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A B S T R A C T

Three-dimensional (3D) human pose tracking has recently attracted more and more attention in the computer

vision field. Real-time pose tracking is highly useful in various domains such as video surveillance, somatosensory

games, and human-computer interaction. However, vision-based pose tracking techniques usually raise privacy

concerns, making human pose tracking without vision data usage an important problem. Thus, we propose using

Radio Frequency Identification (RFID) as a pose tracking technique via a low-cost wearable sensing device.

Although our prior work illustrated how deep learning could transfer RFID data into real-time human poses,

generalization for different subjects remains challenging. This paper proposes a subject-adaptive technique to

address this generalization problem. In the proposed system, termed Cycle-Pose, we leverage a cross-skeleton

learning structure to improve the adaptability of the deep learning model to different human skeletons. More-

over, our novel cycle kinematic network is proposed for unpaired RFID and labeled pose data from different

subjects. The Cycle-Pose system is implemented and evaluated by comparing its prototype with a traditional RFID

pose tracking system. The experimental results demonstrate that Cycle-Pose can achieve lower estimation error

and better subject generalization than the traditional system.

1. Introduction

With the rapid development of computer vision, human pose tracking

has become an important problem area in recent years, evolving from

two-dimensional (2D) poses to three-dimensional (3D) poses [1,2].

Although camera-based techniques have been demonstrated as effective,

such vision-based techniques frequently raise security and privacy con-

cerns. For example, the millions of wireless security cameras deployed

worldwide have been reported as susceptible to hacking [3], while video

data used for pose tracking can also be intercepted and used illegally. To

address this concern, Radio Frequency (RF) sensing-based schemes have

been proposed using various wireless communication technologies, such

as WiFi [4,5], Frequency-Modulated Continuous Wave (FMCW) radar

[6], and mmWave radar [7].

To this end, Radio Frequency Identification (RFID) provides a

promising RF sensing-based solution for human pose estimation [8,9].

Compared with existing contact-free RF sensing systems, RFID tags can

be used as wearable sensors owing to their small form factor. Moreover,

RFID systems also have the advantage of being less susceptible to the

multipath effect. Compared with advanced radar-based systems, RFID

systems are cheaper. However, because RFID data has a lower

data/sampling rate than other RF sensing systems, generating a joint

confidence map for all joints is significantly more challenging. Therefore,

most existing RFID-based pose tracking systems focus on monitoring the

movement of one particular limb using sampled phase data [10,11]. In

cases when several joints move concurrently, pose detection performance

may degrade due to interference from other RFID tags.

Subject adaptability is another challenge in applying RF technology to

3D human pose tracking. Different people have different skeleton forms;

however, most neural networks utilized in RF-based pose tracking systems

are trained using limited numbers/types of subjects [5,9]. Subjects that are

not used to train the neural network model tend to be considered new data

domains in machine learning, which can cause performance losses when

the model is tested against such domains. Transfer learning is a commonly

adopted solution for such issues [12,13]; however, trained models require

updating or fine-tuning through lightweight training for transfer learning.

New vision data from a new domain (i.e., an untrained subject) is needed

for the lightweight training, raising the privacy concern issue once again.

Domain discriminators were proposed in recent literature [14,15] to

address such domain-adaptive problems. However, they are not effective

for classification problems, and their model structure may not be suitable

for the data sequence estimation found in human pose tracking tasks.
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In this paper, we shall address the above challenges encountered

while using RFID technology for human pose estimation and propose a

novel vision-aided deep-learning-based solution named “Cycle-Pose.”

The Cycle-Pose system is designed to track the movements of multiple

human limbs in real time [1]. With the proposed system, multiple RFID

tags are attached to human joints, and their movement is captured by

phase variations in RFID response messages upon tag interrogation by a

reader. Similar to our prior work “RFID-Pose” [9], Cycle-Pose is a

vision-added solution utilizing video data to support a deep learning

model in transforming phase variation data to human limb rotations,

which differs from traditional tag localization approaches [16]. In

addition, we develop a novel deep learning model, i.e., the cycle

consistent adversarial network model, to achieve generalization for

different subjects. The proposed cycle kinematic network model is

trained without the stringent requirements of paired RFID and vision

data, allowing the model to transform RFID data into a human skeleton

for any subject. We expect our proposed system to achieve better subject

generalization compared with traditional schemes when generating

human poses for untrained subjects. Cycle-Pose reconstructs 3D human

poses in real time from a given initial human skeleton and the rotations of

human limbs, which are estimated using the measured RFID phase data.

Cycle-Pose only uses video camera data during its training phase and has

the desirable advantage of not requiring further vision data in its infer-

ence stage, thus preserving user privacy.

We summarize the main contributions of this paper as follows:

● To the best of our knowledge, Cycle-Pose is the first subject-adaptive

3D human pose estimation system to use commodity RFID readers

and tags designed to effectively track 3D human poses without using

computer vision data in the testing phase.

● We propose a cycle kinematic network model in which the deep

learning model is trained using self-supervision. The proposed model

learns the transformation using measured RFID phase data to 3D

human skeleton for different subjects to achieve effective subject

adaptability.

● We propose developing a prototype system with commodity RFID

tags/readers, using Kinect 2.0 to obtain the ground truth data

required for model training. The proposed system is evaluated with

extensive experimentation as well as comparison with a state-of-the-

art RFID-Pose system [9]. The experimental results demonstrate that

the proposed Cycle-Pose system effectively tracks 3D human poses for

different subjects and exhibits great subject adaptability.

In the remainder of this paper, we review related work in Section 2.

The proposed Cycle-Pose system is presented in Section 3. Section 4

discusses the challenges and the solutions we propose to address them.

Our prototype implementation and experimental performance study are

presented in Section 5. Section 6 summarises this paper. The notation

used in this paper is summarized in Table 1.

2. Related work

Various sensing systems have been developed to address the human

pose estimation problem, such as video cameras, WiFi, and radar. With

the development of RFID techniques, RFID tags have been proposed as a

promising means of tracking the problem. In this section, we review

existing pose estimation works and related RFID sensing systems.

2.1. Traditional pose estimation schemes

Pose estimation was first developed as a computer vision technique

using video cameras [17,18]. Deep learning has shown to be highly

effective at extracting human skeletons from captured video data,

including 2D RGB cameras [19,20], depth cameras [21], and the Vicon

system [22]. Among these techniques, Vicon has been shown to achieve

the highest accuracy and is commonly used to capture motion in 3D

animations and movies. However, such camera-based techniques usually

require sufficient lighting and may raise privacy concerns [3].

The fast development of RF sensing systems and related techniques

have led to RF signals being utilized to address camera-based system

limitations [23]. An RF-based pose tracking system can better preserve

user privacy because no vision data is recorded in the device. Moreover,

RF-based systems are not limited by lighting conditions [24]. However,

unlike video frames, human skeletons cannot be directly extracted from

RF data, forcing existing RF-based pose tracking techniques to base

themselves on vision-aided training by way of supervised training with

labeled vision data. FMCW Radar was originally proposed for leveraging

vison-aided training when transferring radar signals into 2D and 3D

human poses, utilizing a teacher-student deep learning model [6,24].

MmWave radar was also employed to estimate human skeletons [7]. As

another non-intrusive sensor, WiFi devices were also leveraged to esti-

mate 2D and 3D human poses [4,5]; such WiFi and radar-based tech-

niques could effectively track the human pose but were limited by the

environmental interference because of their wide propagation range [4,

5]. Furthermore, the FMCW radar device incurred a relatively higher cost

as it was implemented with the Universal Software Radio Peripherals

(USRP) platform.

2.2. RFID-based pose estimation

RFID tags, as low-cost and lightweight sensors, are also promising for

human pose tracking. As wearable sensors, the data collected using RFID

tags are mainly used to detect subject movement. RFID-based sensing

systems are more robust against environmental effects than other RF

sensing techniques (e.g., WiFi). Numerous RFID sensing techniques have

been developed in recent years, such as vital sign monitoring [25,26],

vibration sensing [27], material identification [28], temperature sensing

[29], user authentication [30], and anomaly detection [31]. Further-

more, RFID techniques were utilized for indoor localization [16,32–35]

and drone navigation [36,37].

Advances in RFID sensing techniques have inspired the development

of human pose tracking using RFID tags attached to a human body. The

RF-Wear [11] and RF-Kinect systems were proposed to track the move-

ment of particular human limbs. However, these systems have limitations

when simultaneously tracking multiple human limbs. To address this

issue, RFID-Pose [9] was proposed to track the movement of an entire

Table 1

Notation.

Symbol Description

fs Frequency of RFID channel s

φs Initial phase offset of RFID channel s

ϕ RFID phase

η RFID phase variation

ℓ Tag-to-antenna distance

H Input RFID data tensor

nG Tag index

nA Antenna index

ηnAtnG Calibrated phase variation for tag nG

sampled by antenna nA in time slot t

r, x, y, z Real numbers in the unit quaternion

i; j;k Quaternion units in the unit quaternion

Θ Rotation matrix used in forwarding kinematic

SK Source initial skeleton

TK Target initial skeleton

F1:K Input RFID data sequence

F̂1:K Fake RFID data sequence

V̂1:K Estimated skeleton sequence

V1:K Vision data sequence as ground truth

Lp, Lc Loss functions

Ls, Lall Loss functions

Eall Overall estimation error

P̂n Estimated 3D position for joint n

_Pn Ground truth position for joint n
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human body and generate the 3D human skeleton in real time. However,

the specific paired skeleton training process of RFID-Pose limits user

adaptability, and its performance can be affected when it is applied to a

new untrained subject. In fact, such a generalization issue is a general

challenge for many deep learning-based RF sensing techniques [5,14,15].

Inspired by existing pose tracking systems, we propose a Cycle-Pose

system in this paper to improve subject adaptability and overall accu-

racy in the RFID pose estimation that is currently available with a

traditional RFID pose tracking approach.

To the best of our knowledge, the proposed Cycle-Pose system is the

first user-adaptive RFID-based 3D human pose tracking system. Cycle-

Pose utilizes a novel cross-skeleton training process to address the sub-

ject generalization issue, and it is expected to achieve more robust per-

formance than existing techniques when testing different subjects.

3. System overview

In Fig. 1, we present the overall architecture of the proposed Cycle-

Pose system, which comprises four modules: (i) Data Collection, (ii)

Data Preprocessing, (iii) The Cycle Kinematic Network, and (iv) 3D

Skeleton Generation.

3.1. Data collection

The Cycle-Pose system generates a 3D human skeleton using

measured RFID phase data. Both RFID data and camera data should be

sampled for training the deep learning model. The RFID data is collected

from 12 RFID tags attached to human joints, interrogated by three

polarized antennas, and used to train the proposed cycle kinematic

network. The vision data is collected using Kinect 2.0 on the same subject

and action simultaneously as the RFID data is collected. Kinect 2.0 is a

depth camera that captures 3D human movements using both an RGB

camera and an infrared sensor. 3D movements of each human joint are

generated by processing the Kinect data with MATLAB and stored in the

form of 3D coordinates for supervised offline training. In the testing

phase, the vision data is also used as the ground truth for performance

evaluation.

3.2. Data preprocessing

Collected raw RFID data cannot be directly used for 3D skeleton

tracking. The RFID collection phase is usually distorted by the RFID

communication system's frequency hopping and phase wrapping [8,26,

38]. Therefore, it should be calibrated to mitigate the distortion and

improve analysis by the proposed neural network model. In addition,

because the sampling rates of the RFID reader and Kinect 2.0 are

significantly different, the sampled RFID data should be downsampled

and synchronized with the vision data. RFID systems use slotted

ALOHA-like transmissions; thus, tags are seldom evenly sampled. At

most, a single sample exists in a given time slot, and all other RFID phase

samples are missing, resulting in sparse RFID data [8]. To address this

issue, we employ High Accuracy Low-Rank Tensor Completion (HaLRTC)

to estimate the missing RFID data.

3.3. User-adaptive 3D skeleton generation with the cycle kinematic

network

We propose a cycle kinematic network to generate 3D poses using

calibrated RFID phase data. Unlike traditional RFID-based pose tracking

systems [10,11], in which a particular limb's movements are detected,

the proposed system detects the 3D coordinates of all human joints

simultaneously. Moreover, the proposed cycle kinematic network ach-

ieves high subject adaptability, which is not well addressed in prior

systems [5,9]. The cycle kinematic network is trained using unpaired

RFID data and vision data sampled from different moving subjects. Thus,

the trained network can achieve better generalization when transforming

RFID data to 3D coordinates for an untrained subject.

4. Challenges and proposed solutions

4.1. RFID phase data calibration

The data's general poor quality is a challenge in human 3D skeleton

generation from RFID data. Raw RFID data usually has severe phase

distortion and is highly sparse, requiring careful calibration before being

used to train a deep learning model. In Fig. 2, we show the RFID

Fig. 1. Cycle-Pose system architecture.
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preprocessing procedure in Cycle-Pose, illustrating that passive tags are

attached to 12 of the body's joints. RFID phase data is collected by the

reader using the low-level protocol when interrogating the tags [26,39].

4.1.1. Phase distortion mitigation

The phase value in a received RFID response indicates the distance

between the reader antenna and the tag [39]. Thus, the sampled time

series of the RFID phase captures the movement of the RFID tags attached

to the subject. The FCC requires channel hopping for RFID communica-

tions (i.e., reader-tag channel frequencies must hop among 50 different

channels instead of being fixed) [8]. Each time it hops to a new channel,

there will be a different phase offset [40]. Consequently, the phase value

is dependent on the antenna-tag distance and the current channel used.

The phase φs sampled on channel s can be written as follows [38]:

φs ¼ mod

�

2π2ℓfs

c
þ φ0

s ; 2π

�

; s ¼ 1; 2;…; 50 (1)

where ℓ is the antenna-tag distance, c is the speed of light, and fs and φ0
s

denote the frequency and initial phase offset of channel s, respectively.

According to (1), to track the variation of the antenna-tag distance ℓ (i.e.,

track the tag's movement), the impact of the channel phase offset φ0
s

should be mitigated first. Fortunately, φ0
s is a constant on each channel s.

If we use the difference (or variation) between two adjacent phase sam-

ples on the same channel, the identical channel phase offset components

in the two samples will cancel each other. The phase variation ηns for

channel s is given by

ηns ¼ mod

�

4π
�

ℓ
n

s � ℓ
n�1

s

�

fs

c
; 2π

�

; s ¼ 1; 2;…; 50; n ¼ 2; 3;… (2)

where ℓ
n
s represents the antenna-tag distance when the nth sample is

measured on channel s. The phase offset φ0
s is removed in (2), whereas

the displacement of the tag ℓ
n
s � ℓ

n�1
s is retained. The phase distortion

due to channel hopping is thus effectively mitigated.

The modulo operations in (1) and (2) also cause considerable phase

distortion. Because the collected phase data φ is rounded to the range [0,

2π] rad, sharp phase changes are generated by the modulo operation

when the phase crosses 0 rad or 2π rad. To mitigate this rounding error,

the phase variation should be unwrapped. Given a 110Hz sampling rate

used by the reader, it is reasonable to assume that the phase variation

between two consecutive samples should not be greater than π and not

less than� π. We use the following scheme to unwrap the sampled phase

variation data η:

η
0

¼

�

η� 2πη=jηj; if jηj > π

η; otherwise
(3)

which decides whether the phase variation value should be unwrapped

by adding or subtracting 2π. After unwrapping, all sharp phase changes

will be smoothed out, and the calibrated phase variation data can

effectively represent RFID tag movement.

4.1.2. Data imputation

In addition to distortion, the high sparseness of RFID data presents

another challenge caused by the Slotted ALOHA-like communications in

RFID systems. For each time slot, up to one tag can send its Electronic

Product Code (EPC) to a reader, and although the Cycle-Pose system has

12 tags attached to a subject's body, it can also only sample one tag at a

time. In the RFID data tensor illustrated in Fig. 2, there is only one sample

in each slice (given dimensions of 12 tags � 3 antennas). Thus, the

sparsity of the phase data tensor is 35/36, which is considerably high for

3D human pose estimation. Moreover, polarized antennas are used in

systems that experience different propagation losses for the tags attached

to different human joints. The reflected power from tags with high

propagation loss could be too low for antenna detection, causing

Fig. 2. Flowchart of RFID data preprocessing procedure.

Fig. 3. Illustration of sampling rates for different antennas and tags.
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significantly different sampling rates. Fig. 3 presents the number of

samples collected from the 12 tags using three reader antennas during a

period of 200 s. As shown in the figure, there is a considerable divergence

in the sampling rates. For example, Tag 5 is frequently read by all the

three antennas, Tag 9 is rarely read by Antenna 1, and Tag 10 is rarely

read by Antennas 2 and 3. Such imbalanced data greatly affects the

performance of 3D human pose tracking that requires data from all 12

tags. To learn the relationship between RFID data and 3D skeleton data

obtained from the Kinect, we need to (i) deal with the high sparsity RFID

tensor data and (ii) synchronize the RFID phase data (i.e., the input for

the deep learning model) with the vision data (i.e., the labeled vision

data for supervised training).

To address these problems, we begin by downsampling the RFID data

from 110 Hz to 30 Hz to match the 30 fps sampling rate of Kinect 2.0. We

then synchronize the RFID and vision data based on simultaneous

timestamped samples for both data types collected from the same subject.

Notably, we cannot synchronize data from different subjects because the

RFID and vision data are not sampled simultaneously in such instances.

After synchronization, the RFID phase variation tensor for training the

deep learning model can be expressed as:

Hð:; :; tÞ ¼

2

6

6

6

6

6

6

4

η1t;1 η1t;2 … η1t;nG

η2t;1 η2t;2 … η2t;nG
⋮ ⋮ ⋮ ⋮

ηnAt;1 ηnAt;2 … ηnAt;nG

3

7

7

7

7

7

7

5

; t ¼ 1; 2;…;Nt (4)

where t indicates the time slot, nA and nG are the numbers of antennas and

tags, respectively, and ηnat;ng represents the calibrated phase variation from

tag ng sampled by antenna na in time slot t.

As discussed earlier, the high sparsity of the tensors should be

addressed to make them useful. However, conventional data interpola-

tion methods (such as bilinear interpolation) are unsuitable for RFID data

imputation because of the highly different sampling rates for each tag.

Missing samples (such as those of tags 2, 7, and 10 missed by Antenna 3;

Fig. 3) require interpolation to make the tensor useful. Because the

sampled data from these tags are practically zero, the bilinear interpo-

lation performance is notably poor. However, the samples from different

antennas are generated by the same source: tag movement. Thus,

although Antenna 3 loses these tags, the lost samples can still be esti-

mated from the samples collected by Antennas 1 and 2. We leverage the

tensor completion technique to estimate the missing samples in H

(defined in (4)). The algorithm used in the Cycle-Pose system is HaLRTC

[38], which can achieve high accuracy in data imputation at a relatively

fast speed.

Specifically, data interpolation is accomplished by solving the

following optimization problem [41]:

min
Ĥ

kĤk* (5)

s:t:: R*Ĥ ¼ R*H (6)

where Ĥ is an estimation of the ideal tensorHideal (comprises all the ideal

phase variation data), R is a tensor with the same size as H but with

binary elements, RIJK ¼ 1 when the element HIJK is sampled data, and

RIJK ¼ 0 when the sample is missing. In (5), k �k* denotes the trace norm

of tensors, which is related to the singular values of a tensor. Because the

number of time slots Nt for each data tensor H is effectively reduced by

downsampling, the data imputation process takes less than 0.2 s in the

proposed system. We find the HaLRTC algorithm is highly suitable for

RFID data imputation because missing data is estimated from the low

rank components of the phase variation tensor, which mainly captures

tag (human) movements.

4.2. 3D human skeleton generate from RFID data

Most existing human pose tracking systems are based on confidence

maps generated from collected signals, such as video cameras [19], WiFi

[4], and FMCW radar [6]. Human features are initially captured to form

the confidence map, and then a human skeleton can be extracted using

the map. However, this technique is unsuitable for RFID-based systems

due to the RFID communication protocol's low sampling rate and RFID

data samples carrying limited information. For instance, the RFID sam-

pling rate (110 Hz) is significantly lower than that of WiFi (1000 Hz) [5].

Each RFID sample comprises one piece of phase data, whereas WiFi

samples each contain phase data from 30 subcarriers (and each sample

captured using a video camera comprises a full image). To generate a

sequence of confidence maps using captured RFID data at a 10 fps rate,

up to 110 RFID phase samples may be obtained per second, and each of

that second's 10 frames shall be constructed from 11 RFID phase samples.

Even if the map resolution is reduced to 100 � 100, we still need to

transform the 11 RFID phase samples to a map with 10, 000 pixels,

indicating an obvious ill-posed problem. To address this ill-posed problem,

we utilize the forward kinematic technique, which has been widely used

in robotics and 3D animation [42]. With a given initial skeleton (i.e., the

original locations of all the joints and the lengths of all limbs), this

technique can estimate the position of each joint based on its relative

rotation and the position of its parent joint. For example, when the right

elbow position is given, the right-hand position can be calculated using

the forearm length and the relative rotation between the hand and elbow.

In the proposed cycle kinematic network, a 3D rotation is represented

in the format of a unit quaternion based on Ruler's rotation theorem,

which is expressed as

r þ xiþ yjþ zk (7)

where r, x, y, and z are real numbers, and i, j, and k are the quaternion

units related to the corresponding three coordinates. Given the 3D po-

sition of a joint, represented as aiþ bjþ ck, and a 3D rotation with unit

quaternion rþ xiþ yjþ zk, the rotation matrix Θ can be derived as:

Θ¼

2

4

1�2ðy2þz2Þ 2ðxyþzrÞ 2ðxz�yrÞ
2ðxy�zrÞ 1�2ðx2þz2Þ 2ðyzþxrÞ
2ðxzþyrÞ 2ðyz�xrÞ 1�2ðx2þy2Þ

3

5 (8)

The new updated position of the joint, a
0
iþ b

0
jþ c

0
k, can be calculated

as

2

4

a
0

b
0

c
0

3

5 ¼ Θ

2

4

a

b

c

3

5 (9)

with the forward kinematic technique, the current human pose is

determined based on the previous human pose and the 3D rotation of

each joint. To estimate the new positions of the 12 human joints, only 48

parameters need to be determined from the RFID samples. Compared

with the traditional approach of generating a 10, 000-pixel map, the

proposed technique effectively reduces problem complexity and can

achieve improved accuracy as well.

4.3. Achieve subject generalization

Although the forward kinematic technique can effectively address the

ill-posed problem, the subject's initial skeleton is still required, limiting

the model's adaptability to untrained subjects. People have different

skeleton forms, so to ensure that the deep learning model can successfully

generate 3D skeletons for different subjects, the training dataset should

include all types of human skeletons, leading to a high cost for collecting

labeled data. If the network is trained with a limited amount of skeletons,

model performance might suffer when testing a subject possessing a

skeleton not included in the training dataset [5]. This is because the
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traditional training process is performed with the same source initial

skeleton and target initial skeleton, as illustrated by Fig. 4(a). In the plot,

SKn represents the source initial skeleton for subject n from the RFID

data, and TKn represents the target initial skeleton from the vision data

with TKn ¼ SKn. The traditional training methodology aims to learn the

relationship between 3D skeleton coordinates and the RFID data for the

same skeleton. Therefore, the training results will be suitable for these n

specific skeletons included in the training data, but the well-trained

model may not perform well when used to test a new skeleton.

4.3.1. Cross-skeleton learning methodology

To achieve high subject generalization, the deep learning model must

learn the relationship between different source and target skeletons,

effectively transforming RFID data to 3D skeletons regardless of the subject

skeleton being part of the training dataset. In this paper, we propose a new

training methodology, as shown in Fig. 4(b). With this methodology, the

training focuses on learningwithpaired skeletons aswell asdifferent source

and target skeletons. For example, a specific movement type (e.g., kicking)

wouldutilize all RFIDandvisiondataduring training, even if themovement

data was not sampled from the same subject. Thus, the network will learn

how to transfer RFIDdata to3Dhumanposeswithdifferent initial skeletons

(e.g., SK1, SK2, …, and SKn). Because the network is not trained with a

specific initial skeleton, the well-trained model can achieve higher subject

adaptability compared with a traditional network structure.

Unfortunately, trainingwith different SKs and TKs is challenging owing

to the significant variance in the training data of two different subjects.

Despite performing identical movements, different subjects can exhibit

differing speeds and scales. This is illustrated in Fig. 5, which shows two

subjects with differing limb lengths and possibly different RFID tag posi-

tions. Fig. 5 shows the skeletons obtained using Kinect 2.0 when two

different subjects perform the same action (i.e., waving arms), sampled at

the same frame rate. The speeds and arm movement ranges differ between

subjects.

The considerable disparity illustrated in Fig. 5 indicates that the deep

learning model will not be easily trained, considering the position loss

between estimated and ground-truth poses for different subjects. A self-

supervised network is therefore required for cross-skeleton learning

with unpaired initial skeletons.

Fig. 4. Different methodologies for deep learning model training. (a) training with paired skeletons; (b) training with all sampled skeletons.

Fig. 5. Labeled pose data sampled by Kinect 2.0 for two different subjects. The upper row is for Subject 1 and the lower row is for Subject 2.
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4.3.2. Proposed cycle kinematic network

A cycle-consistent adversarial network is an advanced neural network

model initially designed for image-to-image translation with unpaired

training datasets [43]. Cycle consistent networks have also been used to

temporally align the frames of two different video streams captured for

the same event [44]. Such networks can generate fake input data from

the output data, allowing the network to train using self-supervision with

real and fake generated input data. Thus, this training method decreases

the need for paired labeled data expected by traditional neural networks.

Motivated by the advantages of a cycle consistent adversarial network,

we develop a cycle kinematic network to address the technical challenges

of cross-skeleton learning. Our proposed model structure (presented in

Fig. 6) extracts RFID phase variation sequence features using a recurrent

encoder, named “recurrent encoder-forward” or “recurrent encoder-F.”

With additional input on a subject's source initial skeleton, the recurrent

decoder-Forward (recurrent decoder-F) translates human movement

features captured by RFID phase variations into the forms of unit

quaternion, which represent the 3D rotation of the subject's joints. The

unit quaternion is then utilized using the forward kinematic algorithm to

generate a 3D human skeleton with a given target initial skeleton. The

cycle consistent network is leveraged to recover the RFID data from the

estimated quaternion, which is constructed using the recurrent

encoder-backward (recurrent encoder-B) and recurrent

decoder-backward (recurrent decoder-B). If the translation from RFID

phase variation to 3D limb rotation is successful, the inverse trans-

formation will be obtained using recurrent encoder-B and decoder-B.

With the fake generated RFID data, the model can be trained with

self-supervision, and the ground truth provided by the vision data does

not need to be strictly paired with the RFID input data. Although both

recurrent decoder-F and encoder-B are trained through the self-

supervised training process, only recurrent decoder-F is leveraged for

skeleton generation in the testing phase. Thus, the proposed cycle kine-

matic network does not incur additional overhead for human skeleton

tracking than its predecessor [9].

4.3.3. Loss function design

The loss function used to train the proposed cycle kinematic network

comprises three parts, including position, adversarial, and cycle consis-

tency loss (Fig. 6). We also leverage smoothing loss to further improve

the tracking accuracy. When there are K training steps, we define the

calibrated RFID phase variation sequence as F1:K and the reconstructed

fake RFID data as F̂1:K . The estimated skeleton from the neural network is

denoted by V̂1:K , and the vision data sequence used for supervision is

denoted by V1:K. The position loss is defined as the difference between

the estimated 3D skeleton and the ground truth given by

Lp ¼kV̂1:K �V1:Kk
2

2
(10)

In other words, position loss is determined by the 3D position

divergence between the estimated pose data and the ground truth from

the Kinect data.

For unpaired training data collected from different skeletons, Lp also

includes the error caused by asynchronous datasets. We define the cycle

consistency loss as

Lc ¼kF̂1:K �F1:Kk
2

2
(11)

which represents the difference between the input RFID data F1:K and the

fake RFID data F̂1:K generated by the cycle consistent network. The effect

of unpaired data can be mitigated by Lc in the overall loss function.

We also consider the smooth loss for improving the accuracy of the

cycle pose network. As shown in (10), the position loss is independent of

each timestamp. However, because human movement is a smooth

continuous process, estimated positions should only change slightly be-

tween two adjacent sequence data (i.e., no big sudden jumps). To ensure

that consecutive changes in each time step are bounded, we propose the

smooth loss Ls , which is given by

Ls ¼kV̂2:Kþ1 � V̂1:Kk
2

2
þkF̂2:Kþ1 � F̂1:Kk

2

2
(12)

The overall loss function for generator network G is defined as a

weighted sum of the three losses:

Lall ¼ QpLp þ QcLc þ QsLs (13)

G can be effectively trained using the overall loss function Lall for

consecutive human pose tracking regardless of the subject used to sample

RFID and vision data. In this paper, we set Qp ¼ 0.6, Qc ¼ 0.4, and

Qs ¼ 0.02 according to our experimental results.

The adversarial loss is defined to determine if the network is well

trained or not, which is represented by a realism score calculated using a

discriminator network D [42]:

LD ¼ DðV̂2:K � V̂1:K�1;V2:K �V1:K�1Þ (14)

Eq. (14) shows that the discriminator's input is not the position loss

but the variation between the previous and current skeletons in V and V̂ ,

respectively. Although V and V̂ are unpaired data sequences, the

discriminator can determine whether the movements performed by the

two subjects are identical. This is because, for the same type of move-

ment, all joint variations between two adjacent data sequences should be

similar, regardless of the two subject's movements being synchronized.

The overall training objective of the generative adversarial network can

be represented as

Ĝ ¼ argminGmaxDLD (15)

where Ĝ represents the target generator network (i.e., recurrent encoder-

F and decoder-F). We set a realism score threshold to balance the

discriminator D and the generator G. When G can successfully fool D, and

Fig. 6. Overview of the proposed cycle kinematic network model.
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the network will be well trained and be able to effectively transform RFID

data into 3D skeletons.

5. System prototype and experimental study

5.1. Cycle-Pose implementation

To evaluate the performance of Cycle-Pose, we developed a prototype

system using an off-the-shelf Impinj R420 reader equipped with three

S9028PCR polarized antennas (Fig. 7). The RFID tags used in Cycle-Pose

are ALN-9634 (HIGG-3). The vision data, used for training supervision as

well as the ground truth for test accuracy evaluation, was collected using

a Kinect 2.0 device similar to prior works [10]. We have found that

Kinect's accuracy is affected by camera angle, lighting conditions, and the

distance to the subject. To minimize Kinect data errors, we constrained

subject positions and provided sufficient lighting during data collection.

The Kinect system has a much lower cost than commercial humanmotion

capture systems while providing the required ground truth with an

acceptable error [10].

As shown in Figs. 8 and 12 RFID tags were attached to the following

subject joints: left shoulder, left elbow, left wrist, right shoulder, right

elbow, right wrist, neck, pelvis, left hip, left knee, right hip, and right

knee. Head and feet were omitted in our prototype system because of the

limited scanning range of the RFID antennas used by Cycle-Pose.

Although more antennas could be used to scan a subject's entire body,

constructing a skeleton with 12 joints is sufficient for monitoring most

human activities. The three antennas placed at different heights ensured

that all RFID tags could be scanned by at least one antenna.

Cycle-Pose collected RFID phase data when subjects were repeatedly

performing specific motions in front of the three antennas. Two types of

motion were sampled to train the cycle kinematic network: (i) Simple

motions that involved the movement of a single limb; (ii) Compound

motions comprising entire body movement (e.g., boxing, walking,

drinking, body twisting, and deep squatting).

We conducted extensive experimentation on five volunteer subjects

(four male, and one female) to evaluate the Cycle-Pose system's perfor-

mance, particularly its subject generalization capability. Each subject had

a different age, weight, and height, introducing five different initial

skeletons. All subjects were required to wear long shirts and pants for

data collection, with tags attached to their clothes. The network was

trained with only three subjects, while the remaining two subjects were

involved in testing. Considering the variety of initial skeletons, subject

Fig. 7. Hardware configuration of the Cycle-Pose prototype system.

Fig. 8. RFID tag deployment and motion sampling.

Fig. 9. CDF curves of the two schemes when testing three trained subjects.

Fig. 10. CDF curves of the two schemes when testing two untrained subjects.
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generalization could be demonstrated by the tracking accuracy of un-

trained subjects.

5.2. Experimental results and analysis

For comparative research, the traditional method (RFID-Pose) was

used as a baseline scheme [9], which trains its network with paired RFID

and vision data. Identical datasets were used to train and test both

methods; the overall accuracy results are presented in Fig. 9 and Fig. 10.

The overall estimation error Eall used in our experimental evaluation was

calculated between the estimated 3D pose data and the ground truth

vision data:

Eall ¼
1

12

X

12

n¼1
kP̂n � _Pnk (16)

where P̂n denotes the estimated position of joint n, _Pn is the ground truth

position collected by Kinect 2.0 for joint n in the 3D space, and kP̂n � _Pnk

is the Euclidean distance between the two 3D positions.

5.2.1. Comparison with the baseline scheme

The mean estimation errors for all subjects are presented in Table 2.

For the traditional pose estimation technique, the estimation errors for

the two untrained subjects were considerably higher than that of the

three trained subjects, especially for Subject 5. By contrast, the Cycle-

Pose system produced similar estimation errors for all five subjects

regardless of training.

Fig. 9 presents the Cumulative Distribution Functions (CDFs) of the

estimation errors for both RFID-Pose and Cycle-Pose when the first three

subjects were involved in the training process and tested. The CDF curves

indicate a median estimation error for the traditional method (i.e., RFID-

Pose) of 3.83 cm, whereas the median error for Cycle-Pose was 4.44 cm.

The maximum error for Cycle-Pose was 8.64 cm, slightly higher than the

traditional method (8.09 cm). These results show that the accuracy of

Cycle-Pose was slightly lower than that of the traditional method when

testing a trained skeleton because the Cycle-Pose system not only learns

the translation from RFID data to a 3D skeleton, but also learns the

transformation from different source skeletons to target skeletons.

Although the additional learning task affects system performance for

specific skeletons, the accuracy degradation is small and acceptable for

most skeleton tracking applications (e.g., video gaming and human mo-

tion recognition).

The advantages of Cycle-Pose become clear when testing with un-

trained subjects. Figs. 11 and 12 illustrate a comparison between the two

schemes when an untrained subject is squatting and walking, respec-

tively. These two figures indicate that skeletons reconstructed by Cycle-

Pose were highly similar to their corresponding ground truths, whereas

traditionally generated skeletons exhibited higher estimation errors.

The CDF curves for the two untrained subjects (using the models

trained by the first three subjects) are plotted in Fig. 10. Both systems

showed increased median and maximum estimation errors when

compared with the trained subjects in Fig. 9 (Cycle-Pose: 4.88 cm me-

dian, 9.73 cm maximum; RFID-Pose: 7.66 cm median, 12.23 cm

maximum). The traditional model was only trained by paired RFID and

vision data for the same subject. The training domain was restricted to

the specific initial skeleton. When testing with an untrained subject with

a different initial skeleton, the traditional model exhibited poorer subject

adaptability than Cycle-Pose. In summary, although the accuracy of

Cycle-Pose was slightly lower than that of the traditional RFID pose

tracking technique when testing with a known subject, the proposed

model achieved high subject adaptability when testing untrained

subjects.

5.2.2. Accuracy for different joints and motions

Fig. 13 presents the estimation error for each tagged joint; and the

Table 2

Estimation errors for different subjects.

Subject Estimation Error

(Baseline)/cm

Estimation Error

(Cycle-Pose)/cm

Subject 1 (trained) 3.72 4.12

Subject 2 (trained) 4.55 4.43

Subject 3 (trained) 3.58 3.79

Subject 4 (untrained) 5.32 4.51

Subject 5 (untrained) 8.17 4.97

Fig. 11. Comparison results when untrained subject is squatting.
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joints were numbered sequentially from 1 to 12 as follows: pelvis, neck,

left hip, left knee, right hip, right knee, left shoulder, left elbow, left wrist,

right shoulder, right elbow, and right wrist. We found that estimation

errors for both systems were higher than 4.1 cm for the knees, elbows,

and wrists. This relatively higher set of errors was mainly because of the

forward kinematic technique. When calculating a joint's position based

on its parent joint, previous joint errors will accumulate. Thus, the esti-

mation error of the torso will affect the accuracy of the limbs. Fig. 13 also

shows that Cycle-Pose achieved higher accuracy than the traditional

method when tracking the wrists (i.e., joints 9 and 12). This is due to the

Cycle-Pose system performing better with cross-skeleton training when

testing different subjects. However, the traditional method's joint esti-

mation accuracy was affected by the untrained subjects, particularly

when tracking the wrists.

To evaluate performance for different motions, we plotted the esti-

mation error for each specific movement in Fig. 14, including body

twisting, squatting, drinking, walking, kicking, boxing, and standing still.

As the figure shows, the pose estimation accuracy differed for different

motions; the largest errors occur when tracking deep squatting (5.27 cm

for RFID-Pose and 4.33 cm for Cycle-Pose). These errors can be attributed

mainly to the pelvis joint errors. As a root joint of the human skeleton,

pelvis position estimation does not benefit from the forward kinematic

technique and the smooth loss function Ls. Therefore, when testing the

motion of frequent pelvis movements, overall accuracy will be degraded.

Nevertheless, the Cycle-Pose system achieved lower estimation errors

compared with the traditional system for most motions.

5.2.3. Impact of the effective sensing range

We also evaluated the impact of the effective sensing range of the

Cycle-Pose system in terms of the sampling rate of all tags of each an-

tenna. Fig. 15 shows the sampling rates (i.e., measured samples by each

antenna at each second) when the three antennas were placed at different

distances from the subject. As the figure shows, distances longer than

5.5 m caused the sampling rates for all antennas to decrease below 60 per

second, the lower threshold for effective human pose tracking in real

Fig. 12. Comparison results when untrained subject is walking.

Fig. 13. Estimation error for each human joint, including pelvis, neck, left hip,

left knee, right hip, right knee, left shoulder, left elbow, left wrist, right shoul-

der, right elbow, and right wrist (indexed from 1 to 12).

Fig. 14. Estimation errors for tracking different motions.

C. Yang et al. Digital Communications and Networks 8 (2022) 278–288

287



time. Therefore, we conclude that the Cycle-Pose system should be

deployed within a range of 4.5 m for effective sensing.

6. Conclusions

In this paper, we proposed a subject-adaptive, real-time 3D pose esti-

mation and tracking system calledCycle-Pose. A preprocessingmodulewas

proposed to effectively mitigate the effect of phase distortion and missing

RFID data samples. The proposed system then leveraged a novel cycle ki-

nematic network to estimate human postures in real time using RFID phase

data, which was trained with unpaired RFID and vision data sampled from

different subjects. The Cycle-Pose system was implemented with com-

modity RFID tags/reader and compared using a traditional RFID based

technique, i.e., RFID-Pose, in our experimental study. Its high subject

adaptability and accuracy were demonstrated in our experimental study

using Kinect 2.0 as ground truth. Our study also provided useful insights to

improve the generalization of other deep learning-based RF sensing

systems.
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