which consists of
the block packaging latency and the block consensus latency.
The reward function is given as follow:

(18)

19)

{GEN | (CON. E. =0
R(r) = tCON_I_tGEN_I_tCON’ E, =1.

max

(20)

B. Leader Selection Scheme

In the MDP model established in this article, the system
states are discrete and the number of the states is limited.
Meanwhile, the size of the action set is determined by the
number of strong end devices. So this article adopts the DQN
algorithm to learn function Q and strategy 7*. The DQN
algorithm combines reinforcement learning with deep neu-
ral networks and utilizes an experience replay strategy to
eliminate the correlation between input sequences. The DQN
algorithm includes two neural networks, i.e., the estimation
network and the target network. The estimation network is
trained in real time according to a properly defined loss func-
tion. The target network uses the weights of the estimation
network at intervals to update its network parameters, and the
target network is used to calculate the objective function value.
The two neural networks are used independently to eliminate
the correlation between the estimated Q value and the target
Q value. As the central node, the base station collects selec-
tion parameters stored in each follower and selects the leader
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Fig. 4. Example of block inconsistency.

according to strategy m*, which can be expressed as follows:
7*(S,A) = argmax Q(S, A). 20D
AcA

The DQN algorithm uses the following formulas to update the
parametric loss function £(6) during iterations:

£®) =E[(0(5.4,0) - 0y,)’

O = R(S, 4) + y max 0(S', 4", )
AeA

(22)
(23)

where 6 represents the parameters of the estimation network,
6 represents the parameters of the target network, y is a dis-
count coefficient, 0 < y < 1. § and A’ are the system state
and the action at the next epoch. RAFT+ is based on the
DQN algorithm, which is shown in Algorithm 1. After suffi-
cient training, neural networks can generate the optimal leader
selection strategy.

V. FAULT-TOLERANT PERFORMANCE ANALYSIS

In the RAFT algorithm, the leader is responsible for block
generation and dominating block consensus. After a new block
is generated, the leader sends the new block to the follow-
ers for endorsement to reach a consensus on the new block.
The followers then send confirmation responses containing the
endorsement results to the leader. When the leader receives
a sufficient number of confirmation responses, an agreement
has been achieved for the new block within the blockchain
network. A synchronous block update message is reported to
the followers by the leader. In the RAFT algorithm, leader
selection is triggered by the heartbeat mechanism. If any
follower fails to receive the heartbeat packet reported by
the leader as scheduled, leader selection will be triggered.
Meanwhile, the RAFT algorithm provides a data synchro-
nization mechanism controlled by the leader to solve the
problem of block inconsistency between different nodes with
less computation required.

A. Block Inconsistency

In the blockchain network with the RAFT algorithm as the
consensus mechanism, the blocks between nodes may not be
synchronized, as shown in Fig. 4. The number in each block
indicates the term of the block.

RAFT+ modifies the trigger conditions of the leader selec-
tion and combines leader selection with block consensus. The
leader in the blockchain network sends the new block to the
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Algorithm 1 DQN-Based RAFT+ Algorithm

Input: Initialize ppag, ¥ and the number of end-devices.
Initialize neural network parameters ¢, y, 9, 0 , and learning
rate «. Set start time of iteration and the total iteration time
Tmax- Set update timestep 7, of the target network.

Output: strategy 7*

1: Initialize a starting action A = Ag = 0 and a starting state
S = So = (My, Lo, Py, No, Ep), building neural Networks.
2: while t # Tt do
Update the real-time SNRs of data transmission
between end-devices;
Update the state N according to the SNRs;
According to the system state, determine whether the
system has a hardware failure or communication failure;
if Hardware failure or communication failure then
7: Update state E, generate random number e, start
leader selection;
if ¢ > ¢ then
Generate Q values corresponding to all actions
according to the estimation network;

10: A new leader is selected according to the (21)
from Q values;

11: else

12: Randomly select new a leader as action A;;

13: end if

14: Update state L, = Ay;

15: else

16: Keep the same action as the previous epoch;

17: Update state Ly = L,;_

18: end if

19: Each end-device execute action A; and leader observe
R and S;41;

20: Push the observation sequence (S;, A, R, S;4+1) into
the experience replay pool;

21: Sample S, §', A and R from the experience replay pool;

22: The estimation network and the target network respec-
tively predict Q value according to S and §';

23: Update the corresponding Q value in the estimation

network based on R and predicted Q values according to
(22);

24: Update loss function £(f) and parameter 6 of the
estimation network according to (23);

25: if 7 mod ¢, = 0 then

26: Update the target network parameter 0 according
to the estimation network parameter 0;

27: end if

28: Sett+1— 7 and S;41 — S;;

29: end while

followers to maintain the node state of the followers. The fol-
lowers endorse the block and return confirmation responses
including the endorsement results. If the leader receives more
than [1/2] confirmation responses reported by the followers,
an agreement is reached for the generation of the block in
the network. During the block consensus process, a follower’s
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failure to return confirmation response means the commu-
nication interruption occurs between the follower and the
leader, and the follower is not able to update the block syn-
chronously. During the operation of the system, the followers
receive new blocks sent by the leader and return confirmation
responses containing the endorsement results. After receiv-
ing a confirmation response, the leader checks the related
data contained in the confirmation response. The data syn-
chronization mechanism is triggered if the leader finds the
index of the block contained in the confirmation response
is inconsistent with the index stored by itself. To maintain
data consistency between the leader and the follower, the
leader traverses both ledgers to find the closest consistent
block. After the closest consistent block is found, the leader
sends a command to delete all blocks after that block in
the follower’s ledger. Then, all blocks in the leader’s ledger
after that block are sent to the follower to complete the data
synchronization.

In RAFT+H, the leader selection is triggered by hard-
ware failure or communication failure. Communication failure
means that more than [//2] followers and the leader have
communication interruptions. After leader selection is trig-
gered, the central node in the blockchain network collects the
parameters of each follower to select a new leader. The new
leader collects the ledger of each follower and compares it
with its ledger. The different parts of the follower’s ledger
will be covered according to the leader’s ledger. Meanwhile,
each follower reports the data that has been reported but not
stored in the ledger to the new leader. As a part of block
consensus, the new leader generates a block and sends it to
the followers. After block consensus is approved, the follow-
ers update the block synchronously at the time determined by
the new leader. Therefore, RAFT+ can solve the problem of
block asynchronization among nodes that may occur in the
blockchain network.

B. Network Fragmentation

During the operation of an IoT-blockchain system using the
RAFT algorithm as the consensus mechanism, it may occur
that several followers cannot receive the heartbeat packets at
the same time and are converted to candidates. Several candi-
dates send vote requests in parallel to compete for the votes of
the followers in the network. The followers then vote for the
candidate whose vote request they receive first (the candidate
shall meet the requirements of selection parameters, such as
term). Each candidate may have a random chance of gaining
votes from the followers due to factors, such as communica-
tion environment and distance between nodes. If no candidate
receives more than half of the votes, the vote will be invalid
and the leader selection will be restarted. In this case, the
nodes in the blockchain network cannot work normally until
a new leader is selected. The RAFT algorithm stipulates that
only one leader can exist in a network to avoid network frag-
mentation. An example of network fragmentation is shown in
Fig. 5, where the simultaneous existence of multiple leaders
directly results in a split of the network and the independent
generation of blocks. After the original network is split into

11969

Log index ® @
Node index
(1) | 1 | 1 | 2 | 2 4 | 5 | Leader 1(term 6)

@
®3) I:II:III 4] } Followers(term 6)
@) [OIOT-T-T518T5]

(6) [frf2] 5 | }
Followers(term 6)
() [ 4]

Fig. 5. Example of independent block generation after network
fragmentation.

multiple networks, each network will be independent of the
others.

The blockchain networks require data consistency between
nodes, the block asynchronization caused by network fragmen-
tation is unacceptable. To deal with the problem of network
fragmentation in the blockchain networks, RAFT+ modifies
the process that several candidates send vote requests in paral-
lel to compete for the votes of the followers in leader selection.
First, RAFT+ determines whether to select a new leader
based on the failure situation of the original leader. Second,
RAFT+ considers all followers as candidates for leader selec-
tion, so that the optimal leader choice can be made in each
term. Finally, RAFT+ selects a central node in the blockchain
network to collect the parameters of each follower. The cen-
tral node selects the unique leader by combining the original
leader selection parameters in the RAFT algorithm with the
unique parameters under the IoT application scenarios, such as
the computing resources of end devices and the time-variant
communication environment of the system. This kind of the
leader selection method can effectively avoid the existence
of multiple leaders in the network at the same time, thus
preventing network fragmentation.

Based on the above analysis, it can be seen that RAFT+
proposed in this article can effectively avoid network frag-
mentation and maintain the fault-tolerant performance of the
original RAFT algorithm.

VI. SIMULATION RESULTS AND ANALYSIS

To evaluate the performance of RAFT+, we developed a
simulation platform based on python. In the simulations, IoT
end devices collect and report perception data according to
preset intervals. Meanwhile, the location of IoT end devices
is fixed and all IoT end devices are directly connected to the
power supply. The amount of data generated in the area within
a fixed time is constant, and this article assumes that the energy
consumption generated by each IoT end-device performing the
block packaging task is the same. In the blockchain network
with RAFT+ as the consensus mechanism, blockchain nodes
do not need to participate in mining, thus reducing the num-
ber of computing tasks for each node and greatly reducing
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TABLE I
SYSTEM SIMULATION PARAMETERS AND VALUES
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TABLE II
NEURAL NETWORK PARAMETERS AND VALUES

Parameter Value Parameter Value | Parameter description
Area radius 1 km Layers of neural network | 3 Number of layers of neural network
Number of strong end-devices 3,4, ..,12 Neurons per laver 128 Number of neurons in each layer
Number of weak end-devices 3,4, ..,12 P y of neural networks
CPU cycles of end-devices for hash opera.tions 20, 40,60 MHz Training steps 106 Number of training steps per
Number of messages reported by end-devices 2,3, .., 11 simulation i
Hardware failu're probability 5% Leamning rate 10-3 Control the learning progress
System bandwidth 10 MHz during iterations
Bandwidth for each weak end-device 200 kHz Reward_decay 0.9 Discount rate for long term reward
Bandwidth for each strong end-device 400 kHz Probability of choosing the action
SNR threshold —20 dB €_greedy 0.8 with the highest Q) value
Interval of replace the target
Replace_target_iter 300 network parameters with the
estimation network parameters
. L Memory size 500 Cache pool size
the system energy consumption. Due to the limited storage Batch size 32 Size of the sample from cache pool
resources of IoT end devices, this article adopts the method of
building a multilayer blockchain network to control the scale
of the local blockchain network to minimize the amount of ) — i:;‘
. 8.0x10 =
data that strong end devices need to store. The number of « b _ -s
strong end devices is determined by the specific simulation 2
. . . . o
settings. Meanwhile, the number of weak end devices is con- Z 6.0x10°
. . . . s
sistent with the number of strong end devices. End devices 5
are randomly distributed in the simulation area with a radius % oo
of 100 m to collect sensory data at fixed intervals. Weak E
. <
end devices collect and report the data to the closest strong >
end devices, and strong end devices forward the data to the S 20a0°
leader in the blockchain network. At each packaging time, h
the leader packages the data received since the last pack- 0.0 | ! L1 ] VI U
aging time to generate a block and sends the block to the o0 S aoar eonr sear oo

blockchain network. RAFT+ serves as the consensus mecha-
nism of the blockchain network. The total available bandwidth
of the system is 10 MHz. The system bandwidth is used
for data reporting by weak end devices, data forwarding by
strong end devices, and data transmission between the leader
and the followers when block consensus occurs. The SNR
of data transmission between the leader and each follower is
determined by system state N at that epoch. Only the large-
scale fading propagation is considered in our simulations, and
path loss is considered in the wireless channels. The main
simulation parameters of the IoT system are shown in Table L.

Each training round of the system completes 10 epochs
(steps). In order to achieve optimal simulation results within a
long-simulation epoch, the learning rate of neural networks
in DQN is set as 1073, The specific parameters of neural
networks are listed in Table II.

As the number of iterations increases, the leader selection
strategy obtained by neural networks is gradually approaching
the optimal strategy. Fig. 6 shows the values of loss under
different numbers of end devices, where [ represents the num-
ber of strong end devices in the simulations. The smaller the
loss value, the closer the predicted value to the target value.
It means that more training steps are required for the conver-
gence of the loss function with the increase of end devices
in the system. Since there are two neural networks in the
DQN algorithm for independent training and regular updat-
ing of neural network parameters, as well as the SNR values
between end devices are randomly distributed, the loss val-
ues fluctuate to a certain extent after the convergence of the
loss function. Simulation results show that the loss values of

Number of Training Steps

Fig. 6.
devices.

Convergence of estimation network with different numbers of end

the estimation network are from 10* to 102, and the average
number of iterations is about 10°.

In order to show the impact of different consensus mech-
anisms of the blockchain network on system performance,
RAFT+ is compared with two baseline schemes, i.e., as
follows.

1) Random Selection Scheme: Before each block packag-
ing moment, the leader is selected randomly from all
the nodes in the blockchain network to complete block
generation and lead block consensus.

2) RAFT: The original RAFT algorithm determines whether
the leader fails at each block packaging time. In partic-
ular, when the original RAFT algorithm is used as the
consensus mechanism of the blockchain network, all fol-
lowers are selected as candidates to make an intuitive
comparison. If the original leader fails, the leader is res-
elected according to certain parameters, such as term
and index.

For the sake of comparison, data rollback is defined as the
case that a follower’s data is overwritten due to data inconsis-
tency between the leader and the followers. In the blockchain
network, data rollbacks may occur due to hardware failure or
communication failure. During the block consensus process,
if the leader notices that the blocks stored in a follower are

Authorized licensed use limited to: Auburn University. Downloaded on September 23,2022 at 03:06:28 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DQN-BASED CONSENSUS MECHANISM FOR BLOCKCHAIN IN IoT NETWORKS

30%

--- RAFT
—O-- Random selection scheme|
25% b B ‘ /'D See PPEC e -
/_/ o . Pl o ~0-
7
20% -7

15%1
N

10% F—Ly—=cs

The Probability of Data Rollbacks

5% S

I |

4 5 6 7 8 9 10

Number of Strong End-devices

Fig. 7. Probability of data rollback under different schemes.
400
1=41=6
2 -A--A- RAFT+
g --O-- —-0-- RAFT e
2320 -
Q
s
<
A
§ 240
5
=
S
= 160
Q
2
m
(o)
& 80
5
>
<
0
Amount of Data Reported by Each End-device
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reported by each end device.

inconsistent with the leader, the inconsistent blocks in the fol-
lower will be deleted. Meanwhile, the follower’s ledger will
be updated to be consistent with the leader’s ledger. Fig. 7
shows the probability of data rollbacks under different consen-
sus mechanisms. Due to the unique leader selection scheme,
the RAFT algorithm can significantly reduce the probability of
data rollbacks with the number of end-devices increases. The
random selection scheme cannot limit data rollbacks, result-
ing in data loss. RAFT+ inherits the characteristics of the
RAFT algorithm, which can minimize the possibility of data
rollbacks.

Fig. 8 shows the impact of different consensus mechanisms
of the blockchain network on the average block generation
latency. In the simulations, the amount of data reported by
each end device is gradually increased. In Fig. 8, I repre-
sents the number of strong end devices in the simulations.
It is shown that the average block generation latency rises
gradually with the amount of data reported by end devices
increases. Compared with the RAFT algorithm, RAFT+ can
reduce the average block generation latency by 10% to 21%.
Meanwhile, with the increased amount of data reported by
the end devices, the impact of RAFT+ on reducing the aver-
age block generation latency becomes gradually obvious. The
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Fig. 10. Possibility of selecting different end devices as the leader with
different numbers of strong end devices.

above results indicate that RAFT+ as the consensus mecha-
nism can effectively improve the operating efficiency of the
system and the load capacity of the blockchain network.

Fig. 9 shows the impact of different consensus mechanisms
of the blockchain network on the average block generation
latency under different numbers of IoT end devices. In the
simulations, the number of strong end devices is increased
from 3 to 12, and each end device reports two data units in
each epoch. In the simulations, the computing resources of
each strong end device are independently selected in a certain
range, which directly results in the fluctuation of the average
block generation latency. Though the amount of data rises with
the increase of end devices, the computing resources of strong
end device still affect the block packaging latency and lead to
the fluctuation of the average block generation latency. As the
number of strong end devices is increased, RAFT+ can main-
tain a low average block generation latency. When IoT end
devices have stronger computing resources, the system effi-
ciency is further improved. RAFT+ provides an approximately
15% performance improvement over the RAFT algorithm. The
performance improvement is achieved because the computing
resources of strong end devices and the time-variant communi-
cation environment of the system are not taken into account in
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the RAFT algorithm. However, the leader selection scheme in
RAFT+ comprehensively considers the IoT system resources
and obtains the optimal strategy through neural network train-
ing. It can be seen that the minimum average block generation
latency can be obtained by using RAFT+ according to Figs. 8
and 9. The simulation results indicate that RAFT+ is scal-
able. Considering the composition of the local blockchain
network and the limited computing resources of IoT end
devices, the number of nodes in the blockchain network is
limited. Meanwhile, with the increase of the number of IoT
end devices, the simulation time increases dramatically. From
the simulation results, the RAFT+ is capable of adapting to
blockchain networks with IoT end devices within the order
of 10°.

Fig. 10 shows the probability of selecting different strong
end devices as the leader under different numbers of strong
end devices. Numbers on the histograms represent the serial
numbers of strong end devices as the leader. It can be seen that
RAFT+ is able to select the optimal leader in the blockchain
network according to the computing resources of IoT end
devices and the time-variant communication environment of
the system.

VII. CONCLUSION

In this article, a multilayer blockchain architecture was
designed to utilize the resources of IoT end devices while
balancing the loads among blockchain networks consisting of
end devices and base stations. The architecture divided an
IoT system into three layers to improve the adaptability to
the multilayer blockchain networks. Based on the architec-
ture, RAFT+ was proposed as the consensus mechanism of
the blockchain network, which can significantly reduce the
communication loss and computing load caused by block con-
sensus. Moreover, RAFT+ incorporated a DQN-based leader
selection scheme, which inherits the workflow of the original
leader selection mechanism. Meanwhile, the leader selec-
tion scheme improved the fault-tolerance performance of the
blockchain network and effectively avoided network fragmen-
tation. In this article, a performance evaluation was conducted
based on simulations to eliminate unstable factors during
system operation. Simulation results showed that the average
block generation latency of RAFT+ was reduced by 10% to
21% compared with the original RAFT algorithm under dif-
ferent conditions. It means that RAFT+ is able to complete
block consensus with low latency, so as to improve the effi-
ciency of the system and maintain its stability under high-load
conditions. In the next steps, the proposed consensus mecha-
nism will be implemented in an IoT-blockchain system in real
scenarios to verify the effectiveness.
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