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Abstract—Sensor integrity is arguably the most critical feature
to protect in cyber-physical systems. Since power systems are
cyber-physical systems with ubiquitous sensors that monitor
and protect the grid, data must be trustworthy. Process safety
and control decisions ultimately depend on data. The focus
of this paper is how to design and apply perturbation based
detection for sensor verification, under full AC unobservable
false data injection (AU-FDI) attacks, by combining an active
probing strategy with cyber-side data based on the cyber-physical
situational awareness model CyPSA. A case study on a cyber-
physical eight substation model is presented, where we construct
an AU-FDI attack and introduce our probing-based detection
solution and evaluate it with varying probe signals, values,
and locations. Results demonstrate how sensor data in power
systems can be systematically authenticated using perturbation-
based techniques and how different perturbation types and
locations affect the results. The case study then demonstrates
the improvements to verification by using both physical and
cyber data, as CyPSA provides risk prioritization in the form
of authenticity weight measure of the sensors, for enhancing the
security of power systems from a cyber-physical point of view.

Index Terms—Power systems, security, sensor integrity, control
systems, cyber-physical systems

I. INTRODUCTION

Access to reliable power is essential to modern society,
and this ubiquitous dependence on electric power compels
understanding and improvement of grid security. The need to
consider grid resilience to threats is evidenced by the fact
that the energy sector is one of the most targeted critical
infrastructure sectors for cyberattacks, and the capabilities of
these attacks are growing. Symantec reported that in more
than 20 cases during spring and summer 2017, hackers ob-
tained operational access to power systems [1]. The increased
prevalence of interconnected devices has improved efficiency,
but each additional node is a potential point of entry for
a cyberattack. Cyberattacks against power systems have the
potential to cause widespread physical damage and can be
launched from anywhere from the world [2, 3]. While utilities
have significant experience preventing outages due to natural
causes, stakeholders are still developing incident response
plans for coordinated attacks. Research to close gaps in
utility cybersecurity needs, attack detection, and localization
technique as an important part of the solution. This work
systematically develops and applies perturbation-based sensor
verification against AC unobservable false data injection at-
tacks (AU-FDI), building on [4, 5], while combining network
connectivity and vulnerability knowledge, from cyber-physical
situational awareness (CyPSA) analysis [6].

The paper proceeds as follows. Section II motivates sensor
integrity verification and provides a literature review on de-
tection techniques for FDI attacks. Section III presents a case
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study of an 8-substation cyber-physical model with our pertur-
bation technique and sensitivity analysis. Section IV describes
the perturbations and analysis of their detection efficacy and
the improvements made when CyPSA is integrated. Section V
concludes the paper.

II. BACKGROUND
A. Motivation to Defend Sensor Integrity

The 2017 attack on Ukrainian power distribution companies
proved to be a public example of the severe consequences
that cyberattacks can have on large scale power systems.
The malware was introduced into the system months before
it was executed. Seven substations were disconnected by
attackers through remotely controlled, false command injec-
tion to circuit breakers [7]. The damage could have been
worse, but operators responded quickly to the incident and
regained control of the system rapidly [8]. Data verification
is an important tool in mitigating such situations. Another
important type of attack to consider is an insider threat. A
power system controlling a waste treatment plant was attacked
in Australia in 2001 by a former employee of the company
that installed the system [9, 10, 11]. After he accessed and
manipulated the SCADA system, millions of liters of raw
sewage flooded public areas and rivers [11]. A final noteworthy
attack is the Stuxnet virus targeting Iranian nuclear facilities.
This malware was developed to target Programmable Logic
Controllers (PLCs) to overspeed the centrifuge in the uranium
enrichment facility, but it was so aggressive that it spread
worldwide [12]. Changes to PLC logic damaged sensitive
equipment and forced costly repairs, while injecting false
data displayed to the operators to hide the attack [13]. These
examples show the importance of having trustworthy data from
sensors to inform operators quickly of any abnormalities so
they can regain control of their systems.

B. Current State-of-the-Art and Literature Review

Research of cybersecurity for power systems has historically
focused on keeping intruders out of a network. Now, given
adversary success in accessing systems unobserved, detection
and remediation of cyber-events in a system are also included.

Power systems need to be resilient under cyber compromise,
detecting the source of intrusions. State estimation can be
useful when reconstructing the actual state of the system with
injected or noisy data. Methods to improve the accuracy and
observability of a system are discussed in [14] and [15].
Correct system state estimation is not always possible under
attack [11], hence secure state estimation for power systems
under attack is discussed in [11, 16, 17]. An adversary can



perform random and targeted FDI attacks to modify mea-
surements to mislead the state estimator to predict incorrect
states without triggering alerts from residual-based bad data
detector [17, 18]. In [19], an attack strategy is proposed
that can generate an attack with partial system information.
Attackers can also launch reinforcement learning-based FDI
attacks as proposed in [20]. Designing a defense mecha-
nism for such intelligent attacks is challenging. Advanced
signal processing techniques are used [16] to defend against
both stealthy and non-stealthy attacks. Additionally, intrusion
tolerance techniques for general cyber-physical systems are
developed [21].

Perturbation methods can be used to detect errors in com-
munication systems and FDI attacks. These methods strike
the system, and observe how it responds. In power systems,
such a strike can be implemented by changing a control
signal [22, 23], physical parameters [24], or controller outputs.
Research in [4] develops the generic concept of probing of
power systems, and explains why it can be used for detection.
Building on that, [5] shows how the attacker only needs
a limited set of information about the system to execute a
successful AC unobservable FDI attack (AU-FDI). A reactance
perturbation technique has been incorporated in [24] to max-
imize the likelihood of FDI attack detection by minimizing
the operation cost but considers a DC model for validating
their perturbation method. Authors in [23] proposed an input
control signal perturbation for replay attack detection in a
linear control system with Linear Quadratic Gaussian (LQG)
controller. A dynamic watermarking technique is proposed
in [22] for detection of cyberattacks in Automatic Generation
Control (AGC). PAVED improves upon previous works [4, 5]
by exploring various probing strategies and the combination
of perturbation defense validated by cyber-physical modeling
proposed in [25] to detect and localize AU-FDI attacks. Our
technique is independent of the measuring devices used in the
system. The use of perturbations in combination with cyber-
physical modeling extends the use for such models in situation
awareness, and improves on the ability of perturbation methods
to detect cyberattacks.

C. AU-FDI Attack Model

AC unobservable false data injection attacks (AU-FDI) are
characterized as attacks where an adversary modifies the data
to achieve some objective for the observed system values,
where measurements are changed such that the AC power
flow equations are still satisfied [5]. Because power flow
equations are nonlinear, there can be multiple solutions for
the same set of constraints. The attack succeeds in staying
unobservable by finding a different feasible AC power flow
solution, and the problem formulation is such that it requires
only local knowledge by the adversary, as described in [5]. In
our scenario, we assume an adversary has gained access to a
particular substation and executes a Man-in-the-Middle attack
such that the data received at the control center is different
from sensor data. PAVED is independent of attack strategy or
mechanism.

III. SYSTEM MODEL

Power system operational reliability requires correct deci-
sion making by both human operators and automated systems.
An operator must be able to trust the data displayed at a
console and be able to make intelligent operational decisions
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Fig. 1: Cyber-physical 8-substation model [26]

based on trustworthy data. A synthetic 8-substation cyber-
physical model of the grid, originally developed and presented
in [26], is the case study used for PAVED. This model is
unique in the cyber-physical dependencies that are modeled,
allowing unified analyses of the control network, protection
systems, and the electrical power network.

A. Case Study: Cyber-Physical 8-Substation Model

The model has eight substations, five of which have genera-
tors. There are a total of 52 buses across the eight substations,
each with voltage, angle, real power, and reactive power
measurements. Internal substation nodes, relays, breakers,
firewalls, and routers are modeled as shown in Figure 1.
This model additionally contains cyber information unlike
most of the other models, and it is exactly this enhanced
detail developed in [26] that made it an appropriate case
study for PAVED’s detection method. The relays and breakers
represented in the substations are crucial for cyber-physical
modeling because the relays detect faults and trip breakers
to prevent physical damage to the system. Protective relays
and a control network were added to the original model
later based on real utility setups. Protection schemes were
based on Schweitzer Engineering Laboratories published best
practices [26].

B. Perturbation Development

Test cases were set up so that probes of different measure-
ments could be analyzed. The data from the 8-substation case
was initially set up in PowerWorld, and the AC power flow was
solved in MATLAB as the base case before any perturbations,
labeled mg. Although useful for setting up the scenario, this
unattacked case was not used in testing as it was neither the
expected nor observed state of the system under perturbations.

Then, the attacked case was created where an adversary
had access to one particular substation. It was shown in [5]
that an attacker would need knowledge of neighboring nodes
in addition to the target node to create a successful AU-FDI
attack, but only values from within the substation could be
modified. To achieve this, all buses outside of the attacked
substation and buses inside the substation that were directly
connected to external nodes were designated as protected
buses. This was considered the observed state as seen by the
operator, 1, as detailed in [5].

After the initial attacked case was created, a perturbation
was generated at a node that propagated throughout the system.



We observed how the system responded to the perturbation
based on the size, origin, and type of the perturbation. After
perturbing the system, a normal power flow analysis was
performed. The real state of the system after the perturbation
is a function of mg as defined in [5],

my = dl(mo) (D

where d; is change to the system in response to the pertur-
bation. This is useful to know, but it is not the expected case
because the operator expects to see changes based on g, not
my. It is not the fully observed case because the attacker will
still be influencing some of the measurements. The state that
the operator will expect is

me:cp = dl (MO) (2)

To prevent the system state to be disturbed, a small perturba-
tion is incorporated, which even the attacker cannot distinguish
from other disturbances. Even if the attacker did recognize the
change, it is unlikely that they would be able to respond in
real time. Thus, we assume that the adversary does not know
about the perturbation, and he does not subsequently alter the
measurements for the nodes under his control. The final set of
observed values is the perturbed values of the attacked case at
the protected buses, and the perturbed values of the attacked
case at the non-protected buses as shown below.

N {dl(mo) for protected bus
Mobs =

for mon protected bus

- 3)
mo
We would expect di(mg) to be almost same as dq (o)
for the protected buses since the attacker is not modifying
values outside of the compromised substation, and the attack
construction is designed for us to perceive these changes.
For this experiment, we only looked at one time iteration
of the probing. Three types of probes were used to test
the perturbation method. A voltage probe simulated a small
change in voltage level at a bus. A real power probe simulated
a small change in real power output at the generator. A
reactive power probe simulated a small change in reactive
power output at the generator. At each bus, real power, reactive
power, voltage, and angle were measured after each probe. A
flowchart of this algorithm is shown in Figure 2. Finally, we
perform sensitivity analysis and use our CyPSA engine [6] to
validate our detection technique.

C. Sensitivity Analysis of Perturbation on the States

The perturbation amount that prevents the system from
reaching an unsafe state can be estimated by performing
sensitivity analysis. This analysis would help the operator to
select a range of feasible probes. Sensitivities analysis is used
to validate the results of our perturbation method. For each
probe introduced, the negative inverse of the AC power flow
Jacobian reveals how the states change during power flow
solution due to small change in mismatch,
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Fig. 2: Attack Detection Algorithm.

and AP(x()) is given by

P2 (X(v)) + PD2 - (PG2 + Pprobe)
AP (x(”)) = :
Pn (X(U)) + PDn - (PGn + Pprobe) (6)

In Eq. 6, Pyrope and Qprope are the vectors of real and
reactive power probe introduced in the generator and load
buses respectively. In our simulations, we consider one non-
zero value to be perturbed. Our objective was to observe the
imgact of probe on the state variables, hence we analyze
3 probe and 3 é}:be. The state variables are changed as per
Eq. 4. Usually, the resistance of the transmission lines are
less than the impedance and the phase difference between the
buses is small and the 8-substation case also follows the same
approximation. Hence, the off diagonal terms in J are usually
small and we find that @ is more sensitive to Pp o5 than
Qprobe- Similarly, |V'| is more sensitive to Qprobe than P, ope.

D. CyPSA Topology Scores

The final step is to compare the expected and observed
results. Because the system responds normally at the protected
buses, we believe that the expected and observed values will
match, but at the adversary-controlled nodes, the data received
will not match the expected case. This type of mismatch can
indicate that certain buses have been compromised.

Mresult = Mexp — Mobs (7)

The mismatch can sometimes be caused due to a fault
in the sensors as well. To facilitate interpretation of the
results, such as distinguishing a fault from a compromise,
and also identifying the relationship among the compromised
measurements, we used a topology analysis tool, CyPSA [6],
to determine the feasibility of the perturbation results given
the cyber connections in the system. CyPSA is a tool that
analyzes physical and cyber connections in a power system
to determine nodes vulnerability level. CyPSA provides two
scores, the performance index (PI) and the cyber cost(CT),



which combine into a single security index (SI) for each
bus computed using Eq 8. PI indicates the severity if a bus
is compromised and C'I indicates the difficulty to reach a
bus through cyber connections along the path p(i), given a
cyber entry point. The list of the hosts in the access path
p(i) provides us the set of measurements that can result
in higher my.csy1¢, asserting our detection using perturbation
based technique.

y _ PI(p(2))

I [ i
A higher CyPSA score indicates that a host is easier to reach
and has a higher impact on grid performance if compromised,
and is, therefore, more vulnerable. This analysis is time-
independent; it measures the vulnerability of the configuration
of the system. The tool uniquely integrates the cyber paths,
physical devices and power flows in a way that is difficult to
perform with other power flow modeling software, and thus
serves as the best tool to verify a potential attack detected
by perturbations, and decide if a certain bus is under attack.
For this experiment, we started the CyPSA analysis from a
random bus within the compromised substation. Buses that
were considered unreachable on a cyber path from the entry

node was given a cyber cost of infinity.

IV. RESULTS
A. 8-substation AU-FDI Attack Scenario

A simulated data injection attack scenario is launched at
the compromised substation which corresponds to buses 15-
25. The attack is designed to cause the generator to appear
to have 50 MVAr less reactive power that what is actually
injected and to make another substation bus appear to be at
80% of its actual voltage. Normally, voltage limits are between
0.95 and 1.10 p.u., so 0.8 p.u. would alert to a potential issue.
An operator might then increase reactive power generation to
fix the perceived low voltages that are actually high.

B. Voltage Perturbation

The first probe tested is a voltage magnitude perturbation,
which is only valid at PV buses. There are five generators (PV
buses) in the original system, and one of these is reserved
as a slack bus, and cannot be perturbed. Each generator
is individually probed. The results from a perturbation of
0.01 p.u. did not clearly identify any substation as different
from the others. The per-unit voltage results were largest at
the compromised substation, but the magnitude was still so
small that it would not have been detected on a larger, more
dynamic system. The magnitude of the angle, real power, and
reactive power measurements are similarly too small in size
to be detectable. A larger probe of 0.1 p.u. was also tested.
This test produced larger magnitudes of differences between
expected and observed values, but the patterns did not identify
the compromised substation clearly. Additionally, a probe size
of 0.1 p.u. is large and could be capable of causing other
effects in the system.

C. Real Power Perturbation

The next perturbation tested is a real power perturbation,
which is also a generator probe, because real power at a
generator is a controlled value. As long as the generator is
not at full capacity, a small real power probe will not cause

problems in the system. The first perturbation has a magnitude
of 1 MW and is tested at all generators except the slack bus.

Although the measurement of voltage magnitude is noisy,
measurement of real power and voltage angle correctly identify
bus 20, which is one of the compromised buses at the
compromised substation. The fact that this perturbation type
gives consistently accurate results no matter which generator
the perturbation was launched from, increases our confidence
that this probe would reliably identify the compromised sub-
station. Additionally, we can see that the difference between
expected and observed voltage angle very clearly identifies the
compromised substation. Although the magnitude is different
depending on where the probe was launched from, in all cases,
the only place where the expected and observed values differ
is at the compromised substation.

Testing different sizes of real power perturbations reveal
that the results change proportionally with the perturbation
size. The relative relation between measurements at each
substation is the same for all perturbation magnitudes. The
larger perturbation more obviously reveals the compromised
substation, but we do not want to perturb too much.

D. Reactive Power Perturbation

The final set of probes that were tested is reactive power
perturbations at PQ buses. Specifically, we increase reactive
power produced at a load bus. We assume that the load
is constant for a short period time, which isolates the ef-
fects of the reactive power perturbation. The perturbation is
individually sent from different locations, from load buses
rather than generators. There are six substations with loads
in our model, and no load at the compromised substation.
The results are similar to the results obtained with a real
power perturbation. In both cases, the reactive power results
are small, and likely would not be detectable in real systems.
The magnitude of the other types of results is also very small
for a reactive power probe of 1.0 MVAr. Testing different
magnitudes of perturbations reveal that the results depend
heavily on the source of the perturbation, which is different
from other perturbations. The operator would not know before
generating perturbations where the attacked substation was,
so all probe sources should be tested. We can observe from
Figure 4 that the real power perturbations produce greater dif-
ferences between expected and observed voltage angles. This
suggests that a real power perturbation will be more efficient
at identifying the compromised substation. Measurable results
are obtained for reasonably small-sized perturbations. It is
also clear that voltage angle measurements are less noisy that
voltage magnitude. However, the magnitude measurements
still appear noisiest at the compromised substation, suggesting
this measurement could be used to detect anomalies.

The comparison of the effect of real power and reactive
power perturbations on voltage angle and voltage magnitude
measurements is shown in Figure 3. These comparisons show
that the voltage angle is more sensitive to real power, and
the voltage magnitude is more sensitive to the reactive power,
validating the sensitivity analysis of perturbation.

E. CyPSA Topology Analysis

The CyPSA analysis is performed considering each hard-
ware device with an IP address. There is not a one-to-one
correlation between devices and buses, but each component
belongs to a substation, and each relay controls particular
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breakers and measurements. The CyPSA analysis can verify if
the results from the perturbation experiment can be attributed
to a cyber event. Table I shows the CyPSA scores from the
cyber entry point in the compromised substation. All six of the
reachable hardware components belong to the compromised
substation. All other devices not listed had a security index

of 0. Given the connections and firewalls in this system, if an
attacker gains entry to the compromised substation, he will be
unable to modify values at any other substation.

TABLE I: CyPSA scores for cyber entry at 10.31.1.201.

IP Address PI CC SI
10.31.1.101 1.38 895 0.15
10.31.1.102  2.23 8.95 0.25
10.31.1.103  3.89 8.95 043
10.31.1.104  1.38 8.95 0.15
10.31.1.105 1.57 895 0.18
10.31.1.201 1045 4476 1.17

F. Sensor Trustworthiness Scores

The final step of PAVED was to combine the CyPSA
topology analysis with the real-time probing results. This
allows us to determine if the perturbation results make sense
in the context of cyber-physical security, which makes this
approach more comprehensive compared to other perturbation
techniques. We should ensure that the compromised substation
identified by the perturbation analysis is something that could
be feasibly reached by the cyber connections. We weight the
perturbation results with the CyPSA security index scores,
and find that the weighted results eliminate the noise at other



substations (since the security index at those nodes is zero),
and places a higher value on the compromised substation. The
results from the perturbation analysis are refined by the CyPSA
integration. The integrated results support the conclusion that
the compromised substation has experienced a cyberattack,
and improve the detection rate over a regular perturbation
method. Thus, this could help identify the compromised sub-
station where the perturbation results are less pronounced, and
maybe more valuable in a system with fewer cyber defenses
between substations.

V. DISCUSSION AND CONCLUSION

Combining the results from the real-time probing and the
CyPSA analysis, PAVED showed successful identification of
AU-FDI attacks. Different types of probes are examined and
found to have varying levels of accuracy in identifying the
compromised substation. The most accurate results were ob-
tained by measuring voltage angle response to real and reactive
power perturbations. On average, the response from a real
power perturbation was ten thousand times larger than the
response from a reactive power perturbation. Our technique
identifies the compromised substation with a probe sized such
that it would not disrupt normal operation while producing
detectable results. The most promising results from PAVED
were from real power probes, together with the CyPSA scores,
to prune the feasibly attacked substations. This work can
be used to help operators determine the trustworthiness of
sensors in a system. If an operator suspects that data is being
manipulated, they can use the probing technique to test their
theory before taking actions that might negatively disrupt
the system. PAVED provides a cyber-physical foundation for
continued real-system work on topology and real-time probing
attack detection methods for cyber-physical power systems.
To build on PAVED, future work includes exploring how to
consider the dynamic response of attackers to probing, whether
and how an adversary could detect the probe, and how they
might respond while remaining unobserved.
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