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For a relativistic binary with a small mass-ratio (SMR), post-geodesic corrections to the binding
energy due to the gravitational self-force are needed to model the evolution of the system. Perhaps
surprisingly, first-order self-force predictions have proven to be very accurate when compared to
numerical simulations of binaries with comparable masses, suggesting a greater applicability of the
SMR approximation than expected. These comparisons and their agreement have been generally
restricted to the early adiabatic inspiral, which breaks down as the smaller mass approaches the
innermost stable orbit and transitions into a direct plunge. Here we examine the binding energy of
nonspinning, quasicircular binary black holes using numerical simulations, with mass ratios ranging
from equal mass to 1 : 20. We demonstrate the validity of the SMR approximation during inspiral,
and for the first time show that the binding energy of comparable mass systems follows a fractional
power expansion in the symmetric mass ratio ν ≡ m1m2/(m1+m2)

2, as predicted in the SMR limit.
Our results are in agreement with analytic predictions, and indicate that the transition dynamics is
important for modeling the last ∼ 10 gravitational wave cycles before merger for comparable mass
systems, such as those currently observed by gravitational wave detectors. We find that second-order
GSF effects on the transition are small. This analysis provides further evidence for the applicability
of perturbative SMR results to gravitational wave modeling of comparable mass binaries.

The direct detection of gravitational waves (GWs) [1–
14] has provided a new window onto the universe, reveal-
ing populations of binaries composed of black holes and
neutron stars [15–17] and enabling tests of relativity in
the dynamical and strong-field regime, e.g. [18–24]. Ac-
curate modeling of the fully relativistic two-body prob-
lem is crucial for carrying out sensitive GW searches and
measuring the parameters of detected binaries. These
models provide predictions for the GWs emitted during
the inspiral, merger, and post-merger emission from these
systems, for example effective one body models, e.g. [25–
33], and phenomenological models, e.g. [34–40].

The construction of such complete models requires in-
put from a number of methods, such as post-Newtonian
(PN), gravitational self-force (GSF) and numerical rela-
tivity (NR) techniques. Understanding the limits of each
approach is crucial for creating accurate models. For ex-
ample the PN approximation is valid at large separations
and slow velocities. It worsens late in the inspiral, and
can be a poor approximation for systems with small mass
ratios q−1, where q = m1/m2 ≥ 1, which spend many cy-
cles at close separations. In contrast, GSF methods based
on the small mass ratio (SMR) expansion of the metric
about a black hole background is accurate for fully rel-
ativistic systems, but is naturally restricted to the SMR
region of the parameter space. These methods were orig-
inally developed to describe extreme-mass-ratio inspirals
(EMRIs) with mass ratios q−1 ∼ 10−4–10−6, which are
promising targets for the LISA mission [41], and have
been recently been pushed to second-order (2GSF) for
nonspinning binaries [42–45].

Meanwhile, numerical relativity (NR) provides two-
body solutions exact up to numerical errors, but is lim-
ited in practice due to the computational time required
to evolve systems from a large separation, and the addi-
tional resolution requirements for systems with very un-
equal masses. Because NR is the only non-perturbative
method, it can be used to assess the validity of the PN
and SMR perturbative approximations in the regime of
comparable masses and small separations accessible to
NR [46]. NR is also used to calibrate effective one-body
and phenomenological models, or even to directly build
accurate surrograte models which can interpolate wave-
form predictions between simulations, e.g. [47–53].

Surprisingly, comparisons between NR and SMR ap-
proximations of binary black hole systems have shown
that the GSF approach is effective at describing even
comparable mass ratio systems, e.g. [44, 45, 54–59]. This
is true even for equal mass systems, when considering
quantities symmetric under the exchange of the compo-
nents m1 ↔ m2. Such quantities include the binding
energy, GW fluxes and GW phasing, and is achieved
by re-expanding the SMR series in the symmetric mass
ratio ν ≡ m1m2/(m1 + m2)

2 rather than q−1, see
e.g. [45, 56, 57]. This promising result indicates that
GSF methods may be effective at predicting GWs from
systems such as those detected by current [60–62] and
future ground-based detectors [63–65], and may be key
for modeling intermediate-mass-ratio inspirals (IMRIs),
q−1 ∼ 102–104, a regime which remains challenging for
NR [66–69].

In this study we tackle an important limitation of
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previous analysis. In all cases, the agreement between
NR and SMR predictions breaks down as the binary ap-
proaches the innermost stable circular orbit (ISCO). This
is expected: first because higher order SMR coefficients
may grow larger at high frequencies, but also because
previous SMR predictions expand around an adiabatic
inspiral, and must eventually fail as the binary transi-
tions into plunge and merger. Distinguishing between
these two effects is crucial for modeling the binary close
to merger and is and particularly relevant for intermedi-
ate and comparable mass ratio systems, where the tran-
sition region can be large.

The transition can be understood as a sort of singu-
lar boundary layer in between the slow inspiral through
a sequence of circular orbits and a direct plunge with
timescale T ∼ M , M the total mass. In the SMR ap-
proximation, this transition occurs over a region of char-
acteristic size ∼ Mν2/5 around the location of the ISCO
r∗ = 6M , and with a dynamical timescale T ∼ Mν−1/5.
Following the initial description of the transition dynam-
ics [26, 70], a number of studies have refined and gener-
alized the analytic approximations to the dynamics [71–
77]. Recently self-force corrections have been incorpo-
rated into a generic expansion of transition equations and
their solutions [78, 79], which we use here.

In this study we investigate the binding energy E of
nonspinning, quasicircular binary black holes at compa-
rable masses. We show that E follows well-behaved SMR
inspiral and transition expansions even through ISCO.
During the inspiral we recover the geodesic and post-
geodesic coefficients as functions of in invariant radius
rΩ ≡ M1/3Ω−2/3. During the transition, we find that
the E follows the expected fractional power expansion in
ν [79], with the coefficients functions of the rescaled tran-
sition radius RΩ ≡ ν−2/5(rΩ−r∗). This expansion breaks
down near merger and towards inspiral as expected, and
we estimate the region of validity to be −2 & RΩ/M & 7,
corresponding to rΩ ∼ r∗−2Mν2/5. The leading O(ν4/5)
coefficient from the transition fits is in good agreement
with predictions. We are able to extract higher-order
coefficients up to O(ν9/5), where unknown 2GSF contri-
butions first appear, and we find them to be negligible
within the uncertainty of our analysis.

From our analysis we can estimate the regime over
which the inspiral and transition SMR expansions accu-
rately predict E using only first-order GSF (1GSF) infor-
mation. Our results indicate that an SMR expansion of
the two-body system can provide accurate predictions for
gravitational waves for comparable mass systems up to
the final GW cycle before merger, and is consistent with
recent success of EMRI surrogate models [51, 52] and re-
cent 2GSF-accurate inspiral waveforms [45] in describing
GWs from comparable mass systems.

Conventions: From here we render all quantities di-
mensionless by setting G = c = M = 1. We use
q = m1/m2 ≥ 1 to refer to the mass ratio of simula-

tions, as is conventional in NR. We use an overdot for
time derivatives and a prime for derivatives with respect
to rΩ or RΩ, depending on the context. Quantities eval-
uated at ISCO are indicated by ∗, e.g. r∗.
NR simulations – We select a set of high-resolution,

nonspinning and quasicircular binary black hole sim-
ulations produced with the Spectral Einstein Code
(SpEC) [80, 81] with mass ratios ranging from q = 1
to q = 20. These simulations have low initial eccentric-
ity e . 10−4, a relatively large number of orbital cycles
Ncycles ∼ 20–45, and in most cases two resolution levels,
which allows us to assess numerical uncertainties.
From each simulation we take the extrapolated grav-

itational wave strain h = h+ − ih× at future null infin-
ity [80, 82], expanded in (`,m) modes of spin-weighted
spherical harmonics. The strain h is further corrected
by applying a translation and boost that minimizes the
effect of the center of mass motion present in the simu-
lations [83, 84]. From the strain we define the invariant
radius rΩ using an orbital frequency Ω inferred from the
` = 2, m = 2 mode of the gravitational waves,

φ22 = arg h22 , Ω = φ̇22/2. (1)

Although the quantity of interest for our analysis is
E, only the energy flux Ė is directly accessible from the
strain. One approach is to integrate the flux, choosing
the integration constant by matching either to the mass
of the final black hole or to PN theory early in the in-
spiral, but we find that this procedure introduces unde-
sired errors in the analysis. Instead we use the gradients
E′(rΩ) = Ė/ṙΩ during inspiral and E′(RΩ) = Ė/ṘΩ dur-
ing the transition as our quantities of interest. For the
flux we use the standard formula

Ė = lim
r→∞

r2

16π

∑

`,m

|ḣ`m|2, (2)

and sum over all the gravitational wave modes available
in our simulations (` ≤ 8).
One challenge in our analysis is that the strain h ex-

hibits small modulations beyond those expected from
quasicircular inspiral, which become particularly notice-
able in the derived Ω̇. While the origin of these modu-
lations is uncertain, during early inspiral they are dom-
inated by residual junk radiation which can reflect from
the outer boundary back into the computational domain,
and at later times appear to be due to modulations of the
center of mass, see e.g. [59]. To mitigate them, we apply
a low-pass filter to Ω̇ during the early inspiral, with a
cutoff frequency chosen conservatively high so that the
overall chirping of Ω̇ is not biased. Towards the transi-
tion regime the dynamics are fast enough that the filter-
ing can still potentially bias the result. So, for r < 9.5
we smooth the modulations with a rolling fit of E′(RΩ)
to a quadratic over a fiducial window size of ∆RΩ = ±2.
Further details of our simulations and these procedures
are given in the Appendix.
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Appendix

Details of numerical simulations – Table I gives fur-
ther details on the numerical simulations used in this
study, which includes q = 14 and q = 15 simulations as-
sociated with the surrogate described in [53]. The ini-
tial data types correspond to Superposed Kerr Schild
(SKS) [94] and Superposed Harmonic Kerr (SHK) [95].
The initial data makes use of improved prescriptions
to minimize the initial center of mass motion [96],
and the initial eccentricity is reduced using an itera-
tive method [97–99]. The resolution level is indicated
by the Lev argument, and corresponds to internal toler-
ances of the adaptive mesh refinement algorithm used in
SpEC [100, 101]. Due to the nature of adaptive mesh re-
finement, and the variable history of refinement for each
simulation, strict spectral convergence is not expected for
derived quantities such as the gravitational wave strain
h [80]. For this reason, we assess numerical uncertainties
by including simulations with different resolutions where
available in our error estimates. We use an N = 4 ex-
trapolation setting (fifth-order in r−1) as appropriate for
inspiral [80, 82] for all our simulations.

Details of the data analysis and error estimates –

During inspiral, we use a second-order forward and back-
ward Butterworth filter B to filter Ω̇. To mitigate the im-
pact on the frequency sweep, we find that find that apply-
ing the filter after subtracting a good estimate of the data
improves its performance by reducing the overall varia-
tion of the data. For this we use the 2GSF prediction for
Ω̇ from [45]. Further, we apply the filter to Ω̇ as a func-
tion of its index. Since the time step in our simulation
is adaptive, the strain data h is not uniformly sampled,

q Type MΩ0 Ncycles e0 Levs SXS ID

1 SKS 0.01233 27.96 1.355e-4 5,6 2513
1.5 SKS 0.01250 28.98 5.77e-5 2,3 2331
2 SHK 0.01554 20.70 2.408e-4 2,3 2497
2.5 SKS 0.01512 22.49 7.580e-4 2,3 0191
3 SHK 0.01707 20.44 9.64e-5 2,3 2498
3.5 SKS 0.01477 27.76 2.665e-4 4,5 2483
4 SKS 0.01600 25.67 8.702e-4 4,5 2485
4.5 SKS 0.01616 27.37 8.289e-4 4,5 2484
5 SKS 0.01589 29.13 2.236e-4 4,5 2487
5.5 SKS 0.01592 30.81 4.442e-4 4,5 2486
6 SKS 0.01588 32.62 5.864e-4 4,5 2489
6.5 SKS 0.01599 34.43 7.263e-4 4,5 2488
7 SKS 0.01577 36.16 3.612e-4 4,5 2491
7.5 SKS 0.01597 37.89 3.694e-05 4,5 2490
8 SKS 0.01584 39.53 6.688e-4 5 2493
8.5 SKS 0.01594 41.31 8.578e-4 5 2492
9 SKS 0.01583 43.16 2.010e-4 4,5 2495
9.5 SKS 0.01585 44.93 1.584e-4 4 2494
14 SHK 0.02292 27.70 3.814e-4 2,3 2480
15 SHK 0.02317 27.94 3.692e-4 2,3 2477
20 SKS 0.02321 34.38 2.506e-4 3,4 2516

TABLE I. Details of the nonspinning quasicircular SpEC sim-
ulations used in this analysis. The subscript zero denotes the
reference time (time at which junk radiation has sufficiently
decayed).

but we find that resampling to uniform time steps makes
finding an appropriate cutoff frequency more challenging
than for the non-uniform sampling. The reason is that
with the the denser sampling rate at late times effectively
brings the late-time chirp to lower frequencies, so that a
uniform cutoff frequency better targets the actual noisy
behavior at all times. The cutoff frequencies are chosen
as fc = a + b(ν − νq=20), with a ∈ {6, 8, 10} × 10−4 and
b = 1.95× 10−3. The filtered data is then

Ω̇filtered,i = [B ∗ (Ω̇raw,i − Ω̇SMR,i)] + Ω̇SMR,i . (11)

Since the filtering process biases the data late in the
simulation, and because we have no SMR data beyond
ISCO, we choose a cutoff radius rΩ,c = 9.5 beyond
which we simply switch to a rolling fit of E′(Ω) (or
L′(RΩ) as discussed below) to a quadratic, over a window
∆RΩ ∈ ±{1, 2, 3} around the fitted point. For our fidu-
cial analysis, we select the one corresponding to ∆R = 2
and a = 8× 10−4.
To create our uncertainty bands for our fitted quanti-

ties, we vary all of the parameters involved in the filtering
and smoothing of our data within the stated ranges, as
well as repeating our analysis with simulations at a lower
resolution. The error bands are created by taking the
envelope of the variation in our fitted parameters, over
the different resolutions, and the 1-σ errors of our least-
squares fits at each frequency point.
Details of the transition formalism – Our analysis re-

quires that we solve the transition equations to leading
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scri (2020).

[85] S. L. Detweiler, A Consequence of the gravitational self-
force for circular orbits of the Schwarzschild geometry,
Phys. Rev. D 77, 124026 (2008), arXiv:0804.3529 [gr-
qc].

[86] J. L. Friedman, K. Uryu, and M. Shibata, Thermody-
namics of binary black holes and neutron stars, Phys.
Rev. D 65, 064035 (2002), [Erratum: Phys.Rev.D 70,
129904 (2004)], arXiv:gr-qc/0108070.

[87] A. Le Tiec, L. Blanchet, and B. F. Whiting, The First
Law of Binary Black Hole Mechanics in General Rel-
ativity and Post-Newtonian Theory, Phys. Rev. D 85,
064039 (2012), arXiv:1111.5378 [gr-qc].

[88] A. Zimmerman, A. G. M. Lewis, and H. P. Pfeiffer, Red-
shift factor and the first law of binary black hole me-
chanics in numerical simulations, Phys. Rev. Lett. 117,
191101 (2016), arXiv:1606.08056 [gr-qc].



12

[89] S. R. Dolan, P. Nolan, A. C. Ottewill, N. Warburton,
and B. Wardell, Tidal invariants for compact binaries
on quasicircular orbits, Phys. Rev. D 91, 023009 (2015),
arXiv:1406.4890 [gr-qc].

[90] A. Pound, Conservative effect of the second-order
gravitational self-force on quasicircular orbits in
Schwarzschild spacetime, Phys. Rev. D 90, 084039
(2014), arXiv:1404.1543 [gr-qc].

[91] Black Hole Perturbation Toolkit, (bhptoolkit.org).
[92] This result is potentially surprising, since it seems to

imply that the leading radial self-force effect, fr
[0] in [78,

79], vanishes so that the O(ν1/5) term in R, R1, can
be set to zero along with Y1. We speculate this may
be because we work with the gauge-invariant RΩ and
the energy directly, while the piece fr

[0] sourcing R1 is
instead gauge-dependent.

[93] D. Stanzione, J. West, R. T. Evans, T. Minyard,
O. Ghattas, and D. K. Panda, Frontera: The evolu-
tion of leadership computing at the national science
foundation, in Practice and Experience in Advanced Re-

search Computing (Association for Computing Machin-
ery, New York, NY, USA, 2020) p. 106–111.

[94] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu,
Binary-black-hole initial data with nearly-extremal
spins, Phys. Rev. D 78, 084017 (2008), arXiv:0805.4192

[gr-qc].
[95] V. Varma, M. A. Scheel, and H. P. Pfeiffer, Comparison

of binary black hole initial data sets, Phys. Rev. D 98,
104011 (2018), arXiv:1808.08228 [gr-qc].

[96] S. Ossokine, F. Foucart, H. P. Pfeiffer, M. Boyle, and
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