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Professional Differences: A Comparative Study of Visualization
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Kyle Wm. Hall, Anthony Kouroupis, Anastasia Bezerianos, Danielle Albers Szafir, and Christopher Collins

} _; . ‘%1 )
g |/ - |

4

1 1

1 1

Confidence
(1x per block) L

Screening  Standard Tests x 30 Pie Chart x 30

Isocontour x 20

/’

4 id

Scatterplot x 10 Feedback

T
Tasks Counterbalanced

Fig. 1. We conducted a spatial abilities study across three professional populations. After screening, demographics, and a standardized
set of spatial reasoning tasks, participants carried out three task blocks in counterbalanced order, followed by feedback on their

problem-solving strategies.

Abstract—Problem-driven visualization work is rooted in deeply understanding the data, actors, processes, and workflows of a
target domain. However, an individual’'s personality traits and cognitive abilities may also influence visualization use. Diverse user
needs and abilities raise natural questions for specificity in visualization design: Could individuals from different domains exhibit
performance differences when using visualizations? Are any systematic variations related to their cognitive abilities? This study
bridges domain-specific perspectives on visualization design with those provided by cognition and perception. We measure variations
in visualization task performance across chemistry, computer science, and education, and relate these differences to variations in
spatial ability. We conducted an online study with over 60 domain experts consisting of tasks related to pie charts, isocontour plots,

and 3D scatterplots, and grounded by a well-documented spatial

ability test. Task performance (correctness) varied with profession

across more complex visualizations (isocontour plots and scatterplots), but not pie charts, a comparatively common visualization. We
found that correctness correlates with spatial ability, and the professions differ in terms of spatial ability. These results indicate that
domains differ not only in the specifics of their data and tasks, but also in terms of how effectively their constituent members engage
with visualizations and their cognitive traits. Analyzing participants’ confidence and strategy comments suggests that focusing on
performance neglects important nuances, such as differing approaches to engage with even common visualizations and potential skill

transference. Our findings offer a fresh perspective on discipline-

specific visualization with specific recommendations to help guide

visualization design that celebrates the uniqueness of the disciplines and individuals we seek to serve.

Index Terms—visualization, spatial ability, perception, task performance, discipline, domain-specific, empirical evaluation
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1 INTRODUCTION

Empowering individuals to understand their data is the enduring
promise of the multidisciplinary venture that is visualization. While the
approaches, materials, and philosophical perspectives of visualization
continue to evolve, the goal of visualization remains largely the same:
how can we best serve individuals seeking to understand their data?
Visualization research has addressed this question following several
lines on inquiry, including 1) how people “see” data and 2) how disci-
plines differ in terms of their data and tasks. The results of this work
are foundational design guidelines grounded in the perceptions and
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reasoning processes of the monolithic “user” and discipline-specific
characterizations of target problem spaces supporting nuances in design.
Many have leveraged this pragmatic dichotomy to great success. Once
we understand the data and discipline, we essentially rely on universal
guidelines grounded in the generic “user” to create the right design.

While separating the discipline and data from the user simplifies
design, prior studies have shown that reality is more complex: indi-
viduals have different cognitive abilities and those abilities inform
visualization use [59,72,77]. Educators have explored in detail the
relationships between cognitive abilities, educational path, and pro-
fession [61, 75,76, 82]. However, we do not know how these two
elements—profession and cognitive traits—interact when using visu-
alizations. Should designers characterize the cognitive abilities of a
target discipline as part of the design process, or is one-size-user-fits-all
cognitive guidance about effective visualization designs sufficient?

We explore the relationship between profession, cognitive traits,
and visualization use through the lens of variation in spatial abilities,
defined as “the ability to generate, retain and manipulate abstract visual
images” [41, p. 188]. Spatial abilities influence how effectively people
use visualizations, including their strategies for exploring data and abili-
ties to draw relations across that data [15,19,55,72,73]. However, prior
training and experience can likewise influence an individual’s abilities
to use visualizations, even for people with low spatial abilities [27]. We



measured the associations between visualization performance, spatial
ability, and discipline in an online study across computer scientists,
chemists, and educators. Our results reveal that visualization task
performance exhibits a substantive interplay between discipline and
spatial ability, revealing limitations for the universal user approach
employed by current visualization design processes. We provide a new
lens for understanding visualization based on professional cognitive
differences — systematic variations in disciplinary visualization usage
concomitant with cognitive variations.

In this paper, we contribute: 1) detailed statistical analyses demon-
strating that visualization task performance (both correctness and com-
pletion times) varies with both discipline and spatial ability, 2) a demon-
stration that enhanced correctness can coincide with other behavior
(e.g., the perceived importance of graphical representations in the work-
place), and 3) a qualitative analysis of self-reported strategies, highlight-
ing the importance of discipline-specific skills and concepts transferring
to general tasks. Our results indicate that the expediency and efficien-
cies of prevailing disciplinary engagement and design models within
visualization may have a hidden cost: designing for the universal user
may obfuscate the full richness of whole persons whose professional
choices and cognitive abilities are not easily separated.

2 RELATED WORK

Our study bridges perspectives on visualization use across both
problem-centered (i.e., domain expertise) and user-centered (i.e., user
cognition) perspectives. We draw on prior knowledge and methods
from across these fields to investigate the relationship between spatial
abilities, professional discipline, and visualization comprehension.

2.1 Cognitive Visualization Studies

Visualization has a rich literature investigating psychological and cog-
nitive factors associated with visualization use. This work typically
focuses on understanding what elements of design make visualization
generally useful for the typical user. However, this broad lens fails to
consider nuanced differences emerging when any given person uses
a visualization, such as ability levels [27,71], prior knowledge [78],
data literacy [48], and personality traits [56]. Moreover, such work is
also counterbalanced by a growing body of work relating variations in
visualization performance and usage to cognitive differences between
individuals, otherwise known as individual differences [40]. In their
framework characterizing individual differences for visualization, Peck
et al. [59] proposed that cognitive differences between individuals could
be classified according to three orthogonal dimensions:

¢ Cognitive State, which captures the instantaneous mental state

of a person (e.g., in terms of cognitive load and emotions);

* Cognitive Traits, which are relatively stable over a person’s adult
life and include both personality traits (e.g., extroversion) and
cognitive abilities (e.g., spatial ability); and

« Experience/Bias, which embodies the influence of a person’s
previous interactions and experiences.

By treating cognitive traits and experience/bias as orthogonal, this
framework implicitly asserts that an individual’s cognitive traits do
not influence the experiences that individual pursues (e.g., education
and profession) and vice versa. This decoupling is also present in
visualization studies on individual differences where participant’s pro-
fessional information is typically either: 1) not reported [34,55,72], or
2) partially reported, but not analyzed as a potential factor influencing
performance [14, 15, 19]. Studies [14, 15, 19] that do report profes-
sional information generally employ a professionally homogeneous
participant pool, failing to consider the nature of professional cognitive
differences and their relation to visualization. We next review work
related to spatial ability, the cognitive trait we focus on in this study.

While domain-focused participatory methodologies imply that an
individual’s professional discipline can impact the right design for a
given domain [28, 60], previous visualization work [15, 44, 73] has
demonstrated that spatial ability has a complex influence on visual-
ization use and preference. For example, Chen & Czerwinski [15]
found that people’s strategies for exploring visualized data change as

a function of their spatial abilities. When navigating a 3D interface
for semantic document relationships, recall was correlated with spatial
ability whereas precision showed a negative correlation. Vicente et
al. [73] found that people with low spatial ability took much longer to
navigate hierarchical file interfaces and had different navigation pat-
terns compared to subjects with high spatial ability. These performance
differences persisted (at a reduced magnitude) for interfaces specifi-
cally designed to account for an individual’s ability level [34]. Many
studies of spatial ability emphasize people’s abilities to make sense of
more complex design choices, such as using 3D [72] or animation [19],
finding that people with high spatial ability can generally make better
use of such techniques. These differences may extend to different kinds
of reasoning judgments: participants with higher spatial ability more
easily use visualizations for Bayesian reasoning than individuals with
lower spatial ability, and exhibit substantially greater correctness [55].

However, spatial ability is correlated with other factors that may
affect visualization performance. The education literature demonstrates
that there are substantial differences in spatial ability and other cog-
nitive abilities between different professions (see 75 for a review).
Moreover, VanderPlas & Hofmann [71] found that performance on
line-up tests amongst undergraduate students is correlated with both
visual ability and whether or not a student is a STEM major. Froese et
al. [27] found that training can reduce differences between high and low
ability people. Specific fields of training, duration of experience, and
other factors associated with a profession, both at the undergraduate
level [81] and beyond [75], may all similarly influence people’s abilities
to use visualizations. Given that different professions exhibit differing
average spatial ability [75] and that performance on visualization tasks
generally correlates with spatial ability, different professions may ex-
hibit differing performance on basic visualization tasks. We test this
conjecture and provide an initial exploration of cognitive differences
between professions as they relate to visualization.

2.2 Visualization Design

The literature on visualization design (e.g., [26,28,36,49,52,60,62])
emphasizes exploring different domains to inform design processes, as-
serting that domains might differ in their data, processes and challenges,
but not in terms of the cognitive traits of their constituent members.
For example, Munzner’s Nested Model [52] identifies key threats to
the visualization design process and strategies to mitigate these threats.
This model provides guidance for comprehending domain needs and
evaluating how well a visualization addresses them; however, under-
standing the unique cognitive features of a target user group is not cast
as a starting point for visualization design. Kirby and Meyer’s char-
acterization of visualization collaborations [36] explicates the critical
role of cognitive and perceptual psychologists in system evaluation, but
overlooks the potential for domain-specific cognitive and perceptual
studies to formatively guide collaborative design. The reflective orienta-
tion of these models means that discovery of such differences might not
occur until evaluating a fully-implemented design, potentially leading
to missed opportunities and ineffective design choices.

To combat such hindsight discoveries, design frameworks typically
require developers to explicitly characterize the needs and requirements
of users early in the design process. Design Study Methodology [60]
advocates that people understand the visualization literature pertaining
to a problem before engaging in problem-driven visualization work,
presumably including cognitive and perceptual work related to target
data or tasks. However, this connection is limited to generalized percep-
tual knowledge and is distinct from discovering “the practices, needs,
problems and requirements of the domain experts” [60, p. 2436]. The
separation of user ability and domain knowledge neglects the possibility
for the cognitive traits of domain experts to inform visualization design.
Expanded methods [62] recommend employing liaisons (essentially
domain-vis intermediaries) to translate domain processes and knowl-
edge between visualization practitioners and domain users. While
including liaisons may implicitly integrate some aspect of cognitive
traits (e.g., differing capacities of individuals to use certain representa-
tions), liaisons do not account for the possibility of systematic cognitive
differences between developer and domain.



The Activity Typology for Visual Analytics recommends developers
characterize domain experts to enable “Portable Analysis. The ability
to transfer analytic work across people, places, time, and devices”
(emphasis in original text) [26, p. 271]. While cognitive variations
between disciplines could limit such transferability, understanding the
relationship between these variations and related visualization task
performance between disciplines could also enrich design by helping
characterize the disciplinary capabilities of target groups.

Recent frameworks provide more direct opportunities to investigate
cognitive differences in formulating a design, although these opportu-
nities are often implicit. For example, the understand activity within
the Design Activity Framework [49] requires developers to understand
a target domain and its users. While it emphasizes the role of tasks
and workflows, the understand activity could include cognitive trait
assessments across a discipline. Design by Immersion [28] offers a col-
laborative, transdisciplinary approach to problem-driven visualization
in which a visualization practitioner’s personal engagement, participa-
tion, and experience with a target domain informs the design. While
Design by Immersion reflects on differences in knowledge, language
and tasks, it does not capture potential cognitive differences between
visualization practitioners and members of a target domain, instead
offering the opportunity to implicitly assess such relationships through
longitudinal collaboration with individual experts.

Explicitly accounting for cognitive traits in visualization design
methodologies adds more layers of complexity to an already intricate
process. While we have preliminary evidence for differences in cogni-
tive abilities across disciplines [75,81], for differences in visualization
use across abilities [72], and for the role knowledge plays in shaping
visualization use and interpretation [78], alternative work [57] sug-
gests that data interpretation across disciplines may be more consistent
than indicated by prior studies. We conducted a formal study across
disciplines that conventionally reflect a range of spatial ability lev-
els [75]—Education, Computer Science, and Chemistry—to investigate
the interplay between disciplinary and cognitive factors in visualization
interpretation in order to explore the need for understanding domain-
specific cognitive traits in visualization design and evaluation.

3 HYPOTHESES

Inspired by the knowledge gaps identified in the previous work, and
the potential importance of domain-level differences when designing
and interpreting empirical evaluations of visualizations, we carried out
a study of spatial abilities across domains of expertise.

For tractability, we focus our investigation on computer scientists,
chemists, and educators. Computer scientists were an important pop-
ulation to include as they represent “standard participants” for many
studies on task performances and design choices (e.g., ref. [14,15]). In
turn, performance differences between Computer Science and other dis-
ciplines could have broad implications (e.g., in terms of generalizability
of previous work). We chose chemistry because: 1) there is the rich
literature exploring relationships between spatial ability and chemistry
performance (see ref. [30] and references therein), and 2) the research
team had substantial experience working with chemists. Education was
selected given the team’s experience engaging with educators, and the
critical role educators play in developing skills relevant to visualization
(e.g., data literacy). Importantly, these disciplines, on average, reflect
different levels of spatial ability. The physical sciences and computer
science exhibit higher than average abilities, and educational profes-
sionals lower [75]. However, these broad categorizations neglect how
both training and experience may shape visualization use and how indi-
vidual abilities may vary within each discipline. Our study investigates
three primary hypotheses about the relationship between disciplines,
spatial abilities, and visualization use:

H1: Spatial abilities will differ across disciplines. Prior stud-
ies [61,75] in educational psychology show that people’s spatial abili-
ties vary systematically across disciplines. Drawing on previous find-
ings, we anticipate that chemists will have the highest average spatial
abilities and educators the lowest. Measuring whether the relationship
between spatial ability and professionalization results from system-
atic preferences (i.e., people of higher spatial abilities are drawn to

chemistry) or are learned through training and experience is beyond
the scope of this study. Nevertheless, a correlation between ability and
discipline indicates fundamental differences in cognitive traits across
disciplines that may impact visual reasoning processes.

H2: People’s abilities to compare visualizations will correlate with
their spatial abilities. People’s search strategies and abilities to ac-
complish visual reasoning tasks, including how well they use particular
kinds of visualizations, vary with spatial ability [15, 19, 55, 71-73].
People with high spatial abilities tend to use visualizations more effec-
tively. We anticipate these patterns will replicate on an expanded set of
visualization tasks, further emphasizing the importance of individual
differences in design.

H3: People’s abilities to compare visualizations will correlate with
their disciplines such that average task performance will vary with
discipline. Problem-oriented visualization design methods like design
studies [60] or design-by-immersion [28] assume that disciplinary needs
are core to the “right” solution to a visualization problem. We anticipate
that these needs extend deeper than the data to encompass the abilities
of the user directly. Discipline-specific training and experience can
also build expertise and familiarity with particular visualization designs
and tasks. For example, chemists have spent centuries experimenting
with different strategies to represent molecular structures [21], and have
explored techniques to represent multidimensional information on a
2D page, both molecular structures [53] and multidimensional func-
tions [39]. Instruction on how to use chemical visualization permeates
chemical education and corresponding texts [42]. When giving advice
to potential authors, the editors at a prominent physical chemistry jour-
nal noted “well-composed and scientifically accurate figures constitute
the core of a scientific paper” [35]. For disciplines like chemistry with
a strong emphasis on visuals and systematized visualization education,
we anticipate the interrelation of these factors and disciplinary differ-
ences in spatial abilities could lead to even higher performance. For
example, it is reasonable to expect that chemists will perform better on
tasks involving 2D projections of multi-dimensional datasets.

Confirming these hypotheses would indicate that effective visual-
izations need to consider not only the needs of the discipline but the
abilities of the individuals within that discipline. Such results would
reveal significant limitations in the idea of the “universal” user.

4 STUuDY DESIGN

To evaluate our hypotheses (Section 3), we measured: 1) spatial abili-
ties using the Revised Purdue Spatial Visualization Test: Visualization
of Rotations (PSVT:R), a psychometric instrument requiring partic-
ipants to match different views on the same object through mental
rotations [79, 80], and 2) people’s ability to assess correspondences
between different visualizations. Inspired by Just Noticeable Difference
tasks from vision research [13], we selected the following visualization
tasks where participants assess whether visualizations correspond to
the same dataset at varying levels of dataset difference (difficulty).

Pie Chart Correspondence Can participants determine whether two
pie charts contain the same data?

Isocontour Correspondence Can participants recognize whether a
2D isocontour projection matches a given 3D surface?

Scatterplot Correspondence Can participants assess which face of a
3D scatterplot corresponds a provided 2D projection?

The above visualization tasks share a common theme: can people
reconcile different views of the same data? We chose this theme as
it aligns with the emphasis on mental rotation in the PSVT:R and
provides a complex task related ecologically valid scenarios (e.g., small
multiples). Participants use complex visualizations to reason over high-
level tasks that are relevant across disciplines. These tasks draw on
elements of prior studies of visualization use and spatial abilities, such
as search [15] and classification [71], extending the findings to a more
complex suite of designs and broader set of individual characteristics.
We chose to consider isocontour plots since chemistry (one of our target
disciplines) often leverages these plots to discuss chemical processes
[38], and chemistry students are trained to use them. Similarly, the 3D
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Do these pie charts represent the same data?

Fig. 2. Example of the Pie Chart Task. Participants completed 30 trials.

scatterplot task aligns with the common chemistry task of projecting 3D
molecular structures to 2D representations [53]. We explored the above
correspondences by creating a study for online deployment, consisting
of a series of tasks for the participant to complete in sequence. The
structure and setup of the study are detailed below; see Supplementary
Material (SM) for snapshots of the study system. Our study code
(stimulus generation, system, and analysis) and data are available on
OSF [29].

4.1 Recruitment

We recruited participants from the different professions by circulating
scripted recruitment emails on appropriate professional mailing lists and
with institutional contacts (e.g., heads of departments), asking that they
share the study with their faculty and graduate students. We also posted
to relevant professional social media groups (e.g., LinkedIn, Facebook).
In both cases, we informed people that they were free to forward the
study to their contacts. We also leveraged our personal networks to
initiate snowball sampling. To reduce variance in participant training,
we restricted our recruitment to the USA and Canada. Participants were
recruited to complete the tasks in a single session.

4.2 Study Structure

After participants agreed to the study consent form, the study process
consisted of the following components, as depicted in Fig. 1. Partici-
pants confirmed readiness to begin the next block at each step, to allow
for breaks as needed. There was a final screen where participants could
provide information to receive compensation ($20 gift card). The study
results and personal information required for compensation were stored
in two separate unlinkable databases to preserve participant anonymity.
During piloting, it became clear that participants perceived the
PSVT:R as the most difficult portion of the study, so we kept this test
at the start of the study to ensure a more consistent experience across
participants. Participants were provided with the standard instructions
for the PSVT:R. For the Pie Chart, Isocontour, and Scatterplot tasks,
participants were provided with instructions on how to complete each
task. They were then presented with a training trial for that task, and
provided feedback about their correctness on the training trail.

4.2.1 Measures

For each trial in all blocks, we collected the selected answer and com-
pletion time. Additionally, for the interactive tasks (Isocontour and
Scatterplot), we also logged all mouse-based interactions in the study
window. At the end of the PSVT:R and each task block, participants
provided a self rating of their confidence on the previous block using a
slider (Low—High) which was converted into a [0-100] scale.

4.2.2 Screening and Demographic Survey

Following the consent form, each participant completed an introductory
survey to collect information about their profession, education history,
visualization usage, participation in pastimes known to relate to spatial
ability (e.g., video games), and demographic information. A second
stage of screening for color vision acuity was carried out using four
Ishihara plates [33], as several of our tasks relied on color discernment.

Only people who self-identified as a member of one of our target
professions, had finished their undergraduate studies, and correctly
answered all Ishihara plates, were permitted to continue the study. A
failure to complete the plates correctly may be indicative of color-vision

Does the 20 plot represent the 30 plot?

Yes

Fig. 3. Example of the Isocontour Task. The contour on the right starts
axis-aligned and can be interactively rotated within a limited range. Par-
ticipants completed 20 trials.

deficiencies or attributable to display conditions, so participants were
not informed the reason for being screened out of the study.

We chose to exclude individuals who had yet to complete their un-
dergraduate training as substantial shifts in discipline can take place
during that time (e.g., people switching majors). Participants could only
choose one discipline when selecting primary field (i.e., CS, Chem-
istry, OR Education), and our categorization of participant profession
relies on this self-identification; we did not assign people to profes-
sional groups based on their education due to mapping challenges. We
adopted this approach because our primary focus is assessing differ-
ences between disciplines (e.g., Education vs. Chemistry) rather than
differences within individual disciplines (e.g., Educators). Exploring
within-discipline variations could be especially relevant to Education
where individuals often complete undergraduate training in one field
and then specialize in education (see SM for a breakdown for our par-
ticipants). For reference, we focused on recruiting participants with
formal education training, and so “education” is thus a well-defined
professional group for the purposes of this study.

‘We asked participants to complete the study using a computer, and
excluded ones who attempted to complete the study on a mobile device,
to increase consistency of display and interaction across participants.
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Participants then completed the PSVT:R [79, 80], a thoroughly re-
searched spatial ability test [45-47,79,82]. The test is a standardized
set of 30 rotation-based spatial ability tests in which participants match
analogous rotations of 3D models. More specifically, participants are
shown an initial view and and a subsequent rotated view of on asym-
metric block. They are then provided with a second block, and must
select from a set of distractors what the second block would look like if
it were rotated the same way as the first. The test is image-based with
no possibility of interaction.

4.2.4 Pie Chart Task

Each participant was sequentially shown 30 pairs of pie charts. All
participants viewed the same 30 pairs of pie charts in random order. For
each pair, participants had to decide whether the pie charts corresponded
to the same dataset (Do these pie charts represent the same data?
Yes/No, as seen in Fig. 2).

We created each pair of pie charts by randomly generating a pie
chart consisting of 6 slices (random slice size of 10 degrees or greater,
and random order), and then performing various perturbations to that
pie chart (or lack thereof) to obtain the second pie chart for the stimulus
pair while maintaining the first chart’s color labelling. We used a consis-
tent, approximately isoluminant color palette, avoiding visual pop-out
effects between specific pairs of slices. The stimulus set contained five
pie chart pairs for each of the below perturbation scenarios. For this
discussion, order refers to the circular order of slices in a pie chart, and
orientation is the angle a slice makes with the vertical direction. Rotat-
ing a pie chart changes its orientation, but not its order. We layered pie
chart rotation and changes in slice order on top of data changes to cap-
ture scenarios that might more heavily rely on spatial ability; assessing
data similarity in the presence of these additional non-data variations



Choose the side of the 3D scatter plat corresponding to the 2D view.

Fig. 4. Example of the Scatterplot Task. The 3D cube starts aligned
to a random incorrect face and can be interactively rotated within a
limited range. Linked highlighting supports face selection. Participants
completed 10 trials.

involves mental rotations to a potentially great extent. Combining these
factors together we arrived at six variants for the Pie Chart Task:

Identical Charts were completely identical, having the same slice
sizes, orderings, and orientations.

Identical (Order Conserved, Rotated) Charts were identical, having
the same slices sizes and ordering, but the second pie chart was a
rotated version of the first chart.

Identical (Reordered) Charts were identical, having the same size
slices, but the order of the slices was different between the two.

Different (Order and Orientation Conserved) Charts were differ-
ent. The second pie chart had the same order and orientation
of slices as the first pie chart, but two slice sizes had been altered.

Different (Order Conserved, Rotated) Charts were different. The
second pie chart had the same order slices as the first pie chart
but rotated, and two slice sizes had changed in size.

Different (Order Not Conserved, Rotated) Charts were different.
The second pie chart did not have the same order of slices as
the first chart, and two slice sizes were changed.
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Each participant was sequentially shown 20 pairs of plots. Each pair
consisted of one isocontour plot and one 3D surface plot, both of which
used the same color ramp. All participants viewed the same isocontour-
surface pairs, but in different random orders. For each pair, participants
had to decide if the two charts corresponded to the same dataset (Does
the 2D plot represent the 3D plot? Yes/No, as shown in Fig. 3).

For each 3D surface plot, we gave participants a randomly-generated
initial viewing angle of the surface in profile at a slight acute angle
with respect to the x-y plane. More specifically in spherical polar
coordinates, the initial viewing angle consisted of: 1) a randomly-
generated rotation around the vertical direction (i.e., the z axis) such
that ¢ € [0°,360°), and 2) a second randomly-generated rotation from
the z axis such that 6 € (70°,110°). The rotations were performed with
respect to the x-y centroid of each surface. Note that each participant
saw each 3D surface plot from the same initial view. During each
test (i.e., stimulus pair), participants were able to freely rotate the 3D
surface about the vertical direction, and could rotate the viewing angle
off of the x-y plane by +30°, that is to say 6 € (60°,120°). As a result,
a participant could not precisely align the surface plot with the 2D
isocontour, and mental rotation was in principle required to relate them.

We created each pair of plots by randomly generating a surface z =
f(x,y) composed of five Gaussian peaks on a flat plane (random both
in peak position and size) for the isocontour plot, and then performed
various perturbations to the initial surface (or not) to arrive at a second
surface for the 3D surface plot. At the end of the generation procedure,
all surfaces were normalized so that their vertical range was the same.
The stimulus set contained five of each of the below types of isocontour-
surface plot pairs. In addition to perturbing (or not) the positions of

Isocontour Task

the peaks to arrive at the 3D surface, we also created some stimuli
where the 3D surface was inverted (x,y,z) — (-X,-y,z) with respect to
the isocontour surface, adding additional complexity and the potential
for a false friend (a pair of plots that look potentially similar if one does
not properly attend to the axes and their relation to gradations).

Identical The data sets were identical.

Different (Shifted Peaks) Two of the peaks in the underlying surface
for the isocontour dataset were displaced to arrive at the dataset
for the 3D surface plot.

Different (Flipped) The isocontour dataset was flipped along the y=x
plane [i.e., (x,y,z) = (-X,-y,z)] to arrive at the dataset for the 3D
surface, yielding two different surfaces with a symmetric relation.

Different (Flipped, Shifted) The isocontour dataset was flipped along
the y=x plane [i.e., (x,y,z) — (-X,-y,z)] and then two of the peaks
were shifted to arrive at the dataset for the 3D surface.

4.2.6 Scatterplot Task

Each participant was sequentially shown 10 pairs of 2D and 3D scatter-
plots. In each case, the 2D scatter plot corresponded to an orthographic
view along one of the faces of the cube corresponding to the 3D scatter-
plot. For reference, the 3D datasets used for this task were generated
by selecting sets of three dimensions from existing multi-dimensional
datasets [25], and visually inspecting the datasets to ensure that the
selection resulted in an asymmetric data distribution such that orthog-
onal views were visually distinct. The participant was tasked with
selecting the 3D scatterplot face that corresponded to the 2D view (see
Fig. 4). Importantly, a participant’s initial viewing angle always aligned
with the normal of a cube face other than that corresponding to the
2D scatterplot view, and the participant could only rotate around the
face normal by 45°. As a result, a participant could not exhaustively
search for the 2D view by rotating the cube, and mental rotation was in
principle required to relate the 3D and 2D scatterplots. Note that the
asymmetric nature of the datasets meant that the front and back sides
of the 3D scatterplots were distinct, non-superimposable views.

The front face for a particular 3D scatterplot was the same for each
participant, and the exclusion of the front face meant that the 2D view
could only be one of the five remaining faces (though participants
could select all six faces). In turn, the 2D view for each dataset was
systematically varied across participants by professional group such that
each of the five faces was equally balanced across that profession. The
five possible face selections were also balanced within each participant
with two datasets having 2D views corresponding to each possible face
selection: top, bottom, left, right, and back (2 x 5 = 10 pairs of 2D and
3D scatterplots). The dataset order was randomized per participant.

4.3 Strategies Questions

Previous work [66] has analyzed people’s self-reported perspectives on
their own practices to probe for discipline-specific approaches to tasks.
Similarly, we asked participants to reflect on the strategies that they used
when completing the PSVT:R test and each of the task blocks using
free-form text. Thumbnail images were shown to remind participants
of each task. We put this as the end of the study to avoid priming affects
as participants went through the study. Note that the quality of the self-
reported strategies likely depends on a participant’s capacity for meta-
cognition, and the extracted descriptions could be enhanced through
observation and elicitation techniques. Such additional investigations
were not amenable to our large online study.

4.4 System Details

We implemented a browser-based system in JavaScript. Pie charts,
isocontour plots, and 3D surface plots were rendered with D3 [2],
Three.js [5], and delaunator [3]. The Camera-Controls library [1] was
used to provide click-and-drag functionality for rotating the 3D plots.
Our system code is available on GitHub [4] and via OSF [29].

4.5 Participants

Due to the high educational expertise required for valid participants,
we were only able to recruit 64 valid participants within the time-frame
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Fig. 5. H1: Spatial Abilities per Discipline, with the ClI of means (left)
and of mean differences (right). In the mean differences plot (right) Cls
that are tighter and further away from 0 provide stronger evidence of dif-
ferences. Red stars indicate evidence of differences between disciplines.
Error bars represent 95% Bootstrap confidence intervals (Cls).

of the study. The number of participants varied per discipline: 33
Chemistry, 19 Computer Science (CS) and 27 Education. We note
that even though our samples are not uniform, our results still provide
valuable insights: there is no magic number for participants required in
a study [7] and visualization studies often have small numbers of par-
ticipants with relevant results [9, 10]. And when it comes to statistical
evidence, confidence intervals (CIs) with just a hand-full of participants
can still provide evidence of differences [24].

The gender statistics across the three disciplines were as follows.
Chemistry: 58% female and 42% male. CS: 16% female, 74% male,
5% self-disclosed, and 5% not disclosed. Education: 81% female,
15% male, and 4% not disclosed. These are consistent with known
professional gender differences in North America [54,65]. The average
age (£ standard deviation) for participants was 2947 for Chemistry,
2746 for Computer Science, and 37£9 for Education. We found no
evidence of a difference in age for CS and Chemistry, but Education
participants tended to be older; the details of these analyses are in SM,
demographics supplement. Despite possible age differences, we note
that cognitive traits are expected to be stable for adults [40, 59].

5 RESULTS

We analyzed differences in performances and spatial abilities using
sample means and 95% ClIs, constructed using BCa bootstrapping
(5000 iterations). We analyze the CIs using estimation techniques,
interpreting them as providing different strength of evidence about the
population mean, as recommended in recent reviews [8, 18,22, 24].
CIs of mean differences that do not overlap O indicate a difference,
corresponding to statistically significant results in traditional inferential
statistics. However, Cls allow for more subtle interpretations: the
farther from O and the tighter the CI is, the stronger the evidence.
Equivalent p-values can be obtained from our CI results following
Krzywinski and Altman [37]. All CIs are calculated using the R boot
package [11,23]. Here we report high level findings and mean/mean
differences (detailed CIs in SM).

We analyzed differences in performance across spatial ability using
a Pearson’s correlation test. When p < 0.05 there is evidence of a cor-
relation. We interpret correlation strength using the recommendations
by Cohen [20], interpreting correlations as weak (R between 0.1-0.3),
moderate (R between 0.3-0.5), and high (R between 0.5-1.0).

As our study was conducted online without supervision, we ex-
cluded as outliers participants whose accuracy in each task was below
chance (below 50% for the Pie Chart and Isocontour, and below 16%
for Scatterplots). We interpreted such behavior as a participant not
understanding the tasks. We excluded five participants accordingly.

5.1 H1: Spatial Ability Per Discipline

To test if participants from different disciplines exhibit different levels
of spatial abilities, we followed a procedure similar to Yoon et al. [81].
We calculated each participant’s spatial ability as the number of correct
trials in the PSVT:R rotation task (score out of 30). We then compared
these spatial ability scores across our three discipline groups. Our
results show (Fig. 5) that mean spatial ability was higher for Chemistry
(24.4/30), followed by CS (20.9/30) and lowest for Education (18.5/30).

Looking at pair-wise differences of spatial ability, there are differ-
ences between Chemistry and the other two disciplines. There is strong
evidence that spatial ability for Chemistry was higher than Education
(by on average 5.9/30). Chemistry participants also had higher spatial

ability than CS participants (by 3.5/30 on average). There may be a
slight trend for CS participants to have on average higher spatial ability
than Education participants, but evidence is not conclusive.

While not part of our main hypotheses, we also recorded participants’
confidence in the PSVT:R rotation task. Chemistry and CS participants
tended to be more confident than Education, but our evidence is not
conclusive (see SM).

= We partially confirmed H1, the spatial abilities of participants
differed for some disciplines. The ranking of discipline in terms of
spatial ability: Edu ~ CS < Chemistry.

5.2 H2 - Spatial Ability and Performance

To determine if spatial ability relates to performance, we looked at
correlation between spatial ability and both time and correctness. We
conducted our correlation analysis per task, as their complexity differs.

Correctness: When looking at each task separately (Fig. 6-Top),
we see that for all tasks there is evidence (p < 0.05) of moderate
to high correlation between spatial abilities and correctness for CS
and Chemistry (all R 0.41-0.65). Higher spatial ability leads to higher
correctness. For Education, we found a high correlation between spatial
ability and correctness for the Isocontour and Scatterplot tasks (all R
0.53-0.61), and a trend for the Pie Chart.

Time: When looking at each task separately (Fig. 6-bottom), for
Chemistry participants, there is evidence (p < 0.05) of moderate to
high positive correlation between spatial abilities and time to complete
the task for all tasks (all R 0.38-0.53). In other words, chemists with
higher spatial abilities took longer than those with lower spatial abilities.
We only saw a correlation between ability and time in Education for
Pie Charts (again positive), and found no significant correlations with
any tasks for CS.

= When looking at performance overall, we partially confirmed
H2: participants’ correctness correlates to spatial ability (the higher the
ability, the higher the correctness) for all tasks for Chemistry and CS
participants, and for two of the three tasks for Education (Isocontour
and Scatterplots, and there is even a trend for Pie charts). However, the
correlation between spatial ability and completion times is less clear:
for Chemistry participants, higher spatial ability correlates to higher
time for all tasks, contrary to our hypothesis. We did not find a strong
correlation between time and spatial ability for CS and Education.

5.3 H3: Performance Per Discipline

‘We hypothesized that performance (time, correctness) will differ de-
pending on discipline, with Chemistry performing best and Education
worst (following their spatial ability). We report next our analysis of
time and correctness per task (seen in figures) and participants’ self
reported confidence (detailed CIs in SM).

5.3.1 Pie Charts (Fig. 7)

Correctness: Mean correctness in the Pie Chart task was higher
for Chemistry participants (79.0%) followed by Education (76.4%)
and then CS (75.6%). Looking at the mean differences, we found no
evidence of a difference in correctness between disciplines.

Time: Mean times in the Pie Chart task was higher for Chemistry
participants (9.8 s), followed by CS (9.4 s) and Education (7.9 s), with
Looking at the mean differences, Chemistry was slower than Education
(by 1.9 s) and CS slower than Education (by 1.4 s).

Confidence: Mean confidence was similar across participants for
the Pie Chart task (63% for Chemistry and CS; 61% for Education).

5.3.2

Correctness: Mean correctness in the Isocontour task was again
higher for Chemistry participants (76.8%), followed by CS (67.1%)
and Education (60.9%). Looking at the mean differences, we found
strong evidence of a difference in correctness between Chemistry and
the other two disciplines—by 15.8% compared to Education and 9.7%
compared to CS—but not between CS and Education.

Time: Mean times in the Isocontour task were again higher for
Chemistry participants (87.9 s), followed by Cs (79.9 s) and Education

Isocontour (Fig. 8)
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Fig. 6. H2: Spatial Abilities with respect to Performance: Pearson correlation between Spatial abilities and Correctness (top) and Time (bottom),
divided by task and colored per Discipline. Red circles indicate evidence of correlation. Time in milliseconds.
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Fig. 7. H3-Pie Chart performance means (on the left) and mean differ-
ences (on the right), for Correctness and Time. Time in milliseconds.
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Fig. 8. H3-Isocontour performance means (on the left) and mean differ-
ences (on the right), for Correctness and Time. Time in milliseconds.

(69.6 s). Looking at the mean differences, both Chemistry and CS were
significantly slower than Education (by 1.8 s and 1.0 s respectively).
Confidence: Chemistry participants reported the highest confidence
(74.8%), followed by CS (57.8%) and Education (38.2%). Looking
at mean differences, Chemistry participants were more confident than
both CS and Education (by 17.0% and 36.5% respectively), and CS
participants were more confident than Education (by 19.5%).

5.3.3 Scatterplot (Fig. 9)

Correctness: The Scatterplot task was the most difficult overall.
Mean correctness in the Scatterplot task was higher for Chemistry
participants (68.4%), followed by CS (56.3%) and Education (45.2%).
Looking at the mean differences, Chemistry was more accurate than
Education by 23.3%. Chemistry trended towards being more correct
than CS, and CS towards being more correct than Education, but our
evidence is not conclusive.

Time: Mean times in the Scatterplot task was higher for CS partici-
pants (17.3 s), followed by Chemistry (16.2 s) and Education (11.0 s).
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Fig. 9. H3-Scatterplot performance means (on the left) and mean differ-
ences (on the right), for Correctness and Time. Time in milliseconds.

Looking at the mean differences, both Chemistry and CS were slower
than Education (by 5.1 s and 6.2 s respectively).

Confidence: For the Scatterplot task, Chemistry and CS partici-
pants reported similar confidence (52.9% and 53.4% respectively), with
Education feeling the least confident (36.2%). Looking at mean differ-
ences, both Chemistry and CS participants were more confident than
Education participants (by 16.6% and 17.1% respectively).

= Our results partially confirm H3. Chemistry participants tend
to perform differently than CS and Education. They are more correct
than Education participants in two of three tasks (Isocontours and Scat-
terplots) and were more correct than CS participants for the Isocontour
task and likely even for Scatterplots. Chemistry participants also tended
to be slower than Education participants across all tasks.

The differences between CS and Education are more subtle. Al-
though mean correctness was higher for CS, we found no substantial
difference in correctness. But Education participants tended to be faster
than CS participants in all tasks. Overall, we observed a time/error
trade-off, with disciplines that are more correct (e.g., Chemistry) tend-
ing to also take more time to complete the tasks.

Self-reported confidence generally aligns with performance. Do-
mains do not seem to differ in the Pie Chart, but we see Chemistry and
CS participants being more confident than Education in the Isocontour
and Scatterplot tasks. Chemistry participants are also more confident
than CS for the Isocontour tasks, mirroring performance.

5.4 Strategies & Qualitative Analysis

Table 1 provides some highlights from behavioral questions that were
asked at the start of the study. The final task of the study was to
describe any strategies used for the PSVT:R and each task type. We
tabulated all comments, separated by task type and professional group.
Two members of the research team did a first pass open-coding on the
comments to discover themes and common strategies. They then met
to discuss the initial codes and develop a consensus code set. Finally,



Table 1. Summary of behavioral questions.

Characteristic Chem. CS Ed.
Makes drawings or sketches for work ~ 79% 68%  66%
Strongly Agrees with “Drawings and  67% 37% 33%
sketches are important to my work.”
Time spent playing video games
0 h/week 27%  16%  41%
>5 h/week 24%  37% 1%
Time spent making visual art
0 h/week 2% 37% 22%
>5 h/week 6% 5% 22%

Table 2. A selection of codes from task feedback analysis. Percentages
represent participants coded at least once, by profession. The prefixes in-
dicates relations to the three thematic groups in the main text: Strategies
(s-), Generated Landmarks (g-), and Visual Landmarks (v-).

Code Chem. CS Ed.
s-discrete steps 33% 58% 62%
s-skills transfer 12% 10% 0%
s-used prop or hand 21%  26% 50%
s-used symmetry 18% 0% 11%
s-used mirroring 21% 5% 0%
s-interaction 76% 58%  50%
s-had difficulties 6% 5% 27%
g-imagined axes 12% 0% 0%
g-imagined angles 24% 0% 8%
v-tracked unique features 36% 21% 15%
v-angles 30% 26% 11%
v-used visible axes 70% 63% 38%

one team member conducted a second pass coding on all data using the
final code set. Codes were organized into three thematic groups:

Strategies (s) 13 sub-codes describing different problem-solving ap-
proaches (repeated discrete steps, process of elimination, use of
external aid, metaphor or explicit skill transfer).

Generated Landmarks (g) 2 sub-codes describing mental projection
of landmarks: imagining reference axes (in the PSVT:R) and
imagining reference angles (mostly in the pie chart task).

Visual Landmarks (v) 9 sub-codes describing elements mentioned in
the strategies (e.g., angles, clusters, outliers, unique components).

We rolled up the results across tasks to count participants who were
associated with a code at least once. The codes which exhibited the
greatest differences are summarized in Table 2. The complete data and
a breakdown by task and profession provided in SM.

6 DISCUSSION

Our results indicate that both an individual’s cognitive abilities and
discipline influence how they use visualizations. These differences
manifest in both statistical performance and qualitative strategies. The
relationship between discipline, abilities, and tasks offers several im-
plications for visualization, including new insight into how we might
reason about users in problem-driven design.

Spatial ability, discipline and performance We explored how
both spatial ability and discipline influence task performance (correct-
ness). While these two factors are often treated independently, our
results reveal a complex interplay. We confirm past findings [75] that
spatial ability varies with discipline (Fig. 5), with Chemistry having
higher spatial ability than CS and Education (H1). We also found mod-
erate linear correlations between task correctness and spatial ability
across all three visualization tasks (Fig. 6-top, H2). These relationships
were stronger in the Isocontour and Scatterplot tasks. One possible
explanation for the greater correlation on these tasks is that they involve
mental rotations of 3D visualizations, aligning more strongly with our

spatial ability test. Chemistry substantially outperformed both CS and
Education on the Isocontour task (see Fig. 8), and for the Scatterplot
task outperforms Education and there is a trend towards outperforming
CS. We failed to find notable differences between Education and CS,
which aligns with the lack of difference in their spatial abilities (Fig. 5).
In contrast, the Pie Chart task involves assessing 2D rotations of planar
objects, and is thus more removed from our spatial ability test; here we
found no differences in accuracy across disciplines (Fig. 7-top).

The fact that educators can exhibit differing abilities and perfor-
mance is key for the visualization community. Teachers are society’s
knowledge stewards, responsible for guiding the development of reg-
ular citizens and future thought leaders alike. Supporting educators
should be a top priority for visualization. Visualization literacy is crit-
ical for civic participation and leading-edge visualizations may miss
wider adoption if they are inaccessible or ineffective for a key group
that influences society’s intellectual spheres from a formative stage.

Beyond correctness, we found disciplinary differences in completion
times. In general, chemists took longer on tasks than educators (bottom
of Figs. 7, 8, and 9), even on the pie chart task where their correctness
was more comparable (Fig. 7-top). Furthermore, we found moderate
positive correlations between completion times and and spatial abil-
ity across all three tasks for chemists: chemists with higher spatial
ability were slower. We conjecture that this correlation might arise
from individuals with higher spatial ability being able to assess the full
complexity of the tasks. For example, in their free-form strategy de-
scriptions, some chemists noted the mirror image relationship between
opposite sides of the cube during the 3D scatterplot task whereas no
computer scientists or educators noted that valid relationship. Criti-
cally, we must not confuse discipline capacity or difficulties with time.
Designers may need to probe the multifacted processes of a discipline’s
visualization use, not reducing comparisons to single metrics.

Strategies and training Our survey results and participants’ strat-
egy comments provide nuanced insights into the performance results.
For example, reflecting on the strategy codes (Table 2), all three disci-
plines described concrete strategies for tackling the Pie Chart task, in
contrast to the Isocontour and Scatterplot tasks where the lower per-
formance of educators coincided with vague strategies and comments
about having difficulty with the task. Moreover, Pie Charts are relatively
common visualizations, and included in many grade school curricula
(thus, teachers are specifically trained to teach about them). This famil-
iarity may explain the lack of substantial performance variations even
though cognitive differences exist between the disciplines.

However, people reported different strategies across disciplines. For
example, some chemists described comparing pie chart slices to char-
acteristic angles like 90° in order to assess changes, while only two
non-chemistry participant (both Education) reported using generated
landmarks to complete any task. Knowledge of such strategy differ-
ences (even in the absence of performance differences) could provide a
basis for engineering distinct techniques to further enhance each dis-
ciplines performance. The absence of performance differences for pie
charts coinciding with strategy differences does raise additional ques-
tions: Do the strategy differences stem from training? Or do individuals
develop different strategies, accounting for their cognitive differences,
such that they can comparably engage with common visualizations?

We found explicit evidence that people’s prior training can inform
their visualization use via skill transference. Some chemists invoked
concepts related to chirality (captured in code s-symmetry in Table 2)
when describing how they worked through the PSVT:R test and Scat-
terplot task. Chirality captures the idea that molecules or other objects
can be non-superimposable mirror images (e.g., like a person’s left and
right hands). Chirality and related concepts (e.g., handedness and stere-
ochemisty) span synthetic chemistry [12,42,63] to biochemistry [74],
and are an integral part of a chemistry education. The 3D blocks
used in the PSVT:R and the scatterplots in our study are asymmetric
(chiral) objects and previous education work [66] has demonstrated
that chemists can transfer discipline-specific empirical strategies for
addressing molecular problems to non-chemical abstract data and tasks.
This skills transference aligns with chemists’ improved performance
on the PSVT:R and isocontour tasks. Such skills transference also



occurred at a lower level: one computer science participant noted using
“intuition based on engineering design courses” when completing the
PSVT:R test while other participants compared the isocontour task to
navigating a mountain or a topographical map.

We also see evidence of skills transference in the higher use of props
by the Education participants (double the other disciplines). Though
gestures can improve spatial reasoning performance, people tend to
use such gestures more frequently when they experience difficulties in
assessing spatial rotation [17]. Educators are trained to teach students
to approach problems from a variety of ways, including concretizing
abstract problems [69]. This may point to the potential benefit of data
physicalization for some people.

Skill transference has two possible consequences for design. First,
we could look to existing interfaces and visualizations for a target
discipline-specific task to guide tools that better encourage skill trans-
ference. Alternatively, if we know that a discipline performs better on a
task using discipline-specific concepts, then that discipline’s pedagogy
may help visualization designers understand the visuals and metaphors
used to introduce the concept and abstract these ideas to support and
train other disciplines for whom a given task is difficult.

Disciplines and communication Participants’ open-ended re-
sponses also illustrate potential communication barriers during problem-
driven visualization design processes (e.g., design studies). Van Wijk
[70] characterized the challenges during visualization collaborations
in terms of knowledge and interest gaps including linguistic barri-
ers (e.g., alternative understandings of the word “interphase”). Other
work [28,49, 60] stresses the importance of understanding and using a
target discipline’s language. While our tasks were discipline agnostic,
the linguistic difference we observed across CS, Chemistry, and Edu-
cation in describing their task completion strategies (see Table 2 and
quotes in SM) highlight how individuals from different disciplines may
describe a common task/experience differently. For example, on the
PSVT:R test, many participants discretized the mental rotation process,
but only chemists explicitly discussed imagined rotational axes (12%,
g-imagined axes in Table 1). This linguistic difference may relate
to discipline-specific training: rotational axes are integral to charac-
terizing molecular symmetry, a key concept in chemistry [6, 31, 32].
However, our study involves no chemical/molecular information. Dif-
ferences in language around core visualization concepts like tasks,
when considered in conjunction with unique needs of a discipline, may
pose unexpected barriers to understanding what people need to know
about their data (e.g., task abstraction [49,52,60]). Design processes
should pay close attention to how these differences can inhibit effective
participatory design.

Demographic influences Variations in spatial ability and task per-
formance are qualitatively mirrored by participant behaviours beyond
discipline-specific skills (Table 1). Chemists are more likely to strongly
agree that graphical representations of information are important to
their work and to make drawings or sketches for their work. Educators
are less likely to play video games compared to CS and Chemistry. If
certain behaviors or attitudes coincide with spatial ability, then histori-
cal design approaches rooted in understanding a target discipline might
indirectly capture some variations in cognitive ability. However, these
types of connections are likely nuanced. For example, educators spent
more time making visual art than CS or chemists (see Table 1), but
exhibit lower spatial ability and task correctness scores.

Limitations & outlook The goal of our work was to take a first
step in shedding light on professional cognitive differences and their
implications for visualization. Therefore, we tested basic visualization
skills, rather than embedding our study in difficult to control real-
world tasks. While people do not regularly perform the exact study
tasks, similarity assessments across visualizations are not unusual. For
example, our pie chart comparison task maps to a small-multiples
scenario where a person is assessing whether they have changed how
they spend their days.

We cannot directly assess the causal origins of discipline variations
observed in this study. Previous work [16,43,50,64] indicates that spa-
tial training regimes can improve spatial ability and discipline-specific

performance/attainment. However, the gains from a particular train-
ing regime are not necessarily temporally enduring nor generalizable
across multiple disciplines [50]. Furthermore, spatial ability interven-
tions appear to have only a small effect on discipline performance [68],
and longitudinal analysis [75] has demonstrated that individuals with
high spatial ability are more likely to pursue careers in particular disci-
plines. It is an open question whether professional differences are due
to training or the intrinsic capabilities of the people they attract.

It is worth noting that additional factors can influence task perfor-
mance, such as representational fluency, which has been explored in
the context of domain-specific problem solving [51, 67] and visual-
ization [58]. However, we observed correlations between task perfor-
mance and spatial abilities for all disciplines, so we anticipate that
spatial ability is an important underlying source of variations between
the disciplines. Natural differences in demographic factors exist across
these populations (e.g., our participant groups exhibited differing levels
of education attainment, gender balances, and average ages, see demo-
graphic SM). While they may contribute to the observed phenomena,
several of these variations align with known differences between dis-
ciplines (e.g., gender-skewed male in computer science, but female in
education). These differences were not controlled in our study and we
thus cannot use them to explain our results. Nevertheless they open up
intriguing avenues for further studies.

Regardless of the origins of the differences and other potential fac-
tors, our work illustrates it is not necessarily valid to treat different
disciplines as equivalent in terms of task performance and spatial ability.
Importantly, it is reasonable to conjecture that the observed differences
are relatively robust, and that professional differences in task perfor-
mance and cognitive abilities would endure, with implications for
visualization. We did not recruit from individual institutions, but took a
broad approach contacting groups of individuals across North America.
Our study implicitly reflects a broad set of disciplinary training regimes.

In general, differences in cognitive ability, language, and familiarity
with visualizations across disciplines all appear to affect how well
people can use visualizations. However, the interplay between these
factors is complex: neither ability nor discipline alone can explain the
quantitative and qualitative differences in our data and further research
is warranted. By studying visualization use across different disciplines
and a range of cognitive abilities, we can begin to catalogue professional
differences in cognitive abilities that drive more effective, discipline-
specific visualization practices. We hope our work will encourage
further research into the underexplored space of professional cognitive
differences, looking to traits beyond spatial ability.

7 CONCLUSION

In this study, we explored visualization task performance as it related to
both discipline and spatial ability, providing a new lens for understand-
ing visualization use: professional cognitive difference. Our results
provide preliminary evidence that critical differences exist between dis-
ciplines, and indicate the need to more deeply consider cognitive, social,
and demographic factors in defining effective visualization. Our work
also reveals that disciplines leverage distinct strategies and language
to address discipline-agnostic visualization tasks, and these variations
may or may not align with differences in visualization task performance
and confidence. In general, disciplinary differences involve an intricate
combination of social factors, training, and other individual differences
that are likely interdependent. To fully empower individuals to under-
stand their data, we must assess, respect, and celebrate such differences
as we design visualizations. Investigating this rich space will require
many additional studies and extensive future work, which we hope our
results will inspire. Our study provides a first foray into this space,
opening new avenues to better understanding the “user” in problem-
driven visualization. Our data and code are available on OSF [29] to
support and inspire future studies.
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