17120

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

fASLR: Function-Based ASLR via TrustZone-M
and MPU for Resource-Constrained IoT Systems

Lan Luo*, Xinhui Shao, Zhen Ling~', Member, IEEE, Huaiyu Yan,
Yumeng Wei, and Xinwen Fu, Senior Member, IEEE

Abstract—The address space layout randomization (ASLR)
has been widely deployed on modern operating systems against
code reuse attacks (CRAs), such as return-oriented programming
(ROP) and jump-oriented programming (JOP). However, porting
ASLR to resource-constrained IoT devices is a great challenge
due to the limited memory space for randomization. We propose
a function-based ASLR scheme (FASLR) for IoT runtime secu-
rity utilizing the ARM TrustZone-M technology and the memory
protection unit (MPU) supported by ARM Cortex-M processors.
fASLR loads a function from the flash and randomizes its base
address in a randomization region in RAM when the function
is being called. We design novel mechanisms on cleaning up
finished functions from the RAM and memory addressing to
tackle the complexity of function relocation and randomization.
Optimizations are applied to effectively reduce overhead intro-
duced by runtime memory management. We also formally prove
that user applications will run correctly with fASLR enabled.
Compared with the related work, a prominent advantage of
fASLR is that fASLR can run an application even if the applica-
tion code cannot be completely loaded into RAM for execution.
We test fASLR with 21 applications. The experimental results
show that fASLR achieves a high randomization entropy and
incurs a runtime overhead of less than 10%.

Index Terms—Address space layout randomization (ASLR),
code reuse attacks (CRAs), Internet of Things, microcontroller,
TrustZone.

Manuscript received 30 May 2022; revised 18 June 2022; accepted 26
June 2022. Date of publication 13 July 2022; date of current version
7 September 2022. This work was supported in part by the National Key
Research and Development Program of China under Grant 2018YFB2100300;
in part by the National Natural Science Foundation of China under
Grant 62022024, Grant 61972088, Grant 62072103, Grant 62102084, Grant
62072102, Grant 62072098, and Grant 61972083; in part by the U.S. National
Science Foundation (NSF) under Award 1931871 and Award 1915780; in
part by the U.S. Department of Energy (DOE) under Award DE-EE0009152;
in part by the Jiangsu Provincial Natural Science Foundation for Excellent
Young Scholars under Grant BK20190060; in part by the Jiangsu Provincial
Natural Science Foundation of China under Grant BK20190340; in part by
the Jiangsu Provincial Key Laboratory of Network and Information Security
under Grant BM2003201; in part by the Key Laboratory of Computer Network
and Information Integration of Ministry of Education of China under Grant
93K-9; and in part by the Collaborative Innovation Center of Novel Software
Technology and Industrialization. (Corresponding author: Zhen Ling.)

Lan Luo is with the Department of Computer Science, University of Central
Florida, Orlando, FL 32816 USA (e-mail: lukachan@knights.ucf.edu).

Xinhui Shao and Yumeng Wei are with the School of Cyber Science
and Engineering, Southeast University, Nanjing 210096, China (e-mail:
xinhuishao @seu.edu.cn; yumeng5 @seu.edu.cn).

Zhen Ling and Huaiyu Yan are with the School of Computer Science
and Engineering, Southeast University, Nanjing 210096, China (e-mail:
zhenling @seu.edu.cn; huaiyu_yan@seu.edu.cn).

Xinwen Fu is with the Department of Computer Science,
University of Massachusetts Lowell, Lowell, MA 01854 USA (e-mail:
xinwenfu@cs.uml.edu).

Digital Object Identifier 10.1109/JI0T.2022.3190374

I. INTRODUCTION

ITH the booming IoT industry, there are rising con-
chms on the security and privacy of IoT devices. IoT
application code is often written in unsafe programming lan-
guages, such as C and C++, thus, tends to be vulnerable
to memory corruption attacks [1]. Exploiting program bugs,
memory corruption attacks aim at corrupting sensitive data,
such as function pointers, to achieve various attack purposes.
One typical memory corruption attack is the code reuse attack
(CRA), which hijacks the control flow and reuses the applica-
tion code [2]. Memory corruption attacks and defenses have
been actively studied for mainstream operating systems, such
as Windows, macOS, Lniux, Android, and iOS.

In this article, we focus on defending against CRAs for
resource-constrained IoT devices, particularly those running
on microcontrollers (MCUs). It is an intuitive idea to port
existing security schemes to IoT platforms. We study the use
of address space layout randomization (ASLR) in memory-
constrained IoT devices to mitigate CRAs, such as the return-
oriented programming (ROP) and jump-oriented programming
(JOP) by randomizing the memory layout of code and data.
Modern operating systems often implement the following
ASLR scheme. When an executable is loaded into RAM, its
base (start) address is randomly chosen while the executable
structure is kept almost intact. Fine-grained ASLR strategies
have been proposed and randomize executable code at fine
levels of basic blocks, functions, or instructions [3] within a
loaded application image. However, porting ASLR to resource-
constrained IoT devices is a great challenge due to the limited
memory Space.

We propose a function-based ASLR scheme (fASLR)
based on the ARM Cortex-M processor with TrustZone-M
enabled [4] to protect MCU-based IoT devices from CRAs that
require the knowledge of locations of executable code snippets,
such as ROP and JOP. fASLR takes advantage of hardware-
based isolation provided by TrustZone-M. The runtime fASLR
is located in a trusted execution environment (TEE), namely,
the secure world (SW) of TrustZone, while the application
code is in a rich execution environment (REE), namely, the
nonsecure world (NSW), and denoted as the NS app. The NS
app is protected by the memory protection unit (MPU). When
a function in the MPU protected region is called, a hardware
exception is raised and the control flow of the function call is
redirected to our custom exception handler, which is used by
the runtime fASLR for callee randomization. Compared to the

2327-4662 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5627-3521
https://orcid.org/0000-0001-9691-8702

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

most recent related work [5] that requires loading the whole
application code into RAM, fASLR can run an application
even if the application on flash is too large to be completely
loaded into RAM.

fASLR is user friendly and does not require any code instru-
mentation for the user code. A programmer only needs to
compile the NS code via the GCC compiler with specific
compiler flags. fASLR implements a block-based memory
management strategy to manage randomized functions in
RAM. To reduce overheads introduced by runtime fASLR,
three optimizations are adopted: 1) fASLR cleans up finished
functions from RAM only when the randomization region
(RR) is full; 2) a novel stack unwinding mechanism is devised
to precisely find all functions that are safe to be cleaned;
and 3) function call rewriting is used to replace the desti-
nation addresses of call instructions with the base addresses
of the corresponding randomized loaded callees so that the
call instructions can jump directly to the target loaded callees
without raising exceptions.

A conference version of this article [6] mainly focuses on
the optimized fASLR. In this journal version, we add a basic
memory management strategy and compare it with the opti-
mized fASLR in the conference paper. In addition, we formally
prove mechanisms adopted by fASLR do not affect execu-
tion correctness of the NS app. We also port three test apps
with relatively high time overheads evaluated in the conference
version to a more powerful TrustZone-M-enabled MCU and
compare the overheads at different MCUs. Finally, we discuss
the compatibility of using fASLR with other protection mech-
anisms for securing the runtime execution of MCU-based IoT
devices.

Our major contributions are summarized as follows.

1) We propose a function-based ASLR scheme for resource-
constrained IoT devices with limited RAM and flash.
fASLR dynamically loads only needed functions into
RAM and randomizes their entry addresses so as to
achieve large randomization entropy.

2) Novel schemes are designed for fASLR to perform
memory management and addressing. We carefully
address the issue of addressing since functions are ran-
domly moved around. Finished functions are removed
from RAM when there is no RAM to execute new func-
tion calls. Therefore, our scheme can run an NS app that
is larger than the RAM.

3) We formally prove that the NS app still runs correctly
with fASLR via logical reasoning.

4) We implement fASLR with a TrustZone-M-enabled
MCUs, SAM L11, and STM32. We validate the fea-
sibility and performance of fASLR with 21 applications
on SAMLI11 and three applications on STM32. fASLR
incurs a runtime overhead of less than 10% for all
the applications. We also compare the performance of
fASLR on SAM L11 and STM32 and show larger RAM
can reduce the overhead as expected.

Roadmap: The remainder of this article is structured as fol-
lows: we first discuss the background of TrustZone-M-enabled
processors in Section II. The threat model, design goals, and
system architecture of ASLR are then presented in Section III.

17121

We also demonstrate the workflow of fASLR and two techni-
cal challenges in this section. In Section IV, we discuss the
technical challenges and present our solutions. We prove the
execution validity of the NS app with fASLR in Section V.
In addition, we analyze the effectiveness and performance
of fASLR in Section VI, and present experimental results in
Section VII. Finally, we discuss the compatibility of fASLR
with other security mechanisms in Section VIII, present related
work on fine-grained ASLR techniques for embedded systems
in Section IX, and conclude this article in Section X.

II. BACKGROUND

In this section, we introduce ARM Cortex-M MCUs and
TrustZone-M, which is used in this article. ARM Cortex-M
is a series of processors optimized for MCUs. Such proces-
sors come equipped with MPU, specific exception model, and
different processor modes for security concerns.

Memory Protection Unit: The MPU is the security exten-
sion that enforces memory access permissions (i.e., read,
write, and execute) for memory regions. Any access viola-
tion at memory address protected by MPU will trigger the
ARM HardFault exception handling. Once such an excep-
tion is triggered, the processor will stop the current execution
and execute the exception handler in the SW to respond to
the exception. Before the execution of the exception han-
dler, the processor context is first preserved in the call stack.
The stack frame of the exception context is composed of the
status registers (xPSR), program counter (PC),
link register (LR), and general-purpose registers R12
and RO to R3. At the same time, LR is set with EXC_ RETURN,
which is the address where the exception occurs.

Processor Mode: ARM Cortex-M processors support two
processor modes, i.e., thread mode and handler mode. While
the thread mode is for normal program execution and can
be either privileged or unprivileged, the handler mode is
for exception handling and only supports privileged software
execution.

TrustZone-M-Enabled MCU: MCU often runs either a bare-
metal-embedded application that usually consists of an infinite
loop performing a sequence of operations or a lightweight
real-time operating system (RTOS) such as FreeRTOS [7]. The
applications or RTOS are stored in the MCU on-chip memory.
There are two types of MCU on-chip memory: 1) flash or
EEPROM as the nonvolatile memory and 2) RAM as the
volatile memory. Usually, an MCU program is programmed
into the flash and executed directly in the flash, though
MCUs allow running code snippets in RAM for performance
concerns.

TrustZone-M is a hardware-based security technique
designed for MCUs, providing two isolated execution envi-
ronments named SW as the TEE, and NSW as the REE.
The on-chip resources, such as memories and peripherals are
divided into the two worlds as well. For simplicity, we use
the word “Secure” to describe resources in the SW and use
“Nonsecure” for those belonging to the NSW. Secure applica-
tion (abbreviated as app), for example, is an app in the SW. In
a TrustZone-enabled system, an SW program is able to access

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17122

resources in both worlds, while a program in the NSW is con-
sidered to be untrusted and can only access resources in the
NSW directly.

III. fASLR-ENABLED SYSTEM

In this section, we first present the threat model and design
goals of our ASLR scheme—fASLR. We then introduce the
architecture of an fASLR-enabled system and the workflow
of fASLR. Finally, we discuss challenges for implementing a
practical fASLR.

A. Threat Model

fASLR leverages ARM Cortex-M processors and hardware-
based techniques, including TrustZone-M, MPU, and excep-
tion handling mechanism. Based on the hardware isolation
provided by TrustZone-M, on-device system resources are
divided into two worlds, namely, the SW and the NSW.

We assume a TrustZone-M-enabled device has the following

security features.

1) Main components of fASLR reside in the SW and can
be fully trusted. The application (denoted as NS app) is
located in the NSW and may be vulnerable.

2) The NS app is located at a fixed address in the NS flash
and is executed from the flash (instead of RAM) by
default.

3) The device supports the memory protection mechanisms
such as the MPU.

We assume an adversary has the following capabilities.

1) The NS app may be subject to CRAs such as the ROP
attack.

2) The adversary can obtain the binary of the NS app,
disassemble the binary, and obtain code gadgets for
CRAs.

B. Design Goals

fASLR is designed to achieve the following goals.

1) Mitigating CRAs: The scheme shall provide dynamic
function-level code randomization for resource-
constraint IoT devices to mitigate CRAs, which require
a certain chain of gadgets found in the NS app. The
randomization shall achieve high entropy to defeat
brute-force guessing attacks.

2) Usability: The scheme shall be user friendly and will
not add much burden of programming.

3) Low Runtime Overhead: The proposed scheme cannot
introduce large overhead in terms of time and space and
affect the NS app performance much.

C. System Architecture

As illustrated in Fig. 1, fASLR has three key components:
1) the static preprocessing module (SPM) for compilation time
preparation; 2) the boot engine (BE) for boot time configu-
ration; and 3) the function randomization engine (FRE) for
runtime function-level randomization.

Static Preprocessing Module: The SPM serves two major

purposes.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

NSW sw
I 3
Function
4 Boot Engine
. oy | |radomizton
Static Application |+ Engine (FRE)
'y Preprocessing
oot Module (SPM) MPU Entry point
= enforcement verification
compiler y - T
0 (o] [[||
Forced =
Absolute 1. Function Infe Randomization 1l Systemn Memaory
ddressing || 2- izati region in RAM initializati manags
Region Info [T
Compile time Runtime
Fig. 1. fASLR architecture.

1) Creating the Function Table (FT): Once the NS app
code is compiled via a GCC compiler, the SPM tries
to extract needed information of all functions in the
ELF object file, including function entry point addresses
and function sizes from the symbol table, and function
stack frame sizes from the .debug frame section of
the ELF file. Function information is recorded in a data
structure called FT.

2) Profiling the RR: Extracting RAM usage information
from the compiler output file, the SPM determines the
size and location of the largest unused RAM space as
the RR. Users can also set a smaller RR by manually
modifying related configurations.

Boot Engine: When a TrustZone-M-enabled device boots,
the boot flow is the Secure bootloader, Secure app, and then
the NS app. The NS app starts with the reset handler that
calls the first function, e.g., main (). The BE is a part of the
Secure bootloader stored in the SW flash. It configures and
enables the MPU to mark the NS app code in the flash as
nonexecutable for two purposes: 1) MPU prevents the NS app
in the NS flash from being exploited by CRAs and 2) once
the NS code is set as nonexecutable, any attempt to execute
the NS code triggers a hardware exception, which is handled
by the HardFault exception handler in the SW [8].

Function Randomization Engine: The FRE is a part of the
HardFault exception handler and handles invoked functions in
the NSW flash protected by the MPU. It serves two purposes,
i.e., function entry point verification and memory management.

When a HardFault exception occurs, the FRE fetches the
return address of the exception, which is the entry point of
the invoked function, through the NSW exception stack frame.
Then, the function entry point verification is performed by
comparing the return address to all legitimate function entry
point addresses in the FT until there is a match. After a match,
the FRE obtains the size of the corresponding function from
the FT for later use in randomization. A HardFault exception
may be caused by other reasons, for instance, memory access
violation when an adversary launches CRAs trying to execute
an instruction not at legitimate function entry points. In such
a case, a security alert shall be raised.

After the function entry point verification, memory man-
agement is performed. Specifically, the invoked function is
randomly relocated to a RAM region within the RR. After
the function randomization, we need to carefully handover
the control flow from the exception handler to the relocated

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

Non-secure World Secure World

1
Randomization Region :
1
X BL <Y> W l:
@ Hardfault Exception
I @ Handler
- o | N P,
21 o
T S — - I .
I o
(7] o lLIIIIIT ®: —1
Ll _‘I";__ BL<z> A I Function
| : Randomization
. Engine
10, @
Application Code . . =
I 1 | [
Y B |
1
4 v
o S
1 ©

Fig. 2. Program flow of function X, ¥, and Z. For any function F in the NS
app, we use F’ to represent its corresponding duplicate in the RR.

function. We deliberately manipulate this by overwriting the
return address of the exception handler on stack with the new
function entry point so that the execution mode will change
back to the mode of the NS app with correct privileges.

D. Workflow

Offline—Compilation and Flashing: After the NS app is
compiled and linked by the GCC compiler at compile time,
the SPM creates the FT offline according to the NS app ELF
file. The FT and NS app image are then flashed to the SW and
NSW flash, respectively. The BE and FRE are also flashed to
the SW flash.

Runtime: Fig. 2 shows the program flow, which is an
iterative sequence of function calls (e.g.,) and @), MPU
violation exception (e.g., @) and @), runtime function ran-
domization, function execution (e.g., @ and @), and function
return (e.g., @ and (8)).

Once we turn on the device power supply, the BE boots the
system and then the NS app initiates the reset handler [9].
After a sequence of initialization operations, the reset han-
dler branches to the main application code, i.e., main (). Both
attempts of executing the reset handler and main () trigger
runtime fASLR, and their code is loaded by the FRE to the
RR in the RAM for execution. During the execution of the
main () function, the control flow can divert to a callee on the
MPU-protected flash only if the callee is invoked by main ().

In an fASLR-enabled system, when a function call occurs
in the RR, it jumps to the entry point of the callee in the orig-
inal MPU-protected application and, thus, triggers the MPU
violation exception. The FRE then conducts runtime function
randomization for the callee and diverts the control flow to
the callee relocated in the RAM. During the execution of the
callee, any function call in the callee can also trigger a MPU
violation exception. The FRE handles function calls and ran-
domization in such an iterative way above. The control flow
returns to the caller in the RAM once its callee is finished.
fASLR does not interfere with the function return mechanism,
and the function in the RAM returns normally as functions in

17123

a system without fASLR do. Note that in an fASLR enabled
system, a callee returns to the relocated caller in the RR since
that is where the function call really occurs.

Fig. 2 presents an exemplary program flow for the call path
X — Y — Z of functions X, ¥, and Z. A call path illustrates
the calling relationship. Starting from the leftmost one, each
function in the path calls the function right after it. Suppose
that function X has been loaded to the RR and the program
flow starts from the relocated function X’. When X’ calls ¥, the
attempt of executing Y ((1)) results in an MPU violation excep-
tion ((2)), handled by the FRE inside the HardFault exception
handler. Y is then relocated to the RR as ¥’ and, consequently,
the control flow is redirected to ¥’ ((3)). During the execution
of Y', Y attempts to call Z (@), and the MPU violation excep-
tion (@) is triggered again and is then handled by the FRE
(@) Finally, the control flow returns from Z’ to ¥’ (@) and
Y’ to X’ ((8) when Z’ and Y’ finish execution.

E. Challenges

A practical fASLR faces the following challenges. We
address these challenges in detail in Section IV.

Memory Management: We target MCUs with limited RAM
and the whole NS app may not be loaded into the RAM
for execution. Therefore, a memory management strategy is
needed to dynamically trim loaded functions, assuring free
space for subsequent function randomization. Ancestor func-
tions are defined as direct or indirect callers of the current
running function. Such functions are awaiting returns from
some ongoing function calls, and shall not be trimmed before
their descendants return. Finished functions are those that
have finished execution and are not ancestors of any run-
ning function. They can be disposed safely. The runtime FRE
is supposed to distinguish finished functions and select an
appropriate timing to trim them from the RR.

Memory Addressing: A function in the RR may contain
branches that use absolute or relative addresses. All absolute
branches in the ARMv8-M architecture compiled by GCC are
function calls, which would not be affected by the relocation
and will function normally. Relative branches within a function
can work normally as well since a relative position would not
change when the function is relocated as a whole. However,
relative branches may be used to jump between functions. In
an fASLR-enabled system, those relative branches can lead
the control flow to branch to an unexpected destination as
function-based randomization changes the relative position of
two functions.

IV. MEMORY MANAGEMENT AND ADDRESSING

In this section, we address the challenges of fALSR raised
in Section III-E and present our memory management and
addressing schemes.

A. Memory Management

The dynamic memory management of fASLR positions
functions randomly within the RR. Function cleaning strate-
gies are utilized to remove finished functions from the RR.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17124

(a) P‘;;‘;;’ Sie| Puyiosd [PI%0ME
[1
Unused
(b) ptr Unused space ptr Function 1 ptr space
. AN J
Al Al
Free block 1 Function block 1 Free block 2
[1| 1
C Unused Unused
() ptr spaca ptr! Function 2 |ptri Unused space [ptr Function 1 ptr space
H_} AN v AN ~ J v S
Free block 1 Function Free block 2 Function block 1 Free block 3
block 2
Fig. 3. Memory fragmentation. (a) Structure of the RR. (b) Memory layout

before loading function 2. (¢) Memory layout after loading and randomizing
function 2.

1) Memory Fragmentation Management: In the RR, each
loaded function occupies a function block. A disposed func-
tion block becomes a free block. If there are any adjacent
free blocks, the FRE merges them into one big free block. All
free blocks are managed by a linked list. A function block,
as presented in Fig. 3(a), consists of a two-word metadata, a
payload, and padding bytes for memory alignment. The meta-
data contain the size of the block and the pointer which points
the next free block. The payload region is used to store the
randomized function.

When the system starts, fASLR initializes the whole RR as
a big free block since no function has been allocated yet. Once
a function is called in the NSW, the FRE allocates a function
block for the target function. Specifically, it first scans the
linked list and finds out all free blocks larger than the target
function in the payload region. The FRE randomly selects one
block among the discovered free blocks and then randomly
allocates the target function to the selected free block. After the
allocation, new free blocks may be generated and the linked
list will be updated accordingly. Fig. 3(a) and (b) illustrates
the case of randomizing function 2 when there are two free
blocks. Function 2 is consequently allocated to the middle of
free block 1. The new free block 1 and free block 2 are then
formed.

2) Baseline Function Cleaning: We now present an intu-
itive baseline function cleaning scheme which dynamically
cleans up finished functions from the RR. To find out finished
functions for cleaning, we create a stack-like data structure
named Trace Stack to store metadata, which is denoted as a
Junction record, of every loaded function within the RR. A
function record is created and pushed into the trace stack by
the FRE when a new function is called. A function record
contains the information of the callee function, mainly includ-
ing: 1) loadAddress—the new entry point of the callee in the
RR and 2) size—the size of the callee. The sequence of func-
tion records in the trace stack, from bottom to top, reflects
the order of function calls. It can be observed from Fig. 4
that if a function’s record is above function A’s record in the
trace stack, that function is either directly called by A (e.g.,
function B), or its ancestor is called by A (e.g., function C).
Based on this observation, we create the algorithm for cleaning
finished functions from the RR as shown in Algorithm 1.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

1 3 C A
‘Fu.ncl'ion B ‘Fu.nclion D
2 A A A
,,,,,, s
(a) (b) (©) (d)
Fig. 4. Function call graph and the Trace Stack. (a) Call graph. (b) Trace

Stack before D is called. (c) Trace Stack after D is called. (d) Trace Stack
contains multiple As.

Algorithm 1 Function Cleaning Algorithm

returnAddress <— readException(sp)
for i = 1; i < stackLen; i + + do
if (returnAddress < stackli].endAddress) &
(returnAddress > stack[i].loadAddress) then
for j =i; j < stackLen; j + + do
funcRecord < stackPop()
[freeFunction(funcRecord)
end for
end if
end for

Algorithm 1 runs every time the Hardfault exception raises
and the FRE has verified the entry point of the callee.
The FRE first locates the caller record, e.g., at position i
of the trace stack, by comparing the return address of the
callee (returnAddress) with the function entry address
(stack[i].loadAddress) and the function end address
(that is stack[i] .loadAddress+size) of each record
in the trace stack. According to the aforementioned analysis
of the function record order, any records above the ith record
map to functions which were called after the current caller.
Since the caller is running at the moment, it can be deduced
that functions which have records above the caller record have
already returned, so it is safe to remove all of those functions
from RAM. For example, when function D is being called
by function A in Fig. 4, the current caller is A. Any of its
descendants (B and C) in the call graph have already returned,
therefore, can be removed before loading D. In Algorithm 1,
once the caller record in the trace stack is found, all func-
tion records above it are popped out via stackPop () and
the corresponding function space in the RR is cleared via
freeFunction (funcRecord).

Note that this cleaning strategy is a “conservative” strat-
egy that only ensures all removed functions are finished but
may miss some finished functions in certain cases. Fig. 4(d)
presents an instance. When the trace stack contains multiple
records of the same function, suppose the current caller is the
bottom A, the function cleaning strategy, however, will treat
the top A as the caller and miss cleaning top A and B. The
top A, B and bottom A will not be cleaned until an ancestor
function of bottom A calls a new function.

3) Optimized Function Cleaning: The major issue of the
baseline function cleaning is that the exception handler is trig-
gered every time there is a function call. Too many exceptions
cause large overheads. We improve the memory management

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

of FALSR with respect to the timing of function cleaning and
calling loaded functions.

1) Call Stack Unwinding: Finished functions are found
through unwinding the Nonsecure call stack.

2) Cleaning on Demand: Finished functions are cleaned up
only if the available RR space is not large enough for
the callee.

3) Call Instruction Rewriting: We further reduce the run-
time overhead by overwriting a call instruction in a
loaded function if the callee of that call instruction has
already been loaded into RAM.

Call Stack Unwinding: The key of function cleaning is
to distinguish finished functions from all loaded functions in
RAM. However, it is difficult to trace all finished functions at
runtime because fASLR runtime does not capture any function
return information. Instead, our approach finds ancestor func-
tions of the current callee, and records all loaded functions.
Any function that is a loaded function but not an ancestor
function is a finished function that can be disposed. Now, the
problem is decomposed to record all loaded functions and find
all ancestor functions.

Like the trace stack working for the baseline memory man-
agement, a queue structure named the loading queue (LQ) is
used to store metadata, namely, function record, of all loaded
functions in the RAM. The FRE pushes a function record into
the LQ when an unloaded function is called.

We also need to find out all ancestor functions. Modern
computer system uses the call stack to retain return addresses
of functions that have been called but have not returned yet.
Such functions are direct or indirect callers of the current run-
ning function, which is also the callee when program execution
is trapped in the FRE in our system. Therefore, functions
which have their stack frames in the call stack are ancestor
functions of the callee. To figure out all functions in the call
stack, stack unwinding is needed. Basically, stack unwinding
helps to locate all return addresses in the call stack. A return
address then tells where the caller is within the RAM. If we
can obtain all return addresses on the call stack, by comparing
each return address with the function records in the LQ, we
are able to identify all ancestor functions.

Frame pointer is an intuitive approach of unwinding the call
stack [10]. However, the Armv8-M architecture only imple-
ments the Thumb instruction set, which does not support the
frame pointer convention. To achieve stack unwinding without
frame pointers, we devise a stack unwinding method utilizing
the stack top address and the stack frame sizes of all func-
tions to resolve return addresses on the call stack. Recall that
the stack frame size information of each function is extracted
offline by the SPM from the .debug_ frame section of the
ELF file and stored in the FT.

In ARM, by convention, return address is the first object
pushed onto the stack when there is a function call, and is at
the bottom of the callee’s stack frame. Once a function call
triggers the HardFault exception and the program execution
is trapped by the FRE, the top stack frame is the exception
stack frame of the HardFault exception handler and has a fixed
length s.. The current stack top can be obtained through the
SP register of the NSW. The frame top of the first function

17125

Algorithm 2 Call Stack Unwinding Algorithm
nsSp = getNSSp()
returnAddress = readExceptionStackFrame(nsSp)
funcSp = nsSp + sizeof (ExceptionStackFrame)
for i = 1; i < loadingQueue.size; i + + do
if (returnAddress < loadingQueuelil.endAddress) &
(returnAddress > loadingQueueli].loadAddress) then
funcRecord = loading Queueli]
JuncRecord state = UNFINISHED
funcSp = funcSp + funcRecord.callFrameSize
returnAddress = getReturnAddress(funcSp)
end if
end for

Jf1 (namely, the current caller) is 77 = SP + s.. According to
the LR register, which stores an address within f;, FRE is able
to search the frame size 51 of fi from the function records in
the LQ. To access the return address of fi, the frame bottom
B is calculated by By = Tp + s1. Following this procedure,
the FRE is able to resolve return address of every stack frame
from the stack top to bottom. Algorithm 2 presents our stack
unwinding procedure.

Note that recursion is compatible with our function cleaning
strategy. A recursive function is the function that calls itself.
In our compilation environment, a recursive function uses a
relative branch instruction. Therefore, when a recursive func-
tion is loaded to the RR, it can still call itself with the relative
branch without triggering the MPU violation exception.

Cleaning on Demand: The FRE removes functions only
when the RR does not have enough space to load a new func-
tion. Before loading a function to RAM, the FRE checks if
there is enough memory space for it. If not, the FRE first
recovers rewritten call instructions in the loaded functions as
introduced below. It then unwinds the call stack, finds out all
ancestor functions, and marks those functions in the LQ as
unfinished. According to the marked LQ, the FRE disposes
all finished functions and updates the LQ. The call instruction
rewriting mechanism, which will be introduced next, ensures
that any function pointers pointing to a trimmed function will
be restored to point to the original function in flash.

Call Instruction Rewriting: Function call rewriting opti-
mizes the memory management scheme so that finished but
not disposed functions in RAM can be called again without
triggering the HardFault exception. Specifically, when a func-
tion call occurs and the control flow is trapped in the HardFault
exception handler, the FRE first checks if the callee is in the
RR. If so, the FRE overwrites that call instruction (in the
loaded caller) to change the destination address of the call
(i.e., the entry point of the callee in flash) with the entry of
the loaded callee in RAM. Thus, the caller will directly jump
to the loaded callee next time this call instruction executes.
The rewriting history, including which instruction is rewritten
and what the original instruction is, is recorded in the rewriting
list (RL). Such records are used to recover the call instructions
with callees’ flash entry points before function cleaning, since
the loaded callees of those call instructions might be disposed.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17126

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

TABLE I
ATOMIC OPERATIONS OF RUNTIME FASLR

Operation A: Act-1 — Act-2A — Act-3

Operation B: Act-1 — Act-2B — Act-3

Operation C: Act-1 — Act-2C — Act-3

Action-1 Obtaining the base address of the callee in flash and querying the corresponding function record from the Loading Queue

Action-2A Condition If the function record is not in the Loading Queue and the randomization region has available space for the callee:
Loading the callee into the randomization region and pushing its record into the Loading Queue
Condition If the function record is in the Loading Queue:

Action-2B | Rewriting the call instruction so that its destination parameter is the entry point of the loaded callee, and adding the rewriting information
to the Rewriting List
Condition If the function record is not in the Loading Queue and the randomization region is full:

Action-2C Finding all finished functions via stack unwinding. For each finished function, querying it from the Rewriting List.
If a record is found, restoring all call instructions that are related to the finished function and delete the rewriting record.
Cleaning up all finished functions and delete corresponding function records from the Loading Queue

Action-3 Recovering normal program execution to the entry point of the loaded callee in RAM.

B. Memory Addressing

Control flow instructions using relative addresses in the
ARMvV8-M instruction set include branch (B), branch with link
(BL), and conditional branches (CBNZ/CBZ), among which
the BL is used to branch between functions. It is difficult for
fASLR to handle such relative addressing without instruction
patching, namely, runtime instruction update. Note that the
relative positions of two functions changes after function ran-
domization. Recalculating all the relative addresses used in the
randomized function and updating the related instructions with
the new relative addresses will result in unacceptable overhead
in performance.

fASLR eradicates relative addressing at compile time. A
user needs to access the source code of the app (including
libraries) and compile the app with specific compilation flags
(i.e., -mlong-calls, -fno-jump-tables). As a result, the original
relative function calls now use absolute addressing. It is worth
noting that compiling with such flags would not break the
normal build process or affect runtime behavior of the original
program.

V. EXECUTION VALIDITY OF NS ApPp WITH FASLR

In this section, we prove that an NS app can correctly exe-
cute with the optimized fASLR enabled. That is, the program’s
functionality represented by the control flow and data flow
remains unaltered with or without fASLR.

A. Problem Analysis

fALSR can be decomposed as compile-time fASLR and
runtime fASLR. Compile-time fASLR applies to program
compiling time with no attempt to change the program logic,
and is guaranteed to have no influence on the NS app runtime
program logic. This leaves our proof to only runtime fASLR.
Unless otherwise specified, fASLR refers to runtime fASLR.

With runtime fASLR, the overall running system can be
seen as a series of fASLR operations being inserted into
the original execution of the NS app using serial execution.
Therefore, from the perspective of execution timeline, proving
the execution correctness of NS app with fASLR is equiva-
lent to proving that each fASLR operation during program
execution has no influence on the NS app program logic.

The program logic for the whole app is still a complex
concept. Whenever discussing the influence of an fASLR oper-
ation on NS app program logic, we attempt to dissect the
program logic via logical analysis so that the influence can be
effectively depicted and the possible range of affected program
logic can be narrowed down.

Third, we are also aware that runtime fASLR depends on
a few auxiliary data structures, such as the FT and LQ. In
the proof, we ensure that operations of runtime fASLR do not
harm the validity of such data structures at any moment, which
are also essential for maintaining the original program logic.

B. fASLR Operations

Runtime fASLR has three operations which are basic atomic
interactions of runtime fASLR with the system. Each operation
can be further decomposed into a few actions. Table I lists all
fASLR operations and actions. Some actions like Action-1 and
Action-3 are shared among different operations. These opera-
tions are atomic such that no overlapping between operations
or overlapping between operation and program executions are
possible. We can analyze the NS app program logic under
fASLR by investigating influence of each operation separately.
Fig. 5 shows an overview of the execution flow of fASLR
operations.

C. Definitions, Concepts, and Assumptions

1) Definitions:

Definition 1 (Correctness of Program Execution): We say
an NS app with fASLR executes correctly if the app’s
functionality is the same as the NS app without fASLR.

Definition 2 (Static Call information): refers to the hard-
coded destination addresses in the program used for function
calls.

2) Concepts: We first introduce the auxiliary data struc-
tures used by fASLR and then define the validity of the RR,
function calls and function returns. Such concepts will be used
in our following proof.

Auxiliary Data Structures: fASLR employs four auxiliary
data structures to maintain information used at runtime.

1) Loading Queue: LQ maintains function records for each

loaded function currently in the RR. For a loaded
function f, its function record can be denoted as

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

QOperation A

--—---'\ Function call)
A rewritten
call?

Yes

—r

17127

¥ Loaded callee._.-
callee -

=
----------------------&——&-#H

1
!
Operation C |
1
i
1
1

 Loaded callee)

r Function
table
w Loading
queue
--------- il et del
| :
......... A SR
--------- L e LT EET T | ,’""}_‘ r Rewriti
...................................... q=bed } ewriting
: : i W list
rTImIITIIIIITIZ mETToTmIImIIONT y nferbefersbeileiesbeiegereg 4= 4 del
e i Lo TSSO
P !
HI & & t+ it ¥
i i i clean w r w ' r w
H
RR Function E Static call
stack ! | information
H

Fig. 5.

Execution flow of fASLR operations. Solid lines represent control flow, and dotted lines are accesses to memory or data structures. Accesses from

Action-1 and Action-3 in Operation B and C to memory and data structures are omitted since they are exactly the same as in Operation A.

{Addry, Addr},Sf}, where Addr; is the original base
address of f in flash, Addrjr is the randomized base
address of f in the RR, and Sy is the size of f. In our
implementation, the function record may contain other
elements solely for convenience of programming. We
ignore them here since they are irrelevant to the proof.

2) Rewriting List: RL traces call instructions which have

been rewritten by fASLR. For a rewritten instruction i, a
rewriting record is created in RL as {Destj, Addr;, Dest;},
where Addr; is the address of instruction i, Destj the
current destination address of i after rewriting, and Dest;
the original destination before rewriting.

3) Function Table: FT is a static table storing function

information generated at compile time.

4) Free Block List (FBL): FBL is a linked list that dynam-

ically links all free blocks within the RR.

Among these four data structures, FT is static and will
not be changed by fASLR at runtime, therefore, it remains
valid during the whole execution. FBL is designed for fast
searching for free blocks within the RR, and contains part of
information in LQ. If LQ is valid, FBL must be valid at the
same time. Given LQ, it is not necessary to discuss FBL sep-
arately. Therefore, we will focus on analyzing the validity of
LQ and RL in this section.

Validity of the Randomization Region: The RR is the RAM
space allocated for runtime randomization. In fASLR, we use
LQ to help record the usage of RR. By checking LQ, we could
categorize memory in the RR into two states: 1) used region
and 2) not used region, thus forming a {U|N} partition of RR.
We refer to this as the usage view of RR. The region here
is a general notation for a continuous memory space sharing
the same state. By further cross-checking both the LQ and
the function stack, we could categorize the memory of RR
into exactly one of the three states: 1) in-use: a region is in-
use if it holds a function block and the function execution is
unfinished; 2) occupied: a region is occupied if it is a function
block but the function execution is finished; and 3) available:
a region is available if it is a free block. This forms a {I/|O|A}
partition of RR. We refer to this as the stafus view of RR.

Usage view:)
- —_—
N U
)
Status view:

(3) @
_— E————
@ = © ==
(6) (3)
(1) Function is loaded into region
(2) Function is cleaned (5) Function is finished but not cleaned
(3) Function is loaded but not in-use (6) Function is cleaned
* Transition (1) — (2) are verified by checking function LQ;
Transition (3) —(6) are verified by checking LQ and the stack jointly.

0

(4) Function becomes in-use

Fig. 6. State transitions in usage view and status view under different
transition rules.

A state in the usage view and Status view can transition to
another state under state transition rules defined in Fig. 6.

RR is a special component in fASLR as it is the only
structure containing function code duplicates that will be used
for program execution. Consequently, we specially discuss the
requirements for the validity of RR. In order to maintain the
validity of RR, we require that all state transitions in both
views at any moment must follow the transition rules as shown
in Fig. 6, and verify the validity of RR at any moment by
checking the satisfaction of the following two conditions.

1) For any function record {Addry, Addr} ,S8r} in LQ, it
should be consistent with the actual memory content
stored in the RR. That is, the memory region ranging
from Addr; to Addr; + Sy shall contain the duplicate of
function f.

2) The usage and status views of RR should be consistent,
i.e., they should satisfy N=A and U =1+ O.

Validity of Function Calls and Returns: Since fASLR not
only affects the current trapped function call, it may also have
influence on function calls and returns that will occur in the
future, we first categorize function calls and returns that are
related to the proof. If not explicitly stated otherwise, here, the
function calls (or returns) refer to active and future function
calls (or returns), not finished ones. An active function call is
a function call that is intercepted by fASLR and there is an

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17128

ongoing fASLR operation with regard to the trapped function
call. A future function call is one that will occur after the
active function call. A function return will definitely occur
after the active function call is executed.

As an fASLR operation performs when an active function
call occurs, the operation is in full control of the execution of
the active function call. The validity of the active function call
depends on how the operation affects the program logic of the
call. On the other side, any future function call that may occur
after the current operation is generated by the execution of a
call instruction. The validity of such a call depends on whether
the call instruction points to the correct callee function. In
other words, the memory contents at the location pointed by
the destination address of the call instruction (i.e., static call
information) must be the correct callee function (either the
original callee in flash or the corresponding callee duplicate
in RR).

A function return obtains the return location through return
address. In ARM, leaf subroutine and nonleaf subroutine use
different ways to obtain the return address. For a leaf subrou-
tine, the return address is stored in the 1r register, while a
nonleaf subroutine uses the return address stored in the stack
frame. Because fASLR does not intervene in the process of
putting a return address into the 1r register or onto a stack
frame, it can be affirmed that all return addresses are generated
correctly as the original NS app (without fASLR) does. After
the generation of the return addresses, fASLR never changes
the Ir register and stack frames used by normal program execu-
tion. So, until a function returns, the return address, no matter
it is in 1r or on the stack, remains unchanged. The validity
of future function returns therefore requires that the memory
content pointed by the return addresses is valid for function
returns.

In summary, the validity of the active function call depends
on if the program logic is affected by an fASLR operation; the
validity of future calls is determined by static call information
and content validity of RR; Similarly, the validity of future
returns relies on the content validity of RR. In addition, the
auxiliary data structures, as we introduced in concepts, must
remain valid throughout the program execution so that any
fASLR operation can perform as designed. Thus, we can con-
clude that the validity of function calls and returns critically
relies on the validity of the following four objects throughout
the program execution.

1) Program logic of the active call.

2) Static call information.

3) Auxiliary data structures (LQ and RL).

4) Randomization region.

We name the union of these four objects as the crif-
ical reliance set. The validity of the critical reliance set
is in fact the necessary and sufficient condition for the
validity of the function calls and returns. In later proof,
we check the validity of the critical reliance set when-
ever the validity of function calls and returns need to be
verified.

3) Assumptions:

Assumption 1 (Correct Initial System Status): When the
system starts, the initial status of the whole system, including

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

the program logic, static call information, auxiliary data
structures, and memory state, is correct.

Assumption 2 (Serial Execution System): The MCU that
runs the program with fASLR is a serial execution system,
in which one computation can begin only after the previous
computation completes without parallelization.

D. Propositions

Proposition 1: Any operation of fASLR affects only func-
tion calls and returns of the NS app execution.

Proof: Program logic, which refers to the implementation
of the program’s design, is mutually determined by control
flow and data flow at runtime. For the operations listed in
Table I, the runtime fASLR does not modify any data flow
during execution. We thus focus on the influence on the control
flow. The control flow of a program can be divided into control
flow within a function (i.e., branches inside a function and
nonbranch execution) and control flow between functions (i.e.,
function calls and returns). It can be seen that operations listed
in Table I do not affect any execution within a function. Hence,
all Operations A, B, and C may affect only function calls and
returns of the NS app execution. |

E. Lemmas and Theorem

Lemma 1: The correctness of the NS app execution main-
tains when Operation A finishes.

Proof: According to Proposition 1, Operation A can only
affect function calls and returns of the NS app. The validity
of function calls and returns, as we introduced in concepts,
can be verified by checking the validity of the critical reliance
set. Therefore, we prove Lemma 1 through justifying that the
critical reliance set remains valid when Operation A finishes.
Since Operation A is the ordered combination of three actions,
we first analyze whether each action affects the validity of the
critical reliance set. We assume that the critical reliance set is
valid upon the entry of Operation A. Such an assumption is
natural and common, and will be consistently used among the
proofs of all lemmas.

Action-1 only reads the entry address of the callee from the
stack and search the function record from the LQ. It never
writes any values or memory contents, and would not affect
the validity of the critical reliance set.

The condition in Action-2A first guarantees the callee can
be loaded into the RR. The loading action changes the status
of the RR and LQ. Note that before this action, both RR and
LQ are valid. So, we focus on the changes applied on them.
After loading the callee (denoted as x) into the RR, for the
occupied memory region (denoted as m) of the callee, indeed
a new function record {Addr,, Addr;, Sx} is created in the LQ
to record that this region is being used. These are the solely
changes to the RR and LQ, and these two changes are entirely
correspondent. Conditions for the validity of RR are satisfied.
Therefore, both LQ and RR remain valid.

When Action-3 is applied, the RR contains x, which is the
duplicate of the callee. Action-3 forwards the control flow to
this duplicate so the program logic is exactly the same as
before.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

So far, we have proved that any action of Operation A
does not affect the validity of the critical reliance set. Hence,
the critical reliance set will remain valid at the exit of
Operation A. The correctness of the NS app execution holds
at the exit of Operation A. |

Lemma 2: The correctness of the NS app execution main-
tains when Operation B finishes.

Proof: Compared to Operation A, the only difference
of Operation B is that it performs Action-2B instead of
Action-2A. Therefore, we focus on the changes brought by
Action-2B. The effects of other actions of Operation B are
the same as Operation A.

Action-2B solely changes the static call information, i.e.,
the destination address of the active function call and adds the
corresponding rewriting record to the RL. The new destination
address Addr;, obtained from LQ is the correct base address of
the duplicate callee because LQ is valid upon the entry of this
operation. So, it is straightforward to see that both the static
call information and RL remain valid. The correctness of the
NS app execution is kept when Operation B finishes. |

Lemma 3: The correctness of the NS app execution holds
when Operation C finishes.

Proof: We focus on Action-2C since it is the only
difference between Operations C and A.

Action-2C involves function cleaning and call instruction
restoring. Function cleaning changes RR and LQ. As for the
memory content of RR, Action-2C solely cleans the memory
with state O from the status view according to LQ and stack,
and deletes corresponding function records in LQ. This means
LQ remains valid, and the state transition of such memory
region is O — A, which follows the previously defined tran-
sition rule. The consistency between LQ and RR is kept and
satisfies the first requirement for the validity of RR. Based
on the function cleaning process, the status view of the RR
before and after function cleaning can be presented as {I|O|A}
and {I'|0'|A’}, where I’ = I, O' = Empty, and A’ = A + O.
Similarly, from the usage view, we have N' = N + O,
U’ = U—0. Recall the second condition of a valid RR ensures
N =A and U =1 + O. After cleaning, we have

U=U-0=1+0-0=I1=I'+0
N=N+0=A+0=A"

This means that the RR after cleaning satisfies the second
condition as well. Now, we can conclude that RR and LQ are
still valid after cleaning.

Function cleaning may affect static information and RL.
When loaded functions are cleaned from RAM, rewritten
call instructions with the destination addresses pointing to
the cleaned functions need to be restored to point to their
original callees in flash. This is exactly what we do in this
action. While cleaning a function f, by scanning all corre-
sponding function records in RL, fASLR can precisely identify
in static information of the set of call instructions point-
ing to the cleaned function. For each found function record
{Addr} : Addr;, Addry}, fASLR deletes the rewriting record
and restores the instruction i to use the original address Addry
of the callee as the destination address. So, RL remains

17129

Serial execution direction ———»

. =

II;Y_A \f /I! -

Block 1 Block 2

D fASLR operation
[0 Normal execution

Fig. 7. Execution model of the NS app with fASLR.

accurate and all static call information remains valid after
Action-2C.

We can conclude that the critical reliance set affected
by Operation C remains valid. So, the NS app can execute
correctly when Operation C is applied. |

Lemma 4: The correctness of the NS app execution after
any operation in runtime fASLR will hold until the next
occurrence of a runtime fASLR operation, regardless of the
in-between program execution.

Proof: So far, we have proved that the occurrence of
any operation in runtime fASLR does not affect the valid-
ity of the critical reliance set. Hence, the correctness of the
program execution holds at the exit of each runtime fASLR
operation. Because only an operation in fASLR could possibly
change the validity of the critical reliance set, such validity
after an operation in fASLR holds until the next operation
happens. Such validity will not be affected by the specific
program execution during these two operations either because
the critical reliance set cannot be changed by any program
execution.

Recall that the validity of the critical reliance set is equiva-
lent to the validity of the function calls and returns and, thus,
equivalent to the overall correctness of the program execution.
Based on the observations above and Lemmas 1-3, the validity
of the critical reliance set prevails between consecutive run-
time fASLR operations. We can deduce that the correctness
of the NS app execution, not only holds after any operation in
runtime fASLR but also holds until the right next occurrence
of a runtime fASLR operation. Lemma 4 is proved. |

Theorem 1: fASLR does not affect the correctness of the
NS app execution.

Proof: As we analyzed at the beginning of this section,
the execution of the NS app with runtime fFASLR can be seen
as inserting several fASLR operations into the original exe-
cution of the NS app, as it runs in a serial execution system
as we assume in Assumption 2. Such an execution model is
illustrated in Fig. 7. For each operation, we combine the oper-
ation with the normal program execution right after it, until
the occurrence of the next operation, as an execution block.
So, the whole program execution can be seen as a chain of
such execution blocks.

We have proved that the NS app execution will remain cor-
rect when Operation A, B, or C completes in Lemmas 1-3
separately, and proved that the correctness of the NS app exe-
cution after any operation prevails until the right next operation
occurs in Lemma 4. According to Assumption 1, the whole
system is initialized correctly. Thus, the NS app execution is
correct at the beginning of block 1 in Fig. 7, and remains

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17130

correct at the end of this block, which is also the beginning of
block 2. Similarly, the correctness of the program execution
prevails until block 2 completes. The correctness will not be
affected by specific operations or specific normal executions.
Therefore, no matter what operations and what normal execu-
tions compose the execution blocks after block 2, the program
execution will remain correct until the program execution fin-
ishes. In other words, fASLR does not affect the correctness
of the NS app execution. Theorem 1 is proved. |

VI. SECURITY AND PERFORMANCE ANALYSIS

In this section, we first analyze the effectiveness of fASLR
against ROP, a representative CRA. Entropy is computed to
quantify the randomness of gadgets required for the ROP
attack, which indicates the difficulty of guessing the gadget
locations in a brute-force way. We also study time and memory
overheads introduced by fASLR.

A. Effectiveness Against ROP

The prerequisite of ROP is that the adversary knows where
the ROP gadgets are. In an fASLR enabled system, an adver-
sary can only use ROP gadgets in randomized functions
relocated to the RR. Gadgets in the NS app stored in flash are
nonexecutable, so it is hard for adversaries to use them. Recall
that any MPU violation triggers the HardFault exception. As
discussed in Section III-C, the FRE validates the return address
of the exception by using the FT. Therefore, the FRE is inca-
pable of identifying exceptions triggered by a ROP attack if
the adversary targets the entry point of a function since nor-
mal function calls will trigger such exceptions as well. In other
words, the adversary will succeed in reusing a whole function
as a gadget for ROP attack. However, such gadgets are often of
very low quality [11], [12] containing too many instructions.
It is almost impossible for an adversary to assemble a chain
of gadgets with such low-quality gadgets to achieve certain
malicious goal.

An adversary may also guess the addresses of randomized
functions in a brute-force way. However, our runtime random-
ization approach rebases a function every time as long as it has
not been loaded into RAM and achieves high randomization
entropy as analyzed below.

B. Randomization Entropy

fASLR mitigates the brute-force guessing attack as follows.

1) fASLR restricts the number of functions that can be
reused at a time. This is achieved by configuring the
whole app image as nonexecutable. The only code snip-
pets that can be utilized are functions relocated to the
RR in the RAM.

2) Even if all the required gadgets can be found from the
relocated functions, the adversary has to guess locations
of all those functions at once. Formula (1) gives the total
number (denoted as C) of possible function layouts in

the RR
V+k

C =k! 1

("5 W

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Randomization Region

vl f1 v2 fz f3 v4 f4 v5 fs v6

—

v3
Fig. 8. Randomization layout with 5 loaded functions fi,f2, ..., f5. The 5
functions form 6 vacancies vy, vo, ..., vg where free randomization units can

be placed.

where k is the number of functions in the RR, and V
is the size of unused randomization space divided by
two since the ARMv8-M architecture only allows even
function addresses. Note that the ARMv8-M architec-
ture only allows an function to be loaded to an even
address. Thus, the randomization space can be treated
as V free randomization units and each unit is 2 bytes.
We assume that the RR is large enough to accommo-
date k functions. If all free blocks are too small to fit
the upcoming function, defragmentation can be applied.
We calculate the maximum possibility of arranging k
distinguished functions among V free units since from
an attacker’s perspective, any combination of k functions
and V free units is possible. The combinations can be
counted by the binomial coefficient (V:k) multiplied by
k! because the k functions are distinguished.

Fig. 8 illustrates a randomization layout with five loaded
functions. The shaded portions in the RR are free spaces. In
this example, k = 5, and we suppose V = 100, there are
51("%%) = 1.159% + 10 combinations.

The probability of a layout is the reciprocal of C, i.e.,
P = 1/C. Formula (2) gives the entropy H of function
randomization

c € 4)
H= “2 Plog, P = ,-.22:1 clogz=logC. ()

C. Time Overhead

fASLR introduces runtime overhead when it hijacks a func-
tion call for function randomization via hardware exception.
According to fASLR runtime mechanism, we consider three
factors that affect the program runtime performance, namely,
the number of function calls N, that trigger HardFault excep-
tions, function randomization processing time for the ith
function call denoted as Tp(i), and hardware exception pro-
cessing time Tg. Formula (3) gives the relationship between

the time overhead TO and the three factors

Nc
TO =) (Tr() + Tp). ©)
i=1

Intuitively, Tr(i) would be much larger than Tg since Tp
involves several time-consuming operations, such as memory
write and table scanning, while Tg is accomplished by hard-
ware. The overhead from the function randomization process
primarily comes from the following aspects: 1) address verifi-
cation, which involves looking up the FT; 2) function cleaning
on demand, which looks up the call stack and cleans up fin-
ished functions; 3) randomization, which selects a free block to

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

rebase the callee; 4) function loading, which reads and writes
the function body; and 5) function rewriting, which overwrites
the destination of the call instruction with the entry point of
loaded function.

D. Memory Overhead

The components of fASLR deployed in the SW include the
BE code, FRE code, FT, LQ, and RL. The FT is a static
table with three 4-byte attributes and its size is linear to the
total number of functions in the NS app. The LQ and RL
are dynamic data structures that contain function records and
rewriting records, respectively. Each function record has four
4-bytes and one 1-byte metadata, and a rewriting record con-
tains four 4-bytes data. The maximum number of records that
the LQ may use at runtime is equal to the number of func-
tions in the NS app, while the maximum number of rewriting
records in the RL is the total number of call instructions.
Formula (4) presents the size of the FT (i.e., MO;), LQ (i.e.,
MO,), and RL (i.e., MO))

MO, = Ny x 3 x 4 = 12N @)
MO, = Ny x (4 x 4+ 1) = 17Ny (5)
MO; = N, x 4 x 4 = 16N, (6)

where Ny is the number of functions in the NS app, and N, is
the number of function calls in the NS app.

E. Size Requirement of the Randomization Region

fASLR will run out of memory (OOM) if a new function
cannot fit into the RR and no function can be trimmed. To
avoid such an OOM issue, there is a size requirement of the RR
for a certain application. We define call path size as the total
size of all functions on a call path. The RR should be no less
than the largest call path of the application when fragmentation
compaction is applied by the memory management scheme.
We can calculate the size requirement by statically analyzing
the application code and perform defragmentation to the RR
if needed.

VII. EVALUATION

In this section, we first present the experimental setup. We
then present the evaluation of randomization entropy, runtime
overhead, and memory overhead.

A. Experiment Setup

fASLR is implemented and deployed on the SAM L11
Xplained Pro Evaluation Kit, a MCU development board using
the ARM Cortex-M23 core with TrustZone-M enabled. SAM
L11 has a 64-kB flash and a 16-kB SRAM.

Software in SAM LI11 is built with the GNU Arm
Embedded Toolchain. User code, namely, the NS app code, is
compiled with two flags, -mlong-calls and -fno-jump-tables, to
eliminate instructions using relative addressing. We recompile
the C library with the same compiler flags. A Python script
runs during the compilation time to collect function metadata
and saves them in the FT. fASLR program and the FT are

17131

SAML11 Xplained Pro Board

13 6 7 8 11131517 19 21
Application

Fig. 10. Entropy distribution.

part of the Secure application placed in the SW flash, while
the user app is deployed in the NSW flash.

We evaluate the performance of fASLR with 21 appli-
cations, including our own air quality monitoring system
(AirQualityMonitor). The air quality monitoring device, as
shown in Fig. 9, consists of a SAM L11 development board, a
PMSAOQ03 air quality sensor module, and a SIM7000 cellular
module. The NS app in SAM L11 periodically receives air
quality data from PMSAOO3 and sends the data to SIM7000,
which then transfers the data to the AWS IoT platform via
secure MQTT protocol. The other 20 apps, including the
CoreMark benchmark [13], two microbenchmarks Cache Test
and Matrix Multiply created based on [14], nine benchmarks
of BEEBS (with the prefix Beebs-) [15], and eight SAM
L11 demo apps (with the prefix AS-) obtained from Atmel
Start [16].

B. Randomization Entropy

The entropy of function randomization changes dynamically
when a function call occurs. We explore the entropy for all test
applications. For each measured pair of k and V, we calculate
the corresponding entropy of function randomization accord-
ing to (1) and (2). Fig. 10 is the box plot demonstrating the
entropy distribution for each app. The smallest average entropy
is around 80 which is still considered to be large enough to
defend against brute-force guessing.

C. Runtime Overhead

fASLR introduces runtime overhead since it intercepts every
function call of the NS app for function randomization. We
evaluate the time overhead by measuring and comparing the
execution time of an application with and without fASLR.
‘We use the internal systick timer of the Cortex-M core to
record the execution time with precision of 0.01 s. Since the
main program of an IoT application is usually a big loop, in
the experiments we measure the execution time of 1000 loops

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17132

TABLE I
ToTAaL EXECUTION TIME (IN SECOND) OF 1000 LOOPS AND OVERHEADS

o # of w/o with
Application cleanings | fASLR | fASLR | Overhead
AirQualityMonitor 1 32479 | 327.50 0.83%
CoreMark 4 15.62 15.78 1.02%
Cache Test 2 213 2.26 6.10%
Matrix Multiply 1 24.47 26.13 6.78%
AS-SecureDriver 1 12.56 12.64 0.64%
AS-ADC Event 2 12.41 12.54 1.04%
AS-Calendar 0 50.36 50.33 -0.06%
AS-Light Sensor 1 24.77 25.36 2.38%
AS-Low Power 0 14.60 14.60 0%
AS-ADP Hello 1 9.93 10.88 9.57%
AS-CRYA 1 6.79 7.35 8.25%
AS-TrustRAM 1 1.14 1.25 9.65%
Beebs-crc 1 7.44 7.73 3.90%
Beebs-aha-mont64 1 7.30 7.56 3.56%
Beebs-aha-compress 1 4.50 4.67 3.78%
Beebs-bs 1 0.28 0.29 3.57%
Beebs-bubblesort 1 033 0.35 6.06%
Beebs-compress 2 2.02 2.18 7.92%
Beebs-mds 2 0.42 0.44 4.76%
Beebs-levenshtein 1 17.42 17.97 3.16%
Beebs-edn 2 15.96 16.24 1.75%
0.4

g

o3

£

g

002

0.1]

4200 4400 4600 4800 5000 5200 5400
Rand.region size (byte)

Fig. 11. Time overhead of AS-TrustRAM application versus RR size.

for each testing application. We comment out all delay func-
tions inside the loop for a better estimation of time overhead
introduced by fASLR. Table II presents the total execution
time of 1000 loops for each application. The runtime overhead
of fASLR is less than 10% for all apps, and 14 apps achieve
time overheads below 5%. We also count for the occurrence of
function cleaning for each app. The result shows that 19 apps
have exhausted memory space during execution and triggered
at least one function cleaning.

We evaluate the influence of the RR size on time over-
head with TrustRAM, the app with the largest time overhead
in Table II. Fig. 11 illustrates that fASLR tends to perform
better with a larger RR. This is mainly because fASLR with a
larger RR will less likely apply function cleaning and function
loading during program execution.

We also examine the overheads of all 21 applications when
fASLR is enabled with and without optimized memory man-
agement strategy. The test results demonstrated in Fig. 12 show
that our optimization scheme achieves great improvements for
all applications in terms of time overhead.

We further test three selected applications on another MCU,
STM32 [17], to examine the overhead performance with and
without fASLR, and enable comparisons with performances on
SAMLI11. These three applications are those show relatively

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

32 I without opt
18 _Iwith opt

0

15 20

Overhead

Application

Fig. 12. Time overhead of test applications with versus without optimized
memory management.

7.92%

0.1 6.06% 5 50, 5Im%164.&

-0.1

-0.3

Overhead

-0.5 -45.8%

I SAML11

[1STM32 wi cache
IS TM32 wio cache

07 63.4%

Bubblesort Matrix Multiply Compress
Application

Fig. 13. Time overheads of three selected NS apps tested on SAMLII,
STM32 with cache, and STM32 without cache.

large overheads in Table II, namely, Matrix Multiply, Beebs-
bubblesort, and Beebs-compress. Here, STM32 is a much more
powerful TrustZone-M-enabled microcontroller with 512-kB
flash memory, 256-kB SRAM, and cache support. Specifically,
the SRAM of STM32 is 16 times the size of SAMLII.
The overheads of these selected apps on SAML11, STM32
with cache enabled, and STM32 without cache enabled are
compared in Fig. 13. For all applications, the overhead per-
formances are better on STM32 than on SAMLI11. This is
because STM32 has a much larger SRAM, which provides
more randomization space. With the same reason as aforemen-
tioned, this leads to less chances to evoke fASLR operations
such as function cleaning, thus reducing overheads.

We then examine the overhead performance on STM32 with
and without cache. It is interesting to observe that without
cache, enabling fASLR speeds up the program execution sig-
nificantly, thus presenting negative overheads. This is because
although fASLR operations inevitably introduce overheads, it
also executes code in RAM. In the case without cache, exe-
cution in RAM leads to a large performance improvement
that not only compensates the overhead from fASLR oper-
ations but also yields execution speedup. This reveals another
benefit of fASLR besides function randomization, that fASLR
could also generate an execution speedup in certain systems.
In the case of STM32 with cache, because the cache mecha-
nism can also speedup code execution in flash, the benefit from
enabling fASLR becomes much less apparent. In our exper-
iment, since the overhead introduced by fASLR operations
becomes dominant over the benefit of execution in RAM, the
overheads are positive. Overall results in Fig. 13 consistently
demonstrate that fASLR achieves less overhead with more
powerful devices.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

17133

TABLE III
NS APP SIZE (IN BYTE) AND OVERHEADS

Application # of functions f;:"ie‘;zn a},’o" e R Qﬂ’l’l S g | Overhead
AirQualityMonitor 148 6144 41092 43036 4.73%
CoreMark 174 6144 46048 47648 3.47%
Cache Test 140 5632 40228 41844 4.02%
Matrix Multiply 145 6144 40728 42404 4.12%
AS-SecureDriver 139 6144 39544 41184 4.15%
AS-ADC Event 173 6144 43036 44640 3.73%
AS-Calendar 97 6144 36780 36808 0.08%
AS-Light Sensor 132 6144 40496 40528 0.08%
AS-Low Power 67 6144 34136 34164 0.08%
AS-ADP Hello 99 6144 38072 38316 0.64%
AS-CRYA 143 7168 41368 43012 3.97%
AS-TrustRAM 142 6144 39896 41500 4.02%
Beebs-crc 138 6144 39944 41492 3.88%
Beebs-aha-mont64 142 6144 40476 42028 3.83%
Beebs-aha-compress 140 6144 39944 41492 3.88%
Beebs-bs 137 6144 39344 40896 3.94%
Beebs-bubblesort 137 6144 39932 40892 2.40%
Beebs-compress 143 5632 40808 42360 3.80%
Beebs-md5 137 6144 41552 43100 3.73%
Beebs-levenshiein 138 6144 39708 41348 4.13%
Beebs-edn 144 6144 42112 43736 3.86%

D. Memory Overhead

For each tested application, we measure the total number
of functions and the memory overhead of NS apps before and
after deploying fASLR, as illustrated in Table III. In the SW,
the code overhead is caused by the program of fASLR with a
fixed code size of 3.45 KB, and the data overhead is mainly
introduced by the static FT, dynamic LQ and RL and, thus,
depends on the number of functions in the NS app. The size of
the NS app is changed because of the compilation with specific
compiler flags. Table III shows little memory overhead below
5% for all tests.

VIII. DISCUSSION

In this section, we discuss how fASLR can be used together
with other security defense mechanisms to protect runtime
execution of MCU-based IoT devices.

Data Execution Prevention (DEP): fASLR can work with
DEP, which is supported by many commercial MCUs. DEP
prevents execution from the data region, such as stack and
heap, and can effectively mitigate against code injection
attacks. It is widely believed that combining ASLR with DEP
is more effective than using ASLR or DEP alone [18].

The ARM’s DEP technology is called execute-never (XN)
bits [19] which are used to mark certain memory regions as
nonexecutable. Any attempt of executing an instruction from
the region tagged as XN will result in a HardFault exception.
Our scheme requires an executable RR for runtime function
randomization and execution. Therefore, any other memory
region can be set to XN for security concerns. Although the
violation of XN triggers the same fault exception in ARMvS8-
M architecture, it is trivial for fASLR to distinguish such
exceptions at the verification stage by judging if the excep-
tion return address is within the application code region or not
since fASLR only handles exceptions triggered by attempts of
executing functions in the application region.

Control Flow Integrity: Control flow integrity (CFI) is
another countermeasure against CRAs. Unlike ASLR which
makes the locations of gadgets unpredictable, CFI prevents the
control flow hijack by monitoring any control flow changes,
ensuring branch instructions branch as intended. CFI tech-
nique is not as mature as ASLR and has not been widely used
in industry due to its runtime overhead. Although some CFI
implementations have been deployed, they cannot mitigate all
CRAs independently. For example, Windows 10 supports both
ASLR and control flow guard (Windows’ implementation of
CFI) as exploit protection mechanisms [20]. CaRE [21] is a
CFI implementation for IoT devices based on the Cortex-M
processors. CaRE intercepts any direct and indirect branches
by replacing those instructions with the supervisor call (svc)
so that the control flow is trapped to its monitor code.

fASLR can work with CFI-based mechanisms with a few
modifications. Once a function is randomized or cleaned by
fASLR, the control flow graph or other assisted data struc-
tures which reflect the control flow should be modified by the
runtime fASLR correspondingly.

IX. RELATED WORK

Compared to conventional ASLR which rebases the whole
executable, fine-grained ASLR strategies achieve higher ran-
domization entropy, change the structure of the executable and,
thereby, are considered to be more effective against CRAs
and brute-force attacks. Code randomization can have different
granularities [22] based on what is diversified. ASLP [23] is a
code permutation scheme which applies function-level permu-
tation to the code segment and object permutation to the data
segment without the knowledge of source code. In [24], the
original binary code is partitioned into small blocks of which
the addresses are decided when the application is loaded.
Xifer [25] achieves fine-grained randomization by splitting
code into arbitrary small pieces, spreading the code pieces
within the address space, and rewriting the code to preserve

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

17134

its semantics. ILR [26] is an instruction-based randomization
scheme which relocates every instruction thereby achieving
high randomization entropy.

Although fine-grained ASLR is effective in mitigating a
single-memory disclosure attack, Snow ef al. [3] found that
multiple memory disclosures are promising in bypassing fine-
grained randomization techniques. Motivated by this observa-
tion, they introduce an attack framework which bypasses fine-
grained randomization via just-in-time code reuse (JIT-ROP).
With the knowledge of a single-memory disclosure, the frame-
work is able to excavate memory contents of multiple memory
pages at runtime, search and assemble gadgets on-the-fly, and
then launch CRA. Accordingly a fine-grained randomization
approach named Isomeron [27] is proposed as the countermea-
sure to JIT-ROP attacks. Combining fine-grained ASLR with
execution path randomization, Isomeron makes any gadgets
unpredictable. Specifically, it generates diversified applica-
tion code using fine-grained ASLR, and loads both original
code and diversified code to the virtual address space at run-
time. During execution, a coin-flip decision is made upon
each function call to select the destination from either origi-
nal or diversified code. Related research has been performed
to overcome newly emerging CRAs and meet increasing
compatibility requirements [28]-[31].

Shi et al. [5] leveraged the TrustZone-M hardware exten-
sion to enable a function-level ASLR scheme for ARM-based
MCUs. The proposed system loads the NS code to NS RAM
and periodically reordering all functions at runtime. Compared
with our work, this scheme loads the whole application code
to RAM. Instead of loading the whole NS app code, our
mechanism—fASLR—only loads functions in use and cleans
up finished functions from RAM at runtime. fASLR requires
smaller RAM and achieves a larger randomization entropy for
resource-constrained IoT devices. Shi et al. [5] rewrote bina-
ries of the NS code offline and introduces a code size overhead
of about 109%—-15%, while fASLR has a code size overhead
below 5%.

X. CONCLUSION

In this article, we propose fASLR for runtime software
security of resource-constrained loT devices, particularly those
based on microcontrollers. fASLR leverages hardware-based
security provided by the TrustZone-M technique as the trust
anchor. It uses MPU and prevents direct code execution of
the application image in the NSW flash. Instead, it traps con-
trol flow in an exception handler and relocates functions to
be executed to a randomly selected location within the RAM.
A memory management strategy was designed for allocating
and cleaning up functions in the RR. We also optimized the
baseline function cleaning scheme to largely decrease runtime
overhead. fASLR is user friendly and only requires a user
compiling the app with specific flags. We formally prove that
fASLR will not affect the correctness of the NS app execution.
We implemented fASLR with a TrustZone-M-enabled MCU—
SAM L11. fASLR achieves high randomization entropy with
acceptable overheads. We will release fASLR to GitHub for
broad adoption and refine the implementation to further reduce
the overhead.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

REFERENCES

[1] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Defeating
memory corruption attacks via pointer taintedness detection,” in Proc.
Int. Conf. Depend. Syst. Netw. (DSN), Jul. 2005, pp. 378-387. [Online].
Available: https://doi.org/10.1109/DSN.2005.36

[2] T. K. Bletsch, X. Jiang, and V. W. Freeh, “Mitigating code-reuse attacks
with control-flow locking,” in Proc. 27th Annu. Comput. Security Appl.
Conf. (ACSAC), Orlando, FL, USA, Dec. 2011, pp. 353-362. [Online].
Available: https://doi.org/10.1145/2076732.2076783

[3] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A -R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proc. IEEE Symp.
Security Privacy (SP), Berkeley, CA, USA, May 2013, pp. 574-588.
[Online]. Available: https://doi.org/10.1109/SP.2013.45

[4] “TrustZone for cortex-M.” ARM. [Online]. Available: https://
www.arm.com/why-arm/technologies/trustzone-for-cortex-m (Accessed:
Jun. 18, 2022).

[5] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and P. Chen, “HARM:
Hardware-assisted continuous re-randomization for microcontrollers,” in
Proc. IEEE Eur. Symp. Security Privacy (EuroS P), 2022, pp. 520-536.

[6] X. Shao, L. Luo, Z. Ling, H. Yan, Y. Wei, and X. Fu, “fASLR: Function-
based ASLR for resource-constrained IoT systems,” in Proc. ESORICS,
2022.

[7] “freeRTOS—Market Leading RTOS (Real Time Operating System
for Microcontrollers).” [Online]. Available: https://www.freertos.org/
(Accessed: Jun. 18, 2022).

[8] “ARMV8-M Fault Handling and Detection.” ARM. [Online]. Available:
https://developer.arm.com/documentation/100691/0200/Fault-exceptions
(Accessed: Jun. 18, 2022).

[9] J. Yiu, “Chapter 2—Getting started with cortex-M programming,” in
Definitive Guide to Arm® Cortex®_M23 and Cortex-M33 Processors,
J. Yiu, Ed. Cambridge, MA, USA: Newnes, 2021, pp. 19-51.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128207352000020

[10] S. M. Hejazi, C. Talhi, and M. Debbabi, “Extraction of forensi-
cally sensitive information from windows physical memory,” Digit.
Investig., vol. 6, pp. 5121-S131, Sep. 2009. [Online]. Available: https:/
Iwww.sciencedirect.com/science/article/pii/S 1742287609000474

[11] A. Follner, A. Bartel, and E. Bodden, “Analyzing the gadgets,” in Proc.
Int. Symp. Eng. Secure Softw. Syst., 2016, pp. 155-172.

[12] M. D. Brown and S. Pande, “Is less really more? why reducing code
reuse gadget counts via software debloating doesn’t necessarily indicate
improved security,” 2019, arXiv:1902.10880.

[13] “CPU Benchmark—MCU Benchmark—CoreMark.” Embedded
Microprocessor Benchmark Consortium. [Online]. Available: https://
www.eembc.org/coremark/ (Accessed: Jun. 18, 2022).

[14] H. Quinn. “Microcontroller Benchmark Codes for Radiation Testing.”
Los Alamos National Security. [Online]. Available: https://github.com/
lanl/benchmark_codes (Accessed: Jun. 18, 2022).

[15] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks for
energy measurements on embedded platforms,” 2013, arXiv:1308.5174.

[16] “ATMEL Start.” Microchip. [Online]. Available: https://start.atmel.com/
(Accessed: Jun. 18, 2022).

[17] “STM32L562E-DK—Discovery Kit With STM32L562QE MCU.”
STMicroelectronics. [Online]. Available: https://www.st.com/en/
evaluation-tools/stm321562e-dk.html (Accessed: Jun. 18, 2022).

[18] SWIAT. “On the Effectiveness of DEP and ASLR.” Microsoft
Security Response Center. 2010. [Online]. Available: https://msrc-
blog.microsoft.com/2010/12/08/on-the-effectiveness-of-dep-and-aslr/

[19] “ARMI11 MPCore Processor Technical Reference Manual” ARM.
[Online]. Available: https://developer.arm.com/documentation/ddi0360/
f/memory-management-unit/memory-access-control/execute-never-bits
(Accessed: Jun. 18, 2022).

[20] “Apply Mitigations to Help Prevent Attacks Through Vulnerabilities.”
Microsoft Docs. 2021. [Online]. Available: https://docs.microsoft.
com/en-us/microsoft-365/security/defender-endpoint/exploit-protection?
view=0365-worldwide

[21] T.Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in Proc. Int. Symp. Res. Attacks Intrusions Defenses, 2017, pp. 259-284.

[22] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proc. IEEE Symp. Security Privacy, 2014,
pp. 276-291.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C. Kil, I. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commodity
software,” in Proc. 22nd Annu. Comput. Security Appl. Conf. (ACSAC),
2006, pp. 339-348.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,” in Proc.
ACM Conf. Comput. Commun. Security, 2012, pp. 157-168.

L. V. Davi, A. Dmitrienko, S. Niirberger, and A.-R. Sadeghi, “Gadge
me if you can: Secure and efficient ad-hoc instruction-level randomiza-
tion for x86 and ARM.” in Proc. 8th ACM SIGSAC Symp. Inf. Comput.
Commun. Security, 2013, pp. 299-310.

1. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
‘Where’d my gadgets go?” in Proc. IEEE Symp. Security Privacy, 2012,
pp. 571-585.

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming,” in Proc. NDSS, 2015, pp. 1-15.

H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in Proc. IEEE Symp. Security
Privacy (SP), 2018, pp. 461-477.

F. Xuewei, W. Dongxia, L. Zhechao, K. Xiaohui, and Z. Gang,
“Enhancing randomization entropy of x86-64 code while preserving
semantic consistency,” in Proc. IEEE 19th Int. Conf. Trust Security
Privacy Comput. Commun. (TrustCom), 2020, pp. 1-12.

S. Priyadarshan, H. Nguyen, and R. Sekar, “Practical fine-grained binary
code randomization,” in Proc. Annu. Comput. Security Appl. Conf., 2020,
pp- 401-414.

X. Wang, S. Yeoh, R. Lyerly, P. Olivier, S.-H. Kim, and B. Ravindran,
“A framework for software diversification with ISA heterogeneity,” in
Proc. 23rd Int. Symp. Res. Attacks Intrusions Defenses (RAID), 2020,
pp- 427442,

Lan Luo received the B.S. degree in electrical engi-
neering from the Civil Aviation University of China,
Tianjin, China, in 2015, and the M.S. degree in
computer engineering and the Ph.D. degree in com-
puter science with the University of Central Florida,
Orlando, FL, USA, in 2018 and 2022, respectively.

Her research interests mainly cover security and
privacy of Internet of Things, security of embed-
ded system, network and software security, and
trustworthy computing.

Xinhui Shao received the B.S. degree in com-
munication engineering from Shanghai University,
Shanghai, China, in 2019. He is currently pursuing
the master’s degree in cyber science and engineering
with Southeast University, Nanjing, China.

His current research interests include Internet of
Things and privacy and security.

17135

Zhen Ling (Member, IEEE) received the B.S.
degree from Nanjing Institute of Technology,
Nanjing, China, in 2005, and the Ph.D. degree
in computer science from Southeast University,
Nanjing, in 2014.

He is a Professor with the School of Computer
Science and Engineering, Southeast University. His
research interests include network security, privacy,
and Internet of Things.

Prof. Ling won the ACM China Doctoral
Dissertation Award in 2014 and the China Computer
Federation Doctoral Dissertation Award in 2015.

Huaiyu Yan received the B.S. degree in software
engineering from Southeast University, Nanjing,
China, in 2019, where he is currently pursuing the
Ph.D. degree in computer science and engineering.

His current research interests include Internet of
Things and privacy and security.

Yumeng Wei is currently pursuing the B.S. degree
in cyberspace security with Southeast University,
Nanjing, China.

Her research interests include software and
network security of Internet of Things devices.

Xinwen Fu (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1995, the M.S.
degree in electrical engineering from the University
of Science and Technology of China, Hefei, China,
in 1998, and the Ph.D. degree in computer engineer-
ing from Texas A&M University, College Station,
TX, USA, in 2005.

He is a Professor with the Department of
Computer Science, University of Massachusetts
Lowell, Lowell, MA, USA. He was a tenured
Associate Professor with the Department of Computer Science, University
of Central Florida, Orlando, FL, USA. He has published at presti-
gious conferences, including the four top computer security conferences
(Oakland, CCS, USENIX Security, and NDSS), and journals, such as
ACM/IEEE TRANSACTIONS ON NETWORKING and IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING. His current research interests
are in computer and network security and privacy.

Dr. Fu spoke at various technical security conferences including Black Hat.

Authonized licensed use limited to: University of Central Florida. Downloaded on September 23,2022 at 03:32:56 UTC from IEEE Xplore. Restrictions apply.

