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Abstract—With the wide deployment of 5G communication
systems, 5G massive multiple-input multiple-output (MIMO)
has been shown effective not only to improve the spectrum
efficiency and energy efficiency, but also provides location-based
service (LBS) such as outdoor vehicle localization and indoor
user localization. Recently, deep convolutional neural network
(DCNN) has been applied for massive MIMO localization using
channel state information (CSI) or angle-delay profile (ADP).
However, the robustness of the DCNN model has not been
explored in massive MIMO localization. In this paper, we study
the impact of adversarial attack and defense (i.e., adversarial
training) on massive MIMO localization using DCNN and the
neural ordinary differential equation (ODE) model. We first
introduce the massive MIMO system with respect to the channel
model and ADP fingerprints, and then present the DCNN model
and the neural ODE model for massive MIMO localization,
as well as three types of white-box adversarial attacks and
adversarial training. Finally, our experimental results validate
that the proposed neural ODE with adversarial training could
effectively improve the robustness of massive MIMO localization
in indoor and outdoor environments.

Index Terms—Massive MIMO Localization, Adversarial Ex-
amples, Deep Learning, Neural Ordinary Differential Equation.

I. INTRODUCTION

As the rapid development of wireless systems and tech-
niques, wireless applications, such as indoor and outdoor
localization, are exploited to improve the quality of people’s
lives. Global positioning system (GPS) has been widely used
for outdoor localization with a localization error about 5 m un-
der line-of-sight (LOS) environments. However, GPS performs
poorly in rich-scattering environments (e.g., indoors), since the
GPS signal does not penetrate walls or other obstacles. Alter-
native wireless systems, such as long term evolution (LTE)
and Long Range (LoRa), could be exploited for both outdoor
and indoor localization [1], [2]. However, their accuracy is
relatively low due to the limited bandwidth and small number
of antennas at the base station (BS). For example, in urban
environments, the localization error using LTE is about 80 m.

Massive multiple-input multiple-output (MIMO) is a key
technology in 5G and beyond wireless communication sys-
tems to improve the spectrum efficiency and energy effi-
ciency [3]. The large amount of antennas used in a massive
MIMO system can be leveraged to achieve higher angle
resolutions in multipath environments. In addition, the larger
bandwidth used for 5G (e.g., 28 GHz mmWave) also helps to

achieve higher delay domain resolutions [4], [5]. These unique
features can be exploited to improve the performance of wire-
less localization systems. Specifically, angle of arrival (AOA)
based methods, such as the rotational invariance technique
(ESPRIT) and multiple signal classification (MUSIC), have
been used for massive MIMO localization [6]. However, the
rich multipath propagation in indoor and urban areas usually
leads to multiple estimated AOA values; how to accurately
recognize the line-of-sight (LOS) component in such environ-
ments is still a challenging problem [7]. In addition, the LOS
path may not be available (i.e., in non-line-of-sight (NLOS)
environments) when it is blocked, which results in the failure
of many AOA-based methods.

Recently, there has been great interest in deep learning-
based fingerprinting for indoor and outdoor scenarios, where
satisfactory localization accuracy has been demonstrated,
which outperforms the traditional geometric-based methods
(e.g., AOA-based) in NLOS environments. This is because the
wireless signals from NLOS paths can be exploited as location
features with a deep neural network (DNN) model. For indoor
localization, we have proposed several deep learning-based
fingerprinting schemes using Wi-Fi channel state information
(CSI) [8]. Similar to indoor localization methods, CSI-based
fingerprinting also works well for massive MIMO localization
with the help of deep learning [9]. To fully utilize the large
number of antennas and the large bandwidth in massive
MIMO systems, angle-delay profile (ADP) [10]-[12] has been
obtained by implementing a linear transformation of CSI,
which can be leveraged as fingerprints (in the form of 2D
images) for wireless localization that can represent all the
different paths between the BS and user. Deep convolutional
neural networks (DCNN) has been exploited to learn the loca-
tion features from ADP fingerprints for improved localization
performance [10], [11], [13].

Although massive MIMO localization using ADP images
is highly promising, the DNNs used in such systems belong
to black-box models and are not robust [14]. For example,
adversarial examples, which are created by introducing small
perturbations to the original image, could easily mislead a well
trained deep learning model. Goodfellow et al. first introduced
the Fast Gradient Sign Method (FGSM) to attack DNN models
for image recognition [15]. Additional adversarial attack meth-
ods include Projected Gradient Descent (PGD), a multiple-
step variant of FGSM [16], and the Momentum Iterative
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Method (MIM), which exploit the momentum term to enhance
the attack performance [17]. An example of using FGSM to
attack massive MIMO localization is shown in Fig. 1. We
can see that after injecting a very small perturbation into the
clear ADP data (i.e., ¢ = 0.01, see (11)), the localization error
is increased from 0.07 m to 3.97 m using the same DCNN
model. Thus, the localization performance can be highly
susceptible to adversarial examples. Several recent works
have considered the impact of adversarial attacks on wireless
systems, e.g., human activity recognition [18], Wi-Fi indoor
localization [19], and device identification [20]. However,
the robustness of DCNN-based massive MIMO localization
against adversarial examples has not been investigated.

In this paper, we study the impact of adversarial attacks
as well as defense mechanisms (i.e., adversarial training) on
massive MIMO indoor and outdoor localization with DCNN
and the neural ordinary differential equation (ODE) model.
Specifically, we create adversarial examples by introducing
subtle perturbations to the ADP image data, using three white-
box attack methods including FGSM, PGD, and MIM. We first
introduce the massive MIMO system model with respect to the
channel model and how to create the ADPs, and then present
the DCNN model and the modified neural ODE model for
massive MIMO localization. Adversarial attacks and training
for neural ODE are formulated for the proposed localization
system. We then validate the performance of DCNN and the
neural ODE based localization schemes using a public dataset
for both outdoor and indoor scenarios. Our experimental
results demonstrate the robustness of the proposed neural ODE
model for massive MIMO localization.

The main contributions are summarized as follows.

o To the best of our knowledge, this is the first work to
study adversarial attacks and defense on DCNN-based
massive MIMO localization. We show how to create ADP
images from massive MIMO CSI data as fingerprints and
that DCNN-based massive MIMO localization is highly
susceptible to adversarial attacks.

« In this paper, we propose a novel neural ODE method
using adversarial training to enhance the robustness of
massive MIMO localization. Specifically, we combine
the convolution blocks, ODE blocks, and the dense layer
to implement a localization regression solution. We also
leverage adversarial training for the neural ODE against
adversarial examples.

o Using a public dataset with both indoor and outdoor
scenarios (i.e., the DeepMIMO dataset [21]), our ex-
perimental study demonstrates that the proposed neural
ODE model with adversarial training is highly robust to
adversarial attacks in both indoor and outdoor scenarios.

The rest of this paper is organized as follows. In Section II,
we introduce the massive MIMO channel model. The system
architecture is presented in Section III. Adversarial attack and
defense are introduced in Section IV. Experimental results are
discussed in Section V. We conclude this paper in Section VI.

II. SYSTEM MODEL
A. Channel Model

Consider wireless localization (indoor or outdoor) with a
mobile device and a BS, where massive MIMO orthogonal
frequency-division multiplexing (OFDM) is used. We assume
that the mobile device uses an omini-directional antenna, the
BS is equipped with a uniform linear array (ULA) with IV,
antennas (N, >> 1), and the OFDM channel has N. OFDM
sub-carriers. The geometric wideband channel model includes
L different paths between the mobile device and the BS. The
up-link wireless channel information is estimated for locating
the position of the mobile device. For massive MIMO OFDM
systems, the CSI vector in the frequency domain for the kth
sub-carrier is given by [13]

kn

L
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where j represents the imaginary unit, «; is the complex gain
of the kth sub-carrier, n; is the sampled delay with the ith
path, and 5 (6;) is the linear array response vector with AOA
0;, which is given by
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where A is the wavelength and d is the gap between two
adjacent antennas. The CSI matrix is represented as H =
[h1,ha, ... h].

B. ADP Fingerprints

Although CSI data is widely used for wireless localization,
it has not been fully exploited for massive MIMO localization.
In this paper, we leverage ADP images as fingerprints for
massive MIMO localization. The ADP fingerprints Z (in the
form of 2D images) can be created with a linear transformation
of the CSI data H [9], [11], which is represented by

T =[U"ny), 3)

where | - | represents the absolute value, &/ and )V are the
discrete Fourier transform (DFT) matrices, and U is the
conjugate transpose of matrix {/. Specifically, matrix U €
CNo>*No and matrix V € CNe*Ne are defined as

i(G=Np/2)

1 e—j2‘n’ ~, (4)

VN,
1
VN,

For massive MIMO localization, we use the ADP matrix
that includes signal power, AOA in the angle domain, and
TOA values in the delay domain from all paths, thus fully
leveraging the features of the massive MIMO OFDM channel.
We show an example of ADP image in the left plot in Fig. 1
of size 32 x 32, which is a sparse image that only has fewer
path clusters and higher image resolution in the angle and time
domains. In this paper, we will use ADP images as fingerprints
for massive MIMO localization.

];,; =

eI (5)
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Fig. 1. FGSM attack on DCNN-based massive MIMO indoor localization based on ADP fingerprints.

III. SYSTEM ARCHITECTURE

In this paper, we consider two deep learning models (i.e.,
the DCNN model and the modified neural ODE model) for
massive MIMO localization using the above constructed ADP
images. As in other fingerprinting schemes, the proposed
method also includes an offline training stage and an online
testing stage. In the offline stage, we consider both normal
training and adversarial training (including the adversarial
examples). In the offline stage, we use three types of white-
box methods (i.e., FGSM, PGD, and MIM) to create adver-
sarial samples. Then the normally and adversarially trained
models are used to validate the performance of massive MIMO
localization under the three types of attacks using the public
DeepMIMO dataset (including indoor scenarios in the 60 GHz
band and outdoor scenarios in the 3.5 GHz band) [21].

A. DCNN Model

The DCNN model can effectively extract the features of
constructed ADP images by mainly using basic convolutional
filters in an ordered hierarchy for massive MIMO localization.
Fig. 2 shows the DCNN network architecture, which includes
six layers. The input layer takes 32 x 32 ADP images,
while the hidden layer can extract the important features by
convolving a filter with the previous layer. In addition, a
max pooling layer is used between two adjacent convolution
layers to reduce the parameters and the size of the input.
The next convolution layers perform similar operations, where
these convolution layers use the ReLu activation function to
improve the performance of convolution operation and avoid
over-fitting. After the convolution layers, we use a flatten
layer to reduce the dimension of the features to obtain the
desired output, which is then passed to a dense layer with
three neurons (for 3D localization). With the above setting,
we conduct experiments for massive MIMO localization with
the dataset including 66,483 samples for the indoor scenario
and 198,104 samples for the outdoor scenario.

B. Neural ODE Model

In this paper, we propose a neural ODE model for massive
MIMO localization. Generally, the neural ODE model is a
class of deep learning networks which can be interpreted as a
continuous equivalent of Residual Networks [22]. Specifically,
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Fig. 2. The CNN Network Architecture.
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Fig. 3. The ODE Network Architecture.

neural ODE can be defined as a parametric deep model (i.e.,
with weights w) with an ODE block, where its solution offers
the output value. We consider to map input data = (i.e., an
ADP image 7) to an output value y (e.g., location) by solving
an Initial Value Problem (IVP), i.e.,

dh(t)

5 = fuw(h(t),1) (6)
h(0) = 2 (7)
y = h(T), (8)

where h(t) represents the hidden state of the neural ODE at
time ¢, the function f,,(-) describes the continuous dynamics
of state h(t) that is parameterized by weights w. Given input
data z, the output y can be obtained by solving the above
system of ODE equations, which is given by
T
y=hT)=h0)+ [ fubow O
The above integral can be computed using standard ODE
solvers (e.g., the Runge-Kutta method) [22]. The adjoint
sensitivity method has also been developed to train the neural
ODE model by solving an additional ODE backward in
time. Standard gradient-based optimization can be used after
obtaining the gradient. For a regression model based on neural
ODE, we integrate the convolution layers, max pool layers,
batch normalization layers, a neural ODE block, and a dense
layer as shown in Fig. 3. In the customized neural ODE model,
we use several convolution layers and max pooling layers to
extract features from ADP images, whose output is passed to
the ODE block designed for improving the robustness of the
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model [23]. The output from the ODE block is then flattened
out and passed to a dense layer with three neurons to predict
3D locations.

IV. ADVERSARIAL ATTACKS AND TRAINING

In this section, we introduce the three types of white-box
attacks (i.e., FGSM, PGD, and MIM) on DCNN and neural
ODE models. For massive MIMO localization, the deep neural
model (e.g., DCNN) can be attacked by using adversarial
samples generated by injecting a small noise to the ADP
image. Adversarial ADP images can be created by maximizing
the loss function of the deep model, which is defined by

argmax L(f(Zadv, 0%),y),

Zodw

(10)

where Z,4, is the adversarial ADP image, which is obtained
by Zoav = Z + 6, where § is the perturbation. Considering
low time complexity for practical applications, in this paper,
we focus on white-box attacks including the one-step attack
method (i.e., FGSM) and two iterative attack methods (i.e.,
PGD and MIM), which are introduced in the following.

A. Adversarial Attacks

a) Fast Gradient Sign Method (FGSM): The FGSM
attack method is a simple one-step attack with a low time
complexity. We calculate the perturbation noise in a single step
using a pixel level magnitude perturbation along the gradient
direction. The perturbation ¢ is given by

0 =e-sign(VZL(f(Z,0%),y)), (11)

where ¢ is a hyper-parameter to adjust the degree of pertur-
bation. Given the loss function of the deep model L(-), we
compute the perturbation ¢ based on the first derivative of
L(F(T.67).y).

The Fast Gradient Method (FGM) [24] is a generalization
of FGSM. The perturbation of FGM is defined as

VZL(f(Z,0%).)
VLU @09l

Using (12), the perturbation can be easily computed. Ad-
versarial APD images are generated with different € values,
indicating different strengths of introduced perturbations.

b) Projected Gradient Method (PGD): Following the
one-step method (i.e., FGM), PGD is designed as an iterative
version of FGM to enhance the adversarial attack perfor-
mance. Adversarial ADP examples can be created with the
PGD method as

Igdv -7

d=c¢

(12)

)

VIL(f(Z§".0).y)
[VzL(F (T3, 0%, |
(13)

Iy = Clip(z o {IXIM + o

where « is also a hyper-parameter, which is set as ¢/N for a
given €. Compared with the FGM method, PGD is generally
considered as a stronger adversarial attack approach.

c¢) Momentum Iterative Method (MIM): The MIM attack
incorporates the momentum into the iterative adversarial at-
tack method, which employs the gradient of the previous steps
to calculate the perturbation. The gradient in the (N + 1)th
iteration is given by

VI‘C(f(I]%dU7 9*)7 y)

gN+1 = [ gN +

|vZL(f(Z3,6%),9)], (14
I, = I + o - sign(gn41),

where ¢y includes the gradients from the previous N — 1
iterations with a decay factor of u.

B. Adversarial Training

To make our DCNN and neural ODE robust to adversarial
attacks, our massive MIMO system also implements adversar-
ial training by using a mixture of adversarial ADP images and
clean ADP images. Specifically, we consider the adversarial
ADP examples and their true labels in the training dataset,
to allow the deep models to learn the adversarial examples
with correct labels. This way, the trained model will be able
to predict the labels for new adversarial ADP images. FGSM,
PGD, and MIM adversarial examples are leveraged by the
adversarial trainer to accomplish this idea. Generally, FGSM
generates perturbations in a single step and adversarial training
needs less time but its robustness is not as strong, while PGD
and MIM leverage multiple iterations to generate adversarial
samples, which require longer time to implement adversarial
training. In this paper, we implement adversarial training for
both the DCNN model and the ODE model, and validate their
performance in the next section.

V. EXPERIMENTS AND RESULTS
A. Experiment Configuration

Our experiments are conducted using the public Deep-
MIMO dataset [11], [21]. This dataset is completely defined
by ray tracing scenarios for both indoor and outdoor environ-
ments and channel parameters (e.g., bandwidth, base stations,
users, number of paths, etc.). Two scenarios (i.e., indoor and
outdoor) based on the ray-tracing simulator developed by
Wireless InSite are used in our experiments.

a) Outdoor Scenario: We use DeepMIMO outdoor sce-
nario number 1 (O1) to obtain the outdoor CSI dataset. This
scenario includes two urban streets of 400 m x 40 m and
600 m x 40 m, respectively, and has one active BS at the
intersection of the two streets. We choose the 3.5 GHz band
with 10 MHz OFDM bandwidth and 64 sub-carriers. The BS
has 64 antennas, and the BS-user channel has 25 paths. In
addition, the locations of users are from R1 to R1100 rows
(i.e., locations of data points from row 1 to 1100 in the
DeepMIMO dataset).

b) Indoor Scenario: We use DeepMIMO indoor scenario
number 3 (I3) to obtain the indoor CSI dataset for a conference
room of 10 m x 11 m with its hallways. There is one active BS
operating in the 60 GHz band. The other parameters include
32 antennas, 32 sub-carriers, 500 MHz bandwith, and 25
paths. The users locations are from R1 to R550 rows.
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Fig. 4. DCNN model under all attacks in outdoor environment.

The two models (i.e., DCNN and the proposed neural ODE)
are trained with the outdoor and indoor datasets in the offline
stage and are used for localization prediction in the test
stage. The three types of white-box attacks (i.e., FGSM, PGD,
MIM) are executed in both scenarios. In addition, adversarial
examples are collected and used for adversarial training of
both models to improve their robustness. Google Colab Pro
is utilized as a cloud service to train the models based on
Tensorflow.

B. Results and Discussion

Figs. 4 and 5 show the root-mean-square errors (RMSE)
of the DCNN and neural ODE models, respectively, in the
outdoor scenario, where € is increased from 0.01 to 0.05.
It is noticed that compared with neural ODE, the DCNN
performance degrades seriously when under the three white-
box attacks in the outdoor scenario. For example, under MIM
attack with ¢ = (.05, the DCNN-based method can only
achieve an RMSE of 197.59 m, while the neural ODE model’s
RMSE is 127.99 m. After adversarial training, the results
are indicated by “AT” in both figures. The performance has
improved significantly for both models. For example, neural
ODE and DCNN after adversarial training achieve RMSE of
15.38 m and 20.138 m, respectively.

Figs. 6 and 7 present the RMSE results delivered by DCNN
and neural ODE for the indoor scenario, respectively, where
€ is increased from 0.005 to 0.001 in this scenario of a small
indoor area. We find that as the increase of ¢, the RMSE
will increase because larger perturbations are introduced into
the ADP image, which lead to higher localization errors.
Moreover, for both models, the MIM attacks cause larger
RMSE values under each different e value, compared with
the other two attack methods. In addition, DCNN achieves an
RMSE of 22.45 m, while neural ODE’s RMSE is 8.47 m under
PGD attacks. On the other hand, after adversarial training,
neural ODE and DCNN achieve RMSE of 1.06 m and 3.80 m,
respectively, under the same PGD attacks. We conclude that
the proposed neural ODE with adversarial training is more
robust than the DCNN-based method.
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Fig. 5. Neural ODE model under all attacks in outdoor environment.
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Fig. 7. Neural ODE model under all attacks in indoor environment.

We also validate the impact of the number of neural ODE
blocks on localization performance. Fig. 8 shows the results
obtained with different ODE blocks for massive MIMO local-
ization under FGSM attacks in the indoor environment. We
can see that when we use more than one neural ODE blocks,
the RMSE of localization will be reduced. For example, when
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Fig. 8. Different ODE blocks for localization under FGSM attacks in indoor
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e = 0.001, the RMSE using a single ODE block is 3.5 m,
while using four ODE blocks achieves an RMSE of 1.1 m,
which is a considerable improvement in accuracy. In addition,
we consider adversarial training for single ODE block and
four ODE block models. When € = 0.001, the RMSE of four
ODE blocks is 0.83 m, while that using one ODE block is
0.94 m. The former only has a smaller reduction than the
latter. In addition, we also find that a single ODE block with
adversarial training can achieve a similar localization accuracy
as using four ODE blocks without adversarial training.

VI. CONCLUSION

In this paper, we studied the impact of adversarial attacks
and defense on massive MIMO indoor and outdoor localiza-
tion using the DCNN model and the customized neural ODE
model. We showed how to create ADP images for massive
MIMO localization and introduced the DCCN and neural ODE
models. Both models were studied using a public dataset
in both indoor and outdoor environments under three types
of white-box adversarial attacks. We found that the DCNN
model was highly susceptible to adversarial attacks, while
the proposed neural ODE model exhibited strong resilience to
such attacks. We also found adversarial training could greatly
enhance the robustness of both models.
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