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Abstract—RF-based human pose estimation has attracted in-
creasing interest in recent years. Compared with vision-based
approaches, RF-based techniques can better protect user’s pri-
vacy and are robust to lighting and non-line-of-sight conditions.
However, due to complicated indoor propagation environments,
most of the RF-based sensing approaches are sensitive to the de-
ployment environment and hard to adapt to new environments. In
this demo, we present a meta-learning-based approach to address
the environment adaptation problem and design an environment-
adaptive Radio-Frequency Identification (RFID) based 3D human
pose tracking system. The system utilizes commodity RFID
tags to estimate 3D human pose and leverage meta-learning
algorithms to improve the environment adaptability. Experiments
conducted in various environments demonstrate the high pose
estimation performance and adaptability to environments.

Index Terms—3D human pose estimation, meta-learning,
MAML, Reptile, RFID sensing.

I. INTRODUCTION

Human posture estimation and tracking are useful for a

variety of applications, such as human-computer interaction,

video surveillance, and somatosensory gaming. Nevertheless,

the video data collected for pose monitoring could be inter-

cepted by attackers, thus raising security and privacy concerns.

Radio Frequency (RF) based approaches have been proposed

to address the privacy issue, but they also suffer from poor

generalization when applying a trained system to different

environments. This is because the well-trained deep learning

model used in such systems is usually hard to apply to the

untrained data domains sampled in new RF environments. To

address the environment adaptation issue, various approaches,

such as data augmentation, domain adversarial networks, and

transfer learning, have been proposed recently.

In this demo, we leverage a meta-learning strategy to ad-

dress the environment/domain adaptation problem and present

Meta-Pose [1], [2], which is an environment-adaptive, RFID-

based 3D human pose tracking system. In Meta-Pose, RFID

tags are attached to the human body, as in our previous work

RFID-Pose [3], so that the motion of human joints could be

estimated from the RFID phase data collected by the reader.

Unlike previous works, Meta-Pose is pretrained by meta-

learning algorithms with training data sampled from a small

number of known environments. The meta-learning algorithms

are adopted to achieve an optimized network initialization,

so the system is able to adapt to an untrained environment

with few-shot fine-tuning. The high environment adaptability

Fig. 1. Overview of the architecture of the proposed Meta-Pose system.

of the prototype system is demonstrated by our experiments

conducted in various indoor environments.

II. SYSTEM DESIGN

A. System Architecture Overview

The Meta-Pose system is proposed to perform 3D human

pose tracking with phase data collected from the RFID tags at-

tached on the joints of the subject. Fig. 1 presents an overview

of the Meta-Pose system architecture, which is composed of

three key modules, including RFID phase sampling, phase data

preprocessing, and a multi-model deep neural network.

1) RFID Data Collection and Signal Preprocessing: As the

prior RFID pose tracking approach [3], 3D human skeleton

is estimated from the phase data measured through RFID

communications with the Low Level Reader Protocol (LLRP).

The phase variation of two consecutively sampled phases can

alleviate the interference of the phase offset caused by channel

hopping. Such phase variation data effectively captures over

time the variations in the tag-antenna distance, which is an

effective indicator of the subject’s joint movements.

2) Vision-aided Deep Neural Network: The translation

from phase variation data to 3D human pose is achieved

by a multi-modal vision-aided deep neural network. The

input to the network is the preprocessed phase variation data,

and training is accomplished by the supervision of the 3D

human pose generated by Kinect. A recurrent autoencoder is

implemented in the network to extract the movement feature

from RFID data and translate it to the movement of human

limbs [3]. The mapping from the autoencoder output to the

3D coordinates of human skeleton is accomplished in the

Forward Kinematics layer, which is a classic motion generator

used in 3D animation and robotics [4]. The training goal is to
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Fig. 2. Illustrate the training procedure of Meta-Pose.

minimize the error between the estimated human pose and the

corresponding label (i.e., vision data), so the network should

perform effective translation from RFID data to human pose.

B. Meta-learning for Environment Adaptation

The purpose of meta-learning is to better initialize the

network parameters in pretraining, which can then be further

improved when applied to a new data domain with only a few

training examples. Therefore the use of meta-learning helps

to improve the adaptability of the model and overcome the

barrier of deploying the system in various environments. The

meta-learning initialization structure is briefly illustrated in

Fig. 2. The deep learning model is initially pretrained with the

datasets sampled from four known data domains, each with a

different subject location, antenna placement, and propagation

environment. Two representative meta-learning initialization

algorithms, MAML [5] and Reptile [6], are utilized for the

pretraining. Once the network is properly initialized, only a

few new training data will be required from a new data domain

for fine-tuning the model.

III. IMPLEMENTATION AND EVALUATION

Extensive experiments in various RF environments are con-

ducted to assess the system performance. The prototype system

is created with a commodity Impinj R420 reader equipped

with three polarized antennas S9028PCR. As Fig. 3 shows,

12 ALN-9634 (HIGG-3) RFID tags are attached to the clothes

of the subject. The vision data used for vision-aided training

and system evaluation is sampled by an Xbox Kinect 2.0

device. Eight different RF environments (named D1 to D8) are

evaluated with different antenna deployments and locations,

where D1 to D4 are used for model pretraining, and D5 to

D8 are new data domains for evaluating model adaptability.

Figure 4 illustrates the Cumulative Distribution Functions

(CDF) of the estimation error between vision ground truth

and estimated 3D pose, which are respectively achieved by the

proposed Meta-Pose system and the traditional pose estimation

scheme RFID-Pose [3]. The estimation errors are obtained

after four-shot fine-tuning for all the four untrained data

domains (i.e., D5 to D8). As the figure shows, the median

estimation error of the baseline is 6.87 cm, whereas the

Meta-Pose achieves an 3.94 cm median estimation error. The

Fig. 3. Experiment set-up of the Meta-Pose system.
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Fig. 4. The CDFs of four-shot fine-tuning achieved by Meta-Pose [2] and
the baseline RFID-Pose [3].

experiment results demonstrate Meta-Pose’s stronger ability to

adapt to new environments than the baseline scheme.

ACKNOWLEDGMENTS

This work is supported in part by the NSF under Grants

ECCS-1923163 and CNS-2107190, and through the Wireless

Engineering Research and Education Center (WEREC) at

Auburn University.

REFERENCES

[1] C. Yang, L. Wang, X. Wang, and S. Mao, “Meta-Pose: Environment-
adaptive human skeleton tracking with RFID,” in Proc. IEEE GLOBE-

COM 2021, Madrid, Spain, Dec. 2021, pp. 1–6.
[2] C. Yang, L. Wang, X. Wang, and S. Mao, “Environment adaptive RFID

based 3D human pose tracking with a meta-learning approach,” IEEE

Journal of Radio Frequency Identification, in press. DOI: 10.1109/JR-
FID.2022.3140256.

[3] C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human
pose estimation with RFID,” IEEE Transactions on Reliability, vol. 70,
no. 3, pp. 1218–1231, Sept. 2021.

[4] R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural kinematic networks
for unsupervised motion retargetting,” in Proc. IEEE CVPR 2018, Salt
Lake City, UT, June 2018, pp. 8639–8648.

[5] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. ICML 2017, Sydney, Australia,
Aug. 2017, pp. 1126–1135.

[6] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, Oct. 2018. [Online].
Available: https://arxiv.org/abs/1803.02999

IEEE INFOCOM 2022 Demo

Authorized licensed use limited to: Auburn University. Downloaded on September 23,2022 at 03:56:04 UTC from IEEE Xplore.  Restrictions apply. 


