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Abstract—Human pose tracking has attracted great interest re-
cently. Considerable efforts have been made in Radio-Frequency
(RF) sensing techniques for human pose tracking without using
a video camera. Although the existing RF based schemes can
well protect user privacy, they are usually sensitive to the RF
environment and are hard to generalize to new environments. In
this paper, we analyze the challenges of generalization of Radio-
Frequency Identification (RFID) based human pose tracking
systems. We then present an RFID based 3D human pose
tracking system, termed Meta-Pose, which incorporates meta-
learning and few-shot fine-tuning to achieve high adaptability
to new environments. The proposed system is implemented
with commodity RFID devices and extensive experiments are
conducted for performance evaluation. The experiment results
validate the superior human pose tracking performance and high
adaptability of the proposed Meta-Pose system.

Index Terms—3D human pose tracking, few-shot fine-tuning,
generalization, meta-learning, RFID sensing.

I. INTRODUCTION

Human pose tracking has attracted great interest in recent
years, because it is highly useful for numerous applications
such as human-computer interaction, video surveillance, and
somatosensory games. The advances in human pose tracking
have been driven by the new developments in computer
vision, from two-dimensional (2D) poses [1] to the three-
dimensional (3D) realtime pose tracking [2]. However, such vi-
sion based schemes often raise security and privacy concerns.
For example, it has been reported that millions of wireless
security cameras were possibly hacked [3]. The collected video
data for pose tracking could be illegally intercepted. Several
radio frequency (RF) sensing schemes have been proposed
to address the privacy concern in human pose tracking [4],
including Frequency-Modulated Continuous Wave (FMCW)
radar based [5], mmWave radar based [6], WiFi-based [7],
[8], and RFID-based schemes [9]-[11]. Compared with vision
based techniques, RF sensing based pose tracking has no
requirement for the lighting condition, and the privacy of users
can be well protected.

In RF based pose generation systems, deep learning tech-
niques are usually used to transform sampled RF data to
human pose. However, such machine learning based tech-
niques usually have the generalization problem when applying
a well-trained model in a new, unknown environment. Since
RF signals propagate in the open air, the collected RF data
are sensitive to the changes in the environment, such as
the antenna deployment, the layout and obstacles of the
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surroundings, and moving objects/subjects nearby. Under such
environment changes, the same human subject could generate
considerably different RF features when tested in different
environments. Developing human pose estimation techniques
that are adaptive to the environment has become a great
challenge for RF based techniques.

When applying the well-trained (or, pretrained) model to a
new, unknown environment, we can fine-tune the model by
further training it with new data collected from the unknown
environment, such that the specific features of the new domain
can be better captured. For good generalization performance,
the amount of data used for fine-tuning should be as low as
possible, in order to minimize the time, effort, and cost of
obtaining training data from the new environment. This is
important for the system to be easily deployed in practice. To
this end, meta-learning, a.k.a. “learning to learn” [12] provides
an excellent solution. Meta-learning optimizes the neural net-
work based on different learning tasks or datasets [13], so the
network will be appropriately initialized and be amenable for
adaptation to new environments. When transferred to a new RF
environment, the meta-learning model will only require a few
training examples from the new environment for fine-tuning
(i.e., few-shot fine-tuning).

In this paper, we tackle the environment adaptation chal-
lenge with a meta-learning approach and propose a novel
environment-adaptive, RFID based 3D human skeleton track-
ing system termed Meta-Pose. As prior work RFID-Pose [10],
the system leverages RFID tags attached to the human body
to capture the movements of human body parts. It is also a
vision-assisted scheme, where Kinect generated vision data is
used for supervised training. However, vision data will not be
needed for inference, so there will be no privacy concerns.
To address the generalization problem, we first analyze the
main causes for the divergence of RFID data in different RF
environments. Based on the analysis, we then propose a novel
Meta-Pose initialization algorithm to pretrain the model with
RFID data sampled from a few environments. With few-shot
fine-tuning, the Meta-Pose system is able to accurately track
3D human skeleton in a new, unknown environment. Extensive
experiments are conducted to validate the high environment
adaptation ability of the proposed Meta-Pose system.

The main contributions of this paper are summarized in the
following.

o To the best of our knowledge, Meta-Pose is the first
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Fig. 1. Overview of the proposed RFID pose tracking system.

environment-adaptive 3D human pose estimation system
designed with commodity RFID reader and tags, which
can be easily deployed to track 3D human skeletons with
RFID data in any RF environment.

o We analyze the divergence of RFID data in different
environments and identify the main challenges to the
generalization of RFID based techniques, including sen-
sitivity divergence of RFID tags and phase distortion for
different sampling environments.

« We propose a novel Meta-Pose initialization algorithm to
pretrain the deep learning model with data sampled from
a small number of known environments. The algorithm
is based on the meta-learning framework, and a domain
fusion technique is incorporated to generate more fake
environments to better train the model. The pretrained
network can be quickly adapted to new data sampled from
a new environment.

o We develop a prototype system with commodity RFID
tags/reader, where Kinect 2.0 is used to obtain ground
truth data for training the model. The performance of
Meta-Pose is evaluated with extensive experiments as
well as comparison with a baseline scheme [10]. The
experimental results demonstrate that the proposed Meta-
Pose system can accurately track 3D human skeletons
with high environmental adaptability.

In the remainder of this paper, an overview of the proposed
system is presented in Section II. Section III examines the
challenges of the generalization problem. Section IV presents
the Meta-Pose solution to the challenges. Our prototype imple-
mentation and experimental study are presented in Section V.
Section VI summaries this paper.

II. OVERVIEW OF THE PROPOSED SYSTEM

The Meta-Pose system is proposed to estimate 3D human
pose with RFID data collected from the passive RFID tags
attached to the human subject. An overview of the Meta-Pose
system is shown in Fig. 1. The system is composed of three
key components, including (i) RFID data collection, (ii) RFID
phase preprocessing, and (iii) a deep neural network.

A. Phase Data Collection and Preprocessing

In the RFID pose tracking system, human pose is learned
from RFID phase data, which is obtained by interrogating the
tags with the RFID Low Level Reader Protocol (LLRP). Since

the RF signal is sent from the antenna, reflected by the passive
RFID tag, and received by the antenna, the received RFID
phase value © is given by [14]:

@Z%-Rfcﬁ’@m c=1,2,...,50, (1
where R is the distance of the LOS path between the reader
antenna and tag, and c is the channel index, which changes
from 1 to 50 every 200ms in Ultra High Frequency (UHF)
RFID systems following the FCC regulation [14].

Next, the RFID phase data should be prepossessed to
mitigate the impact of the random O, on different channels. To
this end, the phase variation ® between two adjacent samples

would be effective, which is calculated as:

®(n) =0(n) —6(Mn—-1) )
_ 272(R(n) — R(n — 1)) fe.

v

ce=1,2,..,50,n > 1,

where n is the sample index on each channel and R(n) is
the propagation distance corresponding to the nth sample on
channel c. As (2) shows, the impact of the random channel
hopping offset ©, has been effectively removed from the phase
variation ®. The phase variation only depends on the distance
of the LOS propagation path R(n). Therefore, the sequence
of phase variations {®3, ®3, ..., } can be translated into a se-
quence of antenna-tag distances {Rg, R3, ..., }, which records
the trajectory of human body movements. Consequently, with
multiple tags attached on the human body, the RFID phase
variations for the attached tags can be leveraged to construct
the human skeleton and track 3D human poses.

B. Deep Neural Network for Pose Training

Although phase variation can effectively capture the move-
ments of the tags attached to human body, the translation from
phase variation data to 3D human pose is still a challenge. In
several existing RFID based human pose tracking systems,
the transformation is mostly accomplished with deep learning
techniques [10], [11], which is mainly composed of a recurrent
autoencoder and a forward kinematic layer. The brief structure
of the deep learning model is presented in Fig. 2. As the figure
shows, the network is designed to generate a 3D human pose
sequence, consisting of coordinates data, from received RFID
data. The recurrent encoder is to extract both long-term and
short-term features from the RFID data sequence, which is
used as input to the following recurrent decoder. With a given
initial skeleton, the decoder layer will transfer the features of
the RFID data sequence to a quaternion sequence.

Rather than using RF signals to generate a confidence
map for human skeleton reconstruction [1], [7], RFID based
pose tracking system is designed to estimate human pose
with the forward kinematic technique, which is widely used
in the robotics and 3D animation [15]. This is because the
information rate of the RFID system is too low to generate
a confidence map with an acceptable resolution. The forward
kinematic technique, however, only requires the quaternions
for the joints of the human skeleton.
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Fig. 2. Structure of the deep learning model used in RFID based 3D human
pose tracking.

As RFID-Pose [10] and Cycle-Pose [11], vision data col-
lected by a Kinect 2.0 are used as labels for supervised
training. The network is trained with a loss function that
computes the difference between the estimated pose and the
labeled vision data sampled simultaneously when the RFID
data is collected, so the well-trained network can effectively
transform RFID data sequence to 3D pose sequence [10].

III. GENERALIZATION CHALLENGES

To analyze the influence from the environment, the RF
data sampled from a different environment is considered to
be from a different data domain. In RF sensing systems, the
sampling environment depends on the characteristics of all
the propagation paths. However, as given in (1), the received
RFID signal is mainly determined by the LOS path due to
its near-field communications nature. The interference of the
surroundings is thus limited in RFID systems, and the data
domain of RFID sensing systems is due to two main causes:
(i) tag sensitivity divergence and (ii) phase data distortion.

A. Sensitivity Divergence in Different Data Domains

The first cause of data divergence in different data domains
is the variation of tag sensitivity. When multiple tags are
scanned by one antenna, some tags are more likely to be
detected, while other tags may hardly be scanned by the
antenna. We define fag sensitivity as the possibility of being
successfully detected by the antenna, which mainly depends
on the received power strength of each tag.

Following the Friis transmission formula, the received
power S, from a passive RFID tag can be represented by [16]:

e \?
) St7 (3)

Sr = GAnGTagL <4TI'R

where S; is the reader’s transmit power; G 4, and Grgg are
the power gains of the transmitter antenna and the tag, re-
spectively; L represents the aggregated attenuation coefficient,
accounting for losses at the antenna cable and polarization, etc.
during the transmission process; A, is the wavelength of the

current channel ¢, and R is the LOS path distance as mentioned
in (1). Eq. (3) shows that with the same antenna and same tag
type, G an and Gqg4 could be considered as a constant, so the
received power strength is mainly degraded by an increased
LOS path distance R and the attenuation loss L.

When applying a trained deep learning model to a different
data domain, the inference performance could be poor, since
the tag sensitivity in the new data domain could be very
different from where the model was trained.

B. Phase Distortion in Different Data Domains

The second cause for data domain divergence is the phase
distortion caused by different antenna deployment scenarios.
As (1) shows, the phase data of each tag is determined by
the LOS propagation path distance R, which is the length of
the space vector R. For the tags attached to a moving human
body, we can consider the overall space vector as the sum
of two subspace vectors as: R = R’s + ﬁd, where R’S is
the static vector determined by the deployment scenario and
the dynamic vector ]-:fd is generated by the movements of the
subject. According to (1), the sampled phase O is affected by

both ﬁs and ﬁd as:

©

2 Zés é c
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Even if we have an identical ﬁd in the two data domains (i.e.,
the same subject and same movements), the sampled phase
could still be very different when the antennas are deployed
differently (i.e, giving a different R)). Consequently, different
antenna deployment scenarios will have an impact on the RFID
phase distortion, causing considerable divergence between the
datasets sampled from different environments.

Unlike tag sensitivity variations, environment changes gen-
erate a specific type of phase distortion for all sampled phase
data. Thus, the model variables in the deep learning network
should be trained and optimized to combat such phase distor-
tion. Given all kind of possible deployment environments, it
is a big challenge to generate a well optimized deep learning
model, which is generalizable for all environments.

IV. META-LEARNING BASED SOLUTION

In Meta-Pose, we propose meta-learning as an effective
technique to initialize the variables based on trained tasks
or data domains so that network could be effectively fine-
tuned later for a new data domain [12]. The model-agnostic
meta-learning algorithm (MAML) [13] has been proposed to
pre-train the network, so the model could produce a satis-
factory generalization performance. In addition, the Reptile
learning algorithm [17] has also been proposed as a repre-
sentative meta-learning algorithm, which works nearly as well
as MAML while having a lower computational complexity.
In this paper, we leverage Reptile to pre-train the model for
initialization of model variables, and fine-tuning with a small
amount of new data when applied to a new data domain.
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Fig. 3. Training framework of the proposed Meta-Pose system.

A. Meta-Pose Framework Overview

Figure 3 represents the brief structure of training framework
of the proposed Meta-Pose system, which consists of network
initialization and fine-tuning in a new domain. As shown in the
figure, the deep learning model is trained with datasets from
a few (e.g., four) known data domains, which are sampled
when the subjects stand at four different positions. We notice
that the performance of meta-learning can be improved by
learning more learning tasks, but directly sampling a large
amount of human pose data from numerous data domains
is challenging and having a high cost. Thus, we propose a
domain fusion algorithm to produce more data domains by
mixing the data from the four available data domains. Then, we
leverage the Reptile learning algorithm to recursively update
the training variables of the network, so the variables will be
well initialized. When transferring to the learning task in a
new data domain, we only need to collect very few examples
to fine-tune the generalized network.

B. Reptile based Network Initialization

The objective of network initialization is to determine the
initial model variables, which could be adjusted for a new
data domain with a few training steps. It means that the initial
training variables H should be set close to any possible data
domain D. The optimization problem for network initialization
can be formulated as:

min Ep[D(US(H))], ®)

where the I' denotes the loss function of the network, and
UE(H) denotes the gradient decent operation that updates
variables H for k times using data sampled from D, which
is the Adam algorithm. According to the formulated problem,
we propose the Meta-Pose initialization algorithm to generate
the initial training variables H that facilitate fine-tuning, as
presented in Algorithm 1. In the algorithm, we first fuse the
four data domains (i.e., D1, Dy, D3, and D,) into multiple
fused data domains (i.e., dy,ds,...,dy). Each d; contains 40
batches of data randomly sampled from D, Dy, D3, and Dj.

To solve the optimization problem (5), we need to find the
gradient of any fused data domain ATL[U} (H)], so the gra-
dient decent algorithm can be applied to find H by recursive

Algorithm 1: Meta-Pose Initialization Algorithm in
the Meta-Pose System

1 Input: Sampled data sets from four data domains (denoted
by Dl, D27 D3, and D4);

2 Qutput: Optimally initialized variables H; for the pretrained
network.

3 Randomly initialize the training variable as H;

4 fori=1:ndo

5 Generate d; by randomly sampling from D1, D2, D3,
and Dy;

6 Randomly sample k batches from d;;

7 H;, < H,;

8 for j =1:kdo

9 Update the variables in H;,, with loss function I as:

H}, = Uy (Hin), W; = H},, — Hin, Hin < Hj,,;

10 end

11 Calculate the overall weight updates as:
Wi =30 Wy

12 Update variables H as: H < H + W;;

13 end

14 Set H; + H;

updating. With the Reptile learning algorithm [17], we first
calculate AT[U; (H)] for each inner loop iteration as:

AT(Ug, (Hin)] =Uy, (Hin) — H; (6)
:Hzln — Hip,

where H;, is the set of variables used in the inner loop. In

the algorithm, denote the one step gradient AT([Uj (Hip)| as

W;. The overall gradient after k iterations is calculated as:
AT[UE (H)] = 2 W

Jj=1

AT[U} (H)] is denoted as W; for each data domain d;. In
the algbrithm, we set k = 8 for effective training in each
data domain. With gradient Wi, we solve the problem by
recursively training variable H in the outer loop iterations as:

H <+ H+ EWZ', (7)

where € is the learning rate, which is set to 0.1 in the
system. We repeat the updating process for 5,000 times (i.e.,
setting n = 5000), so the final training result H; could
satisfy the requirement of the optimization problem (5). After
initialization training, the network could be quickly fine-tuned
with few shots of data sampled from a new data domain.

C. Few-shot Fine-tuning

After appropriate initialization of H, the fine-tuning process
only requires a small dataset from the new data domain. Since
the training data are all data sequences, including RFID phase
data and vision data [11], the data shots are defined specifically
in the Meta-Pose system. We divide the data sequence into
small segments during the training process, each consisting of
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30 consecutive data samples sampled within a window of 6s.
‘We consider one data batch as one shot in Meta-Pose, and less
than 5 batches of data in the new data domain will be leveraged
for fine-tuning. We also find that the type of movements also
affects the fine-tuning performance and will discusses this in
Section V-C. Due to the Reptile based initialization of training
variables, the Meta-Pose system can quickly adapt to the new
data domain with few-shot fine-tuning.

V. IMPLEMENTATION AND EVALUATION

A. Prototype System Implementation

To evaluate the performance of Meta-Pose, we develop a
prototype system with an off-the-shelf Impinj R420 reader,
which is configured with three S9028PCR polarized antennas,
as shown in Fig. 4. The ALN-9634 (HIGG-3) RFID tags
are used in Meta-Pose. The vision data, used for training
supervision as well as ground truth for evaluating the precision
of inference, is collected with an Xbox Kinect 2.0 device. As
shown in the figure, we attach 12 RFID tags on the 12 joints
of the subject, including the neck, pelvis, left hip, left knee,
right hip, right knee, left shoulder, left elbow, left wrist, right
shoulder, right elbow, and right wrist. With the three reader
antennas placed at different height positions, every RFID tag
can be interrogated by at least one of the antennas.

Environment adaption is validated using RFID data col-
lected from eight different data domains, which are generated
by the specific deployment of the subject and antennas as
shown in Fig. 5. Seven data domains are sampled in the
computer lab, and the eighth domain is sampled in an empty
corridor. Among these domains, D; to Dy are used for model
pretraining, while D5 to Ds are considered as new data
domains for evaluation. RFID phase data is collected when the
subject stands in front of the antennas and performing specific
activities repeatedly. Different types of activities are sampled
in all the data domains, such as walking, body twisting, deep
squatting, and single limb moving. Five subjects participate in
the data sampling, including four males and one female.

B. Overall Performance Evaluation

To demonstrate the overall system performance, we use the
3D human skeleton data collected by Kinect 2.0 as ground
truth. For each video frame, we calculate the mean error ¥,
of all the 12 human joints as:

12
1 ~ .
\Ifau—E;HTn—TnH, (8)

where T}, represents the estimated 3D position of joint n, while
T, is the ground truth. ||T}, — T}|| is the Buclidean distance
between the two 3D coordinates.

The overall performance (i.e., mean errors) of the fine-
tuned network for all the eight data domains is presented in
Fig. 6. Note that only the first four data domains are used in
network pretraining, while the other four domains are used
for testing. In addition, we also resent the accuracy of the
pretrained network in the figure (i.e., without fine-tuning with
additional data from the new data domain). As shown in
the figure, the maximum error of the fine-tuned network is
4.83cm obtained in Dg, while the minimum error is 3.46cm
obtained in Dg. The minimum pretraining error for the new
data domain (i.e. D5 to Dg) is 4.91cm in Dg, which is higher
than that of all the pretrained domains (i.e. D1 to Dy). The
higher pretained errors imply the large divergence between the
known and new data domains. However, with few-shot fine-
tuning, the mean error for all the four new data domains is
3.98cm, which is very similar to that of the pretrained data
domains. The considerable error reduction in D, to Dg is due
to the Meta-Pose initialization algorithm. With well optimized
training variables, the network can be effectively fine-tuned
for new data domains. Compared to the height of the subject
and range of motions, the 3D human pose estimation errors
are small and negligible. These results demonstrate the high
adaptability of the Meta-Pose system.

C. Fine-tuning Evaluation

For most effective fine-tuning, we also conduct experiments
to investigate the impact of numbers of shots and types of
activities. Fig. 7 illustrates the accuracy of pose tracking in
the four new data domains, which are fine-tuned with different
numbers of data shots from 1 to 5. As defined earlier, one-
shot of data in Meta-Pose is defined as a consecutive data
sequence within a window of 6 seconds. It can be seen that,
after 5-shot fine-tuning, the minimum error 3.49cm is achieved
in Dg, while the error in Dg is the highest (i.e., 4.68cm). In
addition, although the final estimation accuracy is different
for the four data domains, the performance of fine-tuning is
generally improved by more data shots. However, as the figure
shows, the improvement becomes not obvious beyond four
shots of data. Thus, 4-shot fine-tuning is sufficient when the
Meta-Pose system is transferred to a new environment.

D. Comparison with a Baseline Scheme

We also conducted a comparison study using the recent
RFID based pose tracking system RFID-Pose as a baseline
scheme [10]. We leverage the same training data to perform
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Meta-Pose experiments.

TABLE I
PERFORMANCE COMPARISON AFTER FINE-TUNING

Domain Index  RFID-Pose  Meta-Pose
Ds 6.72cm 3.72cm
Dg 7.62cm 4.32cm
D~ 5.46cm 3.51lcm
Dsg 4.62cm 4.11cm
Dan 6.27cm 3.97cm

4-shot fine-tuning for each unknown data domain. The pose
tracking errors are presented in Table I. As the table shows,
the mean error of RFID-Pose for all the new data domains
is 6.27cm, while that for Meta-Pose is only 3.97cm. We find
that the RFID-Pose error is also reduced by fine-tuning, but
the estimation error for the new data domain is still quite
high. A larger datasets sampled in the new environments
are needed to achieve a satisfactory fine-tuning performance,
which considerably increases the training data collection ef-
fort and cost. In contrast, the error of Meta-Pose has been
effectively reduced by few-shot fune-tuning, because the meta-
learning-based algorithm has suitably initialized the model
variables based on the known data domains. Meta-Pose is able
to quickly optimize its training variables for the untrained data
domain with a few steps of gradient descent. Through these
experiments, we demonstrate that Meta-Pose can better adapt
to unknown environments compared with the baseline scheme.
Thus it can be easily deployed in practice.

VI. CONCLUSIONS

In this paper, we proposed an RFID based realtime 3D
pose tracking system named Meta-Pose that is environment-
adaptive. A novel Meta-Pose initialization algorithm was
proposed to pretrain the network with several known data
domains, and few-shot fine-tuning was then utilized to adapt to
unknown data domains. The prototype Meta-Pose system was
constructed with commodity RFID reader and tags. Extensive
experiments were conducted with ground truth provided by
Kinect vision data. The high adaptability to new environments
was demonstrated by our experimental results and a compar-
ison study with a state-of-the-art baseline scheme.
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[ Fine-tuned Network

Fig. 6. Overall performance in terms of mean
estimation error in the eight different data domains.
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