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Abstract—With the wide deployment of 5G communication
systems, 5G massive multiple-input multiple-output (MIMO)
has been shown effective not only to improve the spectrum
efficiency and energy efficiency, but also provides location-based
service (LBS) such as outdoor vehicle localization and indoor
user localization. Recently, deep convolutional neural network
(DCNN) has been applied for massive MIMO localization using
channel state information (CSI) or angle-delay profile (ADP).
However, the robustness of the DCNN model has not been
explored in massive MIMO localization. In this paper, we study
the impact of adversarial attack and defense (i.e., adversarial
training) on massive MIMO localization using DCNN and the
neural ordinary differential equation (ODE) model. We first
introduce the massive MIMO system with respect to the channel
model and ADP fingerprints, and then present the DCNN model
and the neural ODE model for massive MIMO localization,
as well as three types of white-box adversarial attacks and
adversarial training. Finally, our experimental results validate
that the proposed neural ODE with adversarial training could
effectively improve the robustness of massive MIMO localization
in indoor and outdoor environments.

Index Terms—Massive MIMO Localization, Adversarial Ex-
amples, Deep Learning, Neural Ordinary Differential Equation.

I. INTRODUCTION

As the rapid development of wireless systems and tech-

niques, wireless applications, such as indoor and outdoor

localization, are exploited to improve the quality of people’s

lives. Global positioning system (GPS) has been widely used

for outdoor localization with a localization error about 5 m un-

der line-of-sight (LOS) environments. However, GPS performs

poorly in rich-scattering environments (e.g., indoors), since the

GPS signal does not penetrate walls or other obstacles. Alter-

native wireless systems, such as long term evolution (LTE)

and Long Range (LoRa), could be exploited for both outdoor

and indoor localization [1], [2]. However, their accuracy is

relatively low due to the limited bandwidth and small number

of antennas at the base station (BS). For example, in urban

environments, the localization error using LTE is about 80 m.

Massive multiple-input multiple-output (MIMO) is a key

technology in 5G and beyond wireless communication sys-

tems to improve the spectrum efficiency and energy effi-

ciency [3]. The large amount of antennas used in a massive

MIMO system can be leveraged to achieve higher angle

resolutions in multipath environments. In addition, the larger

bandwidth used for 5G (e.g., 28 GHz mmWave) also helps to

achieve higher delay domain resolutions [4], [5]. These unique

features can be exploited to improve the performance of wire-

less localization systems. Specifically, angle of arrival (AOA)

based methods, such as the rotational invariance technique

(ESPRIT) and multiple signal classification (MUSIC), have

been used for massive MIMO localization [6]. However, the

rich multipath propagation in indoor and urban areas usually

leads to multiple estimated AOA values; how to accurately

recognize the line-of-sight (LOS) component in such environ-

ments is still a challenging problem [7]. In addition, the LOS

path may not be available (i.e., in non-line-of-sight (NLOS)

environments) when it is blocked, which results in the failure

of many AOA-based methods.

Recently, there has been great interest in deep learning-

based fingerprinting for indoor and outdoor scenarios, where

satisfactory localization accuracy has been demonstrated,

which outperforms the traditional geometric-based methods

(e.g., AOA-based) in NLOS environments. This is because the

wireless signals from NLOS paths can be exploited as location

features with a deep neural network (DNN) model. For indoor

localization, we have proposed several deep learning-based

fingerprinting schemes using Wi-Fi channel state information

(CSI) [8]. Similar to indoor localization methods, CSI-based

fingerprinting also works well for massive MIMO localization

with the help of deep learning [9]. To fully utilize the large

number of antennas and the large bandwidth in massive

MIMO systems, angle-delay profile (ADP) [10]–[12] has been

obtained by implementing a linear transformation of CSI,

which can be leveraged as fingerprints (in the form of 2D

images) for wireless localization that can represent all the

different paths between the BS and user. Deep convolutional

neural networks (DCNN) has been exploited to learn the loca-

tion features from ADP fingerprints for improved localization

performance [10], [11], [13].

Although massive MIMO localization using ADP images

is highly promising, the DNNs used in such systems belong

to black-box models and are not robust [14]. For example,

adversarial examples, which are created by introducing small

perturbations to the original image, could easily mislead a well

trained deep learning model. Goodfellow et al. first introduced

the Fast Gradient Sign Method (FGSM) to attack DNN models

for image recognition [15]. Additional adversarial attack meth-

ods include Projected Gradient Descent (PGD), a multiple-

step variant of FGSM [16], and the Momentum Iterative
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Method (MIM), which exploit the momentum term to enhance

the attack performance [17]. An example of using FGSM to

attack massive MIMO localization is shown in Fig. 1. We

can see that after injecting a very small perturbation into the

clear ADP data (i.e., ε = 0.01, see (11)), the localization error

is increased from 0.07 m to 3.97 m using the same DCNN

model. Thus, the localization performance can be highly

susceptible to adversarial examples. Several recent works

have considered the impact of adversarial attacks on wireless

systems, e.g., human activity recognition [18], Wi-Fi indoor

localization [19], and device identification [20]. However,

the robustness of DCNN-based massive MIMO localization

against adversarial examples has not been investigated.

In this paper, we study the impact of adversarial attacks

as well as defense mechanisms (i.e., adversarial training) on

massive MIMO indoor and outdoor localization with DCNN

and the neural ordinary differential equation (ODE) model.

Specifically, we create adversarial examples by introducing

subtle perturbations to the ADP image data, using three white-

box attack methods including FGSM, PGD, and MIM. We first

introduce the massive MIMO system model with respect to the

channel model and how to create the ADPs, and then present

the DCNN model and the modified neural ODE model for

massive MIMO localization. Adversarial attacks and training

for neural ODE are formulated for the proposed localization

system. We then validate the performance of DCNN and the

neural ODE based localization schemes using a public dataset

for both outdoor and indoor scenarios. Our experimental

results demonstrate the robustness of the proposed neural ODE

model for massive MIMO localization.

The main contributions are summarized as follows.

• To the best of our knowledge, this is the first work to

study adversarial attacks and defense on DCNN-based

massive MIMO localization. We show how to create ADP

images from massive MIMO CSI data as fingerprints and

that DCNN-based massive MIMO localization is highly

susceptible to adversarial attacks.

• In this paper, we propose a novel neural ODE method

using adversarial training to enhance the robustness of

massive MIMO localization. Specifically, we combine

the convolution blocks, ODE blocks, and the dense layer

to implement a localization regression solution. We also

leverage adversarial training for the neural ODE against

adversarial examples.

• Using a public dataset with both indoor and outdoor

scenarios (i.e., the DeepMIMO dataset [21]), our ex-

perimental study demonstrates that the proposed neural

ODE model with adversarial training is highly robust to

adversarial attacks in both indoor and outdoor scenarios.

The rest of this paper is organized as follows. In Section II,

we introduce the massive MIMO channel model. The system

architecture is presented in Section III. Adversarial attack and

defense are introduced in Section IV. Experimental results are

discussed in Section V. We conclude this paper in Section VI.

II. SYSTEM MODEL

A. Channel Model

Consider wireless localization (indoor or outdoor) with a

mobile device and a BS, where massive MIMO orthogonal

frequency-division multiplexing (OFDM) is used. We assume

that the mobile device uses an omini-directional antenna, the

BS is equipped with a uniform linear array (ULA) with Nb

antennas (Nb >> 1), and the OFDM channel has Nc OFDM

sub-carriers. The geometric wideband channel model includes

L different paths between the mobile device and the BS. The

up-link wireless channel information is estimated for locating

the position of the mobile device. For massive MIMO OFDM

systems, the CSI vector in the frequency domain for the kth

sub-carrier is given by [13]

~hk =

L
∑

i=1

αi
~β(θi)e

−j2π
kni
Nc , (1)

where j represents the imaginary unit, αi is the complex gain

of the kth sub-carrier, ni is the sampled delay with the ith
path, and ~β(θi) is the linear array response vector with AOA

θi, which is given by

~β(θi) = [1, e−j2π
d cos θi

λ , ..., e−j2π
(Nb−1)d cos θi

λ ]T , (2)

where λ is the wavelength and d is the gap between two

adjacent antennas. The CSI matrix is represented as H =
[~h1,~h2, ...,~hNc

].

B. ADP Fingerprints

Although CSI data is widely used for wireless localization,

it has not been fully exploited for massive MIMO localization.

In this paper, we leverage ADP images as fingerprints for

massive MIMO localization. The ADP fingerprints I (in the

form of 2D images) can be created with a linear transformation

of the CSI data H [9], [11], which is represented by

I = |UHHV|, (3)

where | · | represents the absolute value, U and V are the

discrete Fourier transform (DFT) matrices, and UH is the

conjugate transpose of matrix U . Specifically, matrix U ∈
C

Nb×Nb and matrix V ∈ C
Nc×Nc are defined as

[U ]i,j =
1√
Nb

e
−j2π

i(j−Nb/2)

Nb (4)

[V]i,j =
1√
Nc

e−j2π
ij
Nc . (5)

For massive MIMO localization, we use the ADP matrix

that includes signal power, AOA in the angle domain, and

TOA values in the delay domain from all paths, thus fully

leveraging the features of the massive MIMO OFDM channel.

We show an example of ADP image in the left plot in Fig. 1

of size 32× 32, which is a sparse image that only has fewer

path clusters and higher image resolution in the angle and time

domains. In this paper, we will use ADP images as fingerprints

for massive MIMO localization.
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model [23]. The output from the ODE block is then flattened

out and passed to a dense layer with three neurons to predict

3D locations.

IV. ADVERSARIAL ATTACKS AND TRAINING

In this section, we introduce the three types of white-box

attacks (i.e., FGSM, PGD, and MIM) on DCNN and neural

ODE models. For massive MIMO localization, the deep neural

model (e.g., DCNN) can be attacked by using adversarial

samples generated by injecting a small noise to the ADP

image. Adversarial ADP images can be created by maximizing

the loss function of the deep model, which is defined by

argmax
Iadv

L(f(Iadv, θ∗), y), (10)

where Iadv is the adversarial ADP image, which is obtained

by Iadv = I + δ, where δ is the perturbation. Considering

low time complexity for practical applications, in this paper,

we focus on white-box attacks including the one-step attack

method (i.e., FGSM) and two iterative attack methods (i.e.,

PGD and MIM), which are introduced in the following.

A. Adversarial Attacks

a) Fast Gradient Sign Method (FGSM): The FGSM

attack method is a simple one-step attack with a low time

complexity. We calculate the perturbation noise in a single step

using a pixel level magnitude perturbation along the gradient

direction. The perturbation δ is given by

δ = ε · sign(OIL(f(I, θ∗), y)), (11)

where ε is a hyper-parameter to adjust the degree of pertur-

bation. Given the loss function of the deep model L(·), we

compute the perturbation δ based on the first derivative of

L(f(I, θ∗), y).
The Fast Gradient Method (FGM) [24] is a generalization

of FGSM. The perturbation of FGM is defined as

δ = ε · OIL(f(I, θ∗), y)
‖OIL(f(I, θ∗), y)‖2

. (12)

Using (12), the perturbation can be easily computed. Ad-

versarial APD images are generated with different ε values,

indicating different strengths of introduced perturbations.

b) Projected Gradient Method (PGD): Following the

one-step method (i.e., FGM), PGD is designed as an iterative

version of FGM to enhance the adversarial attack perfor-

mance. Adversarial ADP examples can be created with the

PGD method as

Iadv
0 = I,

Iadv
N+1 = Clip{I,ε}

{

Iadv
N + α

OIL(f(Iadv
N , θ∗), y)

∥

∥OIL(f(Iadv
N , θ∗), y)

∥

∥

2

}

,

(13)

where α is also a hyper-parameter, which is set as ε/N for a

given ε. Compared with the FGM method, PGD is generally

considered as a stronger adversarial attack approach.

c) Momentum Iterative Method (MIM): The MIM attack

incorporates the momentum into the iterative adversarial at-

tack method, which employs the gradient of the previous steps

to calculate the perturbation. The gradient in the (N + 1)th
iteration is given by

qN+1 = µ · qN +
OIL(f(Iadv

N , θ∗), y)
∥

∥OIL(f(Iadv
N , θ∗), y)

∥

∥

2

Iadv
N+1 = Iadv

N + α · sign(qN+1),

(14)

where qN includes the gradients from the previous N − 1
iterations with a decay factor of µ.

B. Adversarial Training

To make our DCNN and neural ODE robust to adversarial

attacks, our massive MIMO system also implements adversar-

ial training by using a mixture of adversarial ADP images and

clean ADP images. Specifically, we consider the adversarial

ADP examples and their true labels in the training dataset,

to allow the deep models to learn the adversarial examples

with correct labels. This way, the trained model will be able

to predict the labels for new adversarial ADP images. FGSM,

PGD, and MIM adversarial examples are leveraged by the

adversarial trainer to accomplish this idea. Generally, FGSM

generates perturbations in a single step and adversarial training

needs less time but its robustness is not as strong, while PGD

and MIM leverage multiple iterations to generate adversarial

samples, which require longer time to implement adversarial

training. In this paper, we implement adversarial training for

both the DCNN model and the ODE model, and validate their

performance in the next section.

V. EXPERIMENTS AND RESULTS

A. Experiment Configuration

Our experiments are conducted using the public Deep-

MIMO dataset [11], [21]. This dataset is completely defined

by ray tracing scenarios for both indoor and outdoor environ-

ments and channel parameters (e.g., bandwidth, base stations,

users, number of paths, etc.). Two scenarios (i.e., indoor and

outdoor) based on the ray-tracing simulator developed by

Wireless InSite are used in our experiments.

a) Outdoor Scenario: We use DeepMIMO outdoor sce-

nario number 1 (O1) to obtain the outdoor CSI dataset. This

scenario includes two urban streets of 400 m × 40 m and

600 m × 40 m, respectively, and has one active BS at the

intersection of the two streets. We choose the 3.5 GHz band

with 10 MHz OFDM bandwidth and 64 sub-carriers. The BS

has 64 antennas, and the BS-user channel has 25 paths. In

addition, the locations of users are from R1 to R1100 rows

(i.e., locations of data points from row 1 to 1100 in the

DeepMIMO dataset).

b) Indoor Scenario: We use DeepMIMO indoor scenario

number 3 (I3) to obtain the indoor CSI dataset for a conference

room of 10 m × 11 m with its hallways. There is one active BS

operating in the 60 GHz band. The other parameters include

32 antennas, 32 sub-carriers, 500 MHz bandwith, and 25

paths. The users locations are from R1 to R550 rows.
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