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a b s t r a c t 

In an observational study, one is given disjoint samples of treatment units and control (untreated) units, 

and the goal is to compare outcomes between the two samples in order to estimate a treatment effect. A 

complication is that the treatment and control units often differ on important pre-treatment attributes, 

and these differences, referred to as covariate imbalance, can bias the estimate. One method to correct 

for covariate imbalance is to select a subset of the control sample that has minimum imbalance with 

respect to the treatment sample, and then use this control subset for estimating the treatment effect. 

While this optimization problem is NP-hard in general, certain special cases can be solved efficiently. 

Specifically, the variant of this optimization problem with one covariate is easy to solve, the variant with 

three or more covariates is NP-hard, and the variant with two covariates is solvable in polynomial time. 

We present several network flow formulations for the problem of minimizing imbalance on two nominal 

covariates. First, we present a minimum cost network flow formulation for solving the problem with the 

constraint that the control subset must have the same size as the treatment sample. We then derive 

an improved maximum flow formulation. For alternate size restrictions on the control subset, we use 

a proportional imbalance objective which leads to non-integral supplies and demands in the preceding 

network flow formulations. We then derive an alternate minimum cost network flow formulation that 

ensures integrality and solves the proportional imbalance problem in polynomial time. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Researchers in many fields are confronted with the problem of 

dentifying causal connections between actions (treatments) and 

utcomes. In an observational study, the researcher observes a 

ample of units that received treatment (called the treatment sam- 

le ) along with another (typically larger) sample of units that did 

ot (called the control sample ). The researcher generally does not 

ave direct control over the treatment allocation process, which 

akes it difficult to attribute differences in outcomes between the 

wo samples to the treatment itself. Despite this difficulty, the ease 

f access to ever-increasing quantities of observational data make 

uch studies popular across a wide range of disciplines, includ- 

ng social sciences and medicine ( Rosenbaum, Ross, & Silber, 2007; 

ang, Small, Silber, & Rosenbaum, 2012; Zubizarreta, 2012 ). Addi- 

ionally, observational studies can often be performed more quickly 

han rigorous experimental studies, which require significant time 

nd effort to set up and conduct. This allows researchers to ad- 
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ress important time-sensitive questions where it is desirable to 

ave a good answer now instead of waiting for a perfect answer 

ater. The COVID-19 pandemic is one such situation; see Kim & 

isen (2020) for additional discussion. 

Many methods have been developed for estimating treatment 

ffects in observational studies. A common theme across these 

ethods is that they attempt to adjust for differences in important 

re-treatment attributes called covariates that may confound the 

reatment effect estimate. Exam ples of covariates in medical data 

nclude age, height, weight, blood pressure, disease history, and/or 

enetic information. Differences on these covariates between the 

reatment and control samples are referred to as covariate imbal- 

nce. There are many ways to measure imbalance based on the 

ype of the covariates. For example, for a continuous covariate, the 

ifference in mean value between treatment and control samples 

s referred to as mean imbalance. For a nominal covariate with a 

iscrete set of values, or levels, the difference in number or propor- 

ion of treatment and control units at each level, summed across 

ll levels, provides another imbalance measure. We focus here on 

 particular goal for adjustment with nominal covariates called the 

in-imbalance problem. The min-imbalance problem is trivial for a 

ingle covariate and NP-hard for three or more covariates, as dis- 

ussed next. For the case of two covariates, we introduce and an- 
rk flow methods for the minimum covariate imbalance problem, 
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lyze several network flow algorithms that solve the problem in 

olynomial time. 

Let the sizes of the treatment and control samples be n and n ′ ,
espectively, and let P be the number of covariates to be balanced. 

ach covariate p partitions the treatment and control samples into 

 p levels each. Let the levels of the treatment sample under co- 

ariate p = 1 , . . . , P be L p, 1 , L p, 2 , . . . , L p,k p of sizes � p, 1 , � p, 2 , . . . , � p,k p ,

nd let the levels of the control sample under covariate p be 

 
′ 
p, 1 

, L ′ 
p, 2 

, . . . , L ′ 
p,k p 

of sizes � ′ 
p, 1 

, � ′ 
p, 2 

, . . . , � ′ 
p,k p 

. The min-imbalance

roblem is to find a subset of the control sample of size n , called

he selection and denoted by S, such that the numbers of units at 

ach level in the treatment sample and the selection are as close 

s possible: 

min-imbalance) min 

P ∑ 

p=1 

k p ∑ 

i =1 

∣∣∣∣S ∩ L ′ p,i 
∣∣ − � p,i 

∣∣ s.t. | S| = n. 

In the case of a single covariate, P = 1 , the solution to the min-

mbalance problem is trivial: for any level i , if � 1 ,i ≤ � ′ 
1 ,i 
, then the

ptimal selection takes any � 1 ,i control units from level i ; other- 

ise, the optimal selection takes all � ′ 
1 ,i 

control units from level i . 

fter this, take enough remaining control units from any level to 

each a selection size of n . Let � ′′ 
1 ,i 

denote the number of control

nits in the selection at level i . Then the value of the objective 

unction corresponding to this selection is 
∑ k 1 

i =1 

∣∣� ′′ 
1 ,i 

− � 1 ,i 

∣∣, which 

s the optimal value for the single covariate min-imbalance prob- 

em. 

For the min-imbalance problem with multiple covariates, 

ennett, Vielma, & Zubizarreta (2020) presented a mixed integer 

rogramming (MIP) formulation and showed that the correspond- 

ng linear programming (LP) relaxation yields an integer solution 

hen P ≤ 2 . For P = 3 they presented an example where the LP

elaxation’s solution is not integral and noted that the problem is 

P-hard (proofs can be found in Hochbaum & Rao, 2020; Sauppe, 

015 , and Appendix A). 

.1. Additional imbalance problems 

The min-imbalance problem with one covariate occurs in the 

ontext of the near-fine balance matching procedure of Yang et al. 

2012) . In near-fine balance, the goal is to find an optimal match- 

ng of treatment units to control units subject to the constraint 

hat imbalance on a nominal covariate is as small as possible (see 

ection 1.3 for more details). This problem can be solved using a 

wo-stage process that first determines the minimum imbalance 

nd then seeks an optimal matching (based on a distance measure 

etween treatment and control units) that meets the imbalance re- 

uirement. 

We consider a general formulation of the near-fine balance 

roblem involving multiple covariates where each treatment unit 

eeds to be matched to κ control units, where κ is an integer that 

atisfies 1 ≤ κ ≤ n ′ 
n . We refer to this problem here as κ-Matching- 

alance (MB). In the first stage of MB, the goal is to find a selection

of size κn , that solves the min- κ-imbalance problem defined as: 

min- κ-imbalance) min 

P ∑ 

p=1 

k p ∑ 

i =1 

∣∣∣∣S ∩ L ′ p,i 
∣∣ − κ� p,i 

∣∣ s.t. | S| = κn. 

n the second stage of MB, among all selections of control units 

hat attain the minimum κ-imbalance, one chooses the selection 

hat minimizes the distances from matching each treatment unit 

o exactly κ selected control units. Yang et al. (2012) studied the 

B problem for a single covariate and proposed two network flow 

lgorithms. There is no prior work for the MB problem with two 

r more covariates, even in the first stage. 
2 
The min-imbalance problem can also be extended to situations 

n which the selection size q need not equal the size of the treat- 

ent sample. This gives rise to the min-proportional imbalance 

roblem defined as: 

min-proportional imbalance) 

min 

P ∑ 

p=1 

k p ∑ 

i =1 

∣∣∣∣∣
∣∣S ∩ L ′ 

p,i 

∣∣
q 

− � p,i 

n 

∣∣∣∣∣ s.t. | S| = q. 

ith q = n , min-proportional imbalance is equivalent to min- 

mbalance with objective scaled by 1 /n ; with q = κn for some 

nteger κ , min-proportional imbalance is equivalent to min- κ- 
mbalance with objective scaled by 1 / (κn ) . 

.2. Contributions of paper 

Our main results here are efficient algorithms for the min- 

mbalance, min- κ-imbalance, and min-proportional imbalance 

roblems with two covariates. 

For the min-imbalance problem with two covariates, we 

resent an integer programming formulation related to that in 

ennett et al. (2020) and show that the constraint matrix is to- 

ally unimodular. This implies that the linear programming relax- 

tion to the problem has integer extreme points, and in particular 

hat its optimal solution is integral. We then show that the min- 

mbalance problem with two covariates can be solved with special- 

zed graph algorithms for network flow problems, which is more 

fficient than solving via linear programming. Specifically, we show 

ow to formulate this problem as a minimum cost network flow 

roblem and solve it in O (n · (n ′ + n log n )) steps. We also provide

 more efficient maximum flow formulation that can be solved in 

 (n ′ 3 / 2 log 2 n ) steps. These two methods can also be applied to the 

in-imbalance problem with a selection size q with q � = n (see Ap- 

endix B). 

For the min-proportional imbalance problem with two covari- 

tes and a selection size q with q � = n , we show a minimum cost

etwork flow formulation that can be solved in O (q · (n ′ + n log n ))

teps (an alternate minimum cost network flow formulation was 

rovided in the unpublished thesis of Sauppe (2015) in the context 

f the BOSS framework discussed in Section 1.3 ). 

We also show (in Appendix C) that the min- κ-imbalance prob- 

em is equivalent to the min-imbalance problem (for any number 

f covariates), and therefore an optimal solution to a correspond- 

ng min-imbalance problem provides an optimal solution to the 

in- κ-imbalance problem. As such, the first stage of the MB prob- 

em with two covariates can be solved with any of the algorithms 

hown here. We also observe that, for any number of covariates, 

f the optimal solutions to the first stage problem of minimizing 

he κ-imbalance have a particular form (see Appendix C for de- 

ails), then an optimal solution to the second stage, and therefore 

o the MB problem itself, can be obtained by solving a network 

ow problem. This implies that, under certain conditions, the MB 

roblem with two covariates can be solved efficiently with net- 

ork flow techniques. 

Lastly, we provide a proof (in Appendix A), similar to the proof 

n Sauppe (2015) and presented independently in the arXiv paper 

f Hochbaum & Rao (2020) , that the min-imbalance problem is NP- 

ard for three or more covariates. 

Demonstrating how to solve these problems efficiently with 

wo covariates sheds important light on their structure. Addition- 

lly, knowing that the problems are NP-hard with 3 or more co- 

ariates justifies the use of implicit enumeration techniques and/or 

euristics for solving them in practice. It also opens up directions 

or future work in solving these NP-hard problems by using two- 

ovariate subproblems in various ways (e.g., for bounds in branch- 

nd-bound). 
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.3. Related work 

Matching methods ( Stuart, 2010 ) have been widely used to es- 

imate treatment effects within observational studies. These meth- 

ds attempt to reduce covariate imbalance by pairing each unit in 

he treatment sample with a similar unit in the control sample, 

here similarity is defined using a function of the units’ covari- 

te values. The treatment effect is then estimated as the average 

ifference in outcomes across all matched pairs, where unmatched 

nits from the control sample are ignored. If the matched pairs 

ave identical values for all covariates that impact the outcomes 

i.e., they are exactly matched), then the associated treatment ef- 

ect estimate will be unbiased. 

In practice, exactly matched pairs often do not exist in the 

vailable data. Rosenbaum (1989) and Rosenbaum et al. (2007) de- 

eloped a concept known as fine balance . In fine balance, the dis- 

ances between units are computed using all but one nominal co- 

ariate. The goal is to find a minimum-distance matching subject 

o the constraint that the number of matched control units equals 

he number (or proportion) of treatment units at each level of the 

ominal covariate. Rosenbaum (1989) gave a minimum cost net- 

ork flow formulation for the fine balance problem; we show in 

ppendix C that fine balance is a special case of κ-matching bal- 

nce so it can also be solved with the method presented there. 

It is not always feasible to satisfy the fine balance requirement. 

everal papers considered the goal of minimizing the violation of 

his requirement, which we refer to as (covariate) imbalance . Yang 

t al. (2012) proposed near-fine balance , which considers finding an 

ptimal matching between the treatment sample and a subset of 

he control sample where the subset minimizes an imbalance mea- 

ure on a single nominal covariate. Zubizarreta (2012) extended 

ear-fine balance to multiple covariates which could be nominal or 

uantitative. 

Nikolaev, Jacobson, Cho, Sauppe, & Sewell (2013) sought to ad- 

ress the difficulties of finding exactly matched pairs by eliminat- 

ng matching entirely and instead focusing on covariate balance as 

he measure of quality. In the Balance Optimization Subset Selec- 

ion (BOSS) framework, the goal is to identify a subset of the con- 

rol sample that minimizes a covariate imbalance measure with 

espect to the treatment sample. The choice of imbalance mea- 

ure used by BOSS is flexible and can accommodate nominal and 

uantitative covariates as well as covariate interactions. The min- 

mbalance and min-proportional imbalance problems are special 

ases of BOSS; Bennett et al. (2020) examined the min-imbalance 

roblem using integer and linear programming. Computational ex- 

eriments by Nikolaev et al. (2013) , Sauppe, Jacobson, & Sewell 

2014) , and Sauppe & Jacobson (2017) show the value of using co- 

ariate balance as a primary objective in observational studies. 

Sauppe et al. (2014) combined covariate balance and matching 

nto the balanced matching problem which seeks a matching that 

airs each treatment unit with one or more control units and min- 

mizes an objective function consisting of a linear combination of 

he matched pair distances and a covariate imbalance measure. 

or a particular imbalance measure defined on nominal covari- 

tes, Sauppe et al. provided a mixed integer programming (MIP) 

odel and proved that the problem can be solved in polynomial 

ime through network flow techniques if balance is sought on a 

ingle covariate. In addition, they proved that the problem is NP- 

ard if balance is sought on two or more covariates. The special 

ase of balanced matching where the objective uses only the im- 

alance component and omits the matching distances reduces to 

OSS; Sauppe et al. noted that the resulting problem is solvable in 

olynomial time for two covariates but NP-hard for three or more 

ovariates. These remarks applied only for selection sizes that are 

nteger multiple of n . The unpublished thesis of Sauppe (2015) pro- 

ides proofs of these results for any selection size. 
3 
.4. Overview of paper 

Section 2 provides the notation used here. In Section 3 we an- 

lyze an integer programming formulation of the min-imbalance 

roblem with two covariates. We then present and analyze a 

inimum cost network flow formulation for this problem in 

ection 4 and a more efficient maximum-flow formulation in 

ection 5 . In Section 6 we show how to solve the min-imbalance 

nd min-proportional imbalance problems with two covariates and 

 selection size q with q � = n . Concluding remarks are presented 

n Section 7 , and supplemental results are provided in the appen- 

ices. 

. Preliminaries and notation 

The goal of the min-imbalance problem is to identify a subset of 

he control sample, called the selection, such that the numbers of 

reatment units and selected control units in each level of each co- 

ariate are as close as possible. For a selection S of control units we 

efine the discrepancy at level i under covariate p as dis (S, p, i ) =
S ∩ L ′ 

p,i 

∣∣∣ − � p,i . The discrepancy of a level can be positive or neg- 

tive. If the discrepancy is positive we refer to it as excess which 

s defined as e p,i (S) = max { 0 , dis (S, p, i ) } , and if negative, we refer

o it as deficit d p,i (S) = max { 0 , −dis (S, p, i ) } . With this notation the

mbalance of a selection S is IM(S) = 

∑ P 
p=1 

∑ k p 
i =1 

(
e p,i (S) + d p,i (S) 

)
, 

hich is identical to 
∑ P 

p=1 

∑ k p 
i =1 

|| S ∩ L ′ 
p,i 

| − � p,i | . For this imbalance

easure, if any covariate p has two levels i and j with i � = j and 

 p,i = � p, j = 0 , then we can merge levels i and j without impacting

mbalance. As such, we assume that the number of levels k p for 

ny covariate p is at most n + 1 . 

We now present the integer programming formulation that was 

iven by Bennett et al. (2020) for the min-imbalance problem. That 

nteger program involves two sets of decision variables: for each 

j = 1 , . . . , n ′ , the binary variable z j is equal to 1 if control unit j is
n the selection S, and 0 otherwise; and for each p = 1 , . . . , P , and

 = 1 , . . . , k p , the variable y p,i = | dis (S, p, i ) | = || S ∩ L ′ 
p,i 

| − � p,i | rep-
esents the absolute value of the discrepancy at level i under co- 

ariate p. With these variables the formulation is: 

min 

P ∑ 

p=1 

k p ∑ 

i =1 

y p,i (1a) 

.t. 
∑ 

j∈ L ′ 
p,i 

z j − � p,i ≤ y p,i p = 1 , . . . , P, i = 1 , . . . , k p (1b) 

� p,i −
∑ 

j∈ L ′ 
p,i 

z j ≤ y p,i p = 1 , . . . , P, i = 1 , . . . , k p (1c) 

n ′ ∑ 

j=1 

z j = n (1d) 

z j ∈ { 0 , 1 } j = 1 , . . . , n ′ . (1e) 

For each pair p, i with p = 1 , . . . , P and i = 1 , . . . , k p , constraints

1b) and (1c) ensure that y p,i assumes the absolute value of the 

ifference between the number of selected level i control units and 

 p,i at an optimal solution. These constraints also ensure that any 

easible y p,i is non-negative and therefore a non-negativity con- 

traint is not required for variable y p,i . Constraint (1d) specifies 

hat the size of the selected subset equals the size of the treat- 

ent sample. 

Bennett et al. (2020) proved that any basic solution of the linear 

rogramming relaxation of (1) is integral for P = 2 . We provide in

ection 3 a stronger result showing that a slightly modified form 
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f  

t∣∣∣
n

s

f formulation (1) has a constraint matrix which is totally unimod- 

lar for P = 2 . This implies that every basic solution is integer, and

urthermore the constraint matrix is that of a minimum cost net- 

ork flow problem. As such, the problem can be solved more effi- 

iently with specialized graph algorithms instead of through linear 

rogramming. 

An optimal solution to formulation (1) specifies for each con- 

rol unit whether or not it is in the selection. We observe however 

hat the output to the min-imbalance problem, for any number 

f covariates, can be presented more compactly in terms of level- 

ntersections . Let K = 

∏ P 
p=1 { 1 , 2 , . . . , k p } . For any (i 1 , i 2 , . . . , i P ) ∈ K,

efine the level-intersection L ′ 
i 1 ,i 2 , ... ,i P 

= L ′ 
1 ,i 1 

∩ L ′ 
2 ,i 2 

∩ . . . ∩ L ′ 
P,i P 

. The 

ollection of level-intersections forms a partition of the control 

ample. The number of non-empty level-intersections is at most 

in 
{
n ′ , ∏ P 

p=1 k p 
}
. So instead of specifying which control units be- 

ong to the selection, it is sufficient to determine the number of se- 

ected control units in each level-intersection because the identity 

f the particular selected control units has no effect on the imbal- 

nce. This allows for reformulating (1) with variables x i 1 ,i 2 , ... ,i P rep- 

esenting the level-intersection sizes for each (i 1 , i 2 , . . . , i P ) ∈ K. To

erive a selection given the level-intersection sizes, one selects any 

 i 1 ,i 2 , ... ,i P 
control units from each level-intersection L ′ 

i 1 ,i 2 , ... ,i P 
, for all 

i 1 , i 2 , . . . , i P ) ∈ K. This idea will be revisited in Section 4 and also

n Appendix C. 

. A modified formulation with a totally unimodular constraint 

atrix for P = 2 

In this section we present an alternate integer programming 

ormulation for the min-imbalance problem with two covariates 

nd show that its constraint matrix is totally unimodular. In this 

ormulation, instead of using variables y p,i , we use variables for 

xcess and deficit. As discussed in Section 2 , 

∣∣∣∣∣∣S ∩ L ′ 
p,i 

∣∣∣ − � p,i 

∣∣∣ = 

 p,i (S) + d p,i (S) for each p and i . We let the variable for excess

or p and i be e p,i and the variable for deficit be d p,i . Note that

 p,i = e p,i + d p,i where both e p,i and d p,i are non-negative variables. 

dditionally, for each p and i , 

∣∣∣S ∩ L ′ 
p,i 

∣∣∣ − � p,i = e p,i − d p,i if and only 

f 

∣∣∣S ∩ L ′ 
p,i 

∣∣∣ + d p,i − e p,i = � p,i . 

In the modified formulation shown below, the constraints 

2b) and (2c) for the two covariates are separated to facilitate 

he identification of the total unimodularity property. Because 

 
′ 
1 , 1 , . . . , L 

′ 
1 ,k 1 

is a partition of the control sample, 
∑ k 1 

i =1 
| S ∩ L ′ 

1 ,i 
| =

 S| . Also, because � 1 , 1 , . . . , � 1 ,k 1 are the sizes of the levels of the
reatment sample for the first covariate, it follows that 

∑ k 1 
i =1 

� 1 ,i = 

 . Therefore, 
∑ k 1 

i =1 

(
e 1 ,i − d 1 ,i 

)
= 

∑ k 1 
i =1 

(| S ∩ L ′ 
1 ,i 

| − � 1 ,i 

)
= | S| − n . So 

pecifying | S| = n is equivalent to constraint (2d) in formulation 

2) given below: 

min 

2 ∑ 

p=1 

k p ∑ 

i =1 

(
e p,i + d p,i 

)
(2a) 

.t. 
∑ 

j∈ L ′ 
1 ,i 

z j + d 1 ,i − e 1 ,i = � 1 ,i i = 1 , . . . , k 1 (2b) 

∑ 

j∈ L ′ 
2 ,i 

z j + d 2 ,i − e 2 ,i = � 2 ,i i = 1 , . . . , k 2 (2c) 

−
k 1 ∑ 

i =1 

d 1 ,i + 

k 1 ∑ 

i =1 

e 1 ,i = 0 (2d) 

e p,i , d p,i ≥ 0 p = 1 , 2 , i = 1 , . . . , k p (2e) 
4 
z j ∈ { 0 , 1 } j = 1 , . . . , n ′ . (2f) 

Similar observations can be used to show that 
∑ k p 

i =1 
e i = 

∑ k p 
i =1 

d i 
or any covariate p, so the objective (2a) can also be written with 

nly the excess variables. 

emma 1. The constraint matrix of the LP relaxation of formulation 

2) is totally unimodular. 

roof. In the constraint matrix of (2) each entry is 0, 1 or −1 . Con-

ider the matrix resulting by multiplying the rows of constraint 

2c) by −1 . Each column in this new matrix has at most one 1

nd at most one −1 : 

1. Both { L ′ 1 , 1 , . . . , L ′ 1 ,k 1 } and { L ′ 2 , 1 , . . . , L ′ 2 ,k 2 } are partitions of the
control sample, so L ′ 1 , 1 , . . . , L ′ 1 ,k 1 are mutually disjoint as are 

L ′ 
2 , 1 

, . . . , L ′ 
2 ,k 2 

. The column of each z j has exactly one 1 in rows

corresponding to (2b) , and one −1 (after multiplication) in rows 

corresponding to (2c) . 

2. For each i , the column of d 1 ,i has exactly one 1 in rows corre-

sponding to (2b) and exactly one −1 in rows corresponding to 

(2d) ; the column of e 1 ,i has exactly one −1 in rows correspond- 

ing to (2b) and exactly one 1 in rows corresponding to (2d) . 

3. For each i , the column of d 2 ,i has exactly one non-zero, 1 or 

−1 , entry in rows corresponding to (2c) ; the column of e 2 ,i has

exactly one non-zero, 1 or −1 , entry in rows corresponding to 

(2c) . 

Hence, by a well-known theorem (Theorem 7 in Appendix D) 

his new matrix is totally unimodular. Multiplying some rows of 

 totally unimodular matrix by −1 preserves total unimodularity. 

herefore, the constraint matrix of the LP relaxation of (2) is also 

otally unimodular. �

Formulation (2) is also a minimum cost network flow (MCNF) 

ormulation (see Appendix D for a generic formulation of MCNF). 

 generic MCNF formulation has exactly one 1 and one −1 in each 

olumn of the constraint matrix. To make formulation (2) have this 

tructure, we multiply all coefficients in constraints (2c) by −1 and 

dd a redundant constraint 
∑ k 2 

i =1 
d 2 ,i −

∑ k 2 
i =1 

e 2 ,i = 0 . In the next 

ection, we streamline this network flow formulation. 

. Network flow formulation for P = 2 

Here we use the level-intersection sizes as variables, x i 1 ,i 2 
or i 1 = 1 , . . . , k 1 , i 2 = 1 , . . . , k 2 . These variables can also be writ-

en as x i 1 ,i 2 = 

∑ 

j∈ L ′ 
1 ,i 1 

∩ L ′ 
2 ,i 2 

z j , with upper bounds given by u i 1 ,i 2 = 

L ′ 
1 ,i 1 

∩ L ′ 
2 ,i 2 

∣∣∣. With these decision variables we get the following 

etwork flow formulation: 

min 

2 ∑ 

p=1 

k p ∑ 

i =1 

(
e p,i + d p,i 

)
(3a) 

.t. 

k 2 ∑ 

i 2 =1 

x i 1 ,i 2 + d 1 ,i 1 − e 1 ,i 1 = � 1 ,i 1 i 1 = 1 , . . . , k 1 (3b) 

−
k 1 ∑ 

i 1 =1 

x i 1 ,i 2 − d 2 ,i 2 + e 2 ,i 2 = −� 2 ,i 2 i 2 = 1 , . . . , k 2 (3c) 

−
k 1 ∑ 

i 1 =1 

d 1 ,i 1 + 

k 1 ∑ 

i 1 =1 

e 1 ,i 1 = 0 (3d) 
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Fig. 1. MCNF graph corresponding to formulation (3) . Arc labels have the form (cost, upper bound), and non-zero supplies and demands are displayed next to each node. 
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Fig. 2. Maximum flow graph. Arc labels indicate upper bounds. 
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k 2 ∑ 

i 2 =1 

d 2 ,i 2 −
k 2 ∑ 

i 2 =1 

e 2 ,i 2 = 0 (3e) 

e p,i , d p,i ≥ 0 p = 1 , 2 , i = 1 , . . . , k p (3f) 

0 ≤ x i 1 ,i 2 ≤ u i 1 ,i 2 
i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(3g) 

Formulation (3) is a minimum cost network flow problem. The 

orresponding network is shown in Fig. 1 , where all capacity lower 

ounds are 0, and each arc has a cost per unit flow and upper

ound associated with it. Nodes of type (1 , i 1 ) each have supply

f � 1 ,i 1 . Nodes of type (2 , i 2 ) each has demand of � 2 ,i 2 . For each i 1 
nd i 2 , the flow on the arc between node (1 , i 1 ) and node (2 , i 2 )

epresents variable x i 1 ,i 2 . The arc from node 1 to node (1 , i 1 ) rep-

esents the excess e 1 ,i 1 . The arc to node 1 from any node (1 , i 1 )

epresents the deficit d 1 ,i 1 . The arc from node 2 to any node (2 , i 2 )

epresents the deficit d 2 ,i 2 . The arc to node 2 from any node (2 , i 2 )

epresents the excess e 2 ,i 2 . The per unit cost is 1 for arcs be-

ween node 1 or 2 and any node in { (1 , 1) , (1 , 2) , . . . , (1 , k 1 ) } ∪
 (2 , 1) , (2 , 2) , . . . , (2 , k 2 ) } ; all other arcs have cost 0. It is easy to
erify that constraints (3b) correspond to flow balance at nodes 

1 , i 1 ) for all i 1 , constraints (3c) correspond to flow balance at

odes (2 , i 2 ) for all i 2 . Constraint (3d) corresponds to the flow bal-

nce at node 1, and constraint (3e) corresponds to flow balance at 

ode 2. A small numerical example can be found in Appendix E. 

Note that (3a) can also be written with only the excesses such as 

n formulation (5) .) 

heorem 1. The 2-covariate min-imbalance problem with a selection 

ize of n is solved as a minimum cost network flow problem in O (n ·
n ′ + n log n )) time. 

roof. We choose the algorithm of successive shortest paths that is 

articularly efficient for a MCNF with “small” total supply to solve 

he network flow problem of the 2-covariate min-imbalance prob- 

em. 

The successive shortest path algorithm iteratively selects a node 

 with excess supply (supply not yet sent to some demand node) 

nd a node t with unfulfilled demand and sends flow from s to t

long a shortest path in the residual network ( Busacker & Gowen, 

961; Iri, 1960; Jewell, 1958 ). The algorithm terminates when the 

ow satisfies all the flow balance constraints. At each iteration, the 

umber of remaining units of supply to be sent is reduced by at 
5 
east one unit, so the number of iterations is bounded by the total 

mount of supply. For our problem the total supply is O (n ) . 

At each iteration, the shortest path can be solved with Dijkstra’s 

lgorithm of complexity O (| A | + | V | log | V | ) , where | V | is the num-

er of nodes and | A | is the number of arcs ( Edmonds & Karp, 1972;

omizawa, 1971 ). In our formulation, | V | is O ( k 1 + k 2 ) , which is at

ost O (n ) . Because the number of nonempty sets L ′ 1 ,i 1 ∩ L ′ 2 ,i 2 is
t most min { n ′ , k 1 k 2 } , the number of arcs | A | is O ( min { n ′ , k 1 k 2 } ) .
ence, the total running time of applying the successive short- 

st path algorithm with node potentials on our formulation is 

 (n · (n ′ + n log n )) . �

. Maximum flow formulation for P = 2 

Here we show a maximum flow (max-flow) formulation (see 

ppendix D for a generic formulation of max-flow problem) for 

he min-imbalance problem with 2 covariates and a selection size 

f q = n . Unlike the previous formulations, the maximum flow so- 

ution requires further manipulation in order to derive an opti- 

al solution to the min-imbalance problem with 2 covariates. That 

ax-flow graph is illustrated in Fig. 2 (see Appendix E for an ex- 

mple). The source node s can send at most � 1 ,i 1 units of flow to 

ode (1 , i 1 ) for each i 1 = 1 , . . . , k 1 , the sink node can get at most

 2 ,i 2 
units of flow from node (2 , i 2 ) for each i 2 = 1 , . . . , k 2 , and

here can be a flow from node (1 , i 1 ) to node (2 , i 2 ) with amount

ounded by u i 1 ,i 2 , for i 1 = 1 , . . . , k 1 and i 2 = 1 , . . . , k 2 . 

Let the maximum flow value for the max-flow problem pre- 

ented in Fig. 2 be denoted by f ∗, and let x ∗ be the optimal

ow vector, with x ∗
i 1 ,i 2 

denoting the flow amount between node 

1 , i 1 ) and node (2 , i 2 ) . It is obvious that 
∑ k 1 

i =1 

∑ k 2 
i =1 

x ∗
i ,i 

= f ∗ ≤

1 2 1 2 
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 k 1 
i 1 =1 

� 1 ,i 1 = n . That means an initial selection S ′ generated by se- 
ecting the prescribed number of control units as in the optimal 

ax-flow solution, i.e., selecting x ∗
i 1 ,i 2 

control units from L ′ 1 ,i 1 ∩ 

 
′ 
2 ,i 2 

is of size f ∗. In order to get a feasible solution for the min-

mbalance problem it is required to select n − f ∗ additional control 

nits. The selection S ′ has no positive excess, only non-negative 
eficits with respect to the levels of both covariates. This is be- 

ause 
∑ k 2 

i 2 =1 
x ∗
i 1 ,i 2 

≤ � 1 ,i 1 due to the upper bound of the arc from s 

o (1 , i 1 ) for each i 1 , and 
∑ k 1 

i 1 =1 
x ∗
i 1 ,i 2 

≤ � 2 ,i 2 due to the upper bound

f the arc from (2 , i 2 ) to t for each i 2 . 

To recover an optimal solution for the min-imbalance problem 

rom the initial set S ′ , we add up to n − f ∗ unselected control units,

ne at a time, each corresponding to a level with positive deficit 

nder either covariate 1 or 2. This process is repeated until either 

 − f ∗ such control units are found, or until no such control unit 

xists. In the latter case, to complete the size of the selection, any 

andomly selected control units are added. Algorithm 1 is a formal 

lgorithm 1 . 

Initialization step: Select x ∗
i 1 ,i 2 

control units from L ′ 1 ,i 1 ∩ L ′ 2 ,i 2 in 
set S ′ . 
while | S ′ | < n do 

if there exists a control unit j / ∈ S ′ whose covariate 1 level 

is i 1 and covariate 2 level is i 2 , such that | S ′ ∩ L ′ 1 ,i 1 | < � 1 ,i 1 or| S ′ ∩ L ′ 2 ,i 2 | < � 2 ,i 2 then , 

S ′ ← S ′ ∪ { j} . 
else 

Let S ′′ = S ′ and let S + be any n − | S ′ | control units / ∈ S ′ . 
Set S ′ ← S ′ ∪ S + . 

Output S ′ . 

tatement of this process of recovering an optimal solution of the 

in-imbalance problem from the initial selection S ′ . 
To show that Algorithm 1 provides an optimal solution to the 

in-imbalance problem, we distinguish two cases of Algorithm 1 : 

1) S + = ∅ and (2) | S + | ≥ 1 . In the first case, there is, at each it-

ration, at least one control unit that belongs to some level with 

ositive deficit. In Theorem 2 we prove that the output S ′ of 
lgorithm 1 is an optimal solution in this case. 

heorem 2. If S + = ∅ then the output selection S ′ of Algorithm 1 is

ptimal for the min-imbalance problem, with an optimal objective 

alue of 2(n − f ∗) . 

roof. First, we show that the total imbalance of the selection 

 
′ is IM(S ′ ) = 2(n − f ∗) . At the initialization step the selection S ′ 
as only deficits for all levels, with total deficit for covariate 1, 
 k 1 
i 1 =1 

(� 1 ,i 1 −
∑ k 2 

i 2 =1 
x i 1 ,i 2 ) = n − f ∗, and total deficit for covariate 2, 

 k 2 
i 2 =1 

(� 2 ,i 2 −
∑ k 1 

i 1 =1 
x i 1 ,i 2 ) = n − f ∗. At each iteration, there is an 

dded control unit, say in L ′ 1 ,i 1 ∩ L ′ 2 ,i 2 , such that either L 
′ 
1 ,i 1 

or

 
′ 
2 ,i 2 

has a positive deficit with respect to S ′ . It is however im-

ossible for both L ′ 1 ,i 1 and L 
′ 
2 ,i 2 

to have a positive deficit with re- 

pect to S ′ since otherwise, there is an s, t-augmenting path, from 

 to node (1 , i 1 ) , to node (2 , i 2 ) , to t , along which the flow can be

ncreased by at least one unit. This is in contradiction to the op- 

imality of the max-flow solution x ∗. As a result, at each iteration 
here a control unit is added, the total deficit is reduced by one 

nit, and the total excess is increased by one unit. Thus, at each 

teration of the if step, the sum of total deficit and excess remains 

he same, namely 2(n − f ∗) . 
Suppose, by contradiction, that there exists a selection S ∗ for 

hich the total imbalance is lower, IM(S ∗) < 2(n − f ∗) . We repeat

he following iterative procedure of removing control units from S ∗

ntil there is no positive excess remaining: while there is a level of 
6 
ither covariate with positive excess with respect to S ∗, we remove 

ne control unit of S ∗ that belongs to this level. Each such itera- 

ion results in the total excess reducing by at least 1 unit and the 

otal deficit increasing by at most 1 unit, and therefore the sum 

f total deficit and excess does not increase. So when this iterative 

rocedure ends, the total excess is zero and the total deficit is at 

ost IM(S ∗) . Let x i 1 ,i 2 be the number of control units remaining 

n S ∗ ∩ L ′ 1 ,i 1 ∩ L ′ 2 ,i 2 after this excess removing procedure. Because 

here is no positive excess, x is a feasible solution for the max-flow 

roblem with the flow between node (1 , i 1 ) and node (2 , i 2 ) equal

o x i 1 ,i 2 . The sum of deficits associated with this remaining set is 

 − ∑ k 1 
i 1 =1 

∑ k 2 
i 2 =1 

x i 1 ,i 2 for covariate 1 and n −
∑ k 1 

i 1 =1 

∑ k 2 
i 2 =1 

x i 1 ,i 2 for 

ovariate 2, for a total of 2(n − ∑ k 1 
i 1 =1 

∑ k 2 
i 2 =1 

x i 1 ,i 2 ) , which is at most 

M(S ∗) . Therefore, the total flow value, 
∑ k 1 

i 1 =1 

∑ k 2 
i 2 =1 

x i 1 ,i 2 , satisfies 

hat it is at least n − IM(S ∗) 
2 . Because n − IM(S ∗) 

2 > n − (n − f ∗) = f ∗,
t follows that the value of the feasible flow induced by the set S ∗

s greater than the maximum flow value f ∗, which contradicts the 

ptimality of f ∗. �

We now address the second case where | S + | ≥ 1 and | S ′′ | < n .

n this case, the total imbalance of S ′′ is, from the arguments in the 

roof of Theorem 2 , IM(S ′′ ) = 2(n − f ∗) . Each one of the | S + | con-
rol units selected adds 1 unit of excess to each covariate, result- 

ng in the addition of 2 units of excess to the imbalance. Therefore, 

he total imbalance of the output solution is 2(n − f ∗) + 2 | S + | . We

ext show what the value of | S + | is, and then demonstrate that 

ny feasible selection to the min-imbalance problem has total im- 

alance of at least 2(n − f ∗) + 2 | S + | . This will prove that the out-

ut of Algorithm 1 , S ′ , is an optimal solution to the min-imbalance

roblem. 

It will be useful to consider an equivalent form of Algorithm 1 . 

or each level i of covariate p that has | S ′ ∩ L ′ p,i | < � p,i , we add

he largest number possible of available control units in L ′ p,i so 
ong as the total does not exceed n . This number is min { � p,i −
 S ′ ∩ L ′ p,i | , � ′ p,i − | S ′ ∩ L ′ p,i |} . Let �̄ p,i = min { � p,i , � ′ p,i } , then for each
p, i that has | S ′ ∩ L ′ p,i | < � p,i we add �̄ p,i − | S ′ ∩ L ′ p,i | previously un-
elected control units to S ′ . The outcome of this equivalent proce- 

ure is exactly the same as that of Algorithm 1 . In the case that

 S + | ≥ 1 there is an insufficient number of control units to add to

 
′ after the largest possible number has been added for all levels. 

herefore, at the end of this process, the if step returns that an- 

ther unselected control unit does not exist, and the total number 

f control units of S ′′ , for each level i of covariate p, is �̄ p,i . 

emma 2. If | S + | ≥ 1 (and | S ′′ | = n − | S + | < n ) then | S + | = n −
 ̄� 1 + �̄ 2 − f ∗) where �̄ 1 = 

∑ k 1 
i 1 =1 

�̄ 1 ,i 1 and �̄ 2 = 

∑ k 2 
i 2 =1 

�̄ 2 ,i 2 . 

roof. At the initialization step of Algorithm 1 , | S ′ | = f ∗ and the

otal deficit is 2(n − f ∗) . Each time a control unit is added to S ′ 
n the if step, the total deficit is decreased by 1 unit. So we can

erive the value of | S ′′ | when the algorithm terminates if we know 

he total deficit when the algorithm terminates. Note that the total 

xcess may change, but we only consider here the deficit. 

From the discussion above, the total number of control units 

f S ′′ , for each level i of covariate p, is �̄ p,i . We denote �̄ 1 =
 k 1 
i 1 =1 

�̄ 1 ,i 1 , and �̄ 2 = 

∑ k 2 
i 2 =1 

�̄ 2 ,i 2 . Because the sum 

∑ k 1 
i 1 =1 

� 1 ,i 1 = n 

nd 
∑ k 2 

i 2 =1 
� 2 ,i 2 = n , the sum of deficits of set S ′′ under covariate 

 is 
∑ k 1 

i 1 =1 
� 1 ,i 1 − �̄ 1 ,i 1 = n − �̄ 1 , and the sum of deficits under co- 

ariate 2 equals 
∑ k 2 

i 2 =1 
� 2 ,i 2 − �̄ 2 ,i 2 = n − �̄ 2 . It follows that the sum 

f deficits of S ′′ is 2 n − �̄ 1 − �̄ 2 . 

Because the initial set S ′ that has total deficit of 2(n − f ∗) has
ts deficit reduced through Algorithm 1 to 2 n − �̄ 1 − �̄ 2 in the set 

 
′′ , the additional number of control units in S ′′ that were added to 
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he initial f ∗ control units is 2(n − f ∗) − (2 n − �̄ 1 − �̄ 2 ) = �̄ 1 + �̄ 2 −
 f ∗. Therefore, the size of S ′′ is f ∗ + ( ̄� 1 + �̄ 2 − 2 f ∗) = �̄ 1 + �̄ 2 − f ∗.
his number is less than n and the size of S + then satisfies | S + | =
 − ( ̄� 1 + �̄ 2 − f ∗) . �

orollary 1. If | S + | ≥ 1 when Algorithm 1 terminates, the total im- 

alance of the output solution S ′ is IM(S ′ ) = 4 n − 2 ̄� 1 − 2 ̄� 2 . 

roof. The imbalance of S ′′ , as in the proof of Theorem 2 , is equal

o 2(n − f ∗) . Because each control unit in S + adds two units to the

mbalance, the total imbalance of the output solution S ′ is IM(S ′ ) = 

(n − f ∗) + 2(n − ( ̄� 1 + �̄ 2 − f ∗)) , which is equal to 4 n − 2 ̄� 1 − 2 ̄� 2 ,

s stated. �

Next, we prove that this is the minimum total imbalance 

chievable. 

heorem 3. For any selection of size n , the total imbalance must be 

reater or equal to 4 n − 2 ̄� 1 − 2 ̄� 2 . 

roof. For the optimal selection S ∗ of size n , let IM(S ∗) be the to-
al imbalance of S ∗. We first classify the control units in S ∗ into

hree types, S 1 , S 2 , and S 3 , that form a partition of S ∗, using the 3-
ype Classification Procedure shown in Algorithm 2 . In the pro- 

lgorithm 2 . 

procedure 3-type Classification 

/* Initialize */ 
S ← S ∗, S 1 ← ∅ , S 2 ← ∅ , S 3 ← ∅ 
Let dis (p, i ) ← | S ∩ L ′ p,i | − � p,i for p = 1 , 2 , i = 1 , . . . , k p ; 

/* S 1 selection */ 
while there exists a control unit j in S whose covariate 1 

level is i 1 , covariate 2 level is i 2 , such that dis (1 , i 1 ) > 0 and

dis (2 , i 2 ) > 0 do 

S 1 ← S 1 ∪ { j} , S ← S − { j} 
dis (1 , i 1 ) ← dis (1 , i 1 ) − 1 dis (2 , i 2 ) ← dis (2 , i 2 ) − 1 

/* S 2 selection */ 
while there exists a control unit j in S whose covariate 1 

level is i 1 , covariate 2 level is i 2 , such that dis (1 , i 1 ) > 0 or

dis (2 , i 2 ) > 0 do 

S 2 ← S 2 ∪ { j} , S ← S − { j} 
dis (1 , i 1 ) ← dis (1 , i 1 ) − 1 , dis (2 , i 2 ) ← dis (2 , i 2 ) − 1 

/* S 3 selection */ 
S 3 ← S 

edure we use variable dis (p, i ) to denote the value of dis (S, p, i ) ,

iscrepancy for selection S and level i under covariate p. With 

his notation the excess of the corresponding level is e (S, p, i ) =
ax { 0 , dis (p, i ) } , and the deficit is d(S, p, i ) = max { 0 , −dis (p, i ) } . 
The output S 1 , S 2 , S 3 of the procedure is not unique because it

epends on the order in which control units are picked. However, 

he statements of the theorem hold for any output of the proce- 

ure. Note that in the procedure, whenever a control unit is picked, 

ny dis (p, i ) can only go down. For that reason, once S 1 selection

nds, there will not be another control unit in S for which the dis- 

repancy values of the corresponding levels under the two covari- 

tes are both positive. Furthermore, once the S 1 and S 2 selections 

re done, dis (p, i ) ≤ 0 for each p, i . That means, | S 3 ∩ L ′ p,i | ≤ � p,i for

ll p, i . 

Let the sizes of the three subsets be denoted by s 1 = | S 1 | , s 2 =
 S 2 | , s 3 = | S 3 | . We claim that the total imbalance of the control

nits in S 3 is IM(S ∗) − 2 s 1 . For the S 1 selection part of the pro-

edure, each control unit picked in S 1 reduces the total excess by 

. For each control unit selected in the S 2 selection part of the pro-

edure, the excess is reduced by 1 and the deficit is increased by 1, 

o the total imbalance does not change. Therefore, the total imbal- 

nce of the control units in S is IM(S ∗) − 2 s . On the other hand,
3 1 

7 
he total imbalance of S 3 , which equals the sum of deficits of both 

ovariates (all excesses equal zero as | S 3 ∩ L ′ p,i | ≤ � p,i ), is 2(n − s 3 ) .

hen IM(S ∗) − 2 s 1 = 2(n − s 3 ) , and therefore 

M(S ∗) = 2(n − s 3 ) + 2 s 1 = 2(n − s 3 ) + 2(n − s 2 − s 3 ) 

= 4 n − 2 s 2 − 4 s 3 . 

ere, the second equality comes from the fact that s 1 + s 2 + s 3 = n .

Next, we show that s 2 ≤ ( ̄� 1 − s 3 ) + ( ̄� 2 − s 3 ) . Let the control

nits in S 2 be ordered according to the order they were picked, 

j 1 , j 2 , . . . , j s 2 . We now add these control units to S 3 , in the reverse

rder j s 2 , . . . , j 1 . When each control unit j q is added to S 3 , the

eficit is reduced by exactly 1 unit. Once all the control units from 

 2 are added to S 3 , the deficit at each level of S 2 ∪ S 3 is zero, or

lternatively, dis (S 2 ∪ S 3 , p, i ) = | (S 2 ∪ S 3 ) ∩ L ′ p,i | − � p,i ≥ 0 for each

p, i . 

We now consider the total deficit of S 3 : By the definition of 
¯ 1 and �̄ 2 , the positive deficit of S 3 under covariate 1 is at most 
¯ 1 − s 3 and that the positive deficit of S 3 under covariate 2 is at 

ost �̄ 2 − s 3 . That means the size of S 2 is bounded by the amount 

f this deficit, s 2 ≤ ( ̄� 1 − s 3 ) + ( ̄� 2 − s 3 ) . Then we have 

 2 ≤ ( ̄� 1 − s 3 ) + ( ̄� 2 − s 3 ) ⇔ s 2 + 2 s 3 ≤ �̄ 1 + �̄ 2 

⇔ IM(S ∗) = 4 n − 2 s 2 − 4 s 3 

≥ 4 n − 2 ̄� 1 − 2 ̄� 2 . 

e conclude that the total imbalance IM(S ∗) is at least 4 n − 2 ̄� 1 −
 ̄� 2 . That implies that the selection output of Algorithm 1 , S ′ ,
hich has a total imbalance of 4 n − 2 ̄� 1 − 2 ̄� 2 , is optimal. �

The conclusion from Corollary 1 and Theorem 3 , is that for 

 S + | ≥ 1 when Algorithm 1 terminates, the output solution S ′ is 
n optimal selection to the min-imbalance problem. Together with 

heorem 2 , we have that Algorithm 1 outputs an optimal selection 

or the min-imbalance problem using the max-flow solution to the 

ow problem in Fig. 2 as input. 

heorem 4. The maximum flow formulation of the 2-covariate 

in-imbalance problem with a selection size of n is solved in 

 

(
n ′ · min 

{ 

n 
2 
3 , n ′ 1 2 

} 

· log 2 n 
)

time. 

roof. We choose here the binary blocking flow algorithm of 

oldberg & Rao (1998) for solving the max-flow problem because 

his algorithm depends on the maximum arc capacity which is a 

mall quantity in our formulation. 

The complexity of the binary blocking flow algorithm for a 

raph G = (V, A ) is O (| A | · min {| V | 2 3 , | A | 1 2 } · log | V | 2 | A | log U) where | V |
s number of nodes, | A | is number of arcs, and U is maximum 

rc capacity. As argued earlier for the minimum cost network 

ow formulation, the number of nodes in the network | V | is 
 ( k 1 + k 2 ) , which is no more than O (n ) ; and the number of arcs

s bounded by min { n ′ , k 1 k 2 } . Although u i 1 ,i 2 could be as large

s n ′ , a feasible flow to our maximum flow formulation can 

ot have more than � 1 ,i 1 units of flow on the arc from node 

1 , i 1 ) to node (2 , i 2 ) . Thus the maximum arc capacity U is ef-

ectively O (n ) . The ratio | V | 2 
| A | ≤ (k 1 + k 2 ) 2 

k 1 + k 2 ≤ n . Hence, the running 

ime of applying the binary blocking flow algorithm to our max- 

ow problem is O 

(
n ′ · min 

{ 

n 
2 
3 , n ′ 1 2 

} 

· log 2 n 
)
. The complexity of 

lgorithm 1 is O (n ) as the number of iterations is bounded by n ,

nd each iteration takes O (1) steps. Therefore, the running time 

f solving the min-imbalance problem as a max-flow problem is 

 

(
n ′ · min 

{ 

n 
2 
3 , n ′ 1 2 

} 

· log 2 n 
)
. �
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. Network flow formulations for P = 2 and alternate selection 

ize 

The preceding results apply when the selection S is required 

o have size equal to n , the size of the treatment sample. If the

ize of the selection is required to be some value q � = n , then the

in-imbalance problem with P = 2 covariates can be solved using 

ither the min-cost network flow or maximum flow formulations 

ith appropriate modifications described in Appendix B. 

With q � = n , the min-proportional imbalance objective is more 

ppropriate than min-imbalance for causal inference applications. 

e show here how to solve the min-proportional imbalance prob- 

em with two covariates and selection size q � = n using an alternate 

inimum cost network flow formulation (a variant of this formu- 

ation was provided in Sauppe, 2015 ). For any selection S of size q ,

e define the scaled proportional discrepancy at level i of covariate 

p as spd(S, p, i ) = | S ∩ L ′ 
p,i 

| − q 
n � p,i . As before, the scaled discrepancy

an be positive or negative, leading to excess or deficit, respec- 

ively, and defined as e p,i (S) = max { 0 , spd(S, p, i ) } and d p,i (S) =
ax { 0 , −spd(S, p, i ) } . The min-proportional imbalance objective 

an then be written as 1 q 
∑ P 

p=1 

∑ k p 
i =1 

(
e p,i (S) + d p,i (S) 

)
. We can for- 

ulate the min-proportional imbalance problem as a mixed inte- 

er program using binary variables z j for each control unit and 

on-negative variables e p,i and d p,i for excess and deficit, respec- 

ively, for all p and i : 

min 
1 

q 

P ∑ 

p=1 

k p ∑ 

i =1 

(
e p,i + d p,i 

)
(4a) 

.t. 
∑ 

j∈ L ′ 
p,i 

z j + d p,i − e p,i = 

q 

n 
� p,i p = 1 , . . . , P, i = 1 , . . . , k p 

(4b) 

n ′ ∑ 

j=1 

z j = q (4c) 

e p,i , d p,i ≥ 0 p = 1 , . . . , P, i = 1 , . . . , k p (4d) 

z j ∈ { 0 , 1 } j = 1 , . . . , n ′ . (4e) 

Summing constraints (4b) across all values of i for co- 

ariate 1 and rearranging yields 
∑ n ′ 

j=1 z j = q + 

∑ k 1 
i =1 

(
e 1 ,i − d 1 ,i 

)
. 

his means constraint (4c) can be replaced with the constraint 
 k 1 
i =1 

(
e 1 ,i − d 1 ,i 

)
= 0 . A similar argument can be used to show that 

 k p 
i =1 

e p,i = 

∑ k p 
i =1 

d p,i for any covariate p = 1 , . . . , P . As such, the ob-

ective function can be reformulated to penalize twice the excess 

hile omitting the deficit, which will be useful for further refor- 

ulation. 

In the case of two covariates, we introduce variables x i 1 ,i 2 = 

 

j∈ L ′ 
1 ,i 1 

∩ L ′ 
2 ,i 2 

z j as before. Combining this with the above observa- 

ions and some additional modifications allows formulation (4) to 

e transformed into the following: 

min 
2 

q 

2 ∑ 

p=1 

k p ∑ 

i =1 

e p,i (5a) 

.t. 

k 2 ∑ 

i 2 =1 

x i 1 ,i 2 + d 1 ,i 1 − e 1 ,i 1 = 

q 

n 
� 1 ,i 1 i 1 = 1 , . . . , k 1 (5b) 

−
k 1 ∑ 

i 1 =1 

x i 1 ,i 2 − d 2 ,i 2 + e 2 ,i 2 = − q 

n 
� 2 ,i 2 i 2 = 1 , . . . , k 2 (5c) 
8 
−
k 1 ∑ 

i 1 =1 

d 1 ,i 1 + 

k 1 ∑ 

i 1 =1 

e 1 ,i 1 = 0 (5d) 

k 2 ∑ 

i 2 =1 

d 2 ,i 2 −
k 2 ∑ 

i 2 =1 

e 2 ,i 2 = 0 (5e) 

e p,i , d p,i ≥ 0 p = 1 , 2 , i = 1 , . . . , k p (5f) 

0 ≤ x i 1 ,i 2 ≤ u i 1 ,i 2 
i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(5g) 

x i 1 ,i 2 ∈ Z 

i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(5h) 

In contrast to formulation (3) from Section 4 , formulation 

5) may have non-integral supply and demand values, and so we 

etain integrality constraints (5h) on the variables associated with 

he control unit selection. These constraints can be removed af- 

er some additional modifications. Specifically, we add new non- 

egative variables a p,i , and b p,i along with new constraints a p,i ≤
q 
n � p,i 

⌋
, b p,i ≤ q 

n � p,i −
⌊

q 
n � p,i 

⌋
, and d p,i = 

q 
n � p,i − a p,i − b p,i for all 

p = 1 , 2 and i = 1 , . . . , k p . The last set of these new constraints de-

ompose each deficit variable d p,i into a fixed “forward flow” q 
n � p,i , 

n “integer backward flow” a p,i , and a “fractional backward flow”

 p,i . Because a p,i and b p,i are non-negative, this has the effect of 

mposing an upper bound of q 
n � p,i on d p,i for each p and i . Con- 

traints (5b) and (5c) can be relaxed to d p,i ≤ q 
n � p,i + e p,i , so this

ast set of new constraints does change the feasible region of for- 

ulation (5) . However, this does not impact optimality because 

ny optimal solution will set at least one of d p,i and e p,i to 0. With

hese modifications, the revised formulation is: 

min 
2 

q 

2 ∑ 

p=1 

k p ∑ 

i =1 

e p,i (6a) 

.t. 

( 

k 2 ∑ 

i 2 =1 

x i 1 ,i 2 

) 

−
(
a 1 ,i 1 + b 1 ,i 1 + e 1 ,i 1 

)
= 0 i 1 = 1 , . . . , k 1 (6b) 

(
a 2 ,i 2 + b 2 ,i 2 + e 2 ,i 2 

)
−

( 

k 1 ∑ 

i 1 =1 

x i 1 ,i 2 

) 

= 0 i 2 = 1 , . . . , k 2 (6c) 

k 1 ∑ 

i 1 =1 

(
a 1 ,i 1 + b 1 ,i 1 + e 1 ,i 1 

)
= q (6d) 

−
k 2 ∑ 

i 2 =1 

(
a 2 ,i 2 + b 2 ,i 2 + e 2 ,i 2 

)
= −q (6e) 

a p,i , b p,i , e p,i ≥ 0 p = 1 , 2 , i = 1 , . . . , k p (6f) 

a p,i ≤
⌊ 

q 

n 
� p,i 

⌋ 

p = 1 , 2 , i = 1 , . . . , k p (6g) 

b p,i ≤
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ 

p = 1 , 2 , i = 1 , . . . , k p (6h) 

0 ≤ x i 1 ,i 2 ≤ u i 1 ,i 2 
i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(6i) 

x i 1 ,i 2 ∈ Z 

i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(6j) 
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Fig. 3. MCNF graph for formulation (7) . Arc labels have the form (cost, upper bound), and non-zero supplies and demands are displayed next to each node. Costs displayed 

in the figure omit a 2 /q scaling. 
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Formulation (6) has integer supply and demand values, but 

he upper bound constraints (6h) on the b p,i variables may be 

on-integral. To address this, we raise the capacity on b p,i to 

, which allows us to send an additional 1 −
(
q 
n � p,i −

⌊
q 
n � p,i 

⌋)
nits of flow along this edge, but we also add a cost of 2 

q ·
1 −

(
q 
n � p,i −

⌊
q 
n � p,i 

⌋)]
per unit of flow sent on edge b p,i . This en- 

ures that all demands, supplies, and capacities are integral. Lastly, 

e drop the integrality requirements on the x i 1 ,i 2 variables to get 

he following MCNF formulation: 

min 
2 

q 

2 ∑ 

p=1 

k p ∑ 

i =1 

[ (
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ ))
b p,i + e p,i 

] 
(7a) 

.t. 

( 

k 2 ∑ 

i 2 =1 

x i 1 ,i 2 

) 

−
(
a 1 ,i 1 + b 1 ,i 1 + e 1 ,i 1 

)
= 0 i 1 = 1 , . . . , k 1 (7b) 

(
a 2 ,i 2 + b 2 ,i 2 + e 2 ,i 2 

)
−

( 

k 1 ∑ 

i 1 =1 

x i 1 ,i 2 

) 

= 0 i 2 = 1 , . . . , k 2 (7c) 

k 1 ∑ 

i 1 =1 

(
a 1 ,i 1 + b 1 ,i 1 + e 1 ,i 1 

)
= q (7d) 

−
k 2 ∑ 

i 2 =1 

(
a 2 ,i 2 + b 2 ,i 2 + e 2 ,i 2 

)
= −q (7e) 

a p,i , b p,i , e p,i ≥ 0 
p = 1 , 2 , 
i = 1 , . . . , k p 

(7f) 

a p,i ≤
⌊ 

q 

n 
� p,i 

⌋ 

p = 1 , 2 , 
i = 1 , . . . , k p 

(7g) 

b p,i ≤ 1 
p = 1 , 2 , 
i = 1 , . . . , k p 

(7h) 

0 ≤ x i 1 ,i 2 ≤ u i 1 ,i 2 
i 1 = 1 , . . . , k 1 , 
i 2 = 1 , . . . , k 2 . 

(7i) 

The network associated with formulation (7) is shown in Fig. 3 

see Appendix E for an example). Because all supplies, demands, 
9 
nd capacities are integral, formulation (7) has an integer optimal 

olution. 

heorem 5. Let S (7 ∗) be an integer optimal solution to formulation 

7) . Then the solution S (6) defined as 

 

(6) 
i 1 ,i 2 

= x (7 ∗) 
i 1 ,i 2 

b (6) 
p,i 

= b (7 ∗) 
p,i 

−
[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
b (7 ∗) 
p,i 

a (6) 
p,i 

= a (7 ∗) 
p,i 

e (6) 
p,i 

= e (7 ∗) 
p,i 

+ 

[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
b (7 ∗) 
p,i 

or all respective indices is optimal for formulation (6) . 

roof. By construction, S (6) satisfies the flow balance constraints 

6b) –(6e) as well as the bounds constraints on all variables a p,i , 

 p,i , and x i 1 ,i 2 . Additionally, 

 

(6) 
p,i 

= b (7 ∗) 
p,i 

−
[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
b (7 ∗) 
p,i 

= 

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )
b (7 ∗) 
p,i 

, 

o it follows that 0 ≤ b (6) 
p,i 

≤ q 
n � p,i −

⌊
q 
n � p,i 

⌋
. Hence, S (6) is feasible 

or formulation (6) . We also have 

2 

q 

2 ∑ 

p=1 

k p ∑ 

i =1 

[ (
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ ))
b (7 ∗) 
p,i 

+ e (7 ∗) 
p,i 

] 
= 

2 

q 

2 ∑ 

p=1 

k p ∑ 

i =1 

e (6) 
p,i 

, 

o the costs of S (7 ∗) and S (6) in their respective formulations are 

qual. 

Suppose that S (6) is not optimal for formulation (6) , and 

et S (6 ∗) be an optimal solution with 2 
q 

∑ 2 
p=1 

∑ k p 
i =1 

e (6 ∗) 
p,i 

< 

2 
q 

∑ 2 
p=1 

∑ k p 
i =1 

e (6) 
p,i 

. We will use S (6 ∗) to construct a solution S (7) for 

ormulation (7) . Before doing so, we make the following observa- 

ion for any p = 1 , 2 and i = 1 , . . . , k p : the constraints (6b), (6c) ,

nd (6j) imply that the quantity a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

+ e (6 ∗) 
p,i 

must be an in-

eger. Then S (7) is constructed as follows. Let x (7) 
i 1 ,i 2 

= x (6 ∗) 
i 1 ,i 2 

for all 

 1 = 1 , . . . , k 1 and i 2 = 1 , . . . , k 2 . The variables a 
(7) 
p,i 

, b (7) 
p,i 

, and e (7) 
p,i 

for

ach p = 1 , 2 and i = 1 , . . . , k p are determined based on two cases. 

Case 1: e (6 ∗) 
p,i 

= 0 . Let a (7) 
p,i 

= 

⌊ 

a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

⌋ 

, b (7) 
p,i 

= 

a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

)
−

⌊ 

a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

⌋ 

, and e (7) 
p,i 

= e (6 ∗) 
p,i 

. By construc- 

ion, these values satisfy the flow balance constraints (7b) –(7e) . 

rom constraints (6g) and (6h) , we have 

 

(6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

≤
⌊ 

q 

n 
� p,i 

⌋ 

+ 

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )
= 

q 

n 
� p,i , 
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o a (7) 
p,i 

satisfies constraint (7g) . Combining e (6 ∗) 
p,i 

= 0 with the ear- 

ier observation that a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

+ e (6 ∗) 
p,i 

is an integer implies that 

 
(6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

is an integer, which means that b (7 ∗) 
p,i 

= 0 and hence it

atisfies constraint (7h) . We also have 

 

(6 ∗) 
p,i 

= e (7) 
p,i 

= 

[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
b (7) 
p,i 

+ e (7) 
p i 

, 

o S (6 ∗) and S (7) have equal flow costs on the edges a p,i , b p,i , and

 p,i in their respective formulations. 

Case 2: e (6 ∗) 
p,i 

> 0 . Let a (7) 
p,i 

= a (6 ∗) 
p,i 

, b (7) 
p,i 

= b (6 ∗) 
p,i 

+
1 −

(
q 
n � p,i −

⌊
q 
n � p,i 

⌋)]
, and e (7) 

p,i 
= e (6 ∗) 

p,i 
−

[
1 −

(
q 
n � p,i −

⌊
q 
n � p,i 

⌋)]
. 

y construction, these values satisfy the flow balance con- 

traints (7b) –(7e) . As e (6 ∗) 
p,i 

> 0 , we must have a (6 ∗) 
p,i 

= 

⌊
q 
n � p,i 

⌋
and

 
(6 ∗) 
p,i 

= 
q 
n � p,i −

⌊
q 
n � p,i 

⌋
, because otherwise the cost of S (6 ∗) could 

e decreased by moving some flow from edge e p,i to either a p,i 

r b p,i . Therefore, a 
(7) 
p,i 

and b (7) 
p,i 

satisfy constraints (7g) and (7h) , 

espectively, with b (7) 
p,i 

= 1 . Additionally, through constraints (6b), 

6c) , and (6j) , the quantity a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

+ e (6 ∗) 
p,i 

must equal some

nteger z. Then e (6 ∗) 
p,i 

= z −
(
a (6 ∗) 
p,i 

+ b (6 ∗) 
p,i 

)
= z −

(
q 
n � p,i 

)
. Combining 

his with e (6 ∗) 
p,i 

> 0 implies that z −
(
q 
n � p,i 

)
> 0 , or equivalently 

 > 
q 
n � p,i . Because z is an integer, z > 

q 
n � p,i implies z ≥ 1 + 

⌊
q 
n � p,i 

⌋
.

hen 

 

(6 ∗) 
p,i 

= z −
(
q 

n 
� p,i 

)
≥

(
1 + 

⌊ 

q 

n 
� p,i 

⌋ )
−

(
q 

n 
� p,i 

)
= 1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )
, 

nd therefore e (7) 
p,i 

≥ 0 . We also have 

 

(6 ∗) 
p,i 

= 

[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
+ e (7) 

p i 

= 

[ 
1 −

(
q 

n 
� p,i −

⌊ 

q 

n 
� p,i 

⌋ )] 
b (7) 
p,i 

+ e (7) 
p i 

, 

o S (6 ∗) and S (7) have equal flow costs on the edges a p,i , b p,i , and

 p,i in their respective formulations. 

Using the construction process outlined in these two cases en- 

ures that S (7) is feasible for formulation (7) and has the same cost 

s S (6 ∗) , which is less than the cost of S (7 ∗) , which contradicts the

ptimality of S (7 ∗) . �

heorem 6. The min-proportional imbalance problem with two co- 

ariates and a selection size of q is solved as a minimum cost network 

ow problem in O (q · (n ′ + n log n )) time. 

roof. The network associated with formulation (7) has O (n ) ver- 

ices, O ( min { n ′ , k 1 k 2 } ) arcs, and a total supply of q . As such, the
lgorithm of successive shortest paths can be applied to solve this 

CNF in O (q · (n ′ + n log n )) time. �

. Conclusions 

We present new insights to the min-imbalance problem that 

nvolves the selection of units from a control sample with the 

oal of minimizing covariate imbalance with respect to a treatment 

ample. We show that an integer programming formulation of the 

roblem on two covariates has a totally unimodular constraint ma- 
10 
rix. We then present and analyze two efficient approaches to solve 

he problem for two covariates and a selection size of n . The first 

pproach is based on minimum cost network flow, and the second 

ore efficient approach is based on a maximum flow formulation. 

n addition, we show how these results can be applied to a re- 

ated two-stage problem involving minimum imbalance in the first 

tage and matching in the second. In the case that the selection 

ize differs from n , we show how to solve both the min-imbalance 

nd min-proportional imbalance problems efficiently with two co- 

ariates. In particular, proportional imbalance requires an alter- 

ate MCNF formulation to deal with non-integral supplies and de- 

ands. We also provide a proof that the min-imbalance problem 

s NP-hard for three or more covariates. The solutions for the two- 

ovariate problems can be used in problems with three or more 

ovariates, for example by aggregating covariates into two repre- 

entative covariates or by providing bounds in a branch-and-bound 

lgorithm; exploring these ideas is left for future work. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2021.10.041 
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