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Energy-Efficient Federated Learning With
Intelligent Reflecting Surface

Ticao Zhang

Abstract—Federated learning is a new paradigm to support
resource-intensive and privacy-aware learning applications. It
enables the Internet-of-Things (IoT) devices to collaboratively
train a global model to accomplish a machine learning task with-
out sharing private data. In practice, the IoT devices powered
by batteries finish the local training and interact with the cen-
tral server via wireless links. However, the repeated interaction
between IoT devices and the central server would consume con-
siderable resources. Motivated by the emerging technology of
intelligent reflecting surface (IRS), we propose to leverage the IRS
to reconfigure the wireless propagation environment to maximize
the utilization of the available resources. Specifically, we con-
sider the critical energy efficiency issue in the reconfigurable
wireless communication network. We formulate an energy con-
sumption minimization problem in an IRS-assisted federated
learning system subject to the completion training time con-
straint. An iterative resource allocation algorithm is proposed to
jointly configure the parameters with proven fast convergence.
Simulation results validate that the proposed algorithm converges
fast and can achieve significant energy savings, especially when
the number of reflecting elements is large and when the IRS is
properly configured.

Index Terms—Federated learning, intelligent reflecting surface,
energy-efficiency, resource allocation, Internet-of-Things (IoT).

I. INTRODUCTION

HE EMERGING intelligent applications such as face
Trecognition, autonomous driving, unmanned aerial vehi-
cle (UAV), and indoor localization have imposed great
challenges for Internet of Things (IoT) devices due to
the computation-intensive and latency-sensitive features. The
devices are generating a vast amount of data via their local
sensors, e.g., GPS, accelerometer, and camera. It is envi-
sioned that future networks should be able to utilize the local
data at the mobile edge to perform intelligent inference and
machine learning tasks. However, the paradigm change from
“connected things” to “connected intelligence” in the era of
6G brought about two main challenges [1]. First, the band-
width is limited, aggregating the large volumes of data would
cause network congestion. Second, data-privacy is becoming
a critical issue in today’s IoT and the Internet. As a result, it
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becomes more and more desirable to perform learning tasks at
the end-IoT devices instead of sending raw data to the central
cloud.

A new machine learning method, termed federated learning,
has emerged as a promising solution for privacy-sensitive and
low-latency solutions [2]-[4]. In federated learning, user data
is stored locally. In each communication round, users perform
local training based on their local data and then upload their
trained model to the central server. After aggregating the local
updates from all users, the central server distributes the new
global model to the users. This process proceeds in an iterative
way until convergence is reached. In this way, a global model,
which is trained from the data stored on each device, can be
obtained without data leakage or data being inferred from other
users. This property makes federated learning one of the most
promising technologies of future intelligent networks.

Nevertheless, so far, the potential of federated learning has
not been fully exploited yet due to the stochastic nature of
wireless channels. For example, cell edge users often suffer
from communication links of poor quality or unfavorable wire-
less propagation conditions. Fortunately, the recent advances
in reconfigurable wireless technology provide a new cost-
effective means to enhance the performance of intelligent
learning systems [5], [6]. To be specific, the intelligent reflect-
ing surface (IRS) is composed of a large number of reflecting
elements, whose amplitude and phase can be adjusted to create
a favorable propagation environment [7]—-[9]. The direct chan-
nel gain in combination with the reflection-aided beamforming
gain can boost the local model uploading performance.

In this paper, we investigate energy efficient communication
in federated learning with IRS. There are several challenges.
First of all, the IoT devices for federated learning are pow-
ered by batteries, which need to support both local training
and model upload. How to save the battery power of each
device becomes a critical issue. Second, the global model
training accuracy depends on the number of training itera-
tions. The parameters need to be properly designed to meet
the training accuracy requirement while also conserve energy.
Third, with the involvement of IRS, the parameters become
highly coupled. A joint design of the IRS parameters as
well as the computing/communication parameters is of critical
importance. The main contributions of this paper include:

1) We investigate an IRS-assisted federated learning
system, where the IRS reconfigures the communication
channel so that the IoT devices can upload their model
with a reduced power. As a result, the total energy
consumption can be effectively reduced.
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2) We formulate a joint local training and model uploading
problem, which aims to minimize the energy consump-
tion subject to the task completion time requirement.
A low complexity iterative algorithm with proven fast
convergence is proposed to optimize each variable itera-
tively. Most of the variables can be obtained numerically
with the simple one dimensional search algorithm, which
makes it useful in practical systems. We show that
the main complexity of the algorithm comes from the
optimization of IRS elements, which involves solving an
semidefinite programming (SDP) problem.

3) The convergence of the proposed algorithm is proved
theoretically and verified numerically. Extensive simula-
tions are performed to demonstrate the benefits brought
by the use of IRS. Our results suggest that with the use
of IRS, the energy consumption in federated learning
of a battery-powered IoT device network can be greatly
reduced, especially, when the number of reflecting ele-
ments is large and the IRS is properly configured.

The remainder of this paper is organized as follows.
Section II introduces the relevant work and Section III
presents the system model and problem statement. We start
the design of the algorithm from the simplest case where
there is only one device in Section IV. Then the algorithm
is extended to a multi-device federated learning scenario in
Section V and a low complexity algorithm is proposed in
Section VI. Numerical results are discussed in Section VII.
Finally, Section VIII concludes this paper.

Notation: The notation used in this paper is summarized
as follows. Bold lower/upper case letters denote vectors
and matrices, respectively. CN (p, 02) denotes the circularly
symmetric complex Gaussian distribution with mean p and
variance o2, For any scalar a, lal denotes its absolute value. For
any vector a, a; is the i-th element. A*, AT and A represent
the conjugate, transpose, and conjugate transpose of matrix A,
respectively. Diag(A) stands for a vector whose elements are
extracted from the diagnal of matrix A. A > 0 means that
A is a positive semidefinite (PSD) matrix. Rank(A) denotes
the rank of matrix A. arg(-) returns the angle of a complex
variable. Variables with star indicate optimal solutions.

II. RELATED WORKS
A. Intelligent Reflecting Surface

IRS is an enabling technology to reconfigure the radio sig-
nal propagation in wireless links [7]-[9]. It has been regarded
as a promising enabler for smart wireless communication for
B5G/6G wireless systems. By deploying a large number of
passive reflecting elements, the signal propagation channel can
be smartly coordinated to achieve a desired distribution.

Earlier works suggest that a controllable surface could
be realized by changing the electric and/or magnetic polar-
izability property of the scatter [10]. Later, this research
area has been explored in terms of theoretical IRS sig-
nal and channel modeling [8], practical IRS beamform-
ing design [6], and prototype deployment [11]. The beam-
forming design includes both passive beamforming at the
IRS and active beamforming at the transmitter, which is

optimized based on different objectives, such as power
minimization [6], rate maximization [12], energy efficiency
maximization [13], etc. Recently, IRS has been investigated for
physical layer security [14], simultaneous power and energy
transfer (SWIFT) [15], mobile edge computing [16], etc.

B. Energy Efficient Federated Learning

Federated learning, first proposed in [2], is a distributed
learning method that enables [oT devices to train a global
model without sharing their own data with other users. Due
to its advantages in protecting privacy, it has been success-
fully adopted in a wide range of application scenarios, such as
semantic location, health prediction, or learning sentiment [4].

There are a number of works focused on federated learn-
ing over wireless links. A communication and computation
co-design approach for fast model aggregation is proposed
in [17], which leverages the property of signal superimposition
on wireless multiple access channels. This over-the-air compu-
tation (AirComp) framework is achieved by jointly considering
the beamforming design and the device selection problem. A
collaborative learning that takes into account of limited wire-
less resources is first investigated in [18]. The impact of MAC
layer bandwidth and power limit on the performance of feder-
ated learning is investigated under the framework of AirComp.
A general model that investigates the computation and com-
munication latency trade-off in federated learning is proposed
in [19]. The authors show that federated learning over wire-
less networks captures a trade-off between communication and
computation. The previous research are all focused on stochas-
tic wireless channels. The benefits of configurable technology
such as IRS on the performance of federated learning has not
been fully investigated. Recent results in mobile edge comput-
ing show that the overall uplink transmission latency can be
reduced [20] and the system throughput can be improved [16]
with the IRS technology.

There are several works that investigate federated learning
with IRS. In [17], the authors show that when federated learn-
ing meets IRS, the model aggregation error can be reduced via
the enhanced signal provided by the IRS. AirComp and IRS
have the potential to tackle the challenge of the communication
bottleneck problem. The authors in [21] investigate the model
aggregation performance in a federated learning system with
IRS. A joint model device selection, beamforming, and IRS
phase shift optimization algorithm is proposed. The proposed
algorithm can schedule more devices in each communication
round under certain accuracy requirement.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a single-cell federated
learning communication system, where K single antenna IoT
devices offload their locally trained models to an edge server
hosted at a BS with M antennas through radio access links.
The federated learning model is the same as that in [22], where
a global ML problem is solved at a central server with the
training dataset partitioned over IoT devices.

We assume that each device k has a local training dataset
with D;, data samples. The federated learning model is locally
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Fig. 1. TIllustration of the federated learning system with IRS.

trained by each device’s own dataset. Then the local model
parameter is uploaded to the BS. After aggregation, the BS
then broadcasts the global model to each participating device.
This is called one round of training. Such communication
round will be performed several times until the model achieves
a required level of accuracy. We aim to determine the resource
allocation strategy to achieve an energy efficient design.

A. Wireless Communication Model

We consider uplink frequency-division multiple access
(FDMA) transmissions where the BS serves the users with
orthogonal frequency bands. To assist the model uploading of
mobile devices, an IRS with N reflecting elements is placed
between the IoT devices and the BS. The equivalent channels
from device k to the BS, from device k to the IRS, and from
the IRS to the BS are denoted as hy ;, € CMx1, h, ;€ chx1
and G € CMXN respectively. The IRS has a reflection phase-
shift matrix ® € CV*N | which is a diagonal matrix with e’ On
being its diagonal elements, 0, € [0,27], forall 1 <n < N. ©
captures the effective phase shifts of all the reflecting elements
of the IRS. The phase shift unit can be adjusted by the IRS
controller based on measured channel dynamics. The compos-
ite channel is therefore modeled as a combination of the direct
channel and the reflected channel. The training update trans-
mission between the IoT device and the cloud server happens
in orthogonal frequency bands. Hence there is no interference
between users. Then the uplink transmission rate of the kth
IoT device is given by

H 2
Ry, = b logy <1+ w>, (D

N0|W£{| bk
where b;. is the bandwidth allocated to device k, n is the addi-
tive white Gaussian noise (AWGN) with zero mean and noise
power spectrum density No, wj, € CM>1 is the beamforming
vector for device k, hy £ hqy + GOh, ; € CM*! is the

combined channel between device k and the BS.

B. Federated Learning Model

A federated learning process consists of three stages: local
training, model aggregation, and model distribution. The entire
training process differs from the conventional mobile edge
computing system in three aspects. First of all, in mobile

847

edge computing systems, a device can offload part of its work
to the cloud while computing its own tasks asynchronously.
However, for federated learning, each device has to finish its
local model training first, and then performs model upload-
ing. Second, in federated learning, the cloud cannot aggregate
the global model until each device offloads its local model
to the cloud. This requires stringent synchronous process-
ing and poses the latency requirement. This training process
usually lasts for several rounds. Third, in federated learn-
ing, the uploaded model sizes should be the same for all
the IoT devices, while the uploaded data sizes are usually
different across different devices in general mobile edge com-
puting. The models for the three stages of federate learning
are provided in the following.

1) Local Training: When an application is executed on
the IoT device, the energy consumption depends on the CPU
workload of the device, which is characterized by the num-
ber of CPU cycles to complete this application. Assume c;, is
the number of CPU cycles required to process one bit and fj,
is the number of CPU cycles per second for device k. Then
the time required for carrying out the local model training
can be expressed as Djc/fi in each local training round.
We assume that each device uses the stochastic average gra-
dient (SAG) algorithm to train the local model to achieve a
local level relative accuracy n € [0,1]. The number of local
iterations is then given by [23]

L(n) = £11n(1/n), 2)

where /1 > 0 is a parameter depending on the data size and
structure of the local problem. In [24], it is shown that the
local level accuracy n = 0 describes an exact solution of the
subproblem and 1 = 1 means that the local training has not
been improved at all. In this case, the local training latency
will be

tk = L(n)Dycy/fi. 3)

Assume the IoT device uses a dynamic voltage scaling
(DVS) scheme, so it can adjust its computational speed to
save energy [25]. According to [25], the energy consumption
per CPU cycle can be expressed as nf,?, where « is a coef-
ficient depending on the chip architecture. Then the energy
consumption for local training can be expressed as

BE = kDyerf2L(n). )

2) Model Aggregation: After local model training, each IoT
device then sends its local updates to the BS. Suppose S is the
size of the offloading training model with a fixed dimension,
which should be the same for all the IoT devices. The upload
latency can be expressed as

t/ = S/Ry, (5)

where Ry, is given in (1). The energy consumption of model
uploading for device k is expressed as

BY =tV (per + 1), (6)

where p,. ;; is a constant circuit power of the IoT device during
the computational uploading process.

3) Model Distribution: The parameters related to the global
model are updated via a simple linear processing at the cloud
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server hosted at the BS. The BS has a strong processing capa-
bility, and hence the processing time can be negligible. After
the global model parameters are updated at the BS, the BS
distributes the global model parameters to all the IoT devices.
The broadcast time can also be negligible since the BS has
high transmit power and large bandwidth.

To achieve a global accuracy ¢, the number of global
iterations is given by [24]

O(In(¢))
G(n) = ——=~. 7
(n) - (7)
In this work, we consider a fixed, target global accuracy ¢, so
we can normalize O(ln(%)) to 1 without changing the nature
of this problem.
To this end, the overall latency of IoT device k is composed
of the local computation time and model uploading latency as
1

Ty = —— (tL t ) 8
k=T, + )
Let T be the maximum training time for the entire federated

learning algorithm. Then we have

T, < T, Vk. 9)

The overall energy consumption for IoT device k over the
entire federated learning process is

(10)

1 L U

C. Problem Formulation

To allow the IoT devices to save energy while also guar-
anteeing the training time/accuracy requirements of federated
learning, we need to develop effective resource allocation algo-
rithms. The energy minimization problem is thus formulated
as follows.

Pl min E (11)
( ) nyfhbk,Pk:ka@ Zk: b
s. t. Cl: T, < T, Vk

C2:n>0
C3:0<0, <2m, Vn
C430§pk§PmaX7 vk

C5: » by < B,
k

where constraint (C1) is the task completion time constraint;
(C2), (C3), and (C4) specify the domain of 7, 6,, and
D, respectively; constraint (C5) indicates that the combined
occupied bandwidth should not exceed the total available
bandwidth. This is a joint power, bandwidth, phase shift, accu-
racy control, and beamforming design problem. Problem (P1)
has a non-convex and mixed structure where some variables
are coupled. Obtaining a global optimal solution will be quite
challenging.

IV. ANALYSIS OF THE SINGLE DEVICE SYSTEM

First of all, we consider the simplest case where there is only
one [oT device. Although such assumption is not practical in
terms of federated learning, the results can still provide useful

insights on parameter optimization for a practical multiuser
federated learning system. In the rest of this section, we set
k = 1. The total energy consumption for device k is

1 S
By = Fp— (Rk(pc,k + k) + HDkakaL(n))- (12)

A. Design of the Device CPU Frequency

Theorem 1: The optimal operating frequency for device k
is given by

= L(n) Dy cy,
BT/ Gn) - S/Ry

Proof: The objective function E; in (12) is an increasing
function in terms of f;,. The time constraint (C1) of Problem
(P1) suggests that the IoT device should work on the lowest
frequency f;* that is allowed by the delay constraint. |

(13)

B. Design of Power Allocation

Next, we substitute the optimal solution f;* (13) into the
original Problem (P1). We jointly optimize the power allo-
cation when the local accuracy parameter 7, the bandwidth
bi, the IRS parameters ® and wj, are known. The objective
function becomes

E, = G(n) (Ri(%,k + pi)

2
+ KDy L(n) (T/é((z))D—ka’k/Rk) ), (14)

where Ry, is a function of py, b, and ©. A direct optimization
is quite hard. To solve this problem, we optimize each variable
in an iterative manner. Specifically, we write

t,3 t,3
R A (8
I L)Dpep \G(n) Ry)’
where fkt is the result in the tth iteration. The objec-
tive function (12) then assumes a simpler form as Ej =

t,3 .
G(U)(%(ng +pi) + Kf, (% — Rik)) When f;, is fixed,
the problem becomes

15)

+ —A
(P2a) n;}cn Pk Pek = £k p‘;’: k
s.t. (C4), (16)

where A = Iifkt 3 is a constant in each iteration step.
Theorem 2: The optimal solution to (P2a) when p.j —
A > 0 is given by

pj; = min{p},, Pmax }, (17)

where pj is the solution to h(py) =
Ag) —In(1 + agpg/b) = 0.

Proof: If p.p — Ap > 0, then p + p. — Ay > 0.
Minimizing the energy consumption Ej, is equivalent to max-

imizing the function g(p;) = ﬁ. For simplicity of

G _
T orpr (Pek + Pk

notation, we rewrite ¢(py) as

b, In(1+ agpy/by)
In(2) per+pr— A’

9(pk) = (18)
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|w/ by |?

NolwlT? > 0. Then we have

where a;, =

, b e (Pe,k + i — Ag) — In(1+ agpr/br)
g (pk) = ln(2) 2
(pek +pi — Ag)

19)
Let the numerator be denote by h(py) and we have

2
—aj

W (pg) = 5 (e +pe — Ag) <0, (20)

(bg + apk)

which means h(pg) is a decreasing function on [0, Pyax].
Also note that h(0) = ap(p.r — Ag)/bp > 0 and
limy, 00 A(py;) = —oc. Hence there exists a pj, € [0, oo] such
that h(p)) = 0. As a result, i(p;) > 0 on the interval [0, p} ]
and h(py,) < 0 on the interval [p) , +00]. Hence ¢'(py) > 0 on
the interval [0, p;] and ¢'(py) < 0 on the interval [p} , 4+00].
We then claim that g(p;) achieves its maximum value when

/

Pk = Pg-
It is not straightforward to obtain a closed-form expres-
sion of p; by solving h(p;) = 0. However, this is a

one-dimensional search problem and function k(p;) has the
monotone property. Hence, some simple algorithms (e.g.,
bisection search) can be used to obtain the solution [26]. W

If p. — Ag < 0, then the objective function in the sub-
problem is negative when py + p.j — A < 0 and positive

when py, + p. , — Ay > 0. By investigating the monotonicity
Ry,

. . . Pc,k—DPk . .
increasing on the interval [py, 1in, Pmax]. Hence the objective

function is minimized when py = pg min- In this paper, we
only consider the case where p.j — Ay > 0 for simplicity.
The case p.  — A < 0 can be similarly analyzed.

of the objective function, we find that - is strictly

C. Design of Bandwidth Allocation and IRS Parameters

When the power and frequency parameters are fixed, we
can see that minimizing energy consumption is equivalent to
maximizing the achievable rate ;. The subproblem becomes

(P2b) max Ry

ksWks

s.t. (C3),(C5). 1)

First of all, we can prove that Ry, is a concave function w.r.t.
by, on the interval [0, B]. The optimal bandwidth allocation by,
for the singe device case can also be obtained with a bisection
method by setting the first derivative of Ry to zero. To save
space, we leave out this part of content.

Now, we optimize the IRS related parameters ® and wy,.
Maximizing the achievable rate R; is equivalent to maximiz-
ing the corresponding SNR a;. The problem becomes

H 2
e PV el (220)
Onwi No|wil by

s.t. 0<86, <2,

where hy, = hd,k + G@hr,k'

This problem can be solved by alternative optimization.
Specifically, we first fix the IRS phase shift matrix ® and
find the optimal detection vector wy. Without changing the

(22b)

849

nature of the problem, one can set |wkH |2 = 1 for simplic-
ity. This problem becomes the well-known maximum ratio

combing (MRC) detection problem. The SNR is maximized at

hy,

—_— 23
|hy| 3

*
Wk =
Next, for a fixed wf , we optimize the IRS phase vector.

This problem is equivalent to the following problem.

(24a)
(24b)

max ‘wkH (hd,k + G@hryk)‘
s.t. 0<0, <2,

We follow a similar procedure as in [6] by rewriting
‘w,gH (hay + GG)th)‘ < ‘wthdvk’ + ‘wkHG@hM‘

< ‘Wthd,k’ + ‘wkHGdiag(hnk) ,
(25)

where the first inequality is due to the triangle inequal-
ity and the equality holds if and only if arg(w,? hg ) =
arg(wi/GOh, ;) £ ¢(. Note that diag(®) is a diagonal
matrix and we extract its diagonal as a vector v = diag(®),
then W]?G@hnk = W,?Gdiag(hnk)v. Considering the con-
straint that |v,| = |e/%"| = 1, the optimal solution to this
problem is given by

v — exp{j ((;50 — arg (wadiag(hr,k))) }7

where ¢g = arg(wthd7k).

Remark 1: Tt can be seen that the IRS can strengthen the
received signal power by aligning the cascaded channel with
the direct channel compared with that without IRS.

This alternating optimization method is appealing since it
has a closed-form expression for both the IRS phase shift
vector and the signal detection vector. Its convergence is
guaranteed since each subproblem ensures that the objec-
tive function is non-decreasing over iterations and is bounded
above as the second inequality in (25) suggests.

(26)

D. Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter 7. For sim-
plicity of notation, the objective function can be rewritten

as
1 n g 77 ) ) )

where u = (p.; + p)S/Ry and v = /‘?chkf/?fl are both
positive numbers.

Theorem 3: The optimal accuracy parameter n* is the
solution to h(n) = 0, where

f(n)

h(n) = —v(1 —n) + un — vnln(n). (28)

Proof: Let’s examine the property of f(n). Its first order
derivative is
f/(n) — _U(l — 77) +un —n ln(n)
(1l —n)?

(29)
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Algorithm 1 Energy-Efficient Optimization for Single Device

1: Initialize IRS phase shift matrix ©® and the iteration
number t =1, s = 1;

2: repeat
3:  Obtain wj according to (23);
4:  Obtain v*® according to (26);
50 s = s+1;
6: until convergence
7: repeat
8:  Obtain fk according to (13);
9:  Obtain p} according to (17);
10:  Obtain béc
11:  Obtain 17]g according Theorem 3;
12:  Calculate E}, based on (12);
13: = t41;
| H—f_ t‘ . .
14: until k. < ¢ and (C1) is satisfied

Ié\

Letting h(n) = —v(1—n) + un—vnln(n), we have lim, o+
h(n) = —v <0 and lim,_,;- A(n) = u > 0. Moreover,
B (n) =u—wvlIn(n) >0, n € (0,1). (30)
Hence, h(n) is an increasing function in terms of 7 on (0, 1)
and there exists only one point 1’ such that h(n') = 0. Then
h(n) < 0 (f'(n) < 0) on the interval (0,7'], and h(n) > 0
(f'(n) > 0) on the interval [1’,1). As a result, f(n) will be
decreasing on (0,7'] and increasing on [r/,1). The optimal
solution that minimizes the energy consumption £}, should be
n=rn. [
The algorithm for single user training is presented in
Algorithm 1. The mainly complexity comes from the alterna-
tive updates of ® and wj, whose complexity are on the order
of O(MN, N?) and of O(MN?), respectively. We can there-
fore claim that the overall complexity is O(Iy MN?), where
I is the iteration involved in Lines 2-6 in Algorithm 1.

V. ANALYSIS OF THE MULTIUSER FEDERATED
LEARNING SYSTEM

In this section, we consider the more practical multiuser
federated learning system. The objective function becomes

E:ZEk

= Z G ( pck +pk) +I€chkfk ( )) 3D

A. Design of the Device CPU Frequency

First of all, we optimize the frequency when the training
accuracy 7 is known. Minimizing the sum energy consump-
tion of each device is equivalent to minimizing the individual
energy consumption of each device. Again, for each device,
Ej is an increasing function in terms of f. As a result, the
frequency should be set as (13) to satisfy the latency constraint
of each device.

B. Design of Power Allocation

From the objective function (31), we find that minimizing
the energy consumption for all users is equivalent to

. Pk + Pek — A
P3 m _
(P3a) min 3 =0
s.t. (C3), (32)
pk|wk hk' .. e
where Ry, = by logs(1 + m) Similarly, minimizing

the sum of energy consumption is equivalent to minimizing
the energy consumption of each device. Hence the optimal
power allocation can be similarly obtained as (17), which is a
one dimensional search problem for each user.

C. Joint Design of Bandwidth Allocation and IRS Parameters

When the power and frequency are fixed in the last iteration,
it is easy to verify that the optimal detection vector should be
the same as the single device case as in (23), which maximizes
the SNR for each device. Hence, the problem becomes

+pp— A
(P3b) min Pek T Ph Tk
©.br <~ by logy (1 + py by hg|?/(Noby))
s.t. (C3),(C5), (33)
where hy = hd,k + G@hr,k'

The problem is difficult since the variables b, and ® are
coupled in the numerator and the problem is non-convex.
Moreover, the objective function in (P3b) is still not straight-
forward with the phase shift vector ®. Now we extract the
diagonal elements of © to have v = diag{@} € CNx*L

Supposing Hy, = Gdiag{h, ;} € CM*N ' we have
hy =hg ; +Hv (34)
‘thhkf = b gy, + v H
+ b H v + v H hy (35)
By introducing an auxiliary matrix Ry € CWN+D*(N+1)

(N+1)x1

and an auxiliary vector v € C , we further obtain

HF?H,C Hih, V:m'
nY Hy, 0 1

Eqn. (35) can be further simplified as

R, = (36)

2
’hfhk' = VHRkV + h(]i{khd,k =Tr(R;V) + hg{khd7k
= Je(V), vk € K, (37)

where V = vw e CIN+D)X(N+1) Then Problem (P3b) is
equivalently transformed to (P3c), given by

Pek + Pk — Ag
(P39 i 25 T (4 V) (o)) O
5.t Vn,n —1 (38b)
rank(V) =1 (38¢)
Vo (38d)
(C5).
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Note that constraints (38b) and (38d) ensure that V = vv
holds true after optimization. Constraint (38c) is introduced
to guarantee the unit modulus constraint when recovering v
from V. Due to the rank one constraint, this problem is non-
convex in terms of the optimization variable V. However, we
have the following theorem.

Theorem 4: After dropping the rank one constraint (38c¢),
Problem (P3c) is convex in terms of b, and V, respectively.

Proof: The objective function in Problem (P3c) is in the
form of sum-of-ratios. To prove the sum function is convex,
we only need to show that each sub ratio function is convex.

First of all, we consider the phase shift matrix V. It can be
seen that the denominator is actually a logarithm function of
f&(V), which is concave, and f; (V) is a linear function of V.
Hence, each individual ratio function is convex in terms of V.
Hence, their sum will also be convex in terms of V.

Next, note that the denominator of each sub ratio function
is the achievable rate Ry (b) of each device. Since

O?Ry,
o

pife(V)?

- — <0,
In(2)(Noby, + prfi(V))“ by,

(39)

Ry, (by,) is concave in terms of by, and (p 3, + pg)/ Ry (by) is
convex in terms of by. |

Note that simply dropping the rank one constraint (38c)
does not necessarily result in an optimal v* due to the addi-
tional constraint (38b). In other words, the optimal solution to
Problem (P3c) after dropping the rank one constraint might
not be feasible. One way is to use the Gaussian randomiza-
tion method as shown in [6] to find an approximated solution.
A common way to recover v from V is to denote V as
V = UXU¥, where U € CWWHDX(N+1) jg g unitary matrix
and ¥ is an eigenvalue diagonal matrix. A feasible solution
is constructed as v = VZl/QC, where ¢ € CINHDx1L jg o
randomly generated complex circularly symmetric Gaussian
random variable with zero mean and unit variance The solu-
tion can be recovered by v* = exp{j arg(—- o) )} where vy 41
is the last element of vector v. The optimal V* can be further
obtained from v*.

We denote the problem of (P3c) after dropping the rank
one constraint (38c) as problem (P3c2’). Since this problem
is in the form of sum-of-ratios, conventional fractional pro-
gramming techniques such as the Dinkelbach’s method cannot
be used. To solve this problem, we first transform Problem
(P3c2’) into its equivalent form (P3d) by introducing auxiliary
variable (.

P3d 40
( v Zﬁk (40)
Pek + Pk — Ag <3
by Logy (1 + prfe(V)/(Noby)) — 7F
(38b), (38d), (05). 41

Theorem 5: If V*, {b}'}, and {f3} } are the optimal solution
to (P3d), then there exists {A} } such that V* and {b]} are a
solution to the following problem for A\, = A} and §j, = ;.

851
(P3d") {/nlblg Z Ak (Pc,k +pp — Ag
L

_ Buby logy (1 N pkka)))

Noby,
s.t. (38b), (38d), (C5), (42)

and V*; {b;} also sitisfy the following system equation for
A=Ay and By = B}

1
e = (43a)
(V*
by loga (1 + 25
+pp— A
By = Pe,k T Pk k (43b)

V)
b} logy (1 + 717’“]{[’;(1): )>
Proof: Theorem 4 also suggests that Problem (P3d’)
is a convex optimization problem. Introduce the Lagrange
multipliers associated with the objective function in (P3d’)
and the bandwidth constraint. Thus the Lagrange function of
the problem can be written as £ = > B + > Ap(Pe i +
S (V

P — A, — b loga (1 + VD)) +4u(T, by, —B). Then
the optimal solution V*, {7}, and {3} } and the Lagrange

multipliers A7 and p* should satisfy the following KKT
conditions.
oL 1 1 )
oV = iz NP o h(V) =0 @
k Noby,
oL kB
=+ (44b)
by, In(2)(Noby, + prfr(V))
P \%
{pkfk(v) — (Prfe(V) + Nﬂbk)ln(l %)} =0
00k
oL _ Prefc(V)\ _
95s =1— A;bg logy (1 + Nobr =0 (44c¢)
oL
Ao o = N (pek + i — A
— Prbyloga| 1+ (V) 0 (44d)
Noby,
'u(’) M(Zbk— )—0 (44e)
Ap =0, 2>0. (441)
\%
Pek + Pk — Ak — Bi by logy (1 + ]%]\J;kl())) <0 (449
00k
(44h)

> by —B<0.
k

From (44c), we can infer that )\z > 0 and conclude
that the equality in (43a) holds. Similarly, from (44d), we
have (43b). Moreover, note that given A = A} and 3, =
BZ, (44a), (44b), (44e), and (44f) are just the KKT condi-
tions for Problem (P3). Since (P3) is convex programming for
parameter A, > 0 and 3; > 0, the KKT conditions are also
sufficient optimality conditions. This completes the proof of
the theorem. |

Theorem 5 shows that the solution to Problem (P3d) can be
obtained by finding the solutions that satisfy the KKT conditions
in (44) among the solutions to Problem (P3d’). More important,
if the solution is unique, it will be the global optimal solution.

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:41:04 UTC from IEEE Xplore. Restrictions apply.



852 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2022

1) Finding (V*, b)) When \j, and Bj, Are Given: Note
that for a fixed A\, and [j, Problem (P3) belongs to convex
optimization. Hence effective algorithms can be designed to
find the optimal solution (V*, b;). Since V and bj, are cou-
pled, we propose to use the alternative optimization which
optimizes each variable alternatively. First of all, when b, is
known, Problem (P3d’) becomes an SDP, which can be solved
with existing optimization tools such as CVX][27].

Prfi(V)

s.t. (38b), (38d). (45)
Theorem 6: The optimal solution of by to (P3d’) is given

by

Pifi(V)
by = ~k T/ 46
k Nowp (46)
where
1 1 (C))
Ty = ——F——F~=~ — 1,
W (e G

and Wi(-) is the Lambert W function. Note that the p in
the expression of Cj, is the Lagrange multiplier for Problem
(P3d’) satisfying >, by, = B.

Proof: Following Theorem (5), the optimal solution to
(P3d’) should satisfy the KKT conditions (44). We have
from (44b)

)‘kﬂk (_pkfk(v) + (NObk + pkfk(v))ln(l + %Z(JZ)))
(NO bk + pkfk (V)) 111(2) ’

which can be written as

ILL:

Ak B z
In(1 — = 48
where 7 = %&V). The solution is found to be
09
1 pIn(2) 4
(1 4 2) + 14 2 49
n(l+2) + VR 2 (49)

Hence, we obtain (46) and (47). Note that the optimal solution
of bandwidth b} can be obtained numerically by substitut-
ing p* into (47) and (46). Again, the bisection algorithm can
be applied to find the numerical solution of  when solving
>k b = B, by leveraging the monotonicity of the Lambert
W function. ]

The complete algorithm of finding the V and by when A
and (3}, are given is presented in Algorithm 2.

2) Update Lagrange Multipliers A\, and ;,: Now we update
the Lagrange multipliers A; and (j so that (43) will be satis-
fied. We follow a similar step as in [20], [28], [29] with the
simple gradient method. Specifically, we choose initial values
of the Lagrange variables and then a standard Newton-like
method is used to update the Lagrange multipliers, as

)\]tc+1 _ )\}fc +§i<n>v1
j(n)
Bt =B +€ V.

(50a)
(50b)

Algorithm 2 Joint Optimization of V and by for Given A
and S

1: Initialization b} and set t = 1;
2: repeat
3. Obtain V! by solving problem (45) with SDP;
4:  Recover v! from V! with Gaussian randomization
algorithm;
Update the new variable V?;
Obtain b} from (46);
t = t+1;
until the objective function in (P3d’) does not decrease

® W

Algorithm 3 Joint Optimization of V and b,

1: Initialize A} and B} according to (43);

2: Sett =1;

3: repeat

4:  When )\i and ,8}; is given, obtain V! and b}é with
Algorithm 2;

5:  Update )\ZH and B,ffl according to (50);
6: t =t+1;
7: until qbk()\?l) and ¢k(61€+1) approache zero;

Here ¢ is the iteration index, & i is the step size, and V1 and
Vg are the gradient directions for )\/,’fC and B}i, respectively,
given by

P (A\g)
' (M)

Vi (Br)

Vi=-o U (Br)

av2:_

We also have

Sr(A) = Apbj 10g2(1+ mmV)) i

Nob?
Prfi (V)

100 = B o (1-+ 2R

) — (Pek + pr — Ag),

and 7 is the smallest integer among {1, 2, ...
2 2
SJon (] + e (7))
k k
N 2
< (1) (Sioop s ). o
k

where € € (0, 1).

Since (1—¢€ i )2 will be a random number between [0, 1],
inequality (51) will ensure that gbk()\]t;'l) and @/}k(ﬁ}zf"l) both
go to zero, which is exactly what the optimal solution in (43)
suggests. The joint optimization algorithm is summarized in
Algorithm 3.

Theorem 7: Algorithm 3 will converge after a finite number
of iteration steps.

Proof: Algorithm 3 is a two-layer alternating optimization
algorithm. In the outer layer, the auxiliary variable A\, and fj,
are updated with a Newton-like method, the convergence of
which has been proved in [30]. We only need to show that
the inner layer iteration (Algorithm 2) converges, where the
variables V and b;, are optimized.

, } satisfying
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Algorithm 4 Energy-Efficient Federated Learning
1: Initialize IRS phase shift matrix ©® and the iteration
number ¢t = 1;
2: repeat
3:  Obtain fk according to (13);
4 Obtain p according to (17);
5:  Obtain béc v! with Algorithm 3;
6:  Obtain nlg according to Theorem 3;
7
8
9

Calculate the total energy consumption Et;
t =t+1;

' +1
. until |Et|E7t|‘ < €1 and (C1) is satisfied

Denote the objective function of (P3d’) as f(by,
sth iteration, we have

V). In the

rv) € g (pve) € (s ven),

Note that the above inequalities (a)-(b) hold true because
Problems V* and b} are both optimally solved in each iteration
s. However, we have to mention that inequality (a) will not
hold strictly since we deal with the non-convex rank one con-
straint with the Gaussian randomization method, which may
violate the monotonic improvement property of the above
equation. To tackle this issue, our solution is to perform a
significant number of randomization processes and select the
best solution that maximizes the objective function in (P3d’).
In simulations, we perform 100 Gaussian randomization and
select the best v that achieves the maximum objective func-
tion. As a result, the inequality (a) will be guaranteed. Due
to limited BS power and the finite number of IRS reflecting
elements, the objective function in (P3d’) is lower bounded
and will converge after a finite number of steps. |

D. Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter 7). The objec-
tive function can be written as

0o om()

where u =} ; (pe i + pk)% and v = ) ), nchkkaEl. The
optimal 7 can be similarly obtained as in the single user case
with the bisection algorithm.

The complete algorithm for energy-efficient federated learn-
ing is presented in Algorithm 4. Note that the variables
involved generally has a closed-form expression or can be
obtained via simple one dimensional search with neglect-able
complexity except for variable b; and v, which requires solv-
ing an SDP problem. Generally, solving an SDP problem with
the interior method or with general CVX solvers such as
MOSEK [31] incurs high complexity. According to [32, Th.
3.12], the complexity of solving an SDP problem with m con-
straints and an nxn variable matrix is O(y/n log(1/¢)(mn? +
m2n? + m )), where € is the solution accuracy. In this
problem, we have n = N+1 and m = N+1, hence the
approximate complexity for solving one SDP problem would
be O(v/N +1log(1/e)(N + 1)*). Suppose the iterations

€(0,1), (52

853

for Algorithm 2, Algorithm 3 and Algorithm 4 are I,
I3, and Iy, respectively. Then the proposed Algorithm 4
needs to solve a standard SDP problem (45) for I3y
times. Hence the total complexity of Algorithm 4 would be
O(VN +1log(1/e) b BI4(N + 1)*). When the number of
the reflecting elements in the IRS becomes large, the total
complexity would become considerably high.

VI. Low COMPLEXITY ALGORITHM

As analyzed before, the complexity of the proposed
Algorithm 4 mainly comes from solving the SDP
problem (45). To reduce the complexity, or more specifically,
to reduce the complexity of getting v and by in Algorithm 2,
we propose to leverage the majorization-minimization (MM)
algorithm [33]. The idea is to find an easy-to-solve surrogate
problem with a surrogate objective function to problem (45),
and then solve this problem induced from the surrogate
objective function instead of the original one. This approach
can generate a sequence of sub-optimal solutions v’ at each
iteration to approach the global optimal solution.

To proceed, we rewrite problem (45) as

max > NeBrbegr(v)
k

s.t. oyy1=1; |oul=1, VI<n<N, (53)

pr(vVEREv-+hi hg 1)
where g;(v) = logg(1 + Nobkd’k
hidden convexity of g;(v), we have
) Pk (VHRkV+hgkhd7k)

— T ,

). To show the

g (v) = —logy (54)

where M), = Nyby, +pk(VHRkV+h£[khd7k). Then g, (v, My,)

is jointly convex in terms of {v, My} [34]. Its lower bound
surrogate function is given by

gk (v, M) > g (v*, M)
dg

+ aMk M= Mf(Mk—Mlc)

t)H%

ov

= consti + T]iVHRkV + o2vH

+ (v—v

vvt

k= 0V,
(55)

2(t, H t H
¢ (VTR thg hak) o pRy g
where Ty = — MTNoby n2 A AN vAL and

Pk (Vt’HRkVt + hé{khd,k)
M]gNobk In2

_ 2okRe s
Ngbk1n2

gy, | _

8Mk Mk:Mlz o
%‘

v v=v'

It can be seen that gy (v|v') is twice differentiable and con-
cave. Moreover, we can verify that (i) g, (vi|[vt) = gi(v?);
(i)g, (vIvh) < gp(v); and (i) Vge(vlv!) = Vgp(vh).
Hence gi(v) is minorized at any v"™ with a function
g, (v|v?) [33], [34]. The MM method can be used to find a
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Fig. 2. Illustrate the deployment of the IRS-assisted federated learning

system.

sequence of solutions to approach the global optimal solution
with low complexity.

We can rewrite the objective function in (53) as
>k AkBrbr g (v[vh). Put the expression of g (v|v?) into the
objective function and remove the constant. Accordingly, we
need to solve the following problem at each iteration ¢.

min vR'v — 2Re (vHrt)
v

s.t. oyyr1=1; Jupl =1, VI<n <N, (56)

where Rt = — Y, )\kﬁkka,ﬁRk and r' =3, )\kﬁkbkr,@.
Proposition 1: The objective function in (56) can be
approximated by [33]:

vIR!y - 2Re(vFr!)
<vHrty — 2Re (vH [rn + (I‘t — Rt)vtD
T vH (B RY)v!
= pmaX(Rt)vHv — 2Re (va‘t) +const’,  (57)

where Apax{R’} is the maximum eigenvalue of matrix RY,
rt — )‘maX{Rt}IN-i-l and ' = r + (/\max{Rt}IN—H -
Ri)v?.

To minimize the objective function in (56), we can optimize
its upper bound (57). Note that v/lv = N + 1 since |v,| =
1,¥n. Hence, we only need to maximize the term 2Re(v ).
This term is maximized when the phase of v and the phase of
7t are the same, i.e.,

v = exp{j arg(?f)}, Vi<i<N. (58)

It can be seen that the phase vector has a closed-form
expression (58). The complexity of the proposed algorithm
mainly comes from computing the eigenvalues of matrix R? €
CWNADX(N+1) " which has a complexity of O((N + 1)3).
Hence the complexity would be O(L3I5(N + 1)3).

VII. SIMULATION STUDY

In this section, simulation results are presented to validate
the performance of the proposed IRS-assisted federated learn-
ing system. The federated learning parameters follow a similar
setting as in [19], [35]. The IRS related parameters are set
based on the setting in [16]. Specifically, we consider an IRS
assisted communication scenario as depicted in Fig. 2. In this
x-y plane, the IRS is located at location (20,x)m. The default
value of x is 20m in this paper. The IoT devices are located
randomly in a disk area around center (30, O)m with a radius
of 2m. The BS is located at the origin (0,0)m. In this section,
we will change the location of the IRS and investigate the

TABLE I
FEDERATED LEARNING PARAMETER SETTING

Parameter Notation — Value

Local sample data size Dy [8,12] MB
Number of CPU cycles to process one bit ¢ 30 cycles/bit
Chip energy coefficient K 2x 10728
Training completion deadline Ty 40s

Upload model size S 7850 bit
IoT device static power Pe,k 0.5 W
Maximum operating frequency Smax 1 GHz
Maximum transmit power Pmax 20 W
Bandwidth B 1 MHz
Noise power No 10~10 W/Hz

impact of such changes on the overall system performance.
The channel gains are a combination of distance-dependent
large-scale fading and small-scale fading. The small-scale
fading is assumed to be Rayleigh fading CA/(0,1). The large
scale path loss model follows Ad—<, where A = —30dB is the
path loss at a reference distance 1m, d is the distance between
the transmitter and receiver, and « is the path loss component.
The path loss components for channels h;. ;, hq z, and H are
set to 2.2, 3.5, and 2.2, respectively. The noise power Ny is set
to 10719 W /Hz. The global training completion deadline is
set as T = 40 s. For the bisection algorithm, the target accu-
racy is set to 107°. For Algorithm 1 and Algorithm 4, the
stopping criteria is set to €7 = 0.01. Each simulation result is
the average of over 300 realizations.

The following two benchmark algorithms are also simulated

for comparison purpose.

1) IRS with Random Phase: The IRS uses random phases.
The detection vector w,tc, frequency f;., power py, band-
width b, and the local accuracy parameter 7 are
optimally designed as in the proposed scheme.

2) Without IRS: There is only the direct channel between
IoT devices and the BS. The other parameters are set as
the same as in the IRS with Random Phase case.

A. Impact of the Number of Reflecting Elements N

First of all, we verify the performance of the proposed low-
complexity algorithm by changing the number of reflecting
elements on the IRS. In Fig. 3, we set K = 5, M = 4, and
T = 40s and compare the energy consumption performance
of different schemes. The SDP algorithm denotes Algorithm 4
where problem (45) is solved using SDP. It can be seen
that with the increase of the number of reflecting elements
on the IRS, the energy consumptions of the proposed low-
complexity algorithm and the SDP algorithm both decrease.
This is because the IRS can reconfigure the environment and
help the devices to save model uploading power. A larger
number of reflecting elements on the IRS generally brings
a better performance. However, the processing complexity
in optimizing the elements would also become quite high.
Moreover, we find that the energy consumption curves for the
case without IRS and IRS with random phase shift look like
horizontal lines. This is straightforward as anticipated. For the
case without IRS, changing the number of reflecting elements
on the IRS will have no impact on the energy consumption
performance. For the case IRS with random phase shift, the
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Fig. 3. Total energy consumption versus N when K = 5, M = 4, and T = 40.

220 ; ; T T T T T

—_— T

210 - B

170 1
—6— Proposed low-complexity algorithm
160 - —»—SDP
w/o IRS
—A—|RS with random phase
150 Il Il Il Il Il Il Il
10 15 20 25 30 35 40 45 50
N
Fig. 4. Total energy consumption versus N when K = 10, M = 5 and

T = 40.

performance does not improve significantly since the channels
are not properly configured.

In Fig. 4, we perform similar experiments with K = 10,
M =5, and T = 40s. When the number of reflecting elements
on the IRS is increased to 50, the proposed algorithm can
save up to about 55 Joule compared with no IRS deployment
and IRS with random phase shift. These results again demon-
strate the importance of jointly optimizing resource allocation
and IRS beamforming. From both Fig. 3 and Fig. 4, the
performance of the proposed algorithm and the SDP algo-
rithm achieves very similar performance, but the former has
a significantly lower complexity and runs much faster. Hence,
for the rest simulations, we will only consider the proposed
low-complexity algorithm.

B. Convergence Behavior

In this section, we investigate the convergence of
the proposed low-complexity algorithm. The convergence
behavior of the general federated learning scheme is plotted
in Fig. 5. It can be seen that after 2-3 iterations, the energy
consumption decreases to a low value. However, the comple-
tion time might violate the training deadline constraint. After
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Fig. 5. Convergence of the first device in a multiuser federated learning

system with K = 20, M = 4, and T = 40.
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Fig. 6. Power, bandwidth, and frequency allocation for different devices with
K =20,M =4, N =20, and T = 40.

several fine-tuning iterations, we can obtain a feasible solution
that minimizes the energy consumption while also satisfying
the completion time constraint.

We also change the number of the reflecting elements on the
IRS. We find that when N = 50, the device saves more energy
than the case when N = 20. Despite that, convergence of the
training process does not change much when N is varied.

C. Energy and Time Consumption of Each Device

The power, bandwidth, and frequency allocation parameters
for different devices are presented in Fig. 6. In this simulation,
the devices are located very close to each other. Their operat-
ing frequency, power, and bandwidth seem not differ too much.
The total energy consumption and time consumption over the
entire training process is shown in Fig. 7. It can be seen that all
the devices share the same latency, which is exactly 7 = 40s,
while the consumed energy differs. With our parameter set-
ting, we also find that local training nearly does not consume
much energy but it accounts for almost 99% of latency. On the
contrary, model uploading takes a lot of energy while it nearly
takes no time. This setting is reasonable since in practice the
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Fig. 7. Total energy consumption and latency of local model training and

model uploading for different devices with K = 20, M = 4, and T = 40.
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Fig. 8. Total energy consumption versus K with M = 4, N = 40, and T = 40.

model is trained locally by each device. The training usually
takes several rounds which take time. Moreover, the device
works on the lowest possible frequency, which further slows
down the completion time. On the other hand, the devices are
battery powered, the model update process consumes most of
the energy. In this case, the deployed IRS can work as a pas-
sive, enhanced channel, which helps the devices to save their
battery power.

D. Impact of the Number of Devices K

We investigate the impact of the number of devices in Fig. 8.
We find that the energy consumption generally increases lin-
early with the number of devices involved. This is because in
the multiuser system, only the bandwidth and the IRS reflect-
ing elements are optimized jointly. Each device selects its
own operating frequency and power. With increased number
of devices, the proposed algorithm saves more energy than
the two baseline algorithms. Moreover, the performance gap
becomes larger as K is increased. This result demonstrates
the advantages of the proposed algorithm in a communication
system where the number of IoT devices is large.
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E. Impact of the Number of Antennas M on the BS

Fig. 9 shows the impact of the number of BS antennas on
energy saving of the federated learning system. As can be
seen, with more receiving antennas on the BS, the system
energy consumption can be greatly reduced. This is because
the antennas on the BS provide additional multiplexing gain
at the receiver so that each IoT device can reduce their trans-
mit power for model uploading. Moreover, the performance
gap between the proposed algorithm and the two benchmark
algorithms will gradually vanish with increased M. This moti-
vates us to deploy an IRS with a larger number of reflecting
elements, i.e., N>M, to harvest the reconfigured channel gain
provided by the IRS.

F. Impact of the Task Completion Time T

Fig. 10 shows the impact of task completion time 7 on
energy saving of the federated learning system. It can be
seen that the energy consumption slightly decreases with the
increase of the completion time. This is because the devices
always work on the lowest frequency to save energy and satisfy
the task completion time. Moreover, in our setting the local
computing takes a lot of time but only accounts for a small
portion of energy consumption, while model uploading takes
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little time but consumes a lot of energy. In other words, the
total energy consumption of the proposed federated learning
system is insensitive to the task completion time.

G. Impact of the Bandwidth Constraint B

Fig. 11 shows the impact of the communication bandwidth
on the system energy consumption. With the increase of the
available bandwidth, each IoT device can reduce their trans-
mit power or their uploading time to upload the same model.
Hence the total energy consumption can be saved. As can be
seen, the absolute value of the slope of these curves gradu-
ally goes to zero, which suggests that the impact of bandwidth
is diminishing in the high bandwidth region. In other words,
when the available bandwidth is large enough, the other com-
munication/computing factors will become the major factor(s)
that prevent the reduction of energy consumption.

H. Impact of the IRS Location and Path Loss on the
Reflecting Channel

The impact of the IRS location on the system energy
consumption is presented in Fig. 12, where x measures the
distance between the IRS and BS. When the IRS is close to the
IoT devices, the energy saving will be significant. The impact
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Fig. 13.  Energy consumption versus the path loss of the reflecting channel.

of the location of the IRS depends on the IRS reflected channel
fading. In practice, the location of the IRS should be properly
selected to reap the maximum benefit of the IRS technology.
Similarly, the energy consumption versus the path loss of the
reflecting channel is shown in Fig. 13. The default setting on
the reflected channel is o = 2.2 for h, j and H. Now we
change the value of the path loss from 2 to 2.5. We find that
when the path loss on the reflected channel becomes larger, the
energy saving becomes less. This is easy to explain. When the
path loss on the reflected channel becomes larger, the chan-
nel enhancement effect of the IRS will become weaker. In
the extreme case when the path loss on the reflected channel
is infinitely large, i.e., the reflected channel is blocked, the
deployment of IRS will make on difference.

Our simulation is based on the assumption that the repeated
model uploading accounts for the major energy consump-
tion of the federated learning system. In some systems, the
local computing may take up the major energy consumption
compared with the communication process. Different system
factors such as local data size, model accuracy level, environ-
ment noise power level, and the CPU processing capability
may have various effects on the system trade-offs: 1) between
task completion time and the energy consumption and 2)
energy consumption caused by communication and compu-
tation. The proposed algorithm provides a low complexity
solution to explore these trade-offs.

VIII. CONCLUSION

In this paper, we considered an energy-efficient feder-
ated learning framework where devices uploads their locally
trained models when assisted by an IRS. In this frame-
work, an energy minimization problem was considered. We
proposed an efficient parameter optimization algorithm to
jointly optimize system parameters, such as the operating
frequency of each device, transmit power, bandwidth, the
IRS phases, and the local accuracy parameter. The proposed
low-complexity algorithm can reasonably manage the energy
resources by balancing the communication and local train-
ing costs. We have conducted extensive experiments to shed
insight on the benefits on the use of IRS in federated learning
systems.
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