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Abstract—Recent research has shown that in-network ob-
servers of WiFi communication (i.e., observers who have joined
the WiFi network) can obtain much information regarding the
types, user identities, and activities of Internet-of-Things (IoT)
devices in the network. What has not been explored is the
question of how much information can be inferred by an out-of-
network observer who does not have access to the WiFi network.
This attack scenario is more realistic and much harder to defend
against, thus imposes a real threat to user privacy. In this paper,
we investigate privacy leakage derived from an out-of-network
traffic eavesdropper on the encrypted WiFi traffic of popular IoT
devices. We instrumented a testbed of 12 popular IoT devices and
evaluated multiple machine learning methods for fingerprinting
and inferring what IoT devices exist in a WiFi network. By
only exploiting the WiFi frame header information, we have
achieved 95% accuracy in identifying the devices and often their
working status. This study demonstrates that information leakage
and privacy attack is a real threat for WiFi networks and IoT
applications.

Index Terms—Internet of Things, Traffic Analysis, Privacy
Attack, Device Fingerprinting; Eavesdropping

I. INTRODUCTION

IEEE 802.11 Wireless network (WiFi) is increasingly con-
nected to a wide variety of Internet-of-Things (IoT) devices,
including smart locks, baby monitors, blood pressure monitors,
voice assistants, etc. Hence, the security and privacy of the
WiFi network are increasingly targeted by attackers. Examples
of security attacks on WiFi-connected IoT devices and applica-
tions include the Mirai malware that caused distributed denial-
of-service (DDoS) [1] and worms in smart bulbs that allowed
attackers to control all nearby compatible IoT lights [1].
Privacy attacks are just as concerning. WiFi traffic analysis
allows an observer to ”fingerprint” devices to infer private user
activities, for example by monitoring a camera’s bitrate, the
adversary can infer object movements inside a building [2].
The privacy and security concerns are sometimes related.
For example, the adversary’s ability to identify the type of
IoT devices in the network allows him/her to infer what
vulnerabilities are present to exploit.

In this paper, we focus on privacy concern that arises from
the ability of the attacker to fingerprinting IoT devices in the
WiFi network. In particular, while there is abundant work
in this area [3]–[7], they all rely on an assumption that the
attacker is a network insider, i.e. the attacker has to either
join the WiFi network prior to fingerprinting, or be able to

wiretap the Internet-side network link of the WiFi network.
The assumption, if true, provides a false sense of security, in
that one may conclude that as long as the WiFi network uses
good password scheme, device fingerprinting is avoided.

In this paper, we explore a hypothesis whether an out-
of-network attacker can effectively fingerprint IoT devices
without joining a WiFi network. In contrast to in-network
attack, there are many challenges for an out-of-network at-
tacker: the attacker cannot see any plaintext of packet payload
due to WiFi data-link layer encryption, the captured traffic is
noisy (if mixed with neighboring networks), and very limited
information (e.g., no IP address and port information), hence
it is not immediately clear if the hypothesis is valid. However,
if the hypothesis is true, the implications are serious. First, the
attack is applicable to all WiFi networks that the attacker has
close proximity to, instead of only networks with breakable
password. Second, the attack does not require any special steps
to be performed beforehand; the attacker can just walk or drive
to close proximity and start analyzing traffic. Third, the attack
is not traceable as it does not leave any footprint detectable by
users or forensic examiners. Other implications are discussed
in Section VII.

We show in this paper that fingerprinting IoT devices from
outside the WiFi network is not only possible, but that it is
easy to perform and can yield surprisingly detailed information
about devices in the network. Overall, the paper makes the
following contributions:

• We demonstrate the feasibility of fingerprinting attack via
out-of-network WiFi eavesdropping. We show that it can
be performed by practically anybody, without relying on
any special equipment; consumer-grade laptops suffice.

• We explore two types of data (times series and summary)
and train three machine learning algorithms with them to
profile 12 real-world IoT devices working in different
states, and report their prediction accuracy results and
insights. We show that our best technique can fingerprint
device types and device working modes (idle vs. busy)
with 95% accuracy on average.

• We discuss the implications of our work and possible
defense approaches.

The remainder of the paper is organized as follows. We
review related work in Section II. In Section III, we present
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the adversary model. Section IV demonstrates our attack
system and the data collection of encrypted traffic. Data
pre-processing approaches used for our device profiling are
introduced in Section V. Then, we evaluate our attack on an
experimental testbed in Section VI, including an analysis of
the impact of monitoring time on the classification accuracy.
In Section VII, we discuss the results, other implications,
and potential defenses. Finally, we draw our conclusion and
discuss future works in Section VIII.

II. RELATED WORK

Device identification is one of many types of information
that can be performed using network traffic classification,
and has been a topic of interest from the early stage of the
Internet. Studies looking at both WiFi and ethernet traffic
showed that traffic classification could accurately identify
various information, including IoT device types [4]–[7] and
mobile phone app activities [8].

These prior works assumed traffic as seen by an in-network
observer that collects the TCP/IP level packets. Such exposure
reveals useful and distinguishable network characteristics of
the device. For example, the authors in [4] note a single
attribute signature for different IoT devices using the desti-
nation port number. Additionally, flow volume features such
as packet interarrival time are shown to be adequate to conduct
device fingerprinting using deep learning algorithms [7]. These
methodologies are not applicable by an out-of-network adver-
sary as the IP traffic in this context is encapsulated to the upper
layer, encrypting all the influential network characteristics such
as port number, protocol, cipher suites, etc. Different from
existing works, we utilize a different set of features that are
easily extractable even for an observer that is not part of the
WiFi network.

The closest related work to our proposed WiFi profiling
attack is the work conducted by Acar et al. [3], which used
traffic analysis (WiFi, Zigbee, and Bluetooth) to identify
devices, their states, and user activities, and presented traffic
spoofing as a defense method. However, they assumed a rogue
access point with tcpdump to collect WiFi traces. Thus, these
studies [3]–[7] all assume an in-network observer, requiring
physical access or extensive knowledge to break in and join
the victim’s encrypted network. In contrast, our assumption is
an out-of-network adversary, who simply eavesdrops on WiFi
traffic without performing elaborate steps to join or break into
the network.

Another related research domain investigates hardware fin-
gerprinting. For example, [9] extracts clock skew measure-
ments to perform hardware fingerprinting (i.e., distinguishing
a device among the same class of devices). However, the
focus in this area is on the hardware basis rather than the
device-specific features, which is unsuitable for our device
type classification scenario.

Many studies have conducted WiFi traffic analytics with
a variety of goals [9], [10], where the traffic can be col-
lected outside the network using off-the-shelf WiFi monitoring

devices. However, none of these studies take into consid-
eration the missing rate reported with off-the-shelf network
sniffers [11], or the missing frames resulted from the channel
hopping eavesdropping, in which adapters will constantly miss
transmitted frames on a specific channel while listening to all
fourteen WiFi channels, each one at a time. In comparison,
we run experiments to validate our sniffer’s performance (See
Section IV-A) and allow single-channel monitoring on the
targeted network.

Many studies have been proposed to defend against traf-
fic analysis attacks. These countermeasures largely focus
on website fingerprinting [12]–[14] or achieving location
anonymity [15] and hence are ineffective against device finger-
printing. Traffic reshaping techniques such as traffic morphing
and padding [16] reduce classifier accuracy. Still, they will
fail with time-based classification as both methods are limited
to obfuscate traffic patterns based on packet size. Signal
Jamming approaches use antennas to disrupt traffic flow at
potential adversary locations by increasing the noise ratio.
However, it causes interference and degrades nearby networks’
performance and is illegal by law [17]. Thus, our attack
remains effective against all the defenses proposed in the
studies above.

In brief, different from related works, we explore and
demonstrate the more realistic privacy attack to WiFi-based
devices relying on out-of-network WiFi traffic monitoring. We
implement a practical and accurate proof-of-concept attack
assuming a realistic threat model. We report a fast detection
of 30 seconds and discuss the implications. We also discuss a
potential defense to mitigate the attack (See Section VII).

III. THREAT MODEL AND ASSUMPTIONS

We assume an attacker that passively observes out-of-
network WiFi traffic of the victim’s WiFi router or access
point (AP). To achieve that, the attacker must be physically
located within the signal range of the AP. The attacker may
be wardriving (or warcycling, warwalking, etc.), i.e., searching
for WiFi networks from a moving vehicle, while using a listen-
only sniffing tool that eavesdrops and collects raw traffic from
nearby WiFi networks. The attacker does not have an ability
to break into the network or join it. Most WiFi-based IoT
devices operate at 2.4 GHz frequency and our study focuses
on 2.4GHz, but our findings apply to 5GHz as well.

The goal of the attacker is to infer information of devices
in a particular WiFi network, including how many unique
devices, which type the devices are (e.g., light bulb, smart TV,
laptop, etc.), and to some extent their operating status (idle or
busy). The purpose of the attack is to gather important data
that reveals potentially sensitive information. For example, the
number of devices may reveal the family size, number of
employees or customers in a business, etc. The number and
types of devices may reveal socioeconomic status. The type of
devices may reveal potential hardware/software vulnerabilities
of some IoT devices that could be exploited by the attacker
later.
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Fig. 1. IoT device profiling attack system.

IV. CAPTURING OF OUT-OF-NETWORK ENCRYPTED WIFI
TRAFFIC

Figure 1 shows the system architecture that we assume the
attacker uses. It consists of two stages: the training model
for profiling (offline phase) and device identification (online
phase). In the offline phase, the attacker sets up many IoT
devices connected to a WiFi gateway simultaneously; network
traffic is collected using sniffing tools and data is labeled for
the device name using the MAC address. Then, we pre-process
the data, remove noise (e.g., traffic belonging to other WiFi
networks, beacon frames and broadcast frames), and extract
useful features into a csv file for supervised learning (Sec-
tion V). Afterward, we train these features through different
machine learning (ML) algorithms and retain the highest ac-
curacy model for online inference (i.e., device identification).

In the online phase, the attacker sniffs network traffic of
victims’ AP for a short time (such as 30 seconds) and stores
the trace for pre-processing, like in the offline phase. As we
shall explain in Section IV-B, our pre-processing and data
cleaning by no means consider prior knowledge of the devices’
information. Our methodology applies statistical and standard
filtering to clean noise frames that do not represent data
patterns. Then, we extract the features out of the pre-processed
file using a python script. Finally, we utilize the stored model
to predict each device’s type and its working activity.

We will now discuss each step in the attack.

A. Out-of-Network WiFi Traffic Capturing

To capture frames, we first tested out several popular
sniffing tools: Airodump-ng1 and Kismet2. Airodump-ng and
Kismet sniff raw 802.11 frames. Both are capable single-
channel or multi-channel monitoring via frequency hopping
between all channels. The main difference between the two is
that Airodump-ng dumps the capture into a capture file format
(such as pcap3), whereas Kismet stores the trace as an SQLite3
database. Airodump-ng’s pcap output is in a compatible format
to perform packet inspection using a network analyzer like
Wireshark4. For the hardware, we used an external wireless
adapter (Alfa AWUS036ACM) in the monitor mode, as shown
in Figure 2.a, because most computer built-in WiFi cards

1http://aircrack-ng.org/doku.php?id=airodump-ng
2https://www.kismetwireless.net
3https://en.wikipedia.org/wiki/Pcap
4https://www.wireshark.org/

(a) (b)

Fig. 2. Two ways of setting up out-of-network capturing. (a) Sniffing using
Alfa WiFi interface and either Airodump-ng or Kismet software.(b) Sniffing
using MacBook built-in WiFi interface and Airtool software.

are programmed to receive only packets addressed to the
machine’s interface card or a broadcast.

After analyzing the captured traffic, we observed a sig-
nificant proportion of captured packets with small sizes,
which contradicts the elephant-mouse internet traffic phe-
nomenon [18]. The elephant flows of 1,500 bytes were never
seen for all devices, including video packets of smart TV and
cameras. Our investigation shows that both tools are limited
to catch a limited range of packet sizes up to 472 bytes,
which is sufficient for specific signal intelligence applications.
For example, authors in [10] suggested rogue AP detection
using Kismet by utilizing a few captured packets of any size
to identify rogue AP based on the received signal strength
because it differs from a legitimate AP.

Due to the limitations of Airodump-ng and Kismet, we
evaluate a third tool called Airtool5. Airtool is a free WiFi
traffic sniffer using Mac’s built-in network interface card
(NIC) (See Figure 2.b). It can be used to passively sniff
WiFi traffic and store the traces in a pcap format for further
analysis using Wireshark. To verify the completeness of traffic
captured by Airtool running on an out-of-network MacBook,
we simultaneously run another in-network laptop’s Wireshark
to record its own incoming/outgoing network traffic to the
AP. Then we compared the two traces focusing on the traffic
between the second in-network laptop and the AP.

As illustrated in Table I, we found that Airtool collects more

5https://www.intuitibits.com/products/airtool

TABLE I
AIRTOOL TESTING: COMPARISON OF PASSIVE OUT-OF-NETWORK
AIRTOOL CAPTURE WITH IN-NETWORK WIRESHARK CAPTURE.

Packets/Frames Size Range Wireshark Airtool
#Packets #Frames #Data frames

0-19 0 2428 0
20-39 0 5593 199
40-79 2441 0 0
80-159 260 2890 2883
160-319 108 239 239
320-639 173 194 190
640-1279 241 255 255
1280-2559 13574 13846 13846
Total 16797 25445 17612
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frames than packets captured by Wireshark because it captures
additional control and management frames at the data-link
layer (most frames have sizes between 0 to 39), which do
not appear in Wireshark’s in-network traffic capturing. Airtool
interprets each captured frame as a WiFi data-link layer
frame, while in Wireshark, each WiFi frame is interpreted as
an Ethernet II frame. Thus, for the same WiFi packet, the
Wireshark capture has a smaller size than the data-link layer
frame interpretation captured by Airtool. This is the reason
why 2441 packets in the size range of 40-79 in Wireshark
capture all appear in the upper packet size range (80-159) in
the Airtool capture. Furthermore, after filtering out all control
and management frames in the Airtool capture (shown in the
last column), the comparison still holds, and therefore there
are no noticeable missing packets by Airtool. Thus, we use
Airtool for our evaluation testbed.

B. Pre-Processing of Captured WiFi Traffic

After the Airtool software captures the encrypted WiFi
traffic, the resulting traces in pcap file format are analyzed
using Wireshark. More specifically, the raw trace data is pre-
processed using the following steps:

1) We extract the bidirectional flows associated with the
MAC address of the WiFi router under investigation.
This is needed since Airtool could capture WiFi traffic
from multiple APs in the neighborhood. Only data frame
types are kept because all other control and manage-
ment MAC-layer frames do not represent the profiling
data pattern. To filter out non-data frames, we use the
following display filter in Wireshark:6

< (wlan.sa = = "Router’s MAC" ||
wlan.da = = "Router’s MAC") &&
wlan.fc.type = = 2>

2) We export the pcap files as csv for steps 3 and 4.
3) We remove noise frames that were generated by some

MACs. These noise frames are easy to filter out since
they mostly appeared with a single frame. They are
filtered out by keeping only traffic frames that have bi-
direction communication traffic (i.e., having both send
and receive frames).

4) We replace the MAC addresses with the corresponding
device names and their working status to facilitate
dataset labeling. This step is only performed in the
offline training phase. We skip this step in the online
attack phase. The label is used for classification training
data and testing verification purposes.

5) We use a Python script to extract and calculate statistical
features we will discuss in Section V-E and finally
obtain the needed dataset for both offline training and
performance testing.

6(wlan.sa) and (wlan.da) keywords filter by the source and destination MAC
address respectively, and (wlan.fc.type = = 2) filters to keep all data type
frames by removing WiFi control and management frames.

V. DATA PROCESSING AND PROFILING BASED ON
MACHINE LEARNING

In this section, we first discuss what data fields we can
observe and utilize in out-of-network monitoring. Next, we
develop and demonstrate two data processing approaches to
generate representative data suitable to feed into machine
learning (ML) classification: Time-series and Summary data.

A. Observable Data Fields in Out-of-Network Monitoring

For out-of-network monitoring on a secured WiFi network,
everything at and above the data-link layer is encrypted
by a WiFi protocol (e.g., WPA-PSK). The only observable
information is the MAC-layer frame header, plus the frame
observation timestamp and signal strength. The MAC-layer
frame header has the following useful attributes: source MAC
address, destination MAC address, frame type, and frame size.

Initially, we thought that the signal strength might be a
good attribute to utilize, which could reflect device hardware
property and its distance to the AP (e.g., mobile or stationary).
However, from our experiments, we found that the signal
strength is affected by many unpredictable factors such as
neighboring WiFi networks, and by the reflections, absorption,
and deflection of the surrounding objects and rooms, etc. For
this reason, we do not consider signal strength in our device
profiling.

B. Preliminary Data Analysis

To provide insights into the IoT traffic, we analyzed a
captured traffic seen over 5 minutes for three IoT devices
chosen for illustrative purposes: A smart light bulb, a smart
plug, and a WiFi-based printer. We changed their working
mode in the third minute to monitor their behavioral change.
In other words, in the middle of our observation, we turned
the light bulb and the plug off, and stopped printing, so the
printer would be idle.

The header-based features are either a (a) flow-related or
(b) volume-related feature that can be observed within some
time window. Flow-based features refer to the frequency and
duration of transmission, whereas volume-based features refer
to the traffic size in bytes. Although it is limited information,
it is sufficient to yield signatures as we can observe unique
statistical differences among various types of devices. For
example, we can easily notice in Figure 3 a clear distinction
for the printer in terms of the number of received packets,
unlike the bulb and the plug. From a different angle, both the
bulb and plug exhibit distinct behavior in terms of packets
sizes. Specifically, both devices seem to send most packets at
a unique size, 82 bytes for the light bulb and 92 bytes for
the plug. Figure 4 shows the word cloud of top packet sizes
initiated from the two devices. Hence, we believe the adversary
can build signatures with a set of efficient statistics.

The adversary can also infer the event of working status
change. We captured a little spike of flow in the data as
seen in Figure 3 with all devices because the AP initiated
a communication to send an off signal to the bulb and plug
and to stop the printer. Such behavior is a transient network
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Fig. 3. Traffic flow of three devices.

behavior that can only be observed momentarily from the
traffic flow (in part of seconds), not from statistical features
based on some time window (+20 seconds). Therefore, it is
difficult to infer the operational mode of the devices that
are exhibiting a minimal traffic change. On the other hand,
the working status of the other devices with higher network
capability and memory storage such as Alexa, smart TV, and
WiFi cameras, are remarkably observable due to the significant
drop in the flow when transitioning to the idle state. For
instance, Alexa will receive very few packets when it is idle
as it is not receiving voice commands from the user to search
the Internet (e.g., checking the weather or deliveries).

C. Machine Learning Algorithms

We choose several ML models, including Random Forest
(RF), Support Vector Machine (SVM), and Naı̈ve Bayes (NB)
for learning and inference. RF was reported in [19] to provide
superior performance on a network traffic classification prob-
lem among 11 ML models. Additionally, we chose SVM and
NB due to the two sequence sizes in our time-series dataset.
SVM has a good performance on multidimensional datasets
as appeared with IoT devices that have intensive traffic. On
the other hand, NB excels in relatively small data, suitable
for devices that generate an infrequent and small amount of
network traffic [20].

In our IoT device classification, we always consider one ad-
ditional class called ’unknown’, which contains all devices that
the classifier cannot determine their classes with a predefined
confidence.

D. Device Profiling based on Time-series Data

Time-series data processing is straightforward. We trans-
form the monitored data-link layer trace into a series of three-
feature entries. Each monitored data frame is transformed
into three numeric values, including the inter-arrival time T

(a) Smart light bulb. (b) Smart plug.

Fig. 4. Word cloud of sent packet sizes from two devices.

(i.e., the time difference between two consecutive packets),
direction D (i.e., 0 represents sent and 1 for received packets
by an IoT device), and the packet size S. Assume we create
a sequence from N frames. Then we can obtain the series
{T0, D0, S0}, {T1, D1, S1}, . . . , {TN , DN , SN}.

The main drawback of this approach is that it requires
sufficient amounts of packets to create each data point for
machine learning training or classification. Since we deal with
a heterogeneous system monitored in a fixed time window,
some devices initiate a considerable amount of data commu-
nication (such as security cameras), and others generate very
few packets (such as smart plugs). For example, if we consider
collecting a 100-packet series from the plug and camera,
we need over 30 minutes of capturing for the plug while a
single second of monitored data is enough for the camera.
To balance between the two groups, we adopt a two-level
classification strategy starting with a traffic intensity threshold.
The first level splits devices into two groups based on traffic
density, whether high or low. Then, we accordingly utilize
an appropriate sequence size that aligns with the device traffic
intensity. The second level calculates the prediction probability
using the ML algorithms. If the probability is above a specific
threshold, it gives the prediction; otherwise, the instance will
be classified as ‘unknown’ device.

E. Device Profiling based on Summary Data

In this approach, we profile IoT devices with various traffic
features observed over a specific time window. As shown in
Figure 5, we divide the trace of n seconds into a fixed window
size of W seconds, such that we start with a time window
[tstart . . . tend], and recursively increment both ends by W as
long as tend + W ≤ n. Hence, for n seconds of monitored
data, we can obtain n

W data points.
To efficiently generate more sample data points, we use a

sliding window s = W
2 in which we increment the window

[tstart . . . tend] by s seconds instead of W seconds, which
yields ( n

W × 2)− 1 data points. Each device is then identified
by its MAC address for each time window W for feature
extraction and labeling.

After creating our dataset, we build three classifiers, using
the three mentioned ML algorithms (SVM, NB, and RF). In

Fig. 5. Summary data processing and classification.
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the following, we list all 14 extracted features from monitored
packets within each time window:

1) The number of packets sent from the device to AP.
2) The number of packets received by the device from AP.
3) The variance of inter-arrival time.
4) The average number of consecutively sent packets before

seeing a received packet.
5) The average number of consecutively received packets

before seeing a sent packet.
6) Total number of bytes in sent packets.
7) Total number of bytes in received packets.
8) Number of different sizes in sent packets.
9) Number of different sizes in received packets.

10) Maximum packet size.
11) Mode of sent packet lengths (i.e., the packet size that

appeared most in the monitoring window).
12) Mode of received packet lengths.
13) The variance of sent packet size distribution.
14) The variance of received packet size distribution.

VI. EVALUATION

In this section, we first discuss our testbed to collect the
dataset and our evaluation metrics. Then, we present our
evaluation results on the testbed trace.

A. Testbed Setup and Evaluation Metrics

We set up a testbed with 10 different IoT devices and 2
non-IoT (a smartphone and laptop) devices, and allow them
to connect to the Internet via a WiFi router. To collect ground
truth data, we capture the trace for all devices for a sufficient
monitoring time (1 hour). We list in Table II our devices
along with their operational modes for the capture setup of our
dataset. These working scenarios are by no means exhaustive
of devices that have unlimited functionalities, but they encom-
pass various common usages. Using the captured raw packets,
we construct two datasets (time-series and summary data
formats as explained in the previous section) and randomly
split each dataset’s instances into two groups, approximately
75% of the instances for training and 25% for testing.

TABLE II
IOT DATASET CAPTURE SETUP.

Device 15 min 15 min 30 min
Laptop Browsing Streaming Idle
iPhone Social Media

TV Internet Television
App

TV fire stick Streaming

Amazon Echo Receive a query/control
command regularly

Play media
(e.g., Music)

Google Home
Printer Occasionally Printing
Bulb ON OFF
Plug
Baby Monitor
Doorbell
Camera

We evaluate our classification models using the following
aspects: Accuracy, Precision, Recall and F1 Score. Let us
denote true prediction as T , broken further into true positives
TP and true negatives TN . Likewise, false prediction is
denoted as F , broken into false positives FP and false
negatives FN . Accuracy is measured as T

T+N , Precision is
measured as TP

TP+FP , Recall is measured as TP
TP+FN , and F1

is measured as 2× Precision×Recall
Precision+Recall .

B. Model Accuracy Results

Table III shows the accuracies of various ML models with
the time-series data vs. summary data. In this testing, we
set time window size of 30 seconds. The non-IoT devices
include a laptop and iPhone in our testing. For all cases,
the results show that using the summary data achieves much
higher accuracies than using the time-series data. In addition,
RF model achieves the best prediction accuracies than the
other two ML models.

We think that time-series patterns can be better learned from
long-term observed trace more than short-term, which requires
significantly longer time observation (e.g., +30 minutes) to
perform the attack. However, such a long time of eavesdrop-
ping is an unrealistic attack scenario.

As shown in Table III, the summary data profiling yields
more accurate results than time-series data, across all models
and all types of devices. We think that the summary data
approach yields better results because its features are more
useful for profiling heterogeneous devices. For instance, a TV
sends a regular number of packets per time window, in contrast
to Google Home traffic that varies over time. This is not easily
captured in the time-series data but is distinguishable from the
packet size perspective in the summary data.

Furthermore, the table shows that RF outperforms the other
two algorithms in all cases with summary data. We further
plot all evaluation metrics on Figure 6. The figure confirms
RF’s superiority: it outperforms SVM and NB in all metrics,
and achieves at least 95% in all metrics.

C. Working Status Detection and Detection Speed

We further investigate if our RF model can detect the
status of various devices that have two working modes (busy
vs. idle). The accuracy results are presented in Figure 8.
The figure shows that the classification accuracies are above
90% with a few exceptions: iPhone (idle state) and Amazon
Echo (Active and Idle states). The worst accuracy occurs for
Amazon Echo, where 28.1% of Amazon Echo in the busy
state is incorrectly classified as an Amazon Echo in idle state.

TABLE III
COMPARING THE ACCURACIES OF ML MODELS USING TIME-SERIES VS.

SUMMARY DATA.

SVM NB RF
Time Series Non-IoT 0.34 0.25 0.41

IoT 0.57 0.74 0.68
Summary Data Non-IoT 0.51 0.41 0.94

IoT 0.65 0.77 0.96
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Fig. 6. Overall performance of summary data-based profiling.

The reason behind this misclassification is that it takes a few
seconds to execute some commands (e.g., turning the light
on), hence the generated traffic is very small, making the
traffic pattern appears similar to the idle state. As explained in
Section V-B, we found that some devices like the printer, plug,
doorbell, smart bulb, and baby monitor do not have distinct
traffic statistics when changing their working states, thus in
our experiments, each of these IoT devices has only one model
without distinguishing its working state.

We also analyzed the impact of the time window size on
the accuracy (See Figure 7), by varying it from 20 seconds to
60 seconds. We observed an increase in accuracy by 3% when
moving to 30 seconds with RF, but the accuracy is flat from
30 to 60 seconds. Therefore, we adopted the 30-second time
window as the default.

VII. DISCUSSION

Our results have validated the hypothesis that an out-
of-network attacker can effectively fingerprint IoT devices
without joining a WiFi network. Features such as number of
packets, inter-arrival time, packet sizes, and their distributions,
are sufficient in fingerprinting the types of devices and in most
cases, their working modes. The attack is easy to carry out (no
need to join or break into a network, and no special equipment
is required), does not take a long time to perform (30 seconds
provides 95%+ accuracy), and does not leave any detectable
footprints.

Implications: The attack raises substantial privacy concerns.
First, it enables covert business surveillance. An adversary can
drive near the business area to infer the level of economic
activity, clients’ socioeconomic groups, estimated revenues,
revenue trends, or even discover potential vulnerable devices
to target in further attacks. In more complex settings, it can
provide environmental awareness that can be used to track
mobile devices (e.g., cars, drones, phones, etc.). For instance,
a swarm of drones can be deployed over a large area to classify
and identify signal-emitting devices in the covered region and
track their movement and interactions. This may reveal how
devices interact with each other, and reveal the geographic
movement of each device.

Does out-of-network profiling attack scale? Our proof-of-
concept attack results are accurate on our experimental testbed.

Fig. 7. Impact of time window size on accuracy.

However, a key question we have not investigated is, can our
attack results be extended to the actual open world? We plan
further investigation in this direction as future work.

Potential Defenses: A robust defense against device fin-
gerprinting at the data-link layer protection is expensive to
implement. For example, encrypting MAC header information
may conceal device identities hence reduce the attack success
probability [21]. However, it does not fully eliminate the attack
and the resulting key management and encryption overheads
may make it impractical. Other defenses at the network and
application layers are ineffective at the data-link layer [12]–
[14].

Another possible defense is obfuscation via virtual identi-
fiers, e.g., virtual wireless clients (VWC) [22], [23] that gener-
ate multiple virtual NICs for each physical NIC. With VWC, a
WiFi device’s traffic will be dispersed among multiple virtual
clients either randomly or using some rules. A large enough
number of virtual clients may provide sufficient entropy to
prevent an attacker to map different MACs to a single WiFi
device for profiling.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a new privacy attack that an out-of-
network eavesdropper can use to identify various IoT devices
and, in most cases, infer their working modes, within a 30
second time window. We demonstrated this attack’s feasibility
on a testbed of 10 IoT and 2 non-IoT devices with a high
accuracy of 95+%. For future work, we plan to investigate
if additional modes (e.g., streaming, chatting, printing) and
fingerprinting of apps can be achieved by an out-of-network
observer.
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