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Abstract—The electric power grid has evolved immensely with
time, and the modern power grid is dependent on communica-
tion networks for efficient transmission and distribution. Since
communication networks are vulnerable to various kinds of
cyberattacks, it is essential to detect them and prevent the power
grid from getting affected by it. False data injection attacks
(FDIA) are one of the most common attack strategies where
an attacker tries to trick the underlying control system of the
grid, by injecting false data in sensor measurements to cause
disruptions. We propose a data augmented deep learning-based
solution to detect such attacks in real-time. We aim at generating
realistic attack simulations on standard IEEE 14-bus architecture
and train neural networks to detect such attacks.

Index Terms—Anomaly Detection, False Data Injection At-
tacks, Local anomaly detection, Long Short Term Memory
(LSTM)

I. INTRODUCTION

The power system is a dynamic and complex system
connecting diverse electrical components such as generators,
transmission lines, and distribution systems. To ensure reliable
operation of such a complex system, we require secure system
monitoring of systems via synchrophasors, Current Transform-
ers (CTs), Potential Transformers (PTs), etc. State variables,
like voltage and phase angles at each bus, are estimated from
these measurements, and the system operator controls the
estimated state to operate the grid. With the use of a state
estimator and its associated contingency analysis, a system
operator can review each critical contingency to determine
whether each possible future state is within reliability limits,
and make decisions regarding its operation. However, with the
fusion of advanced cyber infrastructure to the physical domain,
measurements are prone to alteration by the cyber invaders,
which can affect the process of state estimation and mislead
the power grid control system, resulting in catastrophic con-
sequences [1]-[3].

False Data Injection Attacks (FDIAs) can be introduced
to a transmission system to trick the state estimator into
predicting wrong states without getting detected [4]. Detection
methods try to find anomalies in the data received through
the communication channel. Such methods depend on the
real-time correlation between data points or the temporal
structure of the data to classify a new set of measurements
as anomalous. A significant drawback of this approach is that
it does not adapt well to changing patterns in transmission
behavior over time [5].

FDIAs are challenging to detect using conventional residual-
based methods since the attacks specifically bypass these
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mechanisms, and spatial arrangements of the devices are not
taken into consideration [5]. These methods were traditionally
built to avoid bad data or severe measurement errors for
DC state estimators, where it is assumed that bad data will
necessarily lead to high residual error. However, with more
sophisticated FDIAs, we can ensure that bad data can be
injected with negligible impact on residual [4]. This is a
classic contextual anomaly detection problem. Deep learning
has shown significant promises in solving complex tasks and
has been used in pattern recognition problems like object
detection, speech recognition, and anomaly detection [6]—[8].

Deep learning uses a data-driven approach where a function
approximator is trained using gradient descent over a given set
of data points. The success of deep learning can be attributed
to the ability of neural networks to learn complex functions
and the availability of massive data-sets. Motivated by its
application and success in the field of speech recognition
[7] and anomaly detection [8], we explore how deep neural
networks can be applied to detect false data injection attacks
in the electric power grid.

Artificial Neural Networks (ANNs) have shown significant
performance in representing complex functions [9]. Especially
in anomaly detection, deep neural networks have been applied
in many applications like fraud detection, sensor network
anomaly detection, video surveillance, log anomaly detection,
and Internet of Things (IoT) [8]. Deep neural networks have
been used in supervised [10], semi-supervised [11] and un-
supervised setting [12] in the past for anomaly detection.
Specifically, for anomaly detection in spatially and tempo-
rally correlated data, direct supervision using classification
networks and unsupervised methods using auto-encoders have
shown impressive results in the past [13].

The organization of the rest of the papers sections are
described as follows. Section II introduces the background on
state estimation and FDI attacks. Section III explains attack
design of random attacks and the measurement data generation
process for the IEEE 14 bus system. Section IV presents the
proposed models for detecting the FDI attacks. Section V
presents the attack and defense case results and analysis on
the IEEE 14 bus system. Finally, Section VI concludes our
paper with the scope of future work.

II. BACKGROUND

The electric power grid uses a set of measuring devices
spread across various branches to determine the state of the
system. These states are then used to take necessary control
actions. However, the true state of the system cannot be
directly determined from the measuring devices because of



induced noise and measurement inaccuracies. A power system
state estimator is used to determine the correct state of the
grid using those measurements. The estimation mechanism is
described by the Eq. 1,

z=Hxr+e€ 1)

where z denotes the measurement vector, x represents the state
vector, H stands for the system characteristic matrix, and € is
the error in estimation. The objective is to find a state vector
x that minimizes the energy (variance) of residual e defined
as
min 17 (z — Hx)? 2)
x

In conventional state estimators, for a new state vector
to be considered as a correct state, the residual should be
below a defined threshold. In a false data injection attack, an
adversary aims to hack the readings of multiple measurements,
to mislead the state estimator to predict incorrect states without
affecting the residue. These attacks can be random without any
particular motive [4] or targeted to certain state variables with
specific intentions [14].

Some researchers have established that such attacks can
be prevented totally by securing a subset of all measuring
devices on an encrypted network [15]. However, as the size
of the network increases the number of devices that needs
to be secured increases; hence, it is not scalable. The basic
residual-based detection can also be improved by using L .-
norm instead of Lo-norm [16].

In most of the prior work, it has been assumed that the
attacker has complete knowledge of the system. However, in
a practical scenario, it can be assumed that an intruder will not
be aware of the entire power system. It has also been proven
that FDIAs can be possible with partial system information as
well [17]; hence, a hacker with incomplete information can
cause an FDIA.

The residual-based detection systems fail to consider the
spatial distribution of the measuring devices and temporal
distribution of the measurements. This inherent information
can be used to derive a spatio-temporal correlation between
measurements and therefore, detect attacks. In a superficial
sense, the problem can be reduced to detecting anomalies in
a dense graph. Inspired by application in cyber intrusion and
sensor networks, researchers have tried to apply nearest neigh-
bor classifiers and other statistical classification techniques
[18]. However, these methods are slow for large systems and
have a nonlinear run time complexity. Besides, these models
do not scale well and cannot be applied effectively to power
grids [18]. With the current advancements in deep learning and
sequential pattern recognition [8], we propose a deep learning-
based anomaly detection system to detect and identify various
kinds of intrusions.

III. ATTACK DESIGNS

The basic concept behind FDIAs is straightforward, i.e., to
generate an attack vector a such that:

z+a=H(r+c)+e 3)

where, ¢ is the change in states induced due to the attack
vector.

A. Random Attacks

One of the simplest attacks is a least-effort random attack
where an attacker with access to a fixed set of compromised
measuring devices tries to bias random state variables. The
following derivation, Eq. 4 and Eq. 5, shows why such an
attack is possible [4].

#o= (HT'SH) ' H"S:z,
— (H"SH) " H"S(2 + a) )
— i+ (H'SH) " H"Sa

20 — Haa = Hz +a—H &+ (HTSH) ™ HSa) H

2= Hi+a—H(H'SH) " H"Sa
= |z - Ha+a—m(ESH) T H S|
=|lz—Hi+ Hc— Hc||

= [z — Hz||
&)
This proves that if we can come up with a vector a as in Eq. 6
a=Hc (6)

then we can introduce an attack without getting detected.

This attack can be possible only if the attacker has access
to all the meters. However, in a real scenario, it is not feasible
for the attacker to get hold of all the measuring devices in
a network. As a result, we cannot choose any random attack
vector. This is the reason behind modeling sparsity of attack
vectors. The sparsity-preserving attacks are generated follow-
ing the methods described in [4]. Let Iyeer = {1, ..., } be
the set of indices of the k meters the attacker has access to.
Therefore, a = (ah...,am)T with a; = 0 for @ € I meter -
In order to find one such attack vector we define a projection
matrix in Eq. 7.

P=H(H"SH) " HTS 7
From the previous equation we can derive as follows:
a—H(H'SH) " H'Sa=0
Pa=1Ia
(P-Ia=0
Ba=0

®)

Therefore, an attacker needs to find a non-zero attack vector a
such that Ba = 0 and a; = 0 for ¢ ¢ I e - Let us represent
a= (0,0,...,a1,070...,CLQ,O,...,CLS,...ak...)T

B= (--~7bi1~-~bi27~--bik--~)s

where a; is the attack corresponding to the i-th meter for ¢ €
I meter and b; is the column vector in B corresponding to the
index of a; in a. Therefore, we define B’ = (b;1, b2, .- ., bik)
and a’ = (a1, as,...,a;) such that Ba = 0. If the rank of B
is less than & then there can be infinite solutions to Ba = 0.
According to Meyer [19], o can be determined as 9:

d=(-B"'B)d 9)

where, d is some random non-zero vector. If rank of B’ > k,
then there is only one unique solution to Ba = 0 ie. a = 0. It



can also be logically inferred that the probability of generating
a random attack increases if we have access to more meters.

In an ideal power system, attacks are rare. Besides, it is
highly unlikely that in all scenarios where attacks are possible,
the attacker has access to all measurement units. Once an
attack is introduced, it can stay for a variable amount of
time. Therefore, while generating simulations, we consider
these factors in choosing the frequency, duration, and location
of these attacks. We have created cases to select a fraction
of random devices parameterized by k from n measuring
devices (k € 0.1,0.2,0.3,0.4,0.5). Similarly, we have as-
signed a probability (p) of the grid being under attack where
p € [0,0.2) and we have kept each attack live for a random
number of samples (¢ €[5,10]). This provides a huge range of
possible combinations to store in our database of attacks. The
algorithm used to generate these attack data-sets is described
in Algorithm 1.

Algorithm 1 Generation of Attacks

1: function GENERATEATTACK (attackT ype,
measurements, devices)

2: for i € sizeOf(measurements) do

3: options + [0.1,0.2,0.3,0.4,0.5]

4; k < choice(options, 1)

5: p < random(0,1)

6: t < randomInt(5,11)

7: hacked < choice(devices,

int(k x sizeOf(devices))

8: if p < 0.2 then

9: for j in range(t) do

10: z < measurements|i]

11 a < getRandomAttack(hacked,t)
12: zNew + z+a

13: saveRecords(zNew, hacked)

14: jt=1,i+=1

15: end for

16: else

17: z < measurementsli]

18: saveRecords(z)

19: end if
20: end for

21: end function

IV. DEFENSE MECHANISM

As mentioned earlier, the state estimator relies on sim-
ple Euclidean distance-based anomaly detection mechanisms
to recognize incorrect measurements. It is shown in Eq. 6
that such a system is easy to trick. Therefore, the inherent
spatio-temporal correlation of these measurements missed by
residual-based detection needs to be considered in our new
FDIA detection system. Moreover, it is difficult to estimate
the hyper-parameter k in some Euclidean distance-based tech-
niques such as k-nearest neighbor for anomaly detection [20].

In [18], a correlation-based FDIA detection mechanism has
been proposed, where a semi-supervised structure is employed.
An operator needs to define a correlation sphere for various
meters on the network. A single meter might lie in multiple
correlation spheres. This approach ensures that the spatio-
temporal correlation between the measurements is preserved.

At every iteration, correlations within a correlation sphere are
calculated, and if a considerable divergence is found, then an
anomaly is flagged. This method is highly efficient in terms
of run-time complexity but would need humongous effort
in designing the correlation spheres manually. Besides, this
method will not allow changes to network topologies.

In [21], an approach based on sparse optimization, low-rank
matrix factorization, and nuclear norm minimization has been
explained. The assumption here is that the gradually changing
state variables will typically lead to a low-rank measurement
matrix Zy and the attack matrix (attack vectors over time) is
sparse. Therefore, the problem translates to a matrix separation
problem as

min Rank (Z()) + ||A||() (10)
Zo,A
s.t. Z, = Zo + A which can be formulated as a convex
optimization problem as follows.
in [[Zo|l, + AllAllx (1D)

S.t. Za = ZO + A

|Zo||, is the nuclear norm of Z,,, i.e., the sum of singular
values of Z,. This kind of optimization problem has been
studied across the domains of compressive sensing and matrix
completion and can be solved using off the shelf optimization
algorithms. The problem with this approach is the compu-
tational complexity because of its iterative nature [21]. This
paper also proposes a faster way using low-rank matrix factor-
ization, where low-rank matrix Zj is represented as a product
of two matrices U and V. Even though this approximation
helps to remove the expensive Singular Value Decomposition
(SVD) step, it is iterative, which is non-linear in time. When
analyzed as a classification problem techniques like Support
Vector Machines (SVM) [22] has also been used.

We propose a deep learning-based data-driven FDIA detec-
tion method, which is robust, has an almost linear run-time
complexity. Recurrent neural networks are heavily used to
capture temporal correlation in data [23], [24]. In addition to
addressing variable-length sequences, they also help to keep
the predictor small and are computationally light because of
shared parameters.

A. Approach 1

In our first approach, we define a multi-layer Recurrent Neu-
ral Network (RNN) for the entire grid. In our model, we use an
advanced version of RNN called Long Short Term Memory
(LSTM) to prevent vanishing and exploding gradients [25].
The model architecture is shown in Figure 1. The first layer
encodes the in]?uts at every time-step z; € R™*! to an output
state o} € R" *1 where m is the number of measurement
devices in the grid, A is the dimension of the output of the
first LSTM layer, and ¢ € [t — k, t]. Similarly, the second and
third layer uses the output of the previous layer to produce
their respective outputs for each time-step. The key factor
here is that the weights for a given layer for every time-step
remain the same. The fourth LSTM layer uses the outputs of
the third layer and projects it to a single-dimensional value.
This output is passed through a ’sigmoid’ function to indicate
the probability of an attack being present at a given time-step.
The output of this network can be represented as:

Y =o(f(W W2 FW2F(W! x 2))))) (12)
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Fig. 1. Architecture of the network.

where, Y € RFX! is the vector of probabilities indicating
whether the system is under attack in each of the k input
time-steps in Z € R¥*! W’ represents the combination of
weights at 7*" layer. The function f is the LSTM function as
described in [25].

The model should be able to capture spatio-temporal corre-
lations keeping a linear run-time by sharing model parameters.
However, this model is a global intrusion detector which relies
on training data for all possible attack scenarios that can occur.
Such an extensive training dataset is difficult to generate for
large power grids. Also, this approach will not be able to
adapt easily to the addition or removal of buses from the grid,
and the model would need retraining once any such changes
are done. Therefore, we further propose a more localized and
decentralized approach.

B. Approach 2

In the second approach, we define a similar network model,
as discussed earlier, but we do not take all measurements as
inputs. This is a more localized approach where we select a set
of measuring devices which are interconnected by a particular
bus. In this way, we are enforcing the spatial arrangement
of the devices on the network. Therefore, the major learning
happens in the temporal domain. The algorithm to define
connections for a given bus is described in Algorithm 2. We
have used a set to indicate the buses each device is connected
to, which is returned by device.buses.

Algorithm 2 Mapping busses to measurements

1: function GETCONNECTIONS(busNum, gridMap)
2: devices = ||

3 for device in gridMap do

4 if busNum in device.buses then
5: devices.append(device)

6: end if
7

8

9:

end for
return devices
end function

This approach focuses on having individual models for each
bus, which makes this approach robust to changes. Suppose a
new bus is added we do not need to train the entire network
for all the buses like in Section IV-A. Similarly, if the network
topology is changed, then we would need to retrain the models
local to the affected region only. Besides, this approach can
also help to locate compromised devices at a macro level.

Bus 13

Bus 12 Bus 14

Bus 11

Fig. 2. Topology for the IEEE 14 Bus Case

V. RESULTS AND ANALYSIS
A. IEEE 14 Bus Case

The simulation uses real-world power consumption data to
generate 39 measurements and the intrusion state of these
devices at each time step. The methodology for the bus level
modeling is based on the synthetic load model proposed
in [26]. This model has an hourly basis specification, including
residential, commercial, and industrial sectors loads, and its
results were validated utilizing actual utility measurement
data. The topology for the model developed contains 14
buses, 2 generators, 3 synchronous condensers, and 11 loads
as presented in Figure 2. It also contains a three winding
transformer equivalent.

The data generated has 5-minute resolution data for an entire
year, which gives around 105400 time-steps of SCADA data
for the test case. For each time-step, a state estimation model
is solved utilizing the power flow equations. In order to obtain
a flawless resolution of 5-minute in our test case, a piece-wise
polynomial algorithm based on the cubic spline extrapolation
methodology is utilized to correct the missing measurements
in the grid.

1) Attack generation: We construct random attacks on these
measurements to affect the state variables. The attack data
is stored along with the state variables under attack and the
devices compromised (Line 13 and 18 Algorithm 1), which is
treated as the training data for our deep learning models.

For the random FDI attacks, the attacker is trying to observe
its influence on the probability of finding an attack vector by
modifying the number of meters. The IEEE 14 bus system
with 39 measurements and 26 state variables to estimate is
considered for the case study. The experiment is repeated for
105400 timestamps.

It can be observed from Figure 3 that the probability of
finding an attack vector is directly proportional to the number
of meters that can be accessed. At n = 2, it can be seen that
it has a probability of attack at around 0.27, while at n =
11, it is possible to have a higher probability of almost 1.
From the equation, k£ > m-n+1, it is observed that if £ = 11,
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then to perform a successful attack with 26 state variables, 36
measurements are needed at least.

A Chi-square test is implemented to find the efficiency of an
attack. As per the Chi-square test, the minimum threshold to
prevent the attack detection is 29.8, for a degree of freedom 13,
which is the difference between the number of meters and the
state variables, with the level of significance « set to 0.005.
While keeping this threshold, the probability of detection is
evaluated, for a varying number of meters compromised by
the attacker, as shown in Figure 4.

2) Preprocessing the data for training: Since random at-
tacks are a super-set of all other kinds of attacks, we use ran-
dom attacks for training and testing our models. We have split
this data into 6 subgroups depending on the level of intrusion.
This is decided by the number of devices compromised at the
time of the attack. The attack data also needs to be formatted
for the training process. This step splits the data into sequences
over a rolling window for training. The data is already on a
per-unit scale; therefore, normalization is not necessary. This
split in sequences is crucial because we are using a recurrent
framework which needs features at every time step over a fixed
sequence length for training.

3) Training: We trained our model using each of the ap-
proaches described in Section IV on the attack data generated.
Training is done using binary cross-entropy loss on an ADAM
optimizer.

In Approach 1, we trained our model on all 39 measure-
ments to predict the state of the system. We use training data
with attacks at three levels of intrusion comprising of 4, 12,

and 20 devices compromised at each level. We call this method
the Global RNN Detector. For testing, we used intrusions of
different levels, i.e., when 8, 16, and some random number of
devices are compromised. To regularize the model, we have
used a dropout [27] of 5% for each LSTM layer. We have
compared the performance of our model with an SVM model
trained using the same data with Radial Basis Function (RBF)
as kernel and a fully connected Artificial Neural Network
(ANN) with the equal number of layers as the RNN model.
We use Fl-scores [28] to indicate the performance of these
models. Our model returns the probability score of an attack
being present. However, we need to decide a classification
threshold of an attack. This is done by splitting the training
data into training and validation data in a 9:1 ratio. The
validation data is evaluated by our model to obtain probability
scores of attacks. We use precision-recall curve [29] on these
scores to decide the correct classification threshold. The results
are shown in Table I and II.

TABLE 1
COMPARISON OF FDIA DETECTION USING GLOBAL RNN DETECTOR
Number of devices compromised 8 16 Random
KNN 0.9845 1 0.5063
SVM 0.9158 | 0.9997 0.3749
ANN 0.9879 | 1.0000 0.7039
RNN 0.9705 | 1.0000 0.7178
TABLE 11
COMPARISON BASED ON RECALL
Number of devices compromised 8 16 Random
KNN 0.9746 1 0.3759
SVM 0.8447 | 0.9994 0.2307
ANN 0.9760 | 1.0000 0.5431
RNN 0.9861 | 1.0000 0.5836

The Global RNN detector performed better in comparison
to the k-Nearest Neighbor (KNN), SVM and ANN detector.
Higher F1-Score for the detector indicates the detector has
a high precision and recall (as shown in Table II), which
means the model is able to capture intrusions correctly and
ignore non intruded states with good accuracy as well. On the
other hand, the KNN and SVM models are proving to be very
good estimators for fixed scenarios like when 8 or 16 devices
are compromised, but they fail to efficiently predict intrusions
when a random number(< 20) of devices are compromised.

Similarly, for Approach 2, we trained a model for every
bus using data from the measuring devices connected to
the respective buses according to Algorithm 2. As done in
the previous case, we use data from 4, 12, and 20 devices
compromised cases for training the network and data from
8, 16, and random devices compromised cases as test data.
A critical point to ensure here is that the distribution of
attacks in the training data should be similar to that in the
testing conditions. We call this approach the distributed local
approach. Just like the global detector, we use 5% dropout
for every LSTM layer for regularization. In the above case,
we have already observed that the ANN performs better than
KNN and SVM. So, in this case, we have compared the



performance(F1-Score) of ANN and RNN Detector. Also, we
have used the mean scores of all buses that are under attack
in our scenarios. The results are shown in Table III and IV.

TABLE III
COMPARISON DETECTION OF FDIAS USING LOCAL RNN DETECTOR
BASED ON F1-SCORE

Number of devices compromised 8 16 Random
ANN 0.8378 | 0.9501 0.9170
RNN 0.9515 | 0.9569 0.9538
TABLE IV

COMPARISON DETECTION OF FDIAS USING LOCAL RNN DETECTOR
BASED ON RECALL

Number of devices compromised 8 16 Random
ANN 0.9596 | 0.9669 0.9603
RNN 0.9563 | 0.9628 0.9577

VI. CONCLUSION AND FUTURE WORKS

We have explored how RNNs can help detect FDIAs using
a global and a local approach. RNNs are found to be a better
detector than KNN, SVM and ANN, especially when put
under random levels of intrusion. It is also observed that the
performance of the global detector degrades when subjected
to random levels of intrusion, but that of the local detector
stays consistent. This might be occurring because the global
detector has to learn a higher dimensional space i.e., it has
to classify intrusions for 0-39 devices. On the other hand,
the local detector focuses on a limited number of devices
and is not affected by the intrusions that are happening on
other buses other than the bus it is trained for. Therefore, the
search space for identifying attacks is restricted for the local
detector; therefore, random levels of intrusion does not affect
its performance.

This architecture will be further tested on larger power
system cases and specific types of attacks in our future work.
Moreover, as the power system size increases the generation
of attack data for training neural networks might be difficult.
Therefore, deep learning-based unsupervised and generative
neural network models will also be designed.
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