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Abstract—Human pose tracking has attracted great interest re-
cently. Considerable efforts have been made in Radio-Frequency
(RF) sensing techniques for human pose tracking without using
a video camera. Although the existing RF based schemes can
well protect user privacy, they are usually sensitive to the RF
environment and are hard to generalize to new environments. In
this paper, we analyze the challenges of generalization of Radio-
Frequency Identification (RFID) based human pose tracking
systems. We then present an RFID based 3D human pose
tracking system, termed Meta-Pose, which incorporates meta-
learning and few-shot fine-tuning to achieve high adaptability
to new environments. The proposed system is implemented
with commodity RFID devices and extensive experiments are
conducted for performance evaluation. The experiment results
validate the superior human pose tracking performance and high
adaptability of the proposed Meta-Pose system.

Index Terms—3D human pose tracking, few-shot fine-tuning,
generalization, meta-learning, RFID sensing.

I. INTRODUCTION

Human pose tracking has attracted great interest in recent

years, because it is highly useful for numerous applications

such as human-computer interaction, video surveillance, and

somatosensory games. The advances in human pose tracking

have been driven by the new developments in computer

vision, from two-dimensional (2D) poses [1] to the three-

dimensional (3D) realtime pose tracking [2]. However, such vi-

sion based schemes often raise security and privacy concerns.

For example, it has been reported that millions of wireless

security cameras were possibly hacked [3]. The collected video

data for pose tracking could be illegally intercepted. Several

radio frequency (RF) sensing schemes have been proposed

to address the privacy concern in human pose tracking [4],

including Frequency-Modulated Continuous Wave (FMCW)

radar based [5], mmWave radar based [6], WiFi-based [7],

[8], and RFID-based schemes [9]–[11]. Compared with vision

based techniques, RF sensing based pose tracking has no

requirement for the lighting condition, and the privacy of users

can be well protected.

In RF based pose generation systems, deep learning tech-

niques are usually used to transform sampled RF data to

human pose. However, such machine learning based tech-

niques usually have the generalization problem when applying

a well-trained model in a new, unknown environment. Since

RF signals propagate in the open air, the collected RF data

are sensitive to the changes in the environment, such as

the antenna deployment, the layout and obstacles of the

surroundings, and moving objects/subjects nearby. Under such

environment changes, the same human subject could generate

considerably different RF features when tested in different

environments. Developing human pose estimation techniques

that are adaptive to the environment has become a great

challenge for RF based techniques.

When applying the well-trained (or, pretrained) model to a

new, unknown environment, we can fine-tune the model by

further training it with new data collected from the unknown

environment, such that the specific features of the new domain

can be better captured. For good generalization performance,

the amount of data used for fine-tuning should be as low as

possible, in order to minimize the time, effort, and cost of

obtaining training data from the new environment. This is

important for the system to be easily deployed in practice. To

this end, meta-learning, a.k.a. “learning to learn” [12] provides

an excellent solution. Meta-learning optimizes the neural net-

work based on different learning tasks or datasets [13], so the

network will be appropriately initialized and be amenable for

adaptation to new environments. When transferred to a new RF

environment, the meta-learning model will only require a few

training examples from the new environment for fine-tuning

(i.e., few-shot fine-tuning).

In this paper, we tackle the environment adaptation chal-

lenge with a meta-learning approach and propose a novel

environment-adaptive, RFID based 3D human skeleton track-

ing system termed Meta-Pose. As prior work RFID-Pose [10],

the system leverages RFID tags attached to the human body

to capture the movements of human body parts. It is also a

vision-assisted scheme, where Kinect generated vision data is

used for supervised training. However, vision data will not be

needed for inference, so there will be no privacy concerns.

To address the generalization problem, we first analyze the

main causes for the divergence of RFID data in different RF

environments. Based on the analysis, we then propose a novel

Meta-Pose initialization algorithm to pretrain the model with

RFID data sampled from a few environments. With few-shot

fine-tuning, the Meta-Pose system is able to accurately track

3D human skeleton in a new, unknown environment. Extensive

experiments are conducted to validate the high environment

adaptation ability of the proposed Meta-Pose system.

The main contributions of this paper are summarized in the

following.

• To the best of our knowledge, Meta-Pose is the first
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Fig. 1. Overview of the proposed RFID pose tracking system.

environment-adaptive 3D human pose estimation system

designed with commodity RFID reader and tags, which

can be easily deployed to track 3D human skeletons with

RFID data in any RF environment.

• We analyze the divergence of RFID data in different

environments and identify the main challenges to the

generalization of RFID based techniques, including sen-

sitivity divergence of RFID tags and phase distortion for

different sampling environments.

• We propose a novel Meta-Pose initialization algorithm to

pretrain the deep learning model with data sampled from

a small number of known environments. The algorithm

is based on the meta-learning framework, and a domain

fusion technique is incorporated to generate more fake

environments to better train the model. The pretrained

network can be quickly adapted to new data sampled from

a new environment.

• We develop a prototype system with commodity RFID

tags/reader, where Kinect 2.0 is used to obtain ground

truth data for training the model. The performance of

Meta-Pose is evaluated with extensive experiments as

well as comparison with a baseline scheme [10]. The

experimental results demonstrate that the proposed Meta-

Pose system can accurately track 3D human skeletons

with high environmental adaptability.

In the remainder of this paper, an overview of the proposed

system is presented in Section II. Section III examines the

challenges of the generalization problem. Section IV presents

the Meta-Pose solution to the challenges. Our prototype imple-

mentation and experimental study are presented in Section V.

Section VI summaries this paper.

II. OVERVIEW OF THE PROPOSED SYSTEM

The Meta-Pose system is proposed to estimate 3D human

pose with RFID data collected from the passive RFID tags

attached to the human subject. An overview of the Meta-Pose

system is shown in Fig. 1. The system is composed of three

key components, including (i) RFID data collection, (ii) RFID

phase preprocessing, and (iii) a deep neural network.

A. Phase Data Collection and Preprocessing

In the RFID pose tracking system, human pose is learned

from RFID phase data, which is obtained by interrogating the

tags with the RFID Low Level Reader Protocol (LLRP). Since

the RF signal is sent from the antenna, reflected by the passive

RFID tag, and received by the antenna, the received RFID

phase value Θ is given by [14]:

Θ =
2π2Rfc

v
+Θc, c = 1, 2, ..., 50, (1)

where R is the distance of the LOS path between the reader

antenna and tag, and c is the channel index, which changes

from 1 to 50 every 200ms in Ultra High Frequency (UHF)

RFID systems following the FCC regulation [14].

Next, the RFID phase data should be prepossessed to

mitigate the impact of the random Θc on different channels. To

this end, the phase variation Φ between two adjacent samples

would be effective, which is calculated as:

Φ(n) = Θ(n)−Θ(n− 1) (2)

=
2π2(R(n)−R(n− 1))fc

v
, c = 1, 2, ..., 50, n > 1,

where n is the sample index on each channel and R(n) is

the propagation distance corresponding to the nth sample on

channel c. As (2) shows, the impact of the random channel

hopping offset Θc has been effectively removed from the phase

variation Φ. The phase variation only depends on the distance

of the LOS propagation path R(n). Therefore, the sequence

of phase variations {Φ2,Φ3, ..., } can be translated into a se-

quence of antenna-tag distances {R2, R3, ..., }, which records

the trajectory of human body movements. Consequently, with

multiple tags attached on the human body, the RFID phase

variations for the attached tags can be leveraged to construct

the human skeleton and track 3D human poses.

B. Deep Neural Network for Pose Training

Although phase variation can effectively capture the move-

ments of the tags attached to human body, the translation from

phase variation data to 3D human pose is still a challenge. In

several existing RFID based human pose tracking systems,

the transformation is mostly accomplished with deep learning

techniques [10], [11], which is mainly composed of a recurrent

autoencoder and a forward kinematic layer. The brief structure

of the deep learning model is presented in Fig. 2. As the figure

shows, the network is designed to generate a 3D human pose

sequence, consisting of coordinates data, from received RFID

data. The recurrent encoder is to extract both long-term and

short-term features from the RFID data sequence, which is

used as input to the following recurrent decoder. With a given

initial skeleton, the decoder layer will transfer the features of

the RFID data sequence to a quaternion sequence.

Rather than using RF signals to generate a confidence

map for human skeleton reconstruction [1], [7], RFID based

pose tracking system is designed to estimate human pose

with the forward kinematic technique, which is widely used

in the robotics and 3D animation [15]. This is because the

information rate of the RFID system is too low to generate

a confidence map with an acceptable resolution. The forward

kinematic technique, however, only requires the quaternions

for the joints of the human skeleton.
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Fig. 2. Structure of the deep learning model used in RFID based 3D human
pose tracking.

As RFID-Pose [10] and Cycle-Pose [11], vision data col-

lected by a Kinect 2.0 are used as labels for supervised

training. The network is trained with a loss function that

computes the difference between the estimated pose and the

labeled vision data sampled simultaneously when the RFID

data is collected, so the well-trained network can effectively

transform RFID data sequence to 3D pose sequence [10].

III. GENERALIZATION CHALLENGES

To analyze the influence from the environment, the RF

data sampled from a different environment is considered to

be from a different data domain. In RF sensing systems, the

sampling environment depends on the characteristics of all

the propagation paths. However, as given in (1), the received

RFID signal is mainly determined by the LOS path due to

its near-field communications nature. The interference of the

surroundings is thus limited in RFID systems, and the data

domain of RFID sensing systems is due to two main causes:

(i) tag sensitivity divergence and (ii) phase data distortion.

A. Sensitivity Divergence in Different Data Domains

The first cause of data divergence in different data domains

is the variation of tag sensitivity. When multiple tags are

scanned by one antenna, some tags are more likely to be

detected, while other tags may hardly be scanned by the

antenna. We define tag sensitivity as the possibility of being

successfully detected by the antenna, which mainly depends

on the received power strength of each tag.

Following the Friis transmission formula, the received

power Sr from a passive RFID tag can be represented by [16]:

Sr = GAnGTagL

(

λc

4πR

)4

St, (3)

where St is the reader’s transmit power; GAn and GTag are

the power gains of the transmitter antenna and the tag, re-

spectively; L represents the aggregated attenuation coefficient,

accounting for losses at the antenna cable and polarization, etc.

during the transmission process; λc is the wavelength of the

current channel c, and R is the LOS path distance as mentioned

in (1). Eq. (3) shows that with the same antenna and same tag

type, GAn and GTag could be considered as a constant, so the

received power strength is mainly degraded by an increased

LOS path distance R and the attenuation loss L.

When applying a trained deep learning model to a different

data domain, the inference performance could be poor, since

the tag sensitivity in the new data domain could be very

different from where the model was trained.

B. Phase Distortion in Different Data Domains

The second cause for data domain divergence is the phase

distortion caused by different antenna deployment scenarios.

As (1) shows, the phase data of each tag is determined by

the LOS propagation path distance R, which is the length of

the space vector ~R. For the tags attached to a moving human

body, we can consider the overall space vector as the sum

of two subspace vectors as: ~R = ~Rs + ~Rd, where ~Rs is

the static vector determined by the deployment scenario and

the dynamic vector ~Rd is generated by the movements of the

subject. According to (1), the sampled phase Θ is affected by

both ~Rs and ~Rd as:

Θ =
2π2|~Rs + ~Rd|fc

v
+Θc, c = 1, 2, ..., 50. (4)

Even if we have an identical ~Rd in the two data domains (i.e.,

the same subject and same movements), the sampled phase

could still be very different when the antennas are deployed

differently (i.e, giving a different ~Rs). Consequently, different

antenna deployment scenarios will have an impact on the RFID

phase distortion, causing considerable divergence between the

datasets sampled from different environments.

Unlike tag sensitivity variations, environment changes gen-

erate a specific type of phase distortion for all sampled phase

data. Thus, the model variables in the deep learning network

should be trained and optimized to combat such phase distor-

tion. Given all kind of possible deployment environments, it

is a big challenge to generate a well optimized deep learning

model, which is generalizable for all environments.

IV. META-LEARNING BASED SOLUTION

In Meta-Pose, we propose meta-learning as an effective

technique to initialize the variables based on trained tasks

or data domains so that network could be effectively fine-

tuned later for a new data domain [12]. The model-agnostic

meta-learning algorithm (MAML) [13] has been proposed to

pre-train the network, so the model could produce a satis-

factory generalization performance. In addition, the Reptile

learning algorithm [17] has also been proposed as a repre-

sentative meta-learning algorithm, which works nearly as well

as MAML while having a lower computational complexity.

In this paper, we leverage Reptile to pre-train the model for

initialization of model variables, and fine-tuning with a small

amount of new data when applied to a new data domain.
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Fig. 3. Training framework of the proposed Meta-Pose system.

A. Meta-Pose Framework Overview

Figure 3 represents the brief structure of training framework

of the proposed Meta-Pose system, which consists of network

initialization and fine-tuning in a new domain. As shown in the

figure, the deep learning model is trained with datasets from

a few (e.g., four) known data domains, which are sampled

when the subjects stand at four different positions. We notice

that the performance of meta-learning can be improved by

learning more learning tasks, but directly sampling a large

amount of human pose data from numerous data domains

is challenging and having a high cost. Thus, we propose a

domain fusion algorithm to produce more data domains by

mixing the data from the four available data domains. Then, we

leverage the Reptile learning algorithm to recursively update

the training variables of the network, so the variables will be

well initialized. When transferring to the learning task in a

new data domain, we only need to collect very few examples

to fine-tune the generalized network.

B. Reptile based Network Initialization

The objective of network initialization is to determine the

initial model variables, which could be adjusted for a new

data domain with a few training steps. It means that the initial

training variables H should be set close to any possible data

domain D. The optimization problem for network initialization

can be formulated as:

min
H

ED[Γ(Uk
D(H))], (5)

where the Γ denotes the loss function of the network, and

Uk
D(H) denotes the gradient decent operation that updates

variables H for k times using data sampled from D, which

is the Adam algorithm. According to the formulated problem,

we propose the Meta-Pose initialization algorithm to generate

the initial training variables H that facilitate fine-tuning, as

presented in Algorithm 1. In the algorithm, we first fuse the

four data domains (i.e., D1, D2, D3, and D4) into multiple

fused data domains (i.e., d1, d2, ..., dn). Each di contains 40
batches of data randomly sampled from D1, D2, D3, and D4.

To solve the optimization problem (5), we need to find the

gradient of any fused data domain ∆Γ[Uk
di
(H)], so the gra-

dient decent algorithm can be applied to find H by recursive

Algorithm 1: Meta-Pose Initialization Algorithm in

the Meta-Pose System

1 Input: Sampled data sets from four data domains (denoted

by D1, D2, D3, and D4);

2 Output: Optimally initialized variables Ht for the pretrained

network.
3 Randomly initialize the training variable as H;

4 for i = 1 : n do
5 Generate di by randomly sampling from D1, D2, D3,

and D4;
6 Randomly sample k batches from di;

7 Hin ← H;

8 for j = 1 : k do
9 Update the variables in Hin with loss function Γ as:

H ′

in = U1

di
(Hin), Wj = H ′

in −Hin, Hin ← H ′

in;

10 end

11 Calculate the overall weight updates as:

Ŵi =
∑k

j=1
Wj ;

12 Update variables H as: H ← H + εŴi;

13 end

14 Set Ht ← H;

updating. With the Reptile learning algorithm [17], we first

calculate ∆Γ[U1

di
(H)] for each inner loop iteration as:

∆Γ[U1

di
(Hin)] =U1

di
(Hin)−Hin (6)

=H ′
in −Hin,

where Hin is the set of variables used in the inner loop. In

the algorithm, denote the one step gradient ∆Γ[U1

di
(Hin)] as

Wj . The overall gradient after k iterations is calculated as:

∆Γ[Uk
di
(H)] =

m
∑

j=1

Wj .

∆Γ[Uk
di
(H)] is denoted as Ŵi for each data domain di. In

the algorithm, we set k = 8 for effective training in each

data domain. With gradient Ŵi, we solve the problem by

recursively training variable H in the outer loop iterations as:

H ← H + εŴi, (7)

where ε is the learning rate, which is set to 0.1 in the

system. We repeat the updating process for 5, 000 times (i.e.,

setting n = 5000), so the final training result Ht could

satisfy the requirement of the optimization problem (5). After

initialization training, the network could be quickly fine-tuned

with few shots of data sampled from a new data domain.

C. Few-shot Fine-tuning

After appropriate initialization of H , the fine-tuning process

only requires a small dataset from the new data domain. Since

the training data are all data sequences, including RFID phase

data and vision data [11], the data shots are defined specifically

in the Meta-Pose system. We divide the data sequence into

small segments during the training process, each consisting of
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Fig. 4. Hardware configuration of the Meta-Pose system.

30 consecutive data samples sampled within a window of 6s.

We consider one data batch as one shot in Meta-Pose, and less

than 5 batches of data in the new data domain will be leveraged

for fine-tuning. We also find that the type of movements also

affects the fine-tuning performance and will discusses this in

Section V-C. Due to the Reptile based initialization of training

variables, the Meta-Pose system can quickly adapt to the new

data domain with few-shot fine-tuning.

V. IMPLEMENTATION AND EVALUATION

A. Prototype System Implementation

To evaluate the performance of Meta-Pose, we develop a

prototype system with an off-the-shelf Impinj R420 reader,

which is configured with three S9028PCR polarized antennas,

as shown in Fig. 4. The ALN-9634 (HIGG-3) RFID tags

are used in Meta-Pose. The vision data, used for training

supervision as well as ground truth for evaluating the precision

of inference, is collected with an Xbox Kinect 2.0 device. As

shown in the figure, we attach 12 RFID tags on the 12 joints

of the subject, including the neck, pelvis, left hip, left knee,

right hip, right knee, left shoulder, left elbow, left wrist, right

shoulder, right elbow, and right wrist. With the three reader

antennas placed at different height positions, every RFID tag

can be interrogated by at least one of the antennas.

Environment adaption is validated using RFID data col-

lected from eight different data domains, which are generated

by the specific deployment of the subject and antennas as

shown in Fig. 5. Seven data domains are sampled in the

computer lab, and the eighth domain is sampled in an empty

corridor. Among these domains, D1 to D4 are used for model

pretraining, while D5 to D8 are considered as new data

domains for evaluation. RFID phase data is collected when the

subject stands in front of the antennas and performing specific

activities repeatedly. Different types of activities are sampled

in all the data domains, such as walking, body twisting, deep

squatting, and single limb moving. Five subjects participate in

the data sampling, including four males and one female.

B. Overall Performance Evaluation

To demonstrate the overall system performance, we use the

3D human skeleton data collected by Kinect 2.0 as ground

truth. For each video frame, we calculate the mean error Ψall

of all the 12 human joints as:

Ψall =
1

12

12
∑

n=1

||T̂n − Ṫn||, (8)

where T̂n represents the estimated 3D position of joint n, while

Ṫn is the ground truth. ||T̂n − Ṫn|| is the Euclidean distance

between the two 3D coordinates.

The overall performance (i.e., mean errors) of the fine-

tuned network for all the eight data domains is presented in

Fig. 6. Note that only the first four data domains are used in

network pretraining, while the other four domains are used

for testing. In addition, we also resent the accuracy of the

pretrained network in the figure (i.e., without fine-tuning with

additional data from the new data domain). As shown in

the figure, the maximum error of the fine-tuned network is

4.83cm obtained in D6, while the minimum error is 3.46cm

obtained in D8. The minimum pretraining error for the new

data domain (i.e. D5 to D8) is 4.91cm in D8, which is higher

than that of all the pretrained domains (i.e. D1 to D4). The

higher pretained errors imply the large divergence between the

known and new data domains. However, with few-shot fine-

tuning, the mean error for all the four new data domains is

3.98cm, which is very similar to that of the pretrained data

domains. The considerable error reduction in D4 to D8 is due

to the Meta-Pose initialization algorithm. With well optimized

training variables, the network can be effectively fine-tuned

for new data domains. Compared to the height of the subject

and range of motions, the 3D human pose estimation errors

are small and negligible. These results demonstrate the high

adaptability of the Meta-Pose system.

C. Fine-tuning Evaluation

For most effective fine-tuning, we also conduct experiments

to investigate the impact of numbers of shots and types of

activities. Fig. 7 illustrates the accuracy of pose tracking in

the four new data domains, which are fine-tuned with different

numbers of data shots from 1 to 5. As defined earlier, one-

shot of data in Meta-Pose is defined as a consecutive data

sequence within a window of 6 seconds. It can be seen that,

after 5-shot fine-tuning, the minimum error 3.49cm is achieved

in D8, while the error in D6 is the highest (i.e., 4.68cm). In

addition, although the final estimation accuracy is different

for the four data domains, the performance of fine-tuning is

generally improved by more data shots. However, as the figure

shows, the improvement becomes not obvious beyond four

shots of data. Thus, 4-shot fine-tuning is sufficient when the

Meta-Pose system is transferred to a new environment.

D. Comparison with a Baseline Scheme

We also conducted a comparison study using the recent

RFID based pose tracking system RFID-Pose as a baseline

scheme [10]. We leverage the same training data to perform

Authorized licensed use limited to: Auburn University. Downloaded on September 23,2022 at 04:01:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Illustration of the data domains used in the
Meta-Pose experiments.
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Fig. 6. Overall performance in terms of mean
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D5 D6 D7 D8
0

2

4

6

8

M
e
a
n

 E
st

im
a
ti

o
n

 E
rr

o
r 

(c
m

)

1-Shot

2-Shot

3-Shot

4-Shot

5-Shot

Fig. 7. Fine-tuning performance of different new
data domains with different shots of new data.

TABLE I
PERFORMANCE COMPARISON AFTER FINE-TUNING

Domain Index RFID-Pose Meta-Pose

D5 6.72cm 3.72cm
D6 7.62cm 4.32cm
D7 5.46cm 3.51cm
D8 4.62cm 4.11cm

Dall 6.27cm 3.97cm

4-shot fine-tuning for each unknown data domain. The pose

tracking errors are presented in Table I. As the table shows,

the mean error of RFID-Pose for all the new data domains

is 6.27cm, while that for Meta-Pose is only 3.97cm. We find

that the RFID-Pose error is also reduced by fine-tuning, but

the estimation error for the new data domain is still quite

high. A larger datasets sampled in the new environments

are needed to achieve a satisfactory fine-tuning performance,

which considerably increases the training data collection ef-

fort and cost. In contrast, the error of Meta-Pose has been

effectively reduced by few-shot fune-tuning, because the meta-

learning-based algorithm has suitably initialized the model

variables based on the known data domains. Meta-Pose is able

to quickly optimize its training variables for the untrained data

domain with a few steps of gradient descent. Through these

experiments, we demonstrate that Meta-Pose can better adapt

to unknown environments compared with the baseline scheme.

Thus it can be easily deployed in practice.

VI. CONCLUSIONS

In this paper, we proposed an RFID based realtime 3D

pose tracking system named Meta-Pose that is environment-

adaptive. A novel Meta-Pose initialization algorithm was

proposed to pretrain the network with several known data

domains, and few-shot fine-tuning was then utilized to adapt to

unknown data domains. The prototype Meta-Pose system was

constructed with commodity RFID reader and tags. Extensive

experiments were conducted with ground truth provided by

Kinect vision data. The high adaptability to new environments

was demonstrated by our experimental results and a compar-

ison study with a state-of-the-art baseline scheme.
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