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Abstract—Federated learning is a new paradigm to support
resource-intensive and privacy-aware learning applications. It
enables the Internet-of-Things (IoT) devices to collaboratively
train a global model to accomplish a machine learning task with-
out sharing private data. In practice, the IoT devices powered
by batteries finish the local training and interact with the cen-
tral server via wireless links. However, the repeated interaction
between IoT devices and the central server would consume con-
siderable resources. Motivated by the emerging technology of
intelligent reflecting surface (IRS), we propose to leverage the IRS
to reconfigure the wireless propagation environment to maximize
the utilization of the available resources. Specifically, we con-
sider the critical energy efficiency issue in the reconfigurable
wireless communication network. We formulate an energy con-
sumption minimization problem in an IRS-assisted federated
learning system subject to the completion training time con-
straint. An iterative resource allocation algorithm is proposed to
jointly configure the parameters with proven fast convergence.
Simulation results validate that the proposed algorithm converges
fast and can achieve significant energy savings, especially when
the number of reflecting elements is large and when the IRS is
properly configured.

Index Terms—Federated learning, intelligent reflecting surface,
energy-efficiency, resource allocation, Internet-of-Things (IoT).

I. INTRODUCTION

T
HE EMERGING intelligent applications such as face

recognition, autonomous driving, unmanned aerial vehi-

cle (UAV), and indoor localization have imposed great

challenges for Internet of Things (IoT) devices due to

the computation-intensive and latency-sensitive features. The

devices are generating a vast amount of data via their local

sensors, e.g., GPS, accelerometer, and camera. It is envi-

sioned that future networks should be able to utilize the local

data at the mobile edge to perform intelligent inference and

machine learning tasks. However, the paradigm change from

“connected things” to “connected intelligence” in the era of

6G brought about two main challenges [1]. First, the band-

width is limited, aggregating the large volumes of data would

cause network congestion. Second, data-privacy is becoming

a critical issue in today’s IoT and the Internet. As a result, it
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becomes more and more desirable to perform learning tasks at

the end-IoT devices instead of sending raw data to the central

cloud.

A new machine learning method, termed federated learning,

has emerged as a promising solution for privacy-sensitive and

low-latency solutions [2]–[4]. In federated learning, user data

is stored locally. In each communication round, users perform

local training based on their local data and then upload their

trained model to the central server. After aggregating the local

updates from all users, the central server distributes the new

global model to the users. This process proceeds in an iterative

way until convergence is reached. In this way, a global model,

which is trained from the data stored on each device, can be

obtained without data leakage or data being inferred from other

users. This property makes federated learning one of the most

promising technologies of future intelligent networks.

Nevertheless, so far, the potential of federated learning has

not been fully exploited yet due to the stochastic nature of

wireless channels. For example, cell edge users often suffer

from communication links of poor quality or unfavorable wire-

less propagation conditions. Fortunately, the recent advances

in reconfigurable wireless technology provide a new cost-

effective means to enhance the performance of intelligent

learning systems [5], [6]. To be specific, the intelligent reflect-

ing surface (IRS) is composed of a large number of reflecting

elements, whose amplitude and phase can be adjusted to create

a favorable propagation environment [7]–[9]. The direct chan-

nel gain in combination with the reflection-aided beamforming

gain can boost the local model uploading performance.

In this paper, we investigate energy efficient communication

in federated learning with IRS. There are several challenges.

First of all, the IoT devices for federated learning are pow-

ered by batteries, which need to support both local training

and model upload. How to save the battery power of each

device becomes a critical issue. Second, the global model

training accuracy depends on the number of training itera-

tions. The parameters need to be properly designed to meet

the training accuracy requirement while also conserve energy.

Third, with the involvement of IRS, the parameters become

highly coupled. A joint design of the IRS parameters as

well as the computing/communication parameters is of critical

importance. The main contributions of this paper include:

1) We investigate an IRS-assisted federated learning

system, where the IRS reconfigures the communication

channel so that the IoT devices can upload their model

with a reduced power. As a result, the total energy

consumption can be effectively reduced.
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2) We formulate a joint local training and model uploading

problem, which aims to minimize the energy consump-

tion subject to the task completion time requirement.

A low complexity iterative algorithm with proven fast

convergence is proposed to optimize each variable itera-

tively. Most of the variables can be obtained numerically

with the simple one dimensional search algorithm, which

makes it useful in practical systems. We show that

the main complexity of the algorithm comes from the

optimization of IRS elements, which involves solving an

semidefinite programming (SDP) problem.

3) The convergence of the proposed algorithm is proved

theoretically and verified numerically. Extensive simula-

tions are performed to demonstrate the benefits brought

by the use of IRS. Our results suggest that with the use

of IRS, the energy consumption in federated learning

of a battery-powered IoT device network can be greatly

reduced, especially, when the number of reflecting ele-

ments is large and the IRS is properly configured.

The remainder of this paper is organized as follows.

Section II introduces the relevant work and Section III

presents the system model and problem statement. We start

the design of the algorithm from the simplest case where

there is only one device in Section IV. Then the algorithm

is extended to a multi-device federated learning scenario in

Section V and a low complexity algorithm is proposed in

Section VI. Numerical results are discussed in Section VII.

Finally, Section VIII concludes this paper.

Notation: The notation used in this paper is summarized

as follows. Bold lower/upper case letters denote vectors

and matrices, respectively. CN (µ, σ2) denotes the circularly

symmetric complex Gaussian distribution with mean µ and

variance σ2. For any scalar a, |a| denotes its absolute value. For

any vector a, ai is the i-th element. A∗, AT and A
H represent

the conjugate, transpose, and conjugate transpose of matrix A,

respectively. Diag(A) stands for a vector whose elements are

extracted from the diagnal of matrix A. A � 0 means that

A is a positive semidefinite (PSD) matrix. Rank(A) denotes

the rank of matrix A. arg(·) returns the angle of a complex

variable. Variables with star indicate optimal solutions.

II. RELATED WORKS

A. Intelligent Reflecting Surface

IRS is an enabling technology to reconfigure the radio sig-

nal propagation in wireless links [7]–[9]. It has been regarded

as a promising enabler for smart wireless communication for

B5G/6G wireless systems. By deploying a large number of

passive reflecting elements, the signal propagation channel can

be smartly coordinated to achieve a desired distribution.

Earlier works suggest that a controllable surface could

be realized by changing the electric and/or magnetic polar-

izability property of the scatter [10]. Later, this research

area has been explored in terms of theoretical IRS sig-

nal and channel modeling [8], practical IRS beamform-

ing design [6], and prototype deployment [11]. The beam-

forming design includes both passive beamforming at the

IRS and active beamforming at the transmitter, which is

optimized based on different objectives, such as power

minimization [6], rate maximization [12], energy efficiency

maximization [13], etc. Recently, IRS has been investigated for

physical layer security [14], simultaneous power and energy

transfer (SWIFT) [15], mobile edge computing [16], etc.

B. Energy Efficient Federated Learning

Federated learning, first proposed in [2], is a distributed

learning method that enables IoT devices to train a global

model without sharing their own data with other users. Due

to its advantages in protecting privacy, it has been success-

fully adopted in a wide range of application scenarios, such as

semantic location, health prediction, or learning sentiment [4].

There are a number of works focused on federated learn-

ing over wireless links. A communication and computation

co-design approach for fast model aggregation is proposed

in [17], which leverages the property of signal superimposition

on wireless multiple access channels. This over-the-air compu-

tation (AirComp) framework is achieved by jointly considering

the beamforming design and the device selection problem. A

collaborative learning that takes into account of limited wire-

less resources is first investigated in [18]. The impact of MAC

layer bandwidth and power limit on the performance of feder-

ated learning is investigated under the framework of AirComp.

A general model that investigates the computation and com-

munication latency trade-off in federated learning is proposed

in [19]. The authors show that federated learning over wire-

less networks captures a trade-off between communication and

computation. The previous research are all focused on stochas-

tic wireless channels. The benefits of configurable technology

such as IRS on the performance of federated learning has not

been fully investigated. Recent results in mobile edge comput-

ing show that the overall uplink transmission latency can be

reduced [20] and the system throughput can be improved [16]

with the IRS technology.

There are several works that investigate federated learning

with IRS. In [17], the authors show that when federated learn-

ing meets IRS, the model aggregation error can be reduced via

the enhanced signal provided by the IRS. AirComp and IRS

have the potential to tackle the challenge of the communication

bottleneck problem. The authors in [21] investigate the model

aggregation performance in a federated learning system with

IRS. A joint model device selection, beamforming, and IRS

phase shift optimization algorithm is proposed. The proposed

algorithm can schedule more devices in each communication

round under certain accuracy requirement.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a single-cell federated

learning communication system, where K single antenna IoT

devices offload their locally trained models to an edge server

hosted at a BS with M antennas through radio access links.

The federated learning model is the same as that in [22], where

a global ML problem is solved at a central server with the

training dataset partitioned over IoT devices.

We assume that each device k has a local training dataset

with Dk data samples. The federated learning model is locally
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Fig. 1. Illustration of the federated learning system with IRS.

trained by each device’s own dataset. Then the local model

parameter is uploaded to the BS. After aggregation, the BS

then broadcasts the global model to each participating device.

This is called one round of training. Such communication

round will be performed several times until the model achieves

a required level of accuracy. We aim to determine the resource

allocation strategy to achieve an energy efficient design.

A. Wireless Communication Model

We consider uplink frequency-division multiple access

(FDMA) transmissions where the BS serves the users with

orthogonal frequency bands. To assist the model uploading of

mobile devices, an IRS with N reflecting elements is placed

between the IoT devices and the BS. The equivalent channels

from device k to the BS, from device k to the IRS, and from

the IRS to the BS are denoted as hd,k ∈ C
M×1, hr,k ∈ C

N×1

and G ∈ C
M×N , respectively. The IRS has a reflection phase-

shift matrix Θ ∈ C
N×N , which is a diagonal matrix with ejθn

being its diagonal elements, θn ∈ [0, 2π], for all 1 ≤ n ≤ N. Θ

captures the effective phase shifts of all the reflecting elements

of the IRS. The phase shift unit can be adjusted by the IRS

controller based on measured channel dynamics. The compos-

ite channel is therefore modeled as a combination of the direct

channel and the reflected channel. The training update trans-

mission between the IoT device and the cloud server happens

in orthogonal frequency bands. Hence there is no interference

between users. Then the uplink transmission rate of the kth

IoT device is given by

Rk = bk log2

(

1 +
pk

∣

∣w
H
k hk

∣

∣

2

N0

∣

∣wH
k

∣

∣

2
bk

)

, (1)

where bk is the bandwidth allocated to device k, n is the addi-

tive white Gaussian noise (AWGN) with zero mean and noise

power spectrum density N0, wk ∈ C
M×1 is the beamforming

vector for device k, hk � hd,k + GΘhr,k ∈ C
M×1 is the

combined channel between device k and the BS.

B. Federated Learning Model

A federated learning process consists of three stages: local

training, model aggregation, and model distribution. The entire

training process differs from the conventional mobile edge

computing system in three aspects. First of all, in mobile

edge computing systems, a device can offload part of its work

to the cloud while computing its own tasks asynchronously.

However, for federated learning, each device has to finish its

local model training first, and then performs model upload-

ing. Second, in federated learning, the cloud cannot aggregate

the global model until each device offloads its local model

to the cloud. This requires stringent synchronous process-

ing and poses the latency requirement. This training process

usually lasts for several rounds. Third, in federated learn-

ing, the uploaded model sizes should be the same for all

the IoT devices, while the uploaded data sizes are usually

different across different devices in general mobile edge com-

puting. The models for the three stages of federate learning

are provided in the following.

1) Local Training: When an application is executed on

the IoT device, the energy consumption depends on the CPU

workload of the device, which is characterized by the num-

ber of CPU cycles to complete this application. Assume ck is

the number of CPU cycles required to process one bit and fk
is the number of CPU cycles per second for device k. Then

the time required for carrying out the local model training

can be expressed as Dkck/fk in each local training round.

We assume that each device uses the stochastic average gra-

dient (SAG) algorithm to train the local model to achieve a

local level relative accuracy η ∈ [0, 1]. The number of local

iterations is then given by [23]

L(η) = �1 ln(1/η), (2)

where �1 > 0 is a parameter depending on the data size and

structure of the local problem. In [24], it is shown that the

local level accuracy η = 0 describes an exact solution of the

subproblem and η = 1 means that the local training has not

been improved at all. In this case, the local training latency

will be

tLk = L(η)Dkck/fk . (3)

Assume the IoT device uses a dynamic voltage scaling

(DVS) scheme, so it can adjust its computational speed to

save energy [25]. According to [25], the energy consumption

per CPU cycle can be expressed as κf 2k , where κ is a coef-

ficient depending on the chip architecture. Then the energy

consumption for local training can be expressed as

EL
k = κDkck f

2
k L(η). (4)

2) Model Aggregation: After local model training, each IoT

device then sends its local updates to the BS. Suppose S is the

size of the offloading training model with a fixed dimension,

which should be the same for all the IoT devices. The upload

latency can be expressed as

tUk = S/Rk , (5)

where Rk is given in (1). The energy consumption of model

uploading for device k is expressed as

EU
k = tUk

(

pc,k + pk
)

, (6)

where pc,k is a constant circuit power of the IoT device during

the computational uploading process.

3) Model Distribution: The parameters related to the global

model are updated via a simple linear processing at the cloud
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server hosted at the BS. The BS has a strong processing capa-

bility, and hence the processing time can be negligible. After

the global model parameters are updated at the BS, the BS

distributes the global model parameters to all the IoT devices.

The broadcast time can also be negligible since the BS has

high transmit power and large bandwidth.

To achieve a global accuracy ε, the number of global

iterations is given by [24]

G(η) =
O
(

ln
(

1
ε

))

1− η
. (7)

In this work, we consider a fixed, target global accuracy ε, so

we can normalize O(ln(1ε )) to 1 without changing the nature

of this problem.

To this end, the overall latency of IoT device k is composed

of the local computation time and model uploading latency as

Tk =
1

1− η

(

tLk + tUk

)

. (8)

Let T be the maximum training time for the entire federated

learning algorithm. Then we have

Tk ≤ T , ∀k . (9)

The overall energy consumption for IoT device k over the

entire federated learning process is

Ek =
1

1− η

(

EL
k + EU

k

)

. (10)

C. Problem Formulation

To allow the IoT devices to save energy while also guar-

anteeing the training time/accuracy requirements of federated

learning, we need to develop effective resource allocation algo-

rithms. The energy minimization problem is thus formulated

as follows.

(P1) min
η,fk ,bk ,pk ,wk ,Θ

∑

k

Ek (11)

s. t. C1: Tk ≤ T , ∀k
C2: η ≥ 0

C3: 0 ≤ θn ≤ 2π, ∀n
C4: 0 ≤ pk ≤ Pmax, ∀k
C5:

∑

k

bk ≤ B ,

where constraint (C1) is the task completion time constraint;

(C2), (C3), and (C4) specify the domain of η, θn , and

pk , respectively; constraint (C5) indicates that the combined

occupied bandwidth should not exceed the total available

bandwidth. This is a joint power, bandwidth, phase shift, accu-

racy control, and beamforming design problem. Problem (P1)

has a non-convex and mixed structure where some variables

are coupled. Obtaining a global optimal solution will be quite

challenging.

IV. ANALYSIS OF THE SINGLE DEVICE SYSTEM

First of all, we consider the simplest case where there is only

one IoT device. Although such assumption is not practical in

terms of federated learning, the results can still provide useful

insights on parameter optimization for a practical multiuser

federated learning system. In the rest of this section, we set

k = 1. The total energy consumption for device k is

Ek =
1

1− η

(

S

Rk

(

pc,k + pk
)

+ κDkck f
2
k L(η)

)

. (12)

A. Design of the Device CPU Frequency

Theorem 1: The optimal operating frequency for device k

is given by

f ∗k =
L(η)Dkck

T/G(η)− S/Rk
. (13)

Proof: The objective function Ek in (12) is an increasing

function in terms of fk . The time constraint (C1) of Problem

(P1) suggests that the IoT device should work on the lowest

frequency f ∗k that is allowed by the delay constraint.

B. Design of Power Allocation

Next, we substitute the optimal solution f ∗k (13) into the

original Problem (P1). We jointly optimize the power allo-

cation when the local accuracy parameter η, the bandwidth

bk , the IRS parameters Θ and wk are known. The objective

function becomes

Ek = G(η)

(

S

Rk

(

pc,k + pk
)

+ κDkckL(η)

(

L(η)Dkck

T/G(η)− S/Rk

)2
)

, (14)

where Rk is a function of pk , bk , and Θ. A direct optimization

is quite hard. To solve this problem, we optimize each variable

in an iterative manner. Specifically, we write

f 2k =
f
t ,3
k

f ∗
k

=
f
t ,3
k

L(η)Dkck

(

T

G(η)
− S

Rk

)

, (15)

where f tk is the result in the tth iteration. The objec-

tive function (12) then assumes a simpler form as Ek =
G(η)( S

Rk
(pc,k + pk ) + κf t ,3

k
( T
G(η)

− S
Rk

)). When fk is fixed,

the problem becomes

(P2a) min
pk

pk + pc,k − Ak

Rk

s. t. (C4), (16)

where Ak = κf t ,3
k

is a constant in each iteration step.

Theorem 2: The optimal solution to (P2a) when pc,k −
Ak > 0 is given by

p∗k = min
{

p′k ,Pmax
}

, (17)

where p′k is the solution to h(pk ) = ak
bk+akpk

(pc,k + pk −
Ak )− ln(1 + akpk/bk ) = 0.

Proof: If pc,k − Ak > 0, then pk + pc,k − Ak > 0.

Minimizing the energy consumption Ek is equivalent to max-

imizing the function g(pk ) =
Rk

pc,k+pk−Ak
. For simplicity of

notation, we rewrite g(pk ) as

g(pk ) =
bk

ln(2)

ln(1 + akpk/bk )

pc,k + pk − Ak
, (18)
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where ak =
|wH

k
hk |

2

N0|wH
k
|2

> 0. Then we have

g
′(pk ) =

bk

ln(2)

ak

bk+akpk

(

pc,k + pk − Ak

)

− ln(1 + akpk/bk )
(

pc,k + pk − Ak

)2
.

(19)

Let the numerator be denote by h(pk ) and we have

h ′(pk ) =
−a2k

(bk + akpk )
2

(

pc,k + pk − Ak

)

< 0, (20)

which means h(pk ) is a decreasing function on [0,Pmax].
Also note that h(0) = ak (pc,k − Ak )/bk > 0 and

limpk→∞ h(pk ) = −∞. Hence there exists a p′k ∈ [0,∞] such

that h(p′k ) = 0. As a result, h(pk ) > 0 on the interval [0, p′k ]
and h(pk ) < 0 on the interval [p′k ,+∞]. Hence g ′(pk ) > 0 on

the interval [0, p′k ] and g ′(pk ) < 0 on the interval [p′k ,+∞].
We then claim that g(pk ) achieves its maximum value when

pk = p′k .

It is not straightforward to obtain a closed-form expres-

sion of p∗k by solving h(pk ) = 0. However, this is a

one-dimensional search problem and function h(pk ) has the

monotone property. Hence, some simple algorithms (e.g.,

bisection search) can be used to obtain the solution [26].

If pc,k − Ak ≤ 0, then the objective function in the sub-

problem is negative when pk + pc,k − Ak < 0 and positive

when pk + pc,k −Ak > 0. By investigating the monotonicity

of the objective function, we find that Rk
Ak−pc,k−pk

is strictly

increasing on the interval [pk ,min,Pmax]. Hence the objective

function is minimized when pk = pk ,min. In this paper, we

only consider the case where pc,k − Ak > 0 for simplicity.

The case pc,k − Ak < 0 can be similarly analyzed.

C. Design of Bandwidth Allocation and IRS Parameters

When the power and frequency parameters are fixed, we

can see that minimizing energy consumption is equivalent to

maximizing the achievable rate Rk . The subproblem becomes

(P2b) max
bk ,wk ,Θ

Rk

s. t. (C3), (C5). (21)

First of all, we can prove that Rk is a concave function w.r.t.

bk on the interval [0, B]. The optimal bandwidth allocation bk
for the singe device case can also be obtained with a bisection

method by setting the first derivative of Rk to zero. To save

space, we leave out this part of content.

Now, we optimize the IRS related parameters Θ and wk .

Maximizing the achievable rate Rk is equivalent to maximiz-

ing the corresponding SNR ak . The problem becomes

max
θn ,wk

pk
∣

∣w
H
k hk

∣

∣

2

N0

∣

∣wH
k

∣

∣

2
bk

(22a)

s. t. 0 ≤ θn ≤ 2π, (22b)

where hk � hd,k +GΘhr,k .

This problem can be solved by alternative optimization.

Specifically, we first fix the IRS phase shift matrix Θ and

find the optimal detection vector wk . Without changing the

nature of the problem, one can set |wH
k |2 = 1 for simplic-

ity. This problem becomes the well-known maximum ratio

combing (MRC) detection problem. The SNR is maximized at

w
∗
k =

hk

|hk |
. (23)

Next, for a fixed w
H
k , we optimize the IRS phase vector.

This problem is equivalent to the following problem.

max
∣

∣

∣w
H
k

(

hd,k +GΘhr,k

)

∣

∣

∣ (24a)

s. t. 0 ≤ θn ≤ 2π, (24b)

We follow a similar procedure as in [6] by rewriting
∣

∣

∣w
H
k

(

hd,k +GΘhr,k

)

∣

∣

∣ ≤
∣

∣

∣w
H
k hd,k

∣

∣

∣+
∣

∣

∣w
H
k GΘhr,k

∣

∣

∣

≤
∣

∣

∣
w
H
k hd,k

∣

∣

∣
+
∣

∣

∣
w
H
k Gdiag

(

hr,k

)

∣

∣

∣
,

(25)

where the first inequality is due to the triangle inequal-

ity and the equality holds if and only if arg(wH
k hd,k ) =

arg(wH
k GΘhr,k ) � φ0. Note that diag(Θ) is a diagonal

matrix and we extract its diagonal as a vector v = diag(Θ),
then w

H
k GΘhr,k = w

H
k Gdiag(hr,k )v. Considering the con-

straint that |vn | = |ejθn | = 1, the optimal solution to this

problem is given by

v
∗ = exp

{

j
(

φ0 − arg
(

w
H
k Gdiag

(

hr,k

)

))}

, (26)

where φ0 = arg(wH
k hd,k ).

Remark 1: It can be seen that the IRS can strengthen the

received signal power by aligning the cascaded channel with

the direct channel compared with that without IRS.

This alternating optimization method is appealing since it

has a closed-form expression for both the IRS phase shift

vector and the signal detection vector. Its convergence is

guaranteed since each subproblem ensures that the objec-

tive function is non-decreasing over iterations and is bounded

above as the second inequality in (25) suggests.

D. Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter η. For sim-

plicity of notation, the objective function can be rewritten

as

f (η) =
1

1− η

(

u + v log

(

1

η

))

, η ∈ (0, 1), (27)

where u = (pc,k + pk )S/Rk and v = κDkck f
2
k �1 are both

positive numbers.

Theorem 3: The optimal accuracy parameter η∗ is the

solution to h(η) = 0, where

h(η) = −v(1− η) + uη − vη ln(η). (28)

Proof: Let’s examine the property of f (η). Its first order

derivative is

f ′(η) =
−v(1− η) + uη − vη ln(η)

η(1− η)2
. (29)

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:41:04 UTC from IEEE Xplore.  Restrictions apply. 



850 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2022

Algorithm 1 Energy-Efficient Optimization for Single Device

1: Initialize IRS phase shift matrix Θ and the iteration

number t = 1, s = 1;

2: repeat

3: Obtain w
s
k according to (23);

4: Obtain v
s according to (26);

5: s = s+1;

6: until convergence

7: repeat

8: Obtain f tk according to (13);

9: Obtain ptk according to (17);

10: Obtain btk ;

11: Obtain ηt according Theorem 3;

12: Calculate Ek based on (12);

13: t = t+1;

14: until
|E t+1

k
−E t

k
|

|E t
k
|

≤ ε1 and (C1) is satisfied

Letting h(η) = −v(1−η)+uη−vη ln(η), we have limη→0+

h(η) = −v < 0 and limη→1− h(η) = u > 0. Moreover,

h ′(η) = u − v ln(η) > 0, η ∈ (0, 1). (30)

Hence, h(η) is an increasing function in terms of η on (0, 1)

and there exists only one point η′ such that h(η′) = 0. Then

h(η) < 0 (f ′(η) < 0) on the interval (0, η′], and h(η) > 0
(f ′(η) > 0) on the interval [η′, 1). As a result, f (η) will be

decreasing on (0, η′] and increasing on [η′, 1). The optimal

solution that minimizes the energy consumption Ek should be

η = η′.
The algorithm for single user training is presented in

Algorithm 1. The mainly complexity comes from the alterna-

tive updates of Θ and wk , whose complexity are on the order

of O(MN ,N 2) and of O(MN 2), respectively. We can there-

fore claim that the overall complexity is O(I1MN 2), where

I1 is the iteration involved in Lines 2-6 in Algorithm 1.

V. ANALYSIS OF THE MULTIUSER FEDERATED

LEARNING SYSTEM

In this section, we consider the more practical multiuser

federated learning system. The objective function becomes

E =
∑

k

Ek

=
∑

k

G(η)

(

S

Rk

(

pc,k + pk
)

+ κDkck f
2
k L(η)

)

. (31)

A. Design of the Device CPU Frequency

First of all, we optimize the frequency when the training

accuracy η is known. Minimizing the sum energy consump-

tion of each device is equivalent to minimizing the individual

energy consumption of each device. Again, for each device,

Ek is an increasing function in terms of fk . As a result, the

frequency should be set as (13) to satisfy the latency constraint

of each device.

B. Design of Power Allocation

From the objective function (31), we find that minimizing

the energy consumption for all users is equivalent to

(P3a) min
pk

∑

k

pk + pc,k − Ak

Rk

s. t. (C3), (32)

where Rk = bk log2(1 +
pk |w

H
k
hk |

2

N0|wH
k
|2bk

). Similarly, minimizing

the sum of energy consumption is equivalent to minimizing

the energy consumption of each device. Hence the optimal

power allocation can be similarly obtained as (17), which is a

one dimensional search problem for each user.

C. Joint Design of Bandwidth Allocation and IRS Parameters

When the power and frequency are fixed in the last iteration,

it is easy to verify that the optimal detection vector should be

the same as the single device case as in (23), which maximizes

the SNR for each device. Hence, the problem becomes

(P3b) min
Θ,bk

∑

k

pc,k + pk − Ak

bk log2
(

1 + pk |hHk hk |2/(N0bk )
)

s. t. (C3), (C5), (33)

where hk = hd,k +GΘhr,k .

The problem is difficult since the variables bk and Θ are

coupled in the numerator and the problem is non-convex.

Moreover, the objective function in (P3b) is still not straight-

forward with the phase shift vector Θ. Now we extract the

diagonal elements of Θ to have v̄ = diag{Θ} ∈ C
N×1.

Supposing Hk = Gdiag{hr,k} ∈ C
M×N , we have

hk = hd,k +Hk v̄ (34)
∣

∣

∣h
H
k hk

∣

∣

∣

2
= h

H
d,khd,k + v̄

H
H
H
k Hk v̄

+ h
H
d ,kHk v̄ + v̄

H
H
H
k hd ,k . (35)

By introducing an auxiliary matrix Rk ∈ C
(N+1)×(N+1)

and an auxiliary vector v ∈ C
(N+1)×1, we further obtain

Rk =

[

H
H
k Hk H

H
k hd ,k

h
H
d ,kHk 0

]

, v =

[

v̄

1

]

. (36)

Eqn. (35) can be further simplified as

∣

∣

∣h
H
k hk

∣

∣

∣

2
= v

H
Rkv + h

H
d,khd,k = Tr(RkV) + h

H
d,khd,k

� fk (V), ∀k ∈ K, (37)

where V = vv
H ∈ C

(N+1)×(N+1). Then Problem (P3b) is

equivalently transformed to (P3c), given by

(P3c) min
V,bk

∑

k

pc,k + pk − Ak

bk log2(1 + pk fk (V)/(N0bk ))
(38a)

s. t. Vn,n = 1 (38b)

rank(V) = 1 (38c)

V � 0 (38d)

(C5).
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Note that constraints (38b) and (38d) ensure that V = vv
H

holds true after optimization. Constraint (38c) is introduced

to guarantee the unit modulus constraint when recovering v

from V. Due to the rank one constraint, this problem is non-

convex in terms of the optimization variable V. However, we

have the following theorem.

Theorem 4: After dropping the rank one constraint (38c),

Problem (P3c) is convex in terms of bk and V, respectively.

Proof: The objective function in Problem (P3c) is in the

form of sum-of-ratios. To prove the sum function is convex,

we only need to show that each sub ratio function is convex.

First of all, we consider the phase shift matrix V. It can be

seen that the denominator is actually a logarithm function of

fk (V), which is concave, and fk (V) is a linear function of V.

Hence, each individual ratio function is convex in terms of V.

Hence, their sum will also be convex in terms of V.

Next, note that the denominator of each sub ratio function

is the achievable rate Rk (bk ) of each device. Since

∂2Rk

∂b2
k

= − p2k fk (V)2

ln(2)(N0bk + pk fk (V))2bk
< 0, (39)

Rk (bk ) is concave in terms of bk and (pc,k + pk )/Rk (bk ) is

convex in terms of bk .

Note that simply dropping the rank one constraint (38c)

does not necessarily result in an optimal v∗ due to the addi-

tional constraint (38b). In other words, the optimal solution to

Problem (P3c) after dropping the rank one constraint might

not be feasible. One way is to use the Gaussian randomiza-

tion method as shown in [6] to find an approximated solution.

A common way to recover v from V is to denote V as

V = UΣU
H , where U ∈ C

(N+1)×(N+1) is an unitary matrix

and Σ is an eigenvalue diagonal matrix. A feasible solution

is constructed as v̂ = VΣ
1/2ζ , where ζ ∈ C

(N+1)×1 is a

randomly generated complex circularly symmetric Gaussian

random variable with zero mean and unit variance. The solu-

tion can be recovered by v
∗ = exp{j arg( v

vN+1
)} where vN+1

is the last element of vector v. The optimal V∗ can be further

obtained from v
∗.

We denote the problem of (P3c) after dropping the rank

one constraint (38c) as problem (P3c2’). Since this problem

is in the form of sum-of-ratios, conventional fractional pro-

gramming techniques such as the Dinkelbach’s method cannot

be used. To solve this problem, we first transform Problem

(P3c2’) into its equivalent form (P3d) by introducing auxiliary

variable βk .

(P3d) min
V,βk ,bk

∑

k

βk (40)

s. t.
pc,k + pk − Ak

bk log2(1 + pk fk (V)/(N0bk ))
≤ βk

(38b), (38d), (C5). (41)

Theorem 5: If V∗, {b∗k}, and {β∗k} are the optimal solution

to (P3d), then there exists {λ∗k} such that V∗ and {b∗k} are a

solution to the following problem for λk = λ∗k and βk = β∗k .

(P3d ′) min
V,bk

∑

k

λk

(

pc,k + pk − Ak

− βkbk log2

(

1 +
pk fk (V)

N0bk

))

s. t. (38b), (38d), (C5), (42)

and V
∗, {b∗k} also satisfy the following system equation for

λk = λ∗k and βk = β∗k :

λk =
1

b∗
k
log2

(

1 +
pk fk (V∗)
N0b

∗

k

) (43a)

βk =
pc,k + pk − Ak

b∗
k
log2

(

1 +
pk fk (V∗)
N0b

∗

k

) . (43b)

Proof: Theorem 4 also suggests that Problem (P3d’)

is a convex optimization problem. Introduce the Lagrange

multipliers associated with the objective function in (P3d’)

and the bandwidth constraint. Thus the Lagrange function of

the problem can be written as L =
∑

k βk +
∑

k λk (pc,k +

pk − Ak − βkbk log2(1 +
pk fk (V)
N0bk

)) +µ(
∑

k bk −B). Then

the optimal solution V
∗, {b∗k}, and {β∗k} and the Lagrange

multipliers λ∗k and µ∗ should satisfy the following KKT

conditions.

∂L
∂V

= − 1

ln 2

∑

k

λkβkbk
1

1 +
pk fk (V)
N0bk

f ′k (V) = 0 (44a)

∂L
∂bk

= µ+
λkβk

ln(2)(N0bk + pk fk (V))
(44b)

[

pk fk (V)− (pk fk (V) + N0bk ) ln

(

1 +
pk fk (V)

N0bk

)]

= 0

∂L
∂βk

= 1− λkbk log2

(

1 +
pk fk (V)

N0bk

)

= 0 (44c)

λk
∂L
∂λk

= λk
(

pc,k + pk − Ak

− βkbk log2

(

1 +
pk fk (V)

N0bk

))

= 0 (44d)

µ
∂L
∂µ

= µ

(

∑

k

bk − B

)

= 0 (44e)

λk ≥ 0, µ ≥ 0. (44f)

pc,k + pk − Ak − βkbk log2

(

1 +
pk fk (V)

N0bk

)

≤ 0 (44g)

∑

k

bk − B ≤ 0. (44h)

From (44c), we can infer that λ∗k > 0 and conclude

that the equality in (43a) holds. Similarly, from (44d), we

have (43b). Moreover, note that given λ = λ∗k and βk =
β∗k , (44a), (44b), (44e), and (44f) are just the KKT condi-

tions for Problem (P3). Since (P3) is convex programming for

parameter λk > 0 and βk ≥ 0, the KKT conditions are also

sufficient optimality conditions. This completes the proof of

the theorem.

Theorem 5 shows that the solution to Problem (P3d) can be

obtained by finding the solutions that satisfy the KKT conditions

in (44) among the solutions to Problem (P3d’). More important,

if the solution is unique, it will be the global optimal solution.
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1) Finding (V∗, b∗k ) When λk and βk Are Given: Note

that for a fixed λk and βk , Problem (P3) belongs to convex

optimization. Hence effective algorithms can be designed to

find the optimal solution (V∗, b∗k ). Since V and bk are cou-

pled, we propose to use the alternative optimization which

optimizes each variable alternatively. First of all, when bk is

known, Problem (P3d’) becomes an SDP, which can be solved

with existing optimization tools such as CVX[27].

max
V

∑

k

λkβkbk log2

(

1 +
pk fk (V)

N0bk

)

s. t. (38b), (38d). (45)

Theorem 6: The optimal solution of bk to (P3d’) is given

by

bk =
pk fk (V)

N0xk
, (46)

where

xk = − 1

WL

(

−e−Ck
) − 1, (47)

and WL(·) is the Lambert W function. Note that the µ in

the expression of Ck is the Lagrange multiplier for Problem

(P3d’) satisfying
∑

k bk = B .

Proof: Following Theorem (5), the optimal solution to

(P3d’) should satisfy the KKT conditions (44). We have

from (44b)

µ =
λkβk

(

−pk fk (V) + (N0bk + pk fk (V)) ln
(

1 +
pk fk (V)
N0bk

))

(N0bk + pk fk (V)) ln(2)
,

which can be written as

λkβk
ln(2)

(

ln(1 + x )− x

1 + x

)

= µ, (48)

where x =
pk fk (V)
N0bk

. The solution is found to be

ln(1 + x ) +
1

1 + x
= 1 +

µ ln(2)

λkβk
� Ck . (49)

Hence, we obtain (46) and (47). Note that the optimal solution

of bandwidth b∗k can be obtained numerically by substitut-

ing µ∗ into (47) and (46). Again, the bisection algorithm can

be applied to find the numerical solution of µ when solving
∑

k bk = B , by leveraging the monotonicity of the Lambert

W function.

The complete algorithm of finding the V and bk when λk
and βk are given is presented in Algorithm 2.

2) Update Lagrange Multipliers λk and βk : Now we update

the Lagrange multipliers λk and βk so that (43) will be satis-

fied. We follow a similar step as in [20], [28], [29] with the

simple gradient method. Specifically, we choose initial values

of the Lagrange variables and then a standard Newton-like

method is used to update the Lagrange multipliers, as

λt+1
k

= λtk + ξi
(n)∇1 (50a)

βt+1
k

= βtk + ξi
(n)∇2. (50b)

Algorithm 2 Joint Optimization of V and bk for Given λk
and βk

1: Initialization btk and set t = 1;

2: repeat

3: Obtain V
t by solving problem (45) with SDP;

4: Recover v
t from V

t with Gaussian randomization

algorithm;

5: Update the new variable V
t ;

6: Obtain btk from (46);

7: t = t+1;

8: until the objective function in (P3d’) does not decrease

Algorithm 3 Joint Optimization of V and bk

1: Initialize λtk and βtk according to (43);

2: Set t = 1;

3: repeat

4: When λtk and βtk is given, obtain V
t and btk with

Algorithm 2;

5: Update λt+1
k

and βt+1
k

according to (50);

6: t = t+1;

7: until φk (λ
t+1
k

) and ψk (β
t+1
k

) approache zero;

Here t is the iteration index, ξi
(n)

is the step size, and ∇1 and

∇2 are the gradient directions for λtk and βtk , respectively,

given by

∇1 = −φk (λk )

φ′(λk )
,∇2 = −ψk (βk )

ψ′(βk )
.

We also have

φk (λk ) = λkb
∗
k log2

(

1 +
pk fk (V

∗)

N0b
∗
k

)

− 1

ψk (λk ) = βkb
∗
k log2

(

1 +
pk fk (V

∗)

N0b
∗
k

)

−
(

pc,k + pk − Ak

)

,

and n is the smallest integer among {1, 2, . . . , } satisfying

∑

k

∣

∣

∣φk

(

λt+1
k

)∣

∣

∣

2
+
∑

k

∣

∣

∣ψk

(

βt+1
k

)∣

∣

∣

2

≤
(

1− εξi
(n)

)2
(

∑

k

∣

∣φk
(

λtk
)∣

∣

2
+ ψk

(

λtk
)

|2
)

, (51)

where ε ∈ (0, 1).

Since (1−εξi
(n)

)2 will be a random number between [0, 1],

inequality (51) will ensure that φk (λ
t+1
k

) and ψk (β
t+1
k

) both

go to zero, which is exactly what the optimal solution in (43)

suggests. The joint optimization algorithm is summarized in

Algorithm 3.

Theorem 7: Algorithm 3 will converge after a finite number

of iteration steps.

Proof: Algorithm 3 is a two-layer alternating optimization

algorithm. In the outer layer, the auxiliary variable λk and βk
are updated with a Newton-like method, the convergence of

which has been proved in [30]. We only need to show that

the inner layer iteration (Algorithm 2) converges, where the

variables V and bk are optimized.
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Algorithm 4 Energy-Efficient Federated Learning

1: Initialize IRS phase shift matrix Θ and the iteration

number t = 1;

2: repeat

3: Obtain f tk according to (13);

4: Obtain ptk according to (17);

5: Obtain btk , vt with Algorithm 3;

6: Obtain ηt according to Theorem 3;

7: Calculate the total energy consumption E t ;

8: t = t+1;

9: until
|E t+1−E t |

|E t |
≤ ε1 and (C1) is satisfied

Denote the objective function of (P3d’) as f (bk ,V). In the

sth iteration, we have

f (bsk ,V
s )

(a)
≤ f

(

bsk ,V
s+1

) (b)
≤ f

(

bs+1
k

,Vs+1
)

.

Note that the above inequalities (a)-(b) hold true because

Problems Vs and bsk are both optimally solved in each iteration

s. However, we have to mention that inequality (a) will not

hold strictly since we deal with the non-convex rank one con-

straint with the Gaussian randomization method, which may

violate the monotonic improvement property of the above

equation. To tackle this issue, our solution is to perform a

significant number of randomization processes and select the

best solution that maximizes the objective function in (P3d’).

In simulations, we perform 100 Gaussian randomization and

select the best v that achieves the maximum objective func-

tion. As a result, the inequality (a) will be guaranteed. Due

to limited BS power and the finite number of IRS reflecting

elements, the objective function in (P3d’) is lower bounded

and will converge after a finite number of steps.

D. Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter η. The objec-

tive function can be written as

f (η) =
1

1− η

(

u + v log

(

1

η

))

, η ∈ (0, 1), (52)

where u =
∑

k (pc,k + pk )
S
R and v =

∑

k κDkck f
2
k �1. The

optimal η can be similarly obtained as in the single user case

with the bisection algorithm.

The complete algorithm for energy-efficient federated learn-

ing is presented in Algorithm 4. Note that the variables

involved generally has a closed-form expression or can be

obtained via simple one dimensional search with neglect-able

complexity except for variable bk and v, which requires solv-

ing an SDP problem. Generally, solving an SDP problem with

the interior method or with general CVX solvers such as

MOSEK [31] incurs high complexity. According to [32, Th.

3.12], the complexity of solving an SDP problem with m con-

straints and an n×n variable matrix is O(
√
n log(1/ε)(mn3+

m2n2 + m3)), where ε is the solution accuracy. In this

problem, we have n = N+1 and m = N+1, hence the

approximate complexity for solving one SDP problem would

be O(
√
N + 1 log(1/ε)(N + 1)4). Suppose the iterations

for Algorithm 2, Algorithm 3 and Algorithm 4 are I2,

I3, and I4, respectively. Then the proposed Algorithm 4

needs to solve a standard SDP problem (45) for I2I3I4
times. Hence the total complexity of Algorithm 4 would be

O(
√
N + 1 log(1/ε)I2I3I4(N + 1)4). When the number of

the reflecting elements in the IRS becomes large, the total

complexity would become considerably high.

VI. LOW COMPLEXITY ALGORITHM

As analyzed before, the complexity of the proposed

Algorithm 4 mainly comes from solving the SDP

problem (45). To reduce the complexity, or more specifically,

to reduce the complexity of getting v and bk in Algorithm 2,

we propose to leverage the majorization-minimization (MM)

algorithm [33]. The idea is to find an easy-to-solve surrogate

problem with a surrogate objective function to problem (45),

and then solve this problem induced from the surrogate

objective function instead of the original one. This approach

can generate a sequence of sub-optimal solutions v
t at each

iteration to approach the global optimal solution.

To proceed, we rewrite problem (45) as

max
v

∑

k

λkβkbkgk (v)

s. t. vN+1 = 1; |vn | = 1, ∀1 ≤ n ≤ N , (53)

where gk (v) = log2(1 +
pk (v

HRkv+hHd,khd,k )

N0bk
). To show the

hidden convexity of gk (v), we have

gk (v) = − log2

⎛

⎝1−
pk

(

v
H
Rkv + h

H
d,khd,k

)

Mk

⎞

⎠, (54)

where Mk = N0bk+pk (v
H
Rkv+h

H
d,khd,k ). Then gk (v,Mk )

is jointly convex in terms of {v,Mk} [34]. Its lower bound

surrogate function is given by

gk (v,Mk ) ≥ gk
(

v
t ,M t

k

)

+
∂gk
∂Mk

∣

∣

∣

∣Mk=M t
k

(

Mk −M t
k

)

+
(

v − v
t
)H ∂gk

∂v

∣

∣

∣

∣

v=vt

= consttk + τ tkv
H
Rkv + 2vH r

t
k � g̃k

(

v|vt
)

,

(55)

where τ tk = −p2
k
(vt,HRkv

t+hHd,khd,k )

M t
k
N0bk ln 2

, rtk = pkRk

N0bk ln 2v
t and

∂gk
∂Mk

∣

∣

Mk=M t
k

= −
pk

(

v
t ,H

Rkv
t + h

H
d,khd,k

)

M t
k
N0bk ln 2

∂gk
∂v

∣

∣

v=vt
=

2pkRk

N0bk ln 2
v
t .

It can be seen that g̃k (v|vt ) is twice differentiable and con-

cave. Moreover, we can verify that (i) g̃k (v
t |vt ) = gk (v

t );
(ii)g̃k (v|vt ) ≤ gk (v); and (iii) ∇g̃k (v|vt ) = ∇g̃k (v

t ).
Hence g̃k (v) is minorized at any v

n with a function

g̃k (v|vt ) [33], [34]. The MM method can be used to find a
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Fig. 2. Illustrate the deployment of the IRS-assisted federated learning
system.

sequence of solutions to approach the global optimal solution

with low complexity.

We can rewrite the objective function in (53) as
∑

k λkβkbk g̃k (v|vt ). Put the expression of g̃k (v|vt ) into the

objective function and remove the constant. Accordingly, we

need to solve the following problem at each iteration t.

min
v

v
H
R
t
v − 2Re

(

v
H
r
t
)

s. t. vN+1 = 1; |vn | = 1, ∀1 ≤ n ≤ N , (56)

where R
t = −∑

k λkβkbk τ
t
kRk and r

t =
∑

k λkβkbk r
t
k .

Proposition 1: The objective function in (56) can be

approximated by [33]:

v
H
R
t
v − 2Re

(

v
H
r
t
)

≤ v
H
Γ
t
v − 2Re

(

v
H
[

r
n +

(

Γ
t −R

t
)

v
t
]

)

+ v
t ,H (

Γ
t −R

t
)

v
t

= ρmax(R
t )vH v − 2Re

(

v
H
r̃
t
)

+ const′, (57)

where λmax{Rt} is the maximum eigenvalue of matrix R
t ,

Γ
t = λmax{Rt}IN+1 and r̃

t = r
t + (λmax{Rt}IN+1 −

R
t )vt .
To minimize the objective function in (56), we can optimize

its upper bound (57). Note that vH v = N + 1 since |vn | =
1, ∀n . Hence, we only need to maximize the term 2Re(vH r̃

t ).
This term is maximized when the phase of v and the phase of

r̃
t are the same, i.e.,

vi = exp
{

j arg
(

r̃ ti
)}

, ∀1 ≤ i ≤ N . (58)

It can be seen that the phase vector has a closed-form

expression (58). The complexity of the proposed algorithm

mainly comes from computing the eigenvalues of matrix R
t ∈

C
(N+1)×(N+1), which has a complexity of O((N + 1)3).

Hence the complexity would be O(I2I3I4(N + 1)3).

VII. SIMULATION STUDY

In this section, simulation results are presented to validate

the performance of the proposed IRS-assisted federated learn-

ing system. The federated learning parameters follow a similar

setting as in [19], [35]. The IRS related parameters are set

based on the setting in [16]. Specifically, we consider an IRS

assisted communication scenario as depicted in Fig. 2. In this

x-y plane, the IRS is located at location (20,x)m. The default

value of x is 20m in this paper. The IoT devices are located

randomly in a disk area around center (30, 0)m with a radius

of 2m. The BS is located at the origin (0,0)m. In this section,

we will change the location of the IRS and investigate the

TABLE I
FEDERATED LEARNING PARAMETER SETTING

impact of such changes on the overall system performance.

The channel gains are a combination of distance-dependent

large-scale fading and small-scale fading. The small-scale

fading is assumed to be Rayleigh fading CN (0, 1). The large

scale path loss model follows Ad−α, where A = −30dB is the

path loss at a reference distance 1m, d is the distance between

the transmitter and receiver, and α is the path loss component.

The path loss components for channels hr,k , hd,k , and H are

set to 2.2, 3.5, and 2.2, respectively. The noise power N0 is set

to 10−10W /Hz . The global training completion deadline is

set as T = 40 s. For the bisection algorithm, the target accu-

racy is set to 10−5. For Algorithm 1 and Algorithm 4, the

stopping criteria is set to ε1 = 0.01. Each simulation result is

the average of over 300 realizations.

The following two benchmark algorithms are also simulated

for comparison purpose.

1) IRS with Random Phase: The IRS uses random phases.

The detection vector wt
k , frequency fk , power pk , band-

width bk , and the local accuracy parameter η are

optimally designed as in the proposed scheme.

2) Without IRS: There is only the direct channel between

IoT devices and the BS. The other parameters are set as

the same as in the IRS with Random Phase case.

A. Impact of the Number of Reflecting Elements N

First of all, we verify the performance of the proposed low-

complexity algorithm by changing the number of reflecting

elements on the IRS. In Fig. 3, we set K = 5, M = 4, and

T = 40s and compare the energy consumption performance

of different schemes. The SDP algorithm denotes Algorithm 4

where problem (45) is solved using SDP. It can be seen

that with the increase of the number of reflecting elements

on the IRS, the energy consumptions of the proposed low-

complexity algorithm and the SDP algorithm both decrease.

This is because the IRS can reconfigure the environment and

help the devices to save model uploading power. A larger

number of reflecting elements on the IRS generally brings

a better performance. However, the processing complexity

in optimizing the elements would also become quite high.

Moreover, we find that the energy consumption curves for the

case without IRS and IRS with random phase shift look like

horizontal lines. This is straightforward as anticipated. For the

case without IRS, changing the number of reflecting elements

on the IRS will have no impact on the energy consumption

performance. For the case IRS with random phase shift, the

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:41:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND MAO: ENERGY-EFFICIENT FEDERATED LEARNING WITH IRS 855

Fig. 3. Total energy consumption versus N when K = 5, M = 4, and T = 40.

Fig. 4. Total energy consumption versus N when K = 10, M = 5 and
T = 40.

performance does not improve significantly since the channels

are not properly configured.

In Fig. 4, we perform similar experiments with K = 10,

M = 5, and T = 40s. When the number of reflecting elements

on the IRS is increased to 50, the proposed algorithm can

save up to about 55 Joule compared with no IRS deployment

and IRS with random phase shift. These results again demon-

strate the importance of jointly optimizing resource allocation

and IRS beamforming. From both Fig. 3 and Fig. 4, the

performance of the proposed algorithm and the SDP algo-

rithm achieves very similar performance, but the former has

a significantly lower complexity and runs much faster. Hence,

for the rest simulations, we will only consider the proposed

low-complexity algorithm.

B. Convergence Behavior

In this section, we investigate the convergence of

the proposed low-complexity algorithm. The convergence

behavior of the general federated learning scheme is plotted

in Fig. 5. It can be seen that after 2-3 iterations, the energy

consumption decreases to a low value. However, the comple-

tion time might violate the training deadline constraint. After

Fig. 5. Convergence of the first device in a multiuser federated learning
system with K = 20, M = 4, and T = 40.

Fig. 6. Power, bandwidth, and frequency allocation for different devices with
K = 20, M = 4, N = 20, and T = 40.

several fine-tuning iterations, we can obtain a feasible solution

that minimizes the energy consumption while also satisfying

the completion time constraint.

We also change the number of the reflecting elements on the

IRS. We find that when N = 50, the device saves more energy

than the case when N = 20. Despite that, convergence of the

training process does not change much when N is varied.

C. Energy and Time Consumption of Each Device

The power, bandwidth, and frequency allocation parameters

for different devices are presented in Fig. 6. In this simulation,

the devices are located very close to each other. Their operat-

ing frequency, power, and bandwidth seem not differ too much.

The total energy consumption and time consumption over the

entire training process is shown in Fig. 7. It can be seen that all

the devices share the same latency, which is exactly T = 40s,

while the consumed energy differs. With our parameter set-

ting, we also find that local training nearly does not consume

much energy but it accounts for almost 99% of latency. On the

contrary, model uploading takes a lot of energy while it nearly

takes no time. This setting is reasonable since in practice the

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:41:04 UTC from IEEE Xplore.  Restrictions apply. 



856 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2022

Fig. 7. Total energy consumption and latency of local model training and
model uploading for different devices with K = 20, M = 4, and T = 40.

Fig. 8. Total energy consumption versus K with M = 4, N = 40, and T = 40.

model is trained locally by each device. The training usually

takes several rounds which take time. Moreover, the device

works on the lowest possible frequency, which further slows

down the completion time. On the other hand, the devices are

battery powered, the model update process consumes most of

the energy. In this case, the deployed IRS can work as a pas-

sive, enhanced channel, which helps the devices to save their

battery power.

D. Impact of the Number of Devices K

We investigate the impact of the number of devices in Fig. 8.

We find that the energy consumption generally increases lin-

early with the number of devices involved. This is because in

the multiuser system, only the bandwidth and the IRS reflect-

ing elements are optimized jointly. Each device selects its

own operating frequency and power. With increased number

of devices, the proposed algorithm saves more energy than

the two baseline algorithms. Moreover, the performance gap

becomes larger as K is increased. This result demonstrates

the advantages of the proposed algorithm in a communication

system where the number of IoT devices is large.

Fig. 9. Total energy consumption versus M with K = 5, N = 20, and T = 40.

Fig. 10. Total energy consumption versus T with K = 5, N = 20, and
M = 4.

E. Impact of the Number of Antennas M on the BS

Fig. 9 shows the impact of the number of BS antennas on

energy saving of the federated learning system. As can be

seen, with more receiving antennas on the BS, the system

energy consumption can be greatly reduced. This is because

the antennas on the BS provide additional multiplexing gain

at the receiver so that each IoT device can reduce their trans-

mit power for model uploading. Moreover, the performance

gap between the proposed algorithm and the two benchmark

algorithms will gradually vanish with increased M. This moti-

vates us to deploy an IRS with a larger number of reflecting

elements, i.e., N>M, to harvest the reconfigured channel gain

provided by the IRS.

F. Impact of the Task Completion Time T

Fig. 10 shows the impact of task completion time T on

energy saving of the federated learning system. It can be

seen that the energy consumption slightly decreases with the

increase of the completion time. This is because the devices

always work on the lowest frequency to save energy and satisfy

the task completion time. Moreover, in our setting the local

computing takes a lot of time but only accounts for a small

portion of energy consumption, while model uploading takes
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Fig. 11. Total energy consumption versus bandwidth B with K = 5, N = 20,
and M = 4.

Fig. 12. Energy consumption versus the location of the IRS when N = 20,
K = 20, M = 4, and T = 40.

little time but consumes a lot of energy. In other words, the

total energy consumption of the proposed federated learning

system is insensitive to the task completion time.

G. Impact of the Bandwidth Constraint B

Fig. 11 shows the impact of the communication bandwidth

on the system energy consumption. With the increase of the

available bandwidth, each IoT device can reduce their trans-

mit power or their uploading time to upload the same model.

Hence the total energy consumption can be saved. As can be

seen, the absolute value of the slope of these curves gradu-

ally goes to zero, which suggests that the impact of bandwidth

is diminishing in the high bandwidth region. In other words,

when the available bandwidth is large enough, the other com-

munication/computing factors will become the major factor(s)

that prevent the reduction of energy consumption.

H. Impact of the IRS Location and Path Loss on the

Reflecting Channel

The impact of the IRS location on the system energy

consumption is presented in Fig. 12, where x measures the

distance between the IRS and BS. When the IRS is close to the

IoT devices, the energy saving will be significant. The impact

Fig. 13. Energy consumption versus the path loss of the reflecting channel.

of the location of the IRS depends on the IRS reflected channel

fading. In practice, the location of the IRS should be properly

selected to reap the maximum benefit of the IRS technology.

Similarly, the energy consumption versus the path loss of the

reflecting channel is shown in Fig. 13. The default setting on

the reflected channel is α = 2.2 for hr,k and H. Now we

change the value of the path loss from 2 to 2.5. We find that

when the path loss on the reflected channel becomes larger, the

energy saving becomes less. This is easy to explain. When the

path loss on the reflected channel becomes larger, the chan-

nel enhancement effect of the IRS will become weaker. In

the extreme case when the path loss on the reflected channel

is infinitely large, i.e., the reflected channel is blocked, the

deployment of IRS will make on difference.

Our simulation is based on the assumption that the repeated

model uploading accounts for the major energy consump-

tion of the federated learning system. In some systems, the

local computing may take up the major energy consumption

compared with the communication process. Different system

factors such as local data size, model accuracy level, environ-

ment noise power level, and the CPU processing capability

may have various effects on the system trade-offs: 1) between

task completion time and the energy consumption and 2)

energy consumption caused by communication and compu-

tation. The proposed algorithm provides a low complexity

solution to explore these trade-offs.

VIII. CONCLUSION

In this paper, we considered an energy-efficient feder-

ated learning framework where devices uploads their locally

trained models when assisted by an IRS. In this frame-

work, an energy minimization problem was considered. We

proposed an efficient parameter optimization algorithm to

jointly optimize system parameters, such as the operating

frequency of each device, transmit power, bandwidth, the

IRS phases, and the local accuracy parameter. The proposed

low-complexity algorithm can reasonably manage the energy

resources by balancing the communication and local train-

ing costs. We have conducted extensive experiments to shed

insight on the benefits on the use of IRS in federated learning

systems.
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