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For a relativistic binary with a small mass-ratio (SMR), post-geodesic corrections to the binding
energy due to the gravitational self-force are needed to model the evolution of the system. Perhaps
surprisingly, first-order self-force predictions have proven to be very accurate when compared to
numerical simulations of binaries with comparable masses, suggesting a greater applicability of the
SMR approximation than expected. These comparisons and their agreement have been generally
restricted to the early adiabatic inspiral, which breaks down as the smaller mass approaches the
innermost stable orbit and transitions into a direct plunge. Here we examine the binding energy of
nonspinning, quasicircular binary black holes using numerical simulations, with mass ratios ranging
from equal mass to 1: 20. We demonstrate the validity of the SMR approximation during inspiral,
and for the first time show that the binding energy of comparable mass systems follows a fractional
power expansion in the symmetric mass ratio v = mimsz/(m1 +m2)?, as predicted in the SMR limit.
Our results are in agreement with analytic predictions, and indicate that the transition dynamics is
important for modeling the last ~ 10 gravitational wave cycles before merger for comparable mass
systems, such as those currently observed by gravitational wave detectors. We find that second-order
GSF effects on the transition are small. This analysis provides further evidence for the applicability

of perturbative SMR results to gravitational wave modeling of comparable mass binaries.

The direct detection of gravitational waves (GWs) [1-
14] has provided a new window onto the universe, reveal-
ing populations of binaries composed of black holes and
neutron stars [15-17] and enabling tests of relativity in
the dynamical and strong-field regime, e.g. [18-24]. Ac-
curate modeling of the fully relativistic two-body prob-
lem is crucial for carrying out sensitive GW searches and
measuring the parameters of detected binaries. These
models provide predictions for the GWs emitted during
the inspiral, merger, and post-merger emission from these
systems, for example effective one body models, e.g. [25-
33], and phenomenological models, e.g. [34-40].

The construction of such complete models requires in-
put from a number of methods, such as post-Newtonian
(PN), gravitational self-force (GSF) and numerical rela-
tivity (NR) techniques. Understanding the limits of each
approach is crucial for creating accurate models. For ex-
ample the PN approximation is valid at large separations
and slow velocities. It worsens late in the inspiral, and
can be a poor approximation for systems with small mass
ratios ¢~ 1, where ¢ = m;y /mo > 1, which spend many cy-
cles at close separations. In contrast, GSF methods based
on the small mass ratio (SMR) expansion of the metric
about a black hole background is accurate for fully rel-
ativistic systems, but is naturally restricted to the SMR
region of the parameter space. These methods were orig-
inally developed to describe extreme-mass-ratio inspirals
(EMRIs) with mass ratios ¢~ 1 ~ 1074-107%, which are
promising targets for the LISA mission [41], and have
been recently been pushed to second-order (2GSF) for
nonspinning binaries [42-45].

Meanwhile, numerical relativity (NR) provides two-
body solutions exact up to numerical errors, but is lim-
ited in practice due to the computational time required
to evolve systems from a large separation, and the addi-
tional resolution requirements for systems with very un-
equal masses. Because NR is the only non-perturbative
method, it can be used to assess the validity of the PN
and SMR perturbative approximations in the regime of
comparable masses and small separations accessible to
NR [46]. NR is also used to calibrate effective one-body
and phenomenological models, or even to directly build
accurate surrograte models which can interpolate wave-
form predictions between simulations, e.g. [47-53].

Surprisingly, comparisons between NR and SMR ap-
proximations of binary black hole systems have shown
that the GSF approach is effective at describing even
comparable mass ratio systems, e.g. [44, 45, 54-59]. This
is true even for equal mass systems, when considering
quantities symmetric under the exchange of the compo-
nents my < msy. Such quantities include the binding
energy, GW fluxes and GW phasing, and is achieved
by re-expanding the SMR series in the symmetric mass
ratio v = myma/(m1 + mg)? rather than ¢!, see
e.g. [45, 56, 57]. This promising result indicates that
GSF methods may be effective at predicting GWs from
systems such as those detected by current [60-62] and
future ground-based detectors [63—65], and may be key
for modeling intermediate-mass-ratio inspirals (IMRIs),
g~' ~ 10%-10%, a regime which remains challenging for
NR [66-69].

In this study we tackle an important limitation of



previous analysis. In all cases, the agreement between
NR and SMR predictions breaks down as the binary ap-
proaches the innermost stable circular orbit (ISCO). This
is expected: first because higher order SMR coefficients
may grow larger at high frequencies, but also because
previous SMR predictions expand around an adiabatic
inspiral, and must eventually fail as the binary transi-
tions into plunge and merger. Distinguishing between
these two effects is crucial for modeling the binary close
to merger and is and particularly relevant for intermedi-
ate and comparable mass ratio systems, where the tran-
sition region can be large.

The transition can be understood as a sort of singu-
lar boundary layer in between the slow inspiral through
a sequence of circular orbits and a direct plunge with
timescale T ~ M, M the total mass. In the SMR ap-
proximation, this transition occurs over a region of char-
acteristic size ~ Mv?/® around the location of the ISCO
r. = 6M, and with a dynamical timescale T ~ Mp~1/5,
Following the initial description of the transition dynam-
ics [26, 70], a number of studies have refined and gener-
alized the analytic approximations to the dynamics [71-
77]). Recently self-force corrections have been incorpo-
rated into a generic expansion of transition equations and
their solutions [78, 79], which we use here.

In this study we investigate the binding energy E of
nonspinning, quasicircular binary black holes at compa-
rable masses. We show that E follows well-behaved SMR
inspiral and transition expansions even through ISCO.
During the inspiral we recover the geodesic and post-
geodesic coefficients as functions of in invariant radius
rq = MY3Q~2/3 During the transition, we find that
the F follows the expected fractional power expansion in
v [79], with the coefficients functions of the rescaled tran-
sition radius Rg = v~2/%(rq—r,). This expansion breaks
down near merger and towards inspiral as expected, and
we estimate the region of validity to be —2 2 Rq/M 2> 7,
corresponding to 7q ~ 7, —2Mv?/%. The leading O(v*/%)
coefficient from the transition fits is in good agreement
with predictions. We are able to extract higher-order
coefficients up to O(%/%), where unknown 2GSF contri-
butions first appear, and we find them to be negligible
within the uncertainty of our analysis.

From our analysis we can estimate the regime over
which the inspiral and transition SMR expansions accu-
rately predict E using only first-order GSF (1GSF) infor-
mation. Our results indicate that an SMR expansion of
the two-body system can provide accurate predictions for
gravitational waves for comparable mass systems up to
the final GW cycle before merger, and is consistent with
recent success of EMRI surrogate models [51, 52] and re-
cent 2GSF-accurate inspiral waveforms [45] in describing
GWs from comparable mass systems.

Conventions: From here we render all quantities di-
mensionless by setting G = ¢ = M = 1. We use
g = my/mg > 1 to refer to the mass ratio of simula-

tions, as is conventional in NR. We use an overdot for
time derivatives and a prime for derivatives with respect
to rq or R, depending on the context. Quantities eval-
uated at ISCO are indicated by *, e.g. 7.

NR simulations — We select a set of high-resolution,
nonspinning and quasicircular binary black hole sim-
ulations produced with the Spectral Einstein Code
(SpEC) [80, 81] with mass ratios ranging from ¢ = 1
to ¢ = 20. These simulations have low initial eccentric-
ity e < 107%, a relatively large number of orbital cycles
Neyeles ~ 20-45, and in most cases two resolution levels,
which allows us to assess numerical uncertainties.

From each simulation we take the extrapolated grav-
itational wave strain h = hy — thy at future null infin-
ity [80, 82], expanded in (¢,m) modes of spin-weighted
spherical harmonics. The strain h is further corrected
by applying a translation and boost that minimizes the
effect of the center of mass motion present in the simu-
lations [83, 84]. From the strain we define the invariant
radius ro using an orbital frequency (2 inferred from the
£ =2, m = 2 mode of the gravitational waves,

Q= oo /2. (1)

Although the quantity of interest for our analysis is
E, only the energy flux E is directly accessible from the
strain. One approach is to integrate the flux, choosing
the integration constant by matching either to the mass
of the final black hole or to PN theory early in the in-
spiral, but we find that this procedure introduces unde-
sired errors in the analysis. Instead we use the gradients
E'(rq) = E/?'"Q during inspiral and E'(Rq) = E/RQ dur-
ing the transition as our quantities of interest. For the
flux we use the standard formula
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and sum over all the gravitational wave modes available
in our simulations (¢ < 8).

One challenge in our analysis is that the strain h ex-
hibits small modulations beyond those expected from
quasicircular inspiral, which become particularly notice-
able in the derived €. While the origin of these modu-
lations is uncertain, during early inspiral they are dom-
inated by residual junk radiation which can reflect from
the outer boundary back into the computational domain,
and at later times appear to be due to modulations of the
center of mass, see e.g. [59]. To mitigate them, we apply
a low-pass filter to Q during the early inspiral, with a
cutoff frequency chosen conservatively high so that the
overall chirping of ) is not biased. Towards the transi-
tion regime the dynamics are fast enough that the filter-
ing can still potentially bias the result. So, for r < 9.5
we smooth the modulations with a rolling fit of E'(Rg)
to a quadratic over a fiducial window size of ARq = +2.
Further details of our simulations and these procedures
are given in the Appendix.



Inspiral expansion — During the adiabatic inspiral,
post-geodesic corrections to E can be calculated from
1GSF corrections to the redshift quantity z [85] via the
first law of binary mechanics (FLBM) [86, 87]. The
FLBM assumes a helical symmetry with Killing vector
field K = 0 + 20y, which is exact only for perfectly cir-
cular orbits. This global symmetry provides a powerful
connection between the local redshift and the energy and
angular momentum of the system. While this symmetry
does not hold for dynamical binaries, the FLBM has been
found to be surprisingly accurate when comparing ana-
lytic predictions to NR, e.g. [55, 88], and we again find
excellent agreement. In our comparison we require the
O(v) corrections to the derivative of the binding energy.
The FLBM gives [55, 87]

E'(rq) = Egeo(ra) + vEpLpm(ra) + ow?), (3)
with

xr
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where z = 7'(21. The 1GSF contribution to z, z1gsr(z),
has been computed to high precision with multiple codes,
e.g. [89]. For the purpose of our inspiral comparison we
make use of the fit formula [87]
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Without assuming the relationships derived from the
FLBM, 2GSF information is required to compute O(v)
contributions to E [42], and we also compare to these
results.
Inspiral results — To compare NR and SMR approxi-
mation during the inspiral, we perform a least-square fit
of E'(rg) to an expansion in integer powers of v,

Tmax

E'(ro) = ) Ei(ra)V', (6)
i=0

Following the approach of [58, 59], we first fit the NR
data at fixed r values to both a first and second degree
polynomial in v, without reference to the SMR predic-
tion. From this we extract values for the coefficients as
a function of rq, and we recover the geodesic prediction
E{(rq) from the NR data alone. This is shown in the top
panel of Fig. 1, where we plot the difference of Ej, and
Egco, finding remarkable agreement.

Having confirmed the test particle limit, we next fit
the remainder v~ [E'(rq) — E}.,(rq)] which allows us to
extract the O(v) and O(v?) coefficients more accurately.
Figure 1 shows the fitted coefficients E] and FE}. The
result is in very good agreement with the first-order pre-
diction from the FLBM, with systematic deviations start-
ing rq < 10. The NR data agrees better with the FLBM
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FIG. 1. Top panel: Recovery of the geodesic limit of the en-
ergy gradient E’(rq) during inspiral from the NR data. We
plot the difference between the leading coefficient Ej from a
free fit to our sequence of NR simulations and the geodesic
limit, together with our estimated uncertainties. Middle
panel: Inspiral results when using the geodesic limit as a
baseline for our fit. We plot the subleading coefficients Ef
(solid red) and FEj (solid green) of the inspiral expansion of
E'. Also plotted is the corresponding E{**™ prediction [57]
and two SMR results: one based on the FLBM [55] and one
a post-adiabatic expansion including 2GSF corrections [42].
Bottom panel: Difference between the NR and FLBM results
for E.

than with the post-adiabatic result [42] for the binding
energy based on a 2GSF calculation. This is interesting
on its own: it shows the importance of understanding
subtle differences in the definitions of energy and orbital
frequency that are used when comparing NR and GSF
methods, as discussed in [42]. We also find evidence of a
small but non-zero O(v?) term during the inspiral.

We have repeated the inspiral analysis using the orbital
angular momentum, with L’ derived from the angular
momentum flux, and comparing to the post-adiabatic ap-
proximation up to O(r?) using the FLBM relations [87].
As with the binding energy, a fit to O(v?) provides ex-
cellent agreement throughout the inspiral regime, with a
breakdown for rq < 10. We also find that the adiabatic
condition for circular orbits is satisfied for each of our
extracted coefficients during inspiral, with E!/L, = Q
to within the uncertainty in our fits. This includes the
coefficients at O(v?). This agreement provides further
evidence for the accuracy of the FLBM during inspiral.
In the future, it would be interesting to see whether the



FLBM continues to be accurate through order O(v?) dur-
ing the inspiral. This would require a calculation of the
2GSF conservative redshift zagsp [90].

Transition expansion — Using an SMR expansion
around the Schwarzschild metric, the binding energy and
radius of the orbit during the transition take the form [79]

E = E* +Q*[V4/5§(V75) +V6/5Y(V7 9)} ) (7)
r=r.+ v R(v,s). (8)

where s = vY/%(r — 7,) is the transition time parameter.
The transition variables can be expanded in fractional
powers of v,

£=> &'® Y=Y vu'h R=> Ry". (9)

The transition equations provide a method for iteratively
solving for each of &, R; and Y;, with their boundary
conditions fixed by matching to the adiabatic inspiral at
early times s — —oo. They also take as input the self-
force F}, in the neighborhood of r,. For example, angular
momentum conservation reveals { = F}l|..s + O(v*/?)
[79]. For the self-force Fj|,,, we use first-order flux data
at the ISCO, taken from [74, 91]. Note that our gauge-
invariant Rq differs from R at O(r?/%), and throughout
we have re-expanded the small parameter 1/q in terms of
v, which alters the usual transition expansion at O(v/°).
This means that our final fitted transition functions differ
from those of [78, 79] beyond the leading order. For our
analysis we numerically solve for the leading order terms
Ry (s) and &o(s). We give the leading transition equations
we use in the Appendix. Note that 2GSF corrections
enter at O(1%/%).

Transition results — For the transition analysis we fol-
low the same method as for the inspiral but we fit the
NR data at fixed R to the fractional power expansion

E'(Rq) =Y Ej)5(Ra)V'/®. (10)

Following the expectation from Eq. 7, we set Eé/5 =0
in our first fit. We then let i,.x = 8, which guarantees
the stability of the fit, and which is enough to fit the
NR data without leaving any structure in the residuals.
Figure 2 shows the results of the transition coeflicients
E), /5 from this fit. We see that the leading SMR result is
in excellent agreement for a range of radius corresponding
to 2 2 Rq 2 7, confirming the presence of the predicted
transition dynamics even at comparable masses.

Having confirmed that the leading SMR prediction can
be recovered purely from the NR data, we next fit the
residual between E’ and the leading analytic prediction,
V450, déy/dRy. In principle, this leading subtraction is
not accurate through O(v), and can artificially introduce
a term at El .. As such, we first fit the NR data includ-
ing this coefficient, and find the result is fully consistent
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FIG. 2. Top panel: Leading order coefficient Ej} 5(Rq) of
the transition expansion of E'(Rq) obtained from the NR fit
(blue) compared to the leading-order SMR prediction (red).
The recovery of the analytic prediction gives direct evidence
for transition dynamics in comparable-mass NR simulations.
Bottom panel: Difference between the SMR transition predic-
tion and the NR result.

with Ef /5 = 0, with the remaining coefficients nonva-
nishing [92]. We then again set Ej o = 0 and fit the
scaled residual [E' — v*/ 5E§}V5[R]1/_2/ 5. This allows us
to extract accurate coefficients using either iy, = 8 or
Imax = 9, with the latter providing an estimate for the
O¥°/?) term.

Figure 3 shows the resulting higher-order coefficients.
One can see a general trend where the coefficients are
comparable to E,/5(Rq) in a region around ISCO but
grow towards larger Rq, consistent with a possible break-
down of the transition expansion towards inspiral. The
coefficient E7 /5 I8 consistently larger than F /5 and sim-
ilar in magnitude to E} /50 which is why we require terms
up to Ef . to recover the leading-order result and why
the leading result alone is never accurate at these mass
ratios. Meanwhile we see that including Ej /5 doesn’t
introduce any systematic deviation in the lower order co-
efficients. Including it seems to worsen the fits, possible
by overfitting the residual oscillations, and itself is consis-
tent with zero. Our transition expansion fails for R 2 7,
as is clear from the failure to recover the leading-order
result in Fig. 2, and from the blow-up of the subleading
coefficients seen in Fig. 3.

Conclusions — We have analyzed for the first time the
SMR limit from nonspinning, quasicircular NR simula-
tions in the transition region around the ISCO. Our work
extends previous analysis of the validity of the SMR. ap-
proximation at comparable masses, which were restricted
to the inspiral region (but see also [52]). We first re-
visit the applicability of the adiabatic SMR expansion
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FIG. 3. Subleading coefficients of the transition expansion
for E'(Rgq) from a fit to our NR data, fixing the first two
coefficients. The solid lines correspond to the result of the
fit with terms up to O(+%/%), and include our estimated un-
certainties. The dashed color lines represent the result of the
fit including a O(v?/®) term where 2GSF effects first enter.
This term (bottom panel) is consistent with zero within our
uncertainties.

during the inspiral, showing that our simulations are in
good agreement with SMR, predictions augmented with
the FLBM. The agreement with the FLBM is limited
to rq = 10, and we find that the failure to recover the
FLBM result can be explained by the onset of transition
dynamics at around ro < 10.

Our analysis shows that using a transition expansion
in fractional powers for the binding energy and angular
momentum as functions of Rg = V_2/5<’I"Q — Tisco), We
can fit the NR data and recover the leading-order SMR
result [26, 70] in a region of width 2 > Rq 2 7 around the
ISCO. We find that terms up to O(v%/%) are necessary
to recover this result from NR, and we give a prediction
for the value of the higher-order coefficients. We also
show that the O(%/%) contribution is zero to within our
uncertainties, suggesting that the 2GSF contributions to
the binding energy during transition may be small.

Our results are summarized in Fig. 4, which shows the
NR data for dE/drq, for three binaries with ¢ = 1, ¢ = 5,
and ¢ = 20. We compare our raw NR data with the
smoothed and filtered data that we fit, along with the
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FIG. 4. Depiction of the domains of applicability of each ex-
pansion for a sample of mass ratios ¢ = 1, 5, 20. We plot
dE/drq from the NR data after removing the oscillations
(blue), the raw NR data (light gray), the inspiral prediction
from the FLBM (dashed red lines), and the transition ex-
pansion resulting from our fit, excluding O(v*/) and higher)
(black dashed lines). The markers indicate the number of
GW cycles left before merger: 1 (circle), 2 (down-triangle), 4
(diamond), 6 (up-triangle) and 10 (square). A combination
of the analytic inspiral approximation and transition dynam-
ics including 1GSF information models the binding energy
accurately up until the final 1-2 GW cycles.

O(v)-accurate FLBM inspiral prediction and the results
of our transition fit up to O(v%/%). This illustrates the
failure of the inspiral treatment near ISCO for higher
q, the narrowing of the transition region with increasing
q, and the fact that a combination of the two treatments
describes the energy accurately until the last cycle before
merger in all cases, with only 1GSF information.

This result provides the next step in bridging the SMR
and the comparable-mass regions of the parameter space.
It provides compelling evidence that one can continue
to model two-body dynamics using 1GSF theory, aug-
mented by the FLBM, to less than a cycle before merger.
This work points to a number of future directions. The
next step would be to extend this analysis to add tran-
sition effects in the GW phasing, and extend the results
of [58] to merger. SMR, predictions in this regime would
be enabled by combining transition modeling [78] with
2GSF-accurate fluxes [44] and waveforms [45].

It then is critical to address systems which include
spin, first for aligned-spin systems with an SMR, expan-
sion around Kerr, but eventually for systems with pre-
cessing orbit. Another promising direction would be to
go beyond the quasicircular approximation and examine
eccentric binaries. These areas represent the frontier of
2GSF calculations, and if achieved could provide a com-
plete, first-principles model for the two-body problem ap-
plicable from EMRIs to equal masses.
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Appendix

Details of numerical simulations — Table I gives fur-
ther details on the numerical simulations used in this
study, which includes ¢ = 14 and ¢ = 15 simulations as-
sociated with the surrogate described in [53]. The ini-
tial data types correspond to Superposed Kerr Schild
(SKS) [94] and Superposed Harmonic Kerr (SHK) [95].
The initial data makes use of improved prescriptions
to minimize the initial center of mass motion [96],
and the initial eccentricity is reduced using an itera-
tive method [97-99]. The resolution level is indicated
by the Lev argument, and corresponds to internal toler-
ances of the adaptive mesh refinement algorithm used in
SpEC [100, 101]. Due to the nature of adaptive mesh re-
finement, and the variable history of refinement for each
simulation, strict spectral convergence is not expected for
derived quantities such as the gravitational wave strain
h [80]. For this reason, we assess numerical uncertainties
by including simulations with different resolutions where
available in our error estimates. We use an N = 4 ex-
trapolation setting (fifth-order in r—!) as appropriate for
inspiral [80, 82] for all our simulations.

Details of the data analysis and error estimates —
During inspiral, we use a second-order forward and back-
ward Butterworth filter B to filter 2. To mitigate the im-
pact on the frequency sweep, we find that find that apply-
ing the filter after subtracting a good estimate of the data
improves its performance by reducing the overall varia-
tion of the data. For this we use the 2GSF prediction for
Q from [45]. Further, we apply the filter to € as a func-
tion of its index. Since the time step in our simulation
is adaptive, the strain data h is not uniformly sampled,

q Type MSQqg Neycles €o Levs SXS ID
SKS 0.01233 27.96 1.355e-4 5,6 2513
1.5 SKS 0.01250 28.98 5.77e-5 2.3 2331
2 SHK 0.01554 20.70 2.408e-4 2.3 2497
2.5 SKS 0.01512 22.49 7.580e-4 2.3 0191
3 SHK 0.01707 20.44 9.64e-5 2,3 2498
3.5 SKS 0.01477 27.76 2.665e-4 4,5 2483
4 SKS 0.01600 25.67 8.702¢-4 4,5 2485
4.5 SKS 0.01616 27.37 8.289%¢-4 4,5 2484
5 SKS 0.01589 29.13 2.236e-4 45 2487
55 SKS 0.01592 30.81 4.442e-4 4.5 2486
6 SKS 0.01588  32.62 5.864e-4 4,5 2489
6.5 SKS 0.01599 34.43 7.263e-4 4,5 2488
7 SKS 0.01577 36.16 3.612e-4 4,5 2491
7.5 SKS 0.01597 37.89 3.694e-05 4.5 2490
8 SKS 0.01584  39.53 6.688e-4 5 2493
8.5 SKS 0.01594 41.31 8.578e-4 5 2492
9 SKS 0.01583 43.16 2.010e-4 4,5 2495
9.5 SKS 0.01585 44.93 1.584e-4 4 2494
14 SHK 0.02292 27.70 3.814e-4 2,3 2480
15 SHK 0.02317 27.94 3.692e-4 2,3 2477
20 SKS 0.02321 34.38 2.506e-4 3,4 2516

TABLE I. Details of the nonspinning quasicircular SpEC sim-
ulations used in this analysis. The subscript zero denotes the
reference time (time at which junk radiation has sufficiently
decayed).

but we find that resampling to uniform time steps makes
finding an appropriate cutoff frequency more challenging
than for the non-uniform sampling. The reason is that
with the the denser sampling rate at late times effectively
brings the late-time chirp to lower frequencies, so that a
uniform cutoff frequency better targets the actual noisy
behavior at all times. The cutoff frequencies are chosen
as fo = a+b(v — vy—20), with a € {6,8,10} x 10~* and
b= 1.95 x 1073. The filtered data is then

Qfittered,i = [B* (Qraw,i — Qsmr.i)] + Qsmri - (11)

Since the filtering process biases the data late in the
simulation, and because we have no SMR data beyond
ISCO, we choose a cutoff radius rq,. = 9.5 beyond
which we simply switch to a rolling fit of E'(Q2) (or
L'(Rg) as discussed below) to a quadratic, over a window
ARq € £{1,2,3} around the fitted point. For our fidu-
cial analysis, we select the one corresponding to AR = 2
and a = 8 x 1074,

To create our uncertainty bands for our fitted quanti-
ties, we vary all of the parameters involved in the filtering
and smoothing of our data within the stated ranges, as
well as repeating our analysis with simulations at a lower
resolution. The error bands are created by taking the
envelope of the variation in our fitted parameters, over
the different resolutions, and the 1-o errors of our least-
squares fits at each frequency point.

Details of the transition formalism — Our analysis re-
quires that we solve the transition equations to leading



order, in order to calibrate our fits and compare with
the NR results. The quantities Rg(s) and Yy(s) are
solved using the the leading order transition equations

26, 70, 73, 79]

dRo\> 2
(E) = fga*Rg — 2Bk sRy + 7. Y0, (12)
d’R,
72 = —a, R2 — K. [, (13)
dYO /3*
=2k,—R 14
o5 2 o (14)
The constants in the above equations are given by
1 93V ovsee
* = Fl Tw 3 * = T 3 ) x = )
pe =Bl =g o M=
(15)
1 82vgen 82vge0
. = —= Q , 16
b 2(8r8L * 8T8E> (16)

where V8% is the effective potential of radial geodesic
motion about a Schwarzschild black hole.

Further results:  Angular momentum - Here we
present the analysis of the angular momentum in both
the inspiral and transition regimes. These results pro-
vide an independent demonstration of the accuracy of
the SMR modeling during inspiral and plunge. They are
used to confirm that the binaries are described by adi-
abatically evolving circular orbits through O(v?) during
inspiral, consistent with the FLBM, as discussed in the
main text. We also find that this condition fails at the
expected order during transition, by finding agreement
with the non-circular correction Yy introduced by Kes-
den [73].

We extract the angular momentum flux from our nu-
merical simulations using the standard formula

L = lim —Im
T—00

thl mpbmy | (17)
We use the same filtering technique applied to  as done
for the analysis of E(rq) during the inspiral, and the
same rolling fit to dL/dRg as a function of the transition
radius R for rq < 9.5, as done for analysis of the binding
energy.

For the analytic comparisons during inspiral, we use
the FLBM-derived expansion relations [55, 87]

L'(ra) = Lyeo(r) + vLpppu(re) + O(w?),  (18)

1 ) + 1 4—152
3y/x 1GSF 6y (1 —32)3/2”

and the redshift factor of Eq. (5). During inspiral we use
an expansion in integer powers of v to fit to the NR data,

LFLBM(JJ) = (19)

2
)= Li(ro)v". (20)
=0

0 A »

/MJ\/V‘" o _ g,
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FIG. 5. Top panel: Recovery of the geodesic limit of the en-
ergy gradient L'(rq) during inspiral from the NR data. We
plot the difference between the leading coefficient Lj from a
free fit to our sequence of NR simulations and the geodesic
limit, together with our estimated uncertainties. Middle
panel: Inspiral results when using the geodesic limit as a base-
line for our fit. We plot the subleading coefficients L} (solid
red) and L5 (solid green) of the inspiral expansion of L’. Also
plotted is the corresponding L{*FN prediction [57] and SMR
result based on the FLBM [55]. Bottom panel: Difference
between the NR and FLBM results for Lj.

As before, the fits across simulations at fixed ro give a
leading coefficient L{, in agreement with the geodesic pre-
diction Ly, and so we subtract this and fit the residual
L'(rq) — Lj(rq) to improve the accuracy of the fitted
Li(rq) and L)(rq) coefficients. The results of the inspi-
ral analysis are depicted in Fig. 5

For the transition analysis, the analytic approximation

for L'(R) depends on the quantity & [70, 78, 79],
L=L,+v"%¢,s). (21)

This allows us to compare L'(Rq) during the transition
to analytic predictions in the same way as for E'(Rgq).
We carry out the same analysis as for E'(Rgq), first per-
forming a fit of the form

Tmax

= > Lis(Ra)V'?, (22)
1=4

with ip.x = 8 and the only from analytic theory being
that £](Rq) = 0. The results for the leading coefficient
shown in Fig. 6 confirm that L/ /5 obeys the expected
transition dynamics, in agreement with theory. Next we
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FIG. 6. Top panel: Leading order coefficient L} 5(Rq) of the
transition expansion of the binding energy obtained from the
NR fit (blue) compared to the leading-order SMR prediction
(red). Bottom panel: Difference between the SMR transition
prediction and the NR result.

fix L) /5 to the analytic prediction, and verify that L /s
remains consistent with zero. Finally fixing both Lﬁl /5
and L’5/5, we fit with 4mayx = 8 and imax = 9 and extract
the transition coefficients plotted in Fig. 7. As with our
analysis of the binding energy, we see that the higher
terms in the expansion are significant and well behaved
through —2 < Rq < 7, and that the O(Vg/s) term is
consistent with zero to within our uncertainties. This
again confirms the small size of 2GSF contributions to
the transition.

Equivalently, we can focus on the deviation from cir-
cularity during transition [73], Y'(Rq) = E’'(Rq) —
Q. L'(Rq). The leading prediction for the deviation is

Y'(R) = Y§(Ro)v*/® + O(v7/"). (23)

We fit the NR data during transition to a fractional power
series of the form

Tmax

Y'(Ra) = Y Yij5(Ra)v'’", (24)
i=6

once again setting the first correction to the leading-order
behavior to zero, Y7’/5 = 0, and letting imax = 8. Fig-
ure 8 shows the fit coefficient Y{ /5(Rq) extracted from
this procedure. The leading-order prediction provides a
good fit to the data over the same range of R values as
we find for the energy analysis, 2 < Rg S 7.

If we retain the Y7 /5 term, the near-degeneracy of the
first two terms prevents us from achieving this level of
agreement with theory for Y /50 We can justify setting
Y] /5 = 0 in two ways. Our first comes from consider-
ing what our numerical results for E'(Rg) imply for the
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FIG. 7. Subleading coefficients of the transition expansion
of L'(R) the NR analysis. The solid lines correspond to the
result of the fit with terms up to O(v®/®). The dashed color
lines represent the result of the fit including a O(v°/®) term
shown in the bottom panel.

transition expansion. The fact that we find that £ /5= 0
after subtracting the leading transition prediction from
the NR data for E'(Rg) implies that the first correction
to R vanishes, R1(Rq) = 0. This in turn implies that
first term in the transition expansion of the radial self-
force, fi; of [79], vanishes. Without this term to source
Y1 in the transition equations, Y; term can be set to
zero in a consistent manner. The second way is to sub-
tract the leading-order prediction (23) from Y’ and fit
the remainder, [Y'(Rq) — v%/°dY,/dRo) to the factional
power expansion in v, starting the series with Y7’ /5 When
doing so we find the fit for Y7 ;(Rq) vanishes through-
out the transition region, while the higher coefficients are
nonzero, similar to what occured for E'(Rq).
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