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Abstract

Elucidating the long-term history of the Greenland Ice Sheet (GrIS) is essential for understanding
glacial instability thresholds, identified as major climate system tipping points, and how the cryo-
sphere will respond to anthropogenic greenhouse gas emissions. To address current knowledge
gaps in the evolution and variability of the GrIS and its role in Earth's climate system, International
Ocean Discovery Program (IODP) Expedition 400 will obtain cores from seven sites across the
northwest Greenland margin into Baffin Bay where thick Cenozoic sedimentary successions can
be directly linked to the evolution of the northern GrIS (NGrIS). The strategy of drilling along this
transect is to retrieve a composite stratigraphic succession representing the Late Cenozoic era
from the Oligocene/Early Miocene to Holocene. The proposed sites will specifically target high—
accumulation rate deposits associated with contourite drifts and potential interglacial deposits
within a trough mouth fan system densely covered by seismic data. We seek to test if the NGrIS
underwent near-complete deglaciations in the Pleistocene and to assess the ice sheet’s response to
changes in orbital cyclicities through the mid-Pleistocene transition. Paleoclimate records will be
obtained that can provide chronology on the NGrIS expansion and unravel potential linkages
between marine heat transport through Baffin Bay and high Arctic warmth during the Pliocene. A
deep coring site (980 meters below seafloor) targeting a Miocene and Oligocene strata succession
will examine possible linkages between changes in atmospheric CO, and climate-ecosystem con-
ditions in Greenland. The overall aim is to investigate the full range of forcings and feedbacks—
oceanic, atmospheric, orbital, and tectonic—that influence the GrIS over a range of timescales, as
well as conditions prevailing at the time of glacial inception and deglacial to interglacial periods.
The data and results gathered from Expedition 400 will effectively constrain predictive models
addressing the GrIS response to global warming and its impending effects on global sea levels.

Plain language summary

Sea-level consequences of anthropogenic climate forcing hinge on how the polar ice sheets
respond to global warming. If fully melted, the Greenland Ice Sheet has the potential to raise sea
level by >7 meters, yet we know very little about its long-term responses to past climate warming
or its role in Earth’s climate system. Expedition 400 seeks to address current knowledge gaps in the
evolution and variability of the northern Greenland Ice Sheet by analyzing sedimentary archives of
warm and cold periods of the last ~30 million years, including times when the greenhouse gas
content of the atmosphere was higher than it is today.

Sediment archives will be obtained by drilling at seven sites to depths of 300—1000 meters below
seafloor along a transect crossing the northwest Greenland margin into Baffin Bay. The seven sites
will provide a composite stratigraphic succession that includes preglacial settings, a record of first
growth of the northern Greenland Ice Sheet, and glacial and interglacial cycles when the ice sheet
grew to its maximum positions at the shelf edge and retreated toward land, possibly melting nearly
completely.

1. Schedule for Expedition 400

International Ocean Discovery Program (IODP) Expedition 400 is based on IODP drilling
Proposals 909-Full2 and 909-Add (available at http://iodp.tamu.edu/scienceops/expedi-
tions/nw_greenland_glaciated_margin.html). Following evaluation by the IODP Scientific
Advisory Structure, the expedition was scheduled for the research vessel (R/V) JOIDES Resolution,
operating under contract with the JOIDES Resolution Science Operator (JRSO). At the time of
publication of this Scientific Prospectus, the expedition is scheduled to start in St. John’s, Canada,
on 12 August 2023 and to end in St. John’s, Canada, on 12 October. A total of 56 days will be
available for the transit, drilling, coring, and downhole measurements described in this report (for
the current detailed schedule, see http://iodp.tamu.edu/scienceops). Further details about the
facilities aboard JOIDES Resolution can be found at http://iodp.tamu.edu/labs/index.html
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2. Introduction

The Greenland Ice Sheet (GrIS) holds a large amount of freshwater, equivalent to ~7.4 m of global
sea level (Bamber et al., 2013). Recent studies have highlighted the sensitivity of the GrIS to cli-
mate warming and the potential impact its meltwaters would have on sea level rise and the Atlan-
tic Meridional Ocean Circulation (Alley et al., 2010; Khan et al., 2010; Hansen et al., 2016). With
the prospect of irreversible ice sheet retreat as one of the major tipping points, documenting the
full range of forcing and feedbacks—oceanic, atmospheric, orbital, and tectonic—that influence
the GrIS over a range of timescales is crucial for making robust predictions of future climate and
sea level change (Intergovernmental Panel on Climate Change [[PCC] Sixth Assessment Report;
https://www.ipcc.ch/assessment-report/ar6). To this end, high-resolution sedimentary archives
proximal to Greenland that capture glacial discharges of meltwater and sediments under different
ice sheet configurations as well as biogenic components reflecting marine and terrestrial climate
conditions are needed. The objectives of Expedition 400 directly address the critical questions
posed in the Climate and Ocean Change theme of the IODP science plan: “How do ice sheets and
sea level respond to a warming climate?” and “How does Earth’s climate system respond to ele-
vated levels of atmospheric CO,?”

The response of the GrIS to extreme interglacial warmth is a highly relevant and debated topic
although it is poorly constrained by data. During the last interglacial period, Marine Isotope Stage
(MIS) 5e, global sea level was likely in the range of 6—9 m higher than present (Dutton and Lam-
beck, 2012), of which the GrIS may have contributed between 10% and 40% (Neem Community
Members, 2013; Dutton et al., 2015). During MIS 11c, described as a super-interglacial (Loutre,
2003; Melles et al., 2012) (Figure F1), global sea levels 6—13 m higher than today have been esti-
mated (Dutton et al., 2015). Several studies associate MIS 11c with a significant or near-complete
loss of the GrIS (Willerslev et al., 2007; de Vernal and Hillaire-Marcel, 2008; Reyes et al., 2014).
The MIS 11c ice sheet loss apparently occurred despite more moderate summer temperatures
compared to MIS 5e (Cluett and Thomas, 2021). A compelling result by Schaefer et al. (2016),
based on cosmogenic nuclides in subice bedrock, suggests that central Greenland became com-
pletely deglaciated during one or more periods over the last 2.5 My (Figure F1). This concept
raises critical questions: (1) What forcings drove near-complete collapses of the northern GrIS
(NGrIS) during the Pleistocene? (2) How did the ice sheet reconfigure to a state of “normal”
glacial—interglacial conditions? To answer these questions and test the temporal scenarios for ice
sheet instabilities and extended deglaciation through the Pleistocene requires access to semicon-
tinuous records from the continental margins around Greenland (Bierman et al., 2016).

The mid-Pleistocene transition (MPT) signifies a profound shift in glacial-interglacial cycles from
41 to 100 ky periodicities (Hodell and Channell, 2016). Although the 41 ky cycles are strongly
linked to orbital forcing, the insolation changes associated with 100 ky cycles are weak and require
a persistent amplification mechanism (Yin and Berger, 2010). Explanations for the MPT have
focused on various aspects of CO, reservoir exchanges between ice, ocean, and atmosphere
(Raymo et al., 1996; Paillard, 1998; Ruddiman, 2006; Yin and Berger, 2010; Rial et al., 2013; Lear et
al., 2016) and changes in ice sheet dynamics controlled by bedrock/regolith cover of Northern
Hemisphere terrains (Clark and Pollard, 1998; Clark et al., 2006; Abe-Ouchi et al., 2013; Willeit et
al., 2019). All hypotheses implicate the GrIS, directly or indirectly, but its dynamic behavior across
the MPT is scarcely known. A potential linkage between global climate cycles and GrIS dynamics
is highlighted by a recent study denoting a major change in northwest GrIS configuration through
the MPT (Knutz et al., 2019) (Figure F1).

The current understanding of the Cenozoic evolution of the GrIS has been developed largely from
North Atlantic deep-sea records (Figures F2, F3A). In northeast Greenland, marine-based glaciers
appear to have been active since the Miocene (~18 Ma) (Thiede et al., 2011), but smaller outlets
may have existed as early as the late Eocene (Eldrett et al., 2007; St. John, 2008; Tripati et al., 2008).
Deep drilling and seismic evidence indicate that glacially influenced sedimentation on the central-
southern East Greenland margin began during the Late Miocene (~7 Ma) (Larsen et al., 1994;
Bierman et al.,, 2016; Pérez et al., 2018). Full-scale glaciation of Greenland is generally considered
to be timed with intensification of the Northern Hemisphere glaciations interpreted from elevated
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ice rafting in the North Atlantic during the late Pliocene—Pleistocene (Figure F2) (Shackleton et
al., 1984; Jansen et al., 2000; St. John and Krissek, 2002). This ice sheet growth phase is possibly
linked with a westward expansion of the GrIS into Baffin Bay during the Pliocene (Nielsen and
Kuijpers, 2013; Knutz et al., 2019; Aubry et al.,, 2021), although the chronology is poorly con-
strained.

A better knowledge of the inception of the GrIS and its sectorized expansion during the late Ceno-
zoic is needed to support sensitivity studies and climate models (DeConto, 2008). In particular,
there is a pressing need for understanding the GrIS behavior during the warm, CO,-driven cli-
mates of the Paleocene and Neogene (Figure F2). The Pliocene (5.3—-2.6 Ma) is the most recent
period when atmospheric CO, concentrations were similar to the modern levels of ~400 ppm.
This geological time period thus functions as a past analog interval for the ongoing and future
response of the ice sheet under warming conditions. Notably, the mid-Pliocene warm period (3.3—
3.0 Ma) has been a focal point for paleoclimate reconstruction and modeling (Haywood et al.,
2010; Dowsett et al., 2013). To study analogues for future global warming scenarios (e.g., pCO,
projections >600 ppm beyond 2050), it is necessary to access records going further back in time
(Figure F2). Key stratigraphic intervals for gaining knowledge on elevated pCO, climate regimes
include the Middle Miocene (16—15 Ma) and most of the Oligocene (34—27 Ma) (Zhang et al.,
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Figure F1. A. Possible scenarios for deglaciation in central Greenland based on cosmogenic bedrock dating (Schaefer et al., 2016). Red = potential near-ice free peri-
ods. B. Global sea level curve from Miller et al. (2015) constructed from LR0O4 benthic 6'80 stack (Lisiecki and Raymo, 2005). MISs for major glacials and interglacials are
indicated. LP = Late Pleistocene. Correlation to terrestrial sites are indicated. SKF = Store Koldewey Formation (Bennike et al., 2010), KKF = Kap Kebenhavn Formation
(Bennike and Bocher, 1990; Funder et al., 2001). C. Climate record from Lake EI'gygytgyn, northeast Russia (Melles et al., 2012). D. Prograding Units 1-11, marked by
vertical gray-blue bands, and depositional stages (DS) I-IV of the Melville Bugt/Upernavik TMF complex corresponding to thickness maps in H (Knutz et al., 2019). Age
model is based on correlation to nearby boreholes and the assumption that the gross average depositional flux produced by the entire glacial outlet system has been
relatively constant over long time periods (approximately several 100 ky cycles). E. Flux of coarse fraction (>63 pm) from ODP Leg 646, eastern Labrador Sea (Knutz et
al, 2019; based on Wolf and Thiede, 1991). F. Natural gamma radiation (NGR) variation from Site U1308, reflecting the flux of glacial weathering products to the central
North Atlantic ice-rafting belt (Hodell and Channell, 2016). cps = counts per second. G. Paleomagnetic timescale (Ogg, 2020). J = Jaramillo Subchron, O = Olduvai
Subchron. H. Sediment thickness maps for prograding Units 1-11 (compare with D and Figure F5) (Knutz et al., 2019). Thick white lines = shelf-break position of top
bounding horizon. Black/white background= present bathymetry. White areas = thicknesses below the seismic resolution (<30 m). MTD = mass transport deposit,
GZW = grounding zone wedge, DCS = drift-channel system. Red arrows = paleoice stream positions. Large black arrow = major shift in ice stream configuration
between Units 7 and 8 corresponding to MPT (D). Bold seismic line = key transect shown in Figure F5. B-H are modified from figs. 5 and 6 of Knutz et al. (2019).
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2013; O’Brien et al., 2020; Guillermic et al., 2022). These pre-Quaternary intervals likely exist
below the northwest Greenland margin (Knutz et al., 2015) but have yet to be explored by deep
drilling.

The vulnerability of the GrIS to global climate change is a major concern, but it also highlights a
knowledge gap that limits our ability to confidently project future cryospheric responses, includ-
ing contributions to sea level rise (Dahl-Jensen et al., 2009; Briner et al., 2017). Cenozoic climate
experienced significant changes in atmospheric greenhouse gas concentrations, notably linked to
pCO, (Pearson and Palmer, 2000; Zachos et al., 2008; Pagani, 2014). Model studies suggest that
even the modest atmospheric CO, changes (280-400 ppm) observed during the late Cenozoic
exert a primary control on GrIS growth across the Pliocene—Pleistocene transition (Lunt et al,,
2008; Tan et al., 2018) (Figure F2). Other factors controlling ice sheet dynamics include changes in
ocean currents (Nielsen et al., 2011; Knutz et al., 2015; Otto-Bliesner et al., 2017), tectonic base-
level changes (Solgaard et al., 2013), and variations in geothermal heat flux (Fahnestock et al.,
2001; Rogozhina et al., 2016), but these boundary conditions are less constrained by data and are
not easily addressed by climate models. For the Oligocene and Miocene time periods, the linkage
between global ice volume, surface temperatures and atmospheric pCO, is enigmatic. The expan-
sion and dynamic variability of ice sheets in Antarctica during periods of global warming and
moderate pCQO, levels imply a strong nonlinear behavior to climate forcing, with implications for
ice sheet tipping points (Foster et al., 2012; Golledge et al., 2017; O’Brien et al., 2020; DeConto et
al., 2021) (Figure F2). The complex linkages or possible decoupling between pCO, and global ice
volume (Raymo et al., 1996; Tripati et al., 2009) underscores the importance of evaluating all mul-
tiple potential forcings in the earth system. Greenland is surrounded by narrow gateways that over
millions of years may have changed configuration, potentially modulating ocean heat fluxes
between the Arctic and North Atlantic regions (Thiede and Myhre, 1996) (Figure F3A). Unravel-
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Figure F2. Estimated chronology of seismic stratigraphic horizons abounding mega-units of northwest Greenland margin
(see Figure F5) shown in context of Cenozoic climate evolution. Atmospheric CO, reconstruction (blue line with gray 20
errors) is based on all alkenone and boron proxy data (Pagani et al., 2005; Badger et al., 2013; Zhang et al., 2013). Historical
and future CO, projections from the IPCC AR5 Synthesis Report (https://www.ipcc.ch/report/ar5/syr) showing where his-
torical range (red dashed lines) intersects paleo-CO, reconstructions. Benthic foraminiferal 5’80 after Zachos et al. (2008).
Smoothed line (red) was computed using a Matlab script called Sizer. Figure modified from Sliwiriska et al. (unpubl. data).
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ing the GrIS response to past global warming events will need to consider regional effects such as
those related to ocean gateways, topography, and ecosystems (Otto-Bliesner et al., 2017; Hodson
et al,, 2010).

With a clear goal of addressing the multiple questions and hypotheses that concern the long-term
evolution and stability of the NGrIS, Expedition 400 will obtain a composite sedimentary archive
covering the last 25-30 My. The strategy is to drill seven sites along a transect across the north-
west Greenland margin from the deep basin of Baffin Bay to the inner continental shelf (Figure
F3). The transect is positioned between two major trough mouth fan (TMF) systems, the Melville
Bugt and the Upernavik TMFs, which avoids drilling through thick glacigenic slope aprons and
erosional unconformities within the recent trough features. The proposed sites will primarily core
high—accumulation rate deposits that include contourite, hemipelagic, and glacial-marine sedi-
ments of Quaternary, Pliocene, and Miocene—Oligocene age. With the data extracted from com-
posite archives obtained in close vicinity of major glacial outlets, we aim to determine maximum
and minimum NGrIS configurations throughout the middle to late Cenozoic, from shelf edge gla-
ciation to hypothesized complete ice loss, such as during Pleistocene super-interglacials (Figure
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Figure F3. A. Topographic/bathymetric map showing Expedition 400 transect sites in relation to existing ODP/Integrated Ocean Drilling Program/IODP sites (solid
circles) and near-surface ocean currents. LC = Labrador Current, WGC = West Greenland Current, IC = Irminger Current, EGC = East Greenland Current, NAD = North
Atlantic drift. Ocean gateways surrounding Greenland: DS = Davis Strait, PC = Parry Channel, NS = Nares Strait, FS = Fram Strait, DS = Denmark Strait. Locations of high
Arctic Pliocene and Early Pleistocene deposits: 1 = Beaufort Formation, high-level terrace locality on Ellesmere Island (Matthews and Ovenden, 1990; Rybczynski et al.,
2013), 2 = Kap Kebenhavn Formation (Bennike and Bécher, 1990; Funder et al., 2001), 3 = lle de France Formation (Bennike et al., 2002), 4 = Store Koldewey Formation
(Bennike et al., 2010). Greenland ice core positions (solid triangles) are also shown. The map was produced using the GMRT v4.0 mapping tool. B. Map of Baffin Bay
displaying primary Expedition 400 sites along the seismic transect (Figure F5), existing ODP/Integrated Ocean Drilling Program/IODP boreholes, and exploration wells.
WGC = West Greenland Current. BIC = Baffin Island Current. Inset box: detailed map in Figure F6. Star = area of the North Water Polynya. TMFs on the West Greenland
margin: Melville Bugt (MB), Upernavik (Up), Uummannaq (Um) and Disko Bugt (DB). Bathymetry is based on International Bathymetric Chart of the Arctic Ocean v3
(Jakobsson et al., 2012).
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Figure F4. Five conceptual stages of GrlS configurations through the late Cenozoic (approximately the last 30 My).

3. Background
3.1. Baffin Bay hydrology

Baffin Bay is a semienclosed basin with a predominant cyclonic ocean circulation and a pro-
nounced east—west hydrographic gradient (Figure F3). The Baffin Island Current transports cold,
low-saline Arctic waters along the Canadian margin that exits through the western Davis Strait. In
contrast, the West Greenland Current carries warmer (3°-5°C) waters derived from the North
Atlantic Irminger Current. The water mass advects over the West Greenland shelf regions at water
depths of 100-500 m (Bourke et al., 1989; Hamilton and Wu, 2013). Observations of the deep to
intermediate circulation of Baffin Bay are sparse, but hydrographic modeling indicates a south-
ward counter current along the West Greenland slope from 68° to 72°N at depths of 1000—1500 m
(Tang et al., 2004). Deepwater formation is possibly taking place in northern Baffin Bay, associated
with brine formation during sea ice formation in the North Water Polynya, south of the Nares
Strait (Yao and Tang, 2003) (Figure F3B). The rates and processes of water-mass conversion in this
area are not well understood (Bourke et al., 1989), but there is growing understanding of the role
of the North Water Polynya and its influence on the interactions of northern and southern sourced
water masses in the deepwater formation in Baffin Bay (Bécle et al., 2002; Rysgaard et al., 2020).

3.2. Greenland Ice Sheet dynamics

The northwest Greenland shelf region was glaciated on multiple occasions, resulting in prominent
TMFs that are the sedimentary expression of former glacial outlets of the NGrIS (Figure F3B).
Geophysical data and shallow core studies demonstrate the presence of fast-flowing ice streams
that reached the outer shelf during the Late Pleistocene (e} Cofaigh et al., 2013; Dowdeswell et al.,
2014; Slabon et al., 2016; Newton et al., 2017). The last glacial retreat from outer shelf grounding
positions to fjord outlets in northwest Greenland probably occurred in discrete steps controlled by
reverse bed gradients associated with shelf overdeepening (Patton et al., 2016; Newton et al., 2017)
and enhanced marine ablation linked to the West Greenland Current (Jennings et al., 2017). Con-
fluent Laurentide, Innuitian, and Greenland ice sheets blocked the Arctic—Atlantic gateways such
as Parry Channel and Nares Strait (Figure F3B) during the Last Glacial Maximum, eliminating the
inflow of Arctic waters into northern Baffin Bay and resulting in a circulation and sea ice regime
much different from the modern one (Jennings et al., 2019; Jackson et al., 2021). Arctic—Atlantic
gateway closures likely occurred during other glacial periods.

The ice sheets’ response to major climate transitions, such as the Pleistocene terminations, is
poorly known. A recent study invokes a slow interglacial response to climate forcing, suggesting
that the GrlIS is in disequilibrium with global warming (Yang et al., 2022). Conversely, during gla-
cial maxima ice shelves may have developed over Baffin Bay, buttressing the ice flow and possibly
stabilizing the central ice domes in Greenland (Hulbe et al., 2004; Jennings et al., 2018). Thinning
and breakup of stabilizing ice shelves can be triggered by ocean forcing at the grounding line
amplified by drainage of surface meltwater to the bed (Holland et al., 2008; Straneo et al., 2012;
Scambos et al.,, 2017; Catania et al., 2020; Jennings et al., 2022). Depending on physiographic fac-
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tors such as bathymetry and lateral constraints, ice retreat can be catastrophic or episodic (Alley et
al., 2007, 2015; Pollard et al., 2015; Scambos et al., 2017; Hogan et al.,, 2020). It is important to
understand the complex forcings and conditions that initiate retreat and govern the rate of retreat
of a previously stable marine-terminating ice sheet to better understand the impacts of ice sheet
retreat on sea level, ocean circulation, nutrients, and ecosystems (Catania et al., 2020). Recon-
structions of paleo—ice sheet behavior and mass balance change broaden the scope of our under-
standing of the potential outcomes of continued climate warming on the GrIS.

A better understanding of the boundary conditions and forcings determining long-term ice sheet
evolution requires information only attainable by offshore drilling. However, long sedimentary
records specifically illuminating NGrIS history are lacking. Previous drilled sites in the North
Atlantic recovered sediment shed from elevated terrains in east Greenland (Thiede et al., 2011;
Reyes et al., 2014) influenced by semipermanent alpine glaciers since the Late Miocene (Bierman
et al,, 2016). The only deeply cored site in Baffin Bay (Site 645) was drilled during the early phase
of the Ocean Drilling Program (ODP), and its contribution to understanding GrIS history is lim-
ited due to its location on the Canadian margin, poor recovery, and age uncertainties (Baldauf et
al,, 1989). In 2012, shallow coring was carried out in northeast Baffin Bay targeting Mesozoic rift
deposits in exhumed sedimentary basins north of the Melville Bugt trough (Expedition 344S;
Acton et al., 2012) (Figure F3B). However, two sites, U0100 and U0110, penetrated a 124 m thick
interval of overcompacted, muddy diamict. Cosmogenic nuclides and other proxy data extracted
from these proximal glacigenic sediments suggests that by the Early Pleistocene, a persistent yet
dynamic ice sheet existed in northwest Greenland (Christ et al., 2020).

The sensitivity of the GrIS to ocean warming (Holland et al., 2008; Yin et al., 2011) emphasizes the
need for high-resolution records near the major glacial outlets of eastern Baffin Bay. Important
advances in drilling techniques, dating methodologies, and proxy approaches make new drilling
key for advancing understanding of past GrIS dynamics and ice-ocean-climate interactions, which
so far have only been addressed by seabed mapping, shallow cores (Jennings et al., 2017, 2018),
and seismic stratigraphy correlated to exploration wells (Hofmann et al., 2016).

3.3. Tectonostratigraphic development

The continental margin of northwest Greenland has a complex geological and tectonic history
that involves Cretaceous rift phases, extrusive volcanism, and tectonic inversion as seafloor
spreading commenced in Baffin Bay. Rifting of the continental margins occurred during the Early
and Late Cretaceous forming numerous sedimentary basins and elongate grabens that fringe the
Baffin Bay margins (Whittaker et al., 1997; Gregersen et al., 2013; Nohr-Hansen et al., 2021).
Opening of Baffin Bay ensued from the late Paleocene through the Eocene, likely in tandem with
the opening of the Labrador Sea (Chalmers et al., 1993). The separation of Greenland relative to
the North American continent ceased during the early Oligocene (Chron 13) as seafloor spreading
commenced along the Aegir Ridge system of the Icelandic plate boundary (Oakey and Chalmers,
2012; Gregersen et al., 2022). The geological architecture and stratigraphic knowledge of this
region is mainly based on seismic and borehole data collected between 2007 and 2012 (Gregersen
et al,, 2013, 2016, 2022; Knutz et al., 2015, 2019, 2022). Eight seismic mega-units have been
described, of which Mega-units A—E are attributed to the Cenozoic interval deposited after conti-
nental rifting ceased. The drilling targets of Expedition 400 identified along the key seismic tran-
sect cover Mega-units A—-D (Figures F5, F6).

Oblique plate motions between Greenland and North America resulted in a transpressional tec-
tonic regime (strike-slip) on the West Greenland margin, which gave rise to major basin infilling
packages and deepwater fan systems guided by structural lineaments along inverted rift basins
(Mega-unit E). From the middle late Oligocene through the Middle Miocene, a more passive sedi-
mentation regime ensued with infilling of the remnant rift-basin topography (Mega-units D1 and
D2) (Figure F5). In the Melville Bay Graben, juxtaposed to the Greenland craton, Mega-unit D2
forms a several kilometer thick succession of continuously stratified deposits that are intensely
faulted, primarily as a result of marine clay compaction (Berndt et al., 2003). This package of pre-
sumably clay-rich marine sediments overlies stacked fan-type packages that are lodged against the
Greenland basement, separated by a major fault. The seismic-stratigraphic division between
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Figure F5. Key seismic transect for Expedition 400 coring sites with seismic horizons and units. Top: deep seismic profile
(BB10-5068125) courtesy of TGS (Knutz et al., 2019). Bottom: Stitched section of high-resolution seismic data from the
LAKO19 site survey. Small triangles over the top axis = positions of crossing seismic profiles, blue = deep seismic lines, red =
high-resolution seismic lines. Broken lines = sites projected onto the transect from offset positions (Figure F6). The prograd-
ing sequence (Mega-unit [mu] A) forming part of the Melville Bugt/Upernavik TMF system is dissected by 10 horizons,
which, including the seabed horizon, correspond to 11 depositional units (Knutz et al., 2019). Horizons are defined by
slightly dipping erosional surfaces (high-amplitude reflections in topset strata) with abrupt shelf breaks. The pre-TMF Hori-
zons b1 (approximately Late Pliocene) and c1 (approximately Late Miocene) demarcate a package of wavy contourites
formed within a major slide scar that truncates Horizon c1 (Knutz et al.,, 2015). Horizon d1, likely Middle Miocene in age,
defines the base of a late Neogene drift prism forming part of Mega-unit C. Horizon d2 is not constrained by boreholes but
is possibly late Oligocene in age. The Melville Bay and Kivioq Ridge systems represent rift-tectonic elements that were mod-
ified by compression during late Paleogene (Gregersen et al., 2013, 2016).

Figure F6. Map of site locations and site survey data for Expedition 400. Yellow dots = primary sites, red crosses = alternate
sites. The regular 2D seismic grid (blue-gray lines) constitutes TGS Baffin Bay surveys 2007, 2008, 2009, and 2010 (minimum
spacing = ~3.75 km). 3D seismic surveys Shell-ANU-3D-2012 and Cairn-PITU-3D-2011 are marked by broken line polygons
(dark and light blue, respectively). High-resolution survey LAKO 2019 is indicated by thin black line grids. The detailed
bathymetry on the shelf margin is based on industry multibeam data combined with the first reflection extracted from the
3D seismic data (Newton et al.,, 2017). Regional bathymetry is based on IBCAO v3 (Jakobsson et al., 2012) shown with 100 m
contours. Inset: detail of deepwater sites capturing a sediment drift-channel system developed on the lower slope south of
the Melville Bugt trough. Multibeam bathymetry data was collected by Alfred Wegener Institute (Dorschel, 2017). Position
of seismic profiles shown in Figures F5 and F7 are indicated.
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Mega-units D2 and C is described as the mid-Miocene Unconformity (d1) displaying erosion over
structural highs and a conformable development within basin settings (e.g., Melville Bay Graben)
(Figure F5). Mega-unit C forms an asymmetric sediment prism covering wide parts of the inner
shelf in northwest Greenland, with thicknesses up to 1200 m, that is variably modified by glacial
erosion. The prism is interpreted as a shelf-bound sediment drift that locally grades into clinoform
features associated with prodeltaic environments (Knutz et al., 2015). The boundary between
Mega-units C and B is an incised horizon (c1) that is correlated to extensive mass transport depos-
its on the lower slope and in the Baffin Bay basin, suggesting widespread submarine slope instabil-
ity. The regional character of this erosion points to a phase of tectonic adjustment affecting the
shelf margin, presumably during the Late Miocene (Knutz et al., 2015). Mega-unit B is character-
ized by distinct lenticular sediment bodies featuring asymmetric sediment waves that have accu-
mulated into expanded sections over the c1 erosion scarp (Figures F5, F7). The slope component
of Mega-unit B is interpreted as a contourite drift with seismic ties to nearby drilled sections sug-
gesting a Pliocene age (Knutz et al.,, 2015, 2019; Aubry et al., 2021).

3.4. Melville Bugt-Upernavik trough mouth fan system

A prograded shelf package (Mega-unit A) overlying the Neogene sediment drifts reflects deposi-
tion under the influence of major ice streams originating from the northwest GrIS sector (Figures
F3, F5). Eleven prograding sedimentary units have been identified, each corresponding to bundles
of glacial advance cycles within a major TMF system (Knutz et al., 2019; Newton et al., 2021). The
TMEF units are numbered according to their top bounding horizons, except for Unit 11, which is
capped by the seabed (Figure F5). The units are separated by glacial unconformities defining pale-
otrajectories of shelf break grounding zones that prograded seaward with sediment supplied by
successive advances of the NGrIS onto the outer shelf and slope. Between the two, modern cross-
shelf troughs (Melville Bugt and Upernavik TMFs) (Figure F3B), topset strata of prograding units
and associated shelf breaks are extremely well preserved due to high sediment input from paleoice
streams and basin subsidence over older rift structures. The Expedition 400 drilling transect was
designed with the intention to extract paleoclimate information from this intertrough aggrading
sediment wedge (Figure F6). Within the topset package, seismic reflections phase reversed from
seabed onlap the glacial erosion surfaces or infill intrashelf depressions (Figures AF3, AF4). These
reflections, which have stratal thicknesses of >20—30 m, may represent marine muddy sediments
deposited during periods of grounding line retreat and rising sea level, interrupting the glacial
advance mega-cycles. An age model for the depositional evolution of the TMF was reconstructed
by correlating the seismic horizons to nearby wells/boreholes (Knutz et al., 2019). It is hypothe-
sized that the stratal onlaps, succeeding major shifts in ice stream configuration, may have formed
during periods of extreme warmth, such as super-interglacials (Figure F1) (Knutz et al., 2019).

Beyond the shelf break, the horizons of Mega-unit A can be traced along clinoformal reflections to
the basin strata, resulting in a complete pseudo-3D mapping of the depositional units (Figure
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Figure F7. Composite seismic section (LAKO-1033 and 1044) showing the Mega-unit (mu) B contourite drift and Sites MB-
06D and MB-17A. Position of profile shown in Figure F6. Dotted lines = internal horizons of Mega-unit B linking the two
sites. MB-17A is shown with two target depth (TD) options. See Figure F5 for seismic stratigraphic legend.
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F1H). The youngest depositional sequence, comprising Units 8—11, which are likely Middle to
Late Pleistocene in age, form a series of contourites intersected by channel deposits on the lower
slope (Figures F5, F6). Thus, drilling these contourites will allow high-resolution paleoceano-
graphic reconstructions back to, and potentially through, the MPT.

In summary, there are several reasons for choosing northeast Baffin Bay for documenting the
Cenozoic evolution of the NGrIS:

o The area covers a large TMF system primarily constructed by glacial drainage over millions of
years;

« It contains a succession of gently dipping strata where a composite sequence of Oligocene—
Quaternary deposits may be drilled at relatively shallow depths;

« It has extensive coverage of high-quality 2D and 3D seismic data (Figure F6) with outstanding
imaging of glaciogenic sediment progradation, marine deposits formed by along-slope
currents, and hemipelagic basin-infilling sediments;

o A detailed seismic stratigraphy tied to well/borehole information illuminates the sediment
transport dynamics from the NGrIS (Knutz et al., 2019);

o The western Greenland margin is accessible due to amenable ocean temperatures and reduced
sea ice associated with the northbound West Greenland Current (Tang et al., 2004; Holland et
al,, 2008).

« Expedition 344S demonstrated in 2012 that JOIDES Resolution can successfully operate in
northeast Baffin Bay, a region that is crossed by icebergs but lacks pack ice (Acton et al., 2012).

3.5. Geophysical data

The supporting site survey data for Expedition 400 are archived at the IODP Site Survey Data
Bank (https://ssdb.iodp.org/SSDBquery/SSDBquery.php; select P909 for proposal number).

Development of the coring plan for Expedition 400 was facilitated by an extensive seismic data-
base (Figure F6). The core sites initially submitted for IODP drilling Proposal 909-Fulll were
located using 2D seismic data, including four regional seismic surveys collected by TGS in 2007—-
2010. The final placement of sites (IODP drilling Proposals 909-Full2 and 909-Add) was accom-
plished based on (1) two 3D data volumes, Cairn-PITU-3D-2011 and Shell-ANU-3D-2012, and
(2) a dedicated high-resolution seismic survey completed in 2019 as a collaboration between
GEUS and Geoscience-Aarhus University using the Danish R/V Lauge Koch (LAKO) (Pearce and
Knutz, 2019). Both 3D surveys were utilized in a compilation of seabed geomorphology (Newton
et al,, 2017, 2021) and geohazard assessments for further refining drill site locations (Cox et al.,
2020, 2021).

The LAKO 2019 survey data provide high-resolution coverage (vertical resolution = ~4—6 m) of all
primary sites and several alternate sites. The multichannel reflection seismic acquisition (15—
300 Hz) was optimized to gain enhanced resolution in the uppermost 500 m of the sedimentary
section, complementary to the existing industry data. A 90 cubic inch generator-injector (GI) gun
was used as a seismic source configured with a 45 inch® main chamber and a 45 inch? injection
chamber. Shot time was 4.0 s for most of the data, and record length varied between 2.0 and 3.5 s.
Shots were recorded on a Geometrics GeoEel streamer, which included five 25 m active sections of
8 channels each (40 channels total) with a group spacing of 3.125 m. A total of 861 line kilometers
was collected. Initial processing producing a migrated data version was performed on the ship.
Onshore final processing included confirmation of static and delay correction, deconvolution to
zero-phase data and fk filtering. The overall data quality was excellent, except some of the shelf
sections marked by significant short wavelength variations due to a rough seabed (e.g., boulders,
glacial scouring, and iceberg plough marks).

Swath bathymetry and high-resolution subbottom profiler (ParaSound) data were collected in
2017 (Alfred Wegener Institute; Expedition MSM66; Dorschel, 2017) over the deepwater sites on
the lower slope (Figure F6). Bathymetry covering an area of 900 km? was acquired using a Kongs-
berg EM122 multibeam echosounder on the R/V Maria S. Merian. For converting seismic drilling
targets into metric depths, the proposed sites were bundled into four groups based on similarities
in the depositional setting, geological context, and general target depths. To obtain the most real-

https://doi.org/10.14379/iodp.sp.400.2022 publications.iodp.org - 12


https://ssdb.iodp.org/SSDBquery/SSDBquery.php

P.Knutz et al.

https://doi.org/10.14379/iodp.sp.400.2022

Expedition 400 Scientific Prospectus

istic time-depth conversion, all available data from the region was reviewed. Velocity information
was extracted from existing industry boreholes south of the transect (e.g., Gamma-1), data gained
from Expedition 344S sites north of the transect (Figure F3B), and an interval velocity cube
derived from the Cairn-PITU-3D-2011 seismic volume. The average V; velocities applied for each
setting were 1800 m/s for the deepwater sites (proposed primary Sites MB-23A and MB-02C),
2200 m/s for the glacigenic topset strata on the shelf (proposed primary Sites MB-30A and MB-
31A), 1900 m/s for the Pliocene contorite sediments (proposed primary Sites MB-06D and MB-
17A), and 2050 m/s for the Miocene succession (proposed primary Site MB-07B).

4. Scientific objectives

The overall objective of Expedition 400 is to provide new insights into the long-term evolution of
the NGrIS. To this end, seismic imaging from the deep basin to inner shelf has guided the selection
of coring sites and stratigraphic correlation. A multiproxy diagnostic template has been developed,
which in concert with a transect-drilling strategy can constrain different phases of ice extent and
regional climate regimes (Figure F8). This template provides a methodological basis to test
hypotheses that are crucial for understanding GrIS history, how the glacial margins will respond to
continued warming in the near future, and how this may affect other components of the Earth
system.

Subglacial topography exerts a major control on ice sheet drainage, dynamics, and the vulnerabil-
ity of ice outlets to warm ocean waters (Morlighem et al., 2014, 2017). Instant removal of the ice
sheet in a model exercise leaves about 22% of Greenland below sea level, although this configura-
tion would change rapidly due to glacio-isostatic adjustment of the Earth’s crust (e.g., water depths
would become shallower over the central parts) (Conrad, 2013). Canyon systems that characterize
the subglacial topography in Greenland, including the 750 km long, v-shaped trough that termi-
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Figure F8. Diagnostic template for proxy interpretation. The combination of different proxy results will provide information
on glacial response and paleoenvironmental settings associated with five overall stages of ice sheet configuration. Drill
sites linked to each glaciation stage are shown in the second row. Environmental parameters and proxies used to measure
those parameters are shown in columns to the left. Hypothesized parameter response to each glaciation stage is shown in
columns to the right. IRD = ice-rafted debris, NGR = natural gamma radiation. BrGDGT = branched glycerol dialkyl glycerol
tetraethers, IsoGDGTs = iso-glycerol dialkyl glycerol tetraethers, HBIs = highly branched isoprenoids. Descriptors for ice
sheet configuration indicators: none (0), minor (+), moderate (++), high (+++), and very high (++++). '°Be/?Al values are
based on Biermann et al. (2016).
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nates in the Petermann Fjord system, northwest Greenland, have been thought to have a pregla-
cial, fluvial origin (Bamber et al., 2013). Recent modeling work alternatively suggests that the
deeply incised topography was generated by catastrophic outburst floods from a fluctuating GrIS
(Keisling et al., 2020).

To understand the processes shaping the subglacial landscape, access to sediment archives reflect-
ing GrIS erosion is crucial (Graly et al., 2018; Pedersen et al., 2019; Christ et al., 2020). Most of our
current knowledge regarding the long-term GrIS history originates from North Atlantic core sites
(Jansen et al., 2000; Thiede et al., 2011; Bierman et al., 2016). However, these records reflect dis-
charges from eastern GrlS outlets predominantly influenced by the orogenic topography of the
East Greenland Caledonides (Henriksen et al., 2009). The lack of major mountain belts in the
northwest Greenland sector toward Baffin Bay means that proxy records from the adjoining mar-
gins are more directly coupled to the dynamics of the central Greenland ice dome. Glacial model-
ing highlights this region as being particularly sensitive to rapid mass-loss due to the
concentration of glacial flow lines with gentle bed topography that reach far into the ice sheet inte-
rior (Felikson et al., 2021). Moreover, a fault-bounded lake system in the Camp Century basin
reported by Paxman et al. (2021), may have been an important factor for freshwater discharges,
and possibly major outbursts, into Melville Bugt. By drilling at all the proposed sites along the
Melville Bugt transect we will collect sediment cores necessary to better understand NGrIS evolu-
tion, especially as it relates to the major transitions/phases that are key for understanding the late
Cenozoic climate.

4.1. How did the NGrlS respond to extreme interglacial warmth?

Cosmogenic nuclides in subice bedrock show that central Greenland was almost completely degla-
ciated during one or more intervals over the last 2.5 My (Schaefer et al., 2016) (Figure F1A). The
study cannot determine a unique ice cover history, but three scenarios are proposed varying from
ice-free interglacials to a single 280 ky deglacial event during the Early Pleistocene, followed by
~1.1 Ma of uninterrupted ice sheet coverage. The long-term depositional record on the margin of
northeast Baffin Bay contains the glaciation history needed to infer when such extreme mass loss
occurred. By drilling high-accumulation sites in the basin (primary Sites MB-23A and MB-02C)
and on the shelf margin (primary Sites MB-30A and MB-31A) (Figures F5, F6, AF1, AF2, AF3,
AF4) targeting potential interglacial deposits, we intend to test the hypothesis that the NGrIS
underwent substantial deglaciation on one or more occasions during the Pleistocene. Parameters
for identifying warm interglacial periods will be derived from multiple qualitative and quantitative
proxies that constrain ice sheet response and environmental conditions in both marine and terres-
trial/atmospheric areas (Figure F8).

4.2. When did glacial inception occur in northwest Greenland, and
how did the NGrIS dynamics evolve through Cenozoic climate
transitions?

The relationship between long-term pCO, trends, temperature records, and global ice volume is
poorly understood (Figure F2). A northwest Greenland perspective of this knowledge gap will be
gained by retrieving a composite Oligocene, Miocene, and Pliocene interval covered by primary
Sites MB-07B, MB-06D, and MB-17A (Figures F3B, AF5, AF6, AF7). These archives will provide
information on timing, sedimentary processes, and changes in denudation rates of Greenland
through periods of large atmospheric CO, variations (Figure F2). Organic components carried by
these sediments in allochthonous or autochthonous fractions will provide insights into terrestrial
and marine ecosystems and information on background climate states. We hypothesize that the
decrease in pCO, from the early middle Oligocene (>600 ppm) to Early Miocene (<300 ppm) coin-
cides with cold and possibly glacial environments in northwest Greenland. (Figure F2). This will
be tested by recovering a 980 m long climate record from Oligocene—Miocene strata at primary
Site MB-07B (Figures F5, AF7).

A complicating factor, disrupting or modulating a linear response between pCO, forcing and ice
sheet growth/decay, may involve tectonic base-level adjustments causing snow line lowering (Fos-
ter et al,, 2010) or changes in heat flux through oceanic gateways (Otto Bliesner et al., 2017).
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Extensive submarine landslides into Baffin Bay associated with a late Miocene unconformity (c1)
(Figure F5) along the northwest Greenland margin may reflect a regional tectonic adjustment
apparently predating the first shelf edge advances (Knutz et al., 2015). This erosion event may be
linked to hinterland uplift (Japsen et al., 2006), but a more concise understanding of its origin
requires recovery of Neogene sediments. Following a full-scale glaciation, physical weathering
would redistribute mass from the Greenland craton to the continental slope and consequently
accelerate hinterland uplift by isostatic compensation (Berger et al., 2008; Medvedev et al., 2013),
prompting the question: did active tectonics play a role in the development of the GrIS (Solgaard
et al, 2013), or are the late Neogene basin adjustments along the West Greenland margin a
response to mass redistribution caused by glacial erosion (Ruddiman and Kutzbach, 1989; Molnar
and England, 1990; Eyles, 1996)?

The timing of the advance of marine-based glaciers onto the northwest Greenland margin is pres-
ently ambiguous. Drilling through the initial clinoforms of the first prograding unit and farther
into marine contourite sediments of probable Pliocene age (primary Sites MB-06D [Figure AF5]
and MB-17A [Figure AF6]) will test the hypothesis that glacial expansion of the NGrIS is linked
with intensification of Northern Hemisphere glaciation (3.3-2.8 Ma).

Understanding the evolution of the NGrIS may hold the key to the origin of Northern Hemisphere
glaciation, including the mechanisms of gradual amplification of glacial cycles since the late Plio-
cene and the shift from 40 to 100 ky cycles across the MPT (Raymo and Huybers, 2008). A major
reorganization in the ice flow that drains the NGrIS apparently occurred across the MPT (Figure
F5) (Knutz et al., 2019). Hence, both local and regional evidence suggests that major changes in
the size, erosivity, and responsiveness of the GrIS occurred throughout the Pleistocene (Bierman
et al., 2016; Schaefer et al., 2016). By drilling Seismic Units 7-9 at the deepwater sites (primary
Sites MB-23A and MB-02C) (Figures AF1, AF2) and on the shelf (primary Site MB-30A) (Figure
AF4), we will examine changes in NGrIS dynamics through the MPT pertaining to recent models,
in particular the regolith hypothesis (Clark and Pollard, 1998).

4.3. Significance of Pliocene contourite drifts in northeast Baffin Bay

The early mid-Pliocene was characterized by relatively warm and humid forest tundra conditions
in the high Arctic of Canada (Matthews and Ovenden, 1990; Fyles et al., 1994; Csank et al., 2011;
Rybczynski et al., 2013) and Greenland (Bennike et al., 2002) (Figure F3A). A similar environment
was inferred from Early Pleistocene interglacial deposits in northern Greenland (Funder et al,,
2001), which is when southern Greenland appears to have been forested (de Vernal and Mudie,
1989). These warm Arctic conditions occurred under modest pCO, levels (~400 ppm), implying a
high sensitivity of the Pliocene Arctic climate to pCO, or the influence of other forcing factors
(Haywood et al., 2016, 2020; Feng et al., 2022). Pliocene glacial ice was likely limited to high-
elevation terrains in eastern and southern Greenland, although climate models are limited by a
dearth of proxy archives close to Greenland (Koenig et al., 2015). In the late Neogene, presumably
the latest Miocene and Pliocene, the West Greenland/Baffin Bay margin was influenced by con-
tour currents that deposited extensive sedimentary drifts (Knutz et al., 2015). The establishment
of persistent oceanic gradients strong enough to maintain a geostrophic boundary current over
millions of years is intriguing and may be linked with enhanced Pliocene Atlantic Meridional
Ocean Circulation. Past configurations of Arctic gateways (e.g., Davis Strait, Nares Strait, Fram
Strait, and Bering Strait) could have played a key role for poleward heat exchange during the Plio-
cene (Hu et al., 2015; Keisling et al., 2017); however, the tectonic history of these topographic
thresholds is poorly known (Eyles, 1996; Knies et al., 2014). The contourite deposits of Mega-unit
B, presently exposed at shallow depths below the glacial trough, can illuminate the environmental
conditions of this paleocurrent system that appear to have existed prior to the expansion of the
NGrIS.

Primary Sites MB-06D (Figure AF5) and MB-17A (Figure AF6) will provide a composite succes-
sion that can constrain Pliocene climate variability and paleotemperatures and test whether or not
the high Arctic warmth of the early mid-Pliocene is associated with enhanced heat advection
through Baffin Bay.
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4.4. Summary of scientific objectives

1. Test the hypothesis that the NGrIS underwent significant deglaciation at intervals within the
frequency range of orbital eccentricity (~100—400 ky). Pleistocene sites on the slope (primary
Sites MB-23A and MB-02C; Figures AF1, AF2) and the outer shelf (primary Sites MB-31A and
MB-30A; Figures AF3, AF4) are the key sites for attaining this objective.

2. Test the hypothesis that the general decrease in pCO, from the early middle Oligocene to the
Early Miocene is linked to cold and possibly glacially dominated environments in northwest
Greenland. Primary Site MB-07B (Figure AF7) on the middle shelf addresses this objective.

3. Provide information on the timing, sedimentary processes, sediment sources, and Greenland
exposure history in the context of late Neogene tectonic adjustments inferred from the seismic
record. Pliocene drill sites on the middle shelf (primary Sites MB-06D and MB-17A; Figures
AF5, AF6) and Oligocene to Miocene primary Site MB-07B (Figure AF7) on the middle shelf
will address this objective.

4. Test the hypothesis that major glacial expansion of the NGrIS is linked with intensification of
Northern Hemisphere glaciation (3.3—2.8 Ma). Pliocene drill sites on the middle shelf (primary
Sites MB-06D and MB-17A; Figures AF5, AF6) will address this objective.

5. Assess recent models for the change in orbital cycles through the MPT by analyzing sediment
maturity and regolith history. Pleistocene sites on the slope (primary Sites MB-23A and MB-
02C; Figures AF1, AF2) and the outer shelf (primary Sites MB-31A and MB-30A; Figures AF3,
AF4) are the key sites for attaining this objective.

6. Investigate whether high Arctic warmth of the early mid-Pliocene is related to heat advection
through the western North Atlantic Ocean and Baffin Bay. Pliocene drill sites on the middle
shelf (primary Sites MB-06D and MB-17A; Figures AF5, AF6) will address this objective.

5. Operations plan/coring strategy

Expedition 400 will include coring and logging along a transect of sites representing the late Ceno-
zoic era from the Oligocene/Early Miocene to Holocene (Figures F5, F6, F7). The primary drill
sites, alternate sites, and drilling and coring strategy for each are described below (Tables T1, T2).
Wireline logging will be conducted following coring if hole conditions permit (see Wireline
logging/Downhole measurements strategy). The general operational plan is to proceed with
drilling along the transect in a sequence that prioritizes the primary and alternate sites, generally
going from younger to older strata. However, iceberg conditions may require changes to this prior-
itization that will have to be decided at sea.

5.1. Drill sites

5.1.1. Middle to Late Pleistocene sites on the lower slope

The two lower slope sites in deep water off Melville Bugt are primary Sites MB-23A and MB-02C
(Figure F6). These sites are expected to recover high-resolution paleoceanographic records of an
Early/Middle to Late Pleistocene (up to 1 My) sediment drift system corresponding to the most
recent part of the TMF history (Scientific Objectives 1 and 5).

Primary Site MB-23A (Figure AF1) is located on the lower slope below the Melville Bugt TMF at a
water depth of 1832 m (Figures F5, F6; Table T1). This site is expected to recover mud with scat-
tered dropstones. It is located 0.45 km from the nearest crossing point to avoid disturbances seen
at the edge of the channel. This site targets expanded intervals of Seismic Units 9-11. Site MB-23A
overlaps stratigraphically with the strata that will be drilled at primary Site MB-02C (Figure AF2).

Planned drilling at primary Site MB-23A includes coring from the seafloor to 250 meters below
seafloor (mbsf) with the advanced piston corer (APC) system in two holes. A third hole will be
cored from the seafloor to 422 mbsf with the APC and extended core barrel (XCB) systems. The
third hole will be logged. Two alternate sites for Site MB-23A, proposed Sites MB-01C and MB-
20A, have been identified to achieve the key scientific objectives if operations at Site MB-23A are
unsuccessful or are not possible (Table T2; Figures AF8, AF9). The drilling and logging strategy
for these alternate sites is the same as for the primary site.
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Primary Site MB-02C is located on the lower slope below the Melville Bugt TMF at a water depth
of 1957 m (Figure F6; Table T1). It is expected to recover silty-sandy muds, presumably of
Early/Middle to Late Pleistocene age. Site MB-02C (Figure AF2) targets an expanded interval of
Seismic Unit 8, which underlies Unit 9 and is not well represented at Site MB-23A.

Planned drilling at primary Site MB-02C includes coring from the seafloor to 522 mbsf in two
holes with the APC and XCB systems; logging is planned for the second hole (Figure F9). One
. Lotfation Seafloor : - Transit DriIIi_ngl Logging
Site (latitude, depth Operations description Coring
longitude) | (mbrf) ) (days) EE)
St John's | Begin expedition 5.0 Port call days
Transit ~1553 nmi to MB-23A @ 10.5 kt 6.2
MB-23A 72°59.0400°'N 1832 |Hole A - APC/HLAPC to 250 mbsf 0.0 1.8 0.0
EPSP 62°58.8300'W Hole B - APC/HLAPC to 250 mbsf 0.0 1.3 0.0
to 422 mbsf Hole C - APC/XCB to 422 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 2.2 13
Subtotal days on site: 6.6
Transit ~16 nmi to MB-02C @ 10.5 kt 0.1
MB-02C 73°6.9000'N 1968 |Hole A - APC/XCB to 522 mbsf 0.0 3.0 0.0
EPSP 63°47.4240'W Hole B - APC/XCB to 522 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 2.7 1.4
to 522 mbsf
Subtotal days on site: 7.2
Transit ~39 nmi to MB-31A @ 10.5 kt 0.2
MB-31A 73°33.6420°'N 542 Hole A - RCB to 282 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 1.3 1.0
EPSP 62°9.0720'W Hole B - Drill ahead to 70 mbsf - APC/HLAPC/XCB to 282 mbsf 0.0 1.3 0.0
to 282 mbsf
Subtotal days on site: 3.6
Transit ~21 nmi to MB-30A @ 10.5 kt 0.1
MB-30A | 73°54.0780'N 629 |Hole A - RCB to 303 mbsf - Log with triple combo and FMS-sonic 0.0 13 0.9
EPSP 61°51.2400'W Hole B - Drill ahead to 100 mbsf - APC/HLAPC/XCB to 303 mbsf 0.0 1.3 0.0
to 303 mbsf
Subtotal days on site: 24
Transit ~20 nmi to MB-06D @ 10.5 kt 0.1
MB-06D 74°7.6980'N 625 Hole A - RCB to 561 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 25 1.4
EPSP 60°58.4640'W Hole B - RCB to 400 mbsf 0.0 2.0 0.0
to 561 mbsf
Subtotal days on site: 5.9
Transit ~6 nmi to MB-17A @ 10.5 kt 0.0
MB-17A | 74°13.9380'N 666 |Hole A - RCB to 411 mbsf - Log with triple combo and FMS-sonic 0.0 1.9 1.0
EPSP 61°2.2440'W
to 411 mbsf
Subtotal days on site: 3.1
Transit ~17 nmi to MB-07B @ 10.5 kt 0.1
MB-07B 74°29.5500'N 747 Hole A - RCB to 620 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 2.8 1.4
EPSP 60°34.9920'W Hole B - HRT reentry system to 600 mbsf 0.0 2.7 0.0
to 978 mbsf Hole B - RCB to 978 mbsf - Log with triple combo, FMS-sonic, and VSI 0.0 2.8 1.3
Subtotal days on site: 11.0
Transit ~1631 nmi to St John's @ 10.5 kt 6.5
St John's End expedition [ 1314 | 309 | 97 |
Port call days: 5.0 Total operating days: 53.7
Subtotal days on site: 40.6 Total expedition days: 58.7

Table T1. Operations and time estimates for primary sites, Expedition 400. EPSP = Environmental Protection and Safety Panel.

https://doi.org/10.14379/iodp.sp.400.2022
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: Lotfation Seafloor : - Drilli_ng/ Penging
Site (latitude, depth Operations description Coring
longitude) | (mbrf) (days) | (42¥®)
MB-01C 73°0.0060°'N 1820 |Hole A - APC/HLAPC to 250 mbsf 14 0.0
EPSP 63°0.3900'W Hole B - APC/HLAPC to 250 mbsf 1.1 0.0
to 473 mbsf Hole C - APC/XCB to 473 mbsf - Log with triple combo, FMS-sonic, and VSI 22 1.2
Subtotal days on site: 6.1
MB-20A 72°54.7080'N 1939 |Hole A - APC/HLAPC to 250 mbsf 1.5 0.0
EPSP 63°3.8520'W Hole B - APC/HLAPC to 250 mbsf 1.1 0.0
to 450 mbsf Hole C - APC/XCB to 450 mbsf - Log with triple combo, FMS-sonic, and VSI 21 1.2
Subtotal days on site: 5.9
MB-22A 73°8.3280'N 1861 |Hole A - APC/HLAPC to 250 mbsf 14 0.0
EPSP 63°38.4120'W Hole B - APC/XCB to 611 mbsf - Log with triple combo, FMS-sonic, and VSI 3.1 11
to 611 mbsf
Subtotal days on site: 5.6
MB-08A 73°29.2200'N 508 Hole A - RCB to 370 mbsf - Log with triple combo, FMS-sonic, and VSI 1.7 11
EPSP 62°16.0920'W Hole B - Drill ahead to 70 mbsf - APC/HLAPC/XCB to 370 mbsf 1.6 0.0
to 370 mbsf
Subtotal days on site: 4.4
MB-03B 73°30.1920'N 509 Hole A - RCB to 375 mbsf - Log with triple combo, FMS-sonic, and VSI 1.7 11
EPSP 62°29.1660'W Hole B - Drill ahead to 70 mbsf - APC/HLAPC/XCB to 375 mbsf 1.6 0.0
to 375 mbsf
Subtotal days on site: 4.4
MB-04C 73°52.4040'N 639 Hole A - RCB to 305 mbsf - Log with triple combo and FMS-sonic 1.4 0.9
EPSP 62°3.1680'W
to 305 mbsf
Subtotal days on site: 23
MB-15A 74°7.3020°'N 616 Hole A - RCB to 582 mbsf - Log with triple combo, FMS-sonic, and VS| 2.6 14
EPSP 60°59.4540'W Hole B - RCB to 400 mbsf 2.0 0.0
to 648 mbsf
Subtotal days on site: 6.0
MB-05B 74°12.6960'N 715 Hole A - RCB to 520 mbsf - Log with triple combo and FMS-sonic 25 1.1
EPSP 61°20.3830'W
to 520 mbsf
Subtotal days on site: 3.6
MB-13A 74°12.7080'N 718 Hole A - RCB to 540 mbsf - Log with triple combo and FMS-sonic 2.6 1.1
EPSP 61°23.7480'W
to 540 mbsf
Subtotal days on site: 3.7
MB-14A 74°12.6540'N 674 Hole A - RCB to 510 mbsf - Log with triple combo and FMS-sonic 23 1.1
EPSP 61°16.2240'W
to 510 mbsf
Subtotal days on site: 3.4
MB-16A 74°33.0420'N 745 [Hole A - RCB to 630 mbsf - Log with triple combo, FMS-sonic, and VSI 29 14
EPSP 60°47.9400'W Hole B - HRT reentry system to 600 mbsf 2.7 0.0
to 1089 mbsf] Hole B - RCB to 1080 mbsf - Log with triple combo, FMS-sonic, and VSI 3.5 1.4
Subtotal days on site:  11.8
MB-11A 74°25.6980'N 758 Hole A - RCB to 630 mbsf - Log with triple combo, FMS-sonic, and VSI 29 1.4
EPSP 60°24.5160'W Hole B - HRT reentry system to 600 mbsf 2.7 0.0
to 1200 mbsf] Hole B - RCB to 1015 mbsf - Log with triple combo, FMS-sonic, and VSI 3.0 1.3
Subtotal days on site:  11.3
MB-12A 74°27.5820'N 750 Hole A - RCB to 630 mbsf - Log with triple combo, FMS-sonic, and VS| 29 14
EPSP 60°30.2940'W Hole B - HRT reentry system to 600 mbsf 2.7 0.0
to 1186 mbsf] Hole B - RCB to 971 mbsf - Log with triple combo, FMS-sonic, and VSI 2.7 13
Subtotal days on site:  11.0
MB-10A 74°27.5040'N 709 Hole A - RCB to 630 mbsf - Log with triple combo, FMS-sonic, and VSI 29 1.4
EPSP 61°10.7520'W Hole B - HRT reentry system to 600 mbsf 2.7 0.0
to 1288 mbsf] Hole B - RCB to 1200 mbsf - Log with triple combo, FMS-sonic, and VSI 4.2 1.5
Subtotal days on site:  12.7

Table T2. Operations and time estimates for alternate sites, Expedition 400. EPSP = Environmental Protection and Safety Panel.

https://doi.org/10.14379/iodp.sp.400.2022
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alternate site for Site MB-02C, proposed Site MB-22A (Figure AF10), has been identified to
achieve the key scientific objectives in the event that operations at Site MB-02C are unsuccessful
or are not possible (Table T2). The drilling and logging strategy for the alternate site is the same as
that planned for the primary site.

5.1.2. Pleistocene sites on the outer shelf

Two outer shelf sites are primary Sites MB-31A and MB-30A. The overall goal at these sites is to
recover the deglacial and interglacial intervals of potentially early mid-Pleistocene age within the
top-set strata of the TMF. Both sites are high priorities for Scientific Objectives 1 and 5.

Primary Site MB-31A is located on the outer shelf margin of the Melville Bugt TMF at a water
depth of 531 m (Figure F6; Table T1). This site penetrates a package of flat-lying, semicontinuous
reflections that onlap glacial unconformities in Seismic Units 6—8 (Figure AF3). The expected lith-
ologies are proximal ice contact and glaciomarine sediments (e.g., diamicton with intercalated
pebbly mud and hemipelagic mud).

Planned drilling at primary Site MB-31A includes rotary core barrel (RCB) system coring from the
seafloor to 282 mbsf in the first hole. A second hole will include drilling ahead to 70 mbsf, followed
by APC/XCB system coring to 282 mbsf. Logging is planned for the second hole. Recovery and
lithologies of the first hole will guide adaptations of the drilling strategy in the second hole (Figure
F9).

Two alternate sites have been selected for primary Site MB-31A (proposed Sites MB-08A and MB-
03B; Figures AF11, AF12) to achieve the key scientific objectives in the event that operations at
Site MB-31B are unsuccessful or are not possible (Table T2). The drilling and logging strategy for
the alternate sites is the same as that planned for the primary site.

Primary Site MB-30A is located northeast of primary Site MB-31A on the outer shelf margin of
the Melville Bugt TMF at a water depth of 618 m (Figure F6). Site MB-30A (Figure AF4) targets a
package of flat-lying, continuous reflections that onlap a major glacial unconformity (Seismic Unit
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Figure F9. Coring operations plan, including type of coring, target depth, and estimated days on site for Expedition 400.
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3). The site is placed to achieve optimal recovery of Seismic Units 3 and 4 of possible Early Pleisto-
cene age. The expected lithologies are proximal ice contact and glaciomarine sediments (e.g.,
diamicton with intercalated pebbly mud and hemipelagic mud).

Planned drilling at primary Site MB-30A includes RCB coring to 303 mbsf in the first hole (Figure
F9). Logging is planned for the first hole. The second hole includes drilling ahead to 100 m fol-
lowed by APC/XCB system coring to 303 mbsf. The recovery and lithologies of the first hole will
guide adaptations of the drilling and logging strategy in the second hole.

One alternate site (proposed Site MB-04C) (Figure AF13) has been selected for primary Site MB-
30A to achieve the key scientific objectives if operations at Site MB-30A are unsuccessful or are
not possible (Table T2). The drilling strategy for the alternate sites is the same as that planned for
the primary site.

5.1.3. Pliocene sites on the middle shelf

Two middle shelf sites, primary Sites MB-06D and MB-17A, will sample a buried Neogene con-
tourite system with the overall goal of studying Greenland climate and ocean circulation during
the Pliocene, prior to major basinward expansion of the GrIS. The middle shelf Pliocene sites
address Scientific Objectives 3, 4, and 6.

Primary Site MB-06D is located on the middle shelf at a water depth of 614 m (Figure F6; Table
T1). The site overlaps stratigraphically with the lowermost section that will be drilled at primary
Site MB-17A. The main target is an expanded section of a mounded contourite drift that may
contain a high-resolution Pliocene record of Mega-unit B (Figure AF5). The expected lithologies
are diamicton and mudstone with silty-sandy intervals such as would be expected in proglacial
settings and from nearshore to deep marine environments.

Planned drilling at primary Site MB-06D includes RCB coring to 561 mbsf in the first hole and
RCB coring to 400 mbsf in the second hole (Figure F9).

One alternate site, proposed Site MB-15A (Figure AF14), has been selected to achieve the key
scientific objectives in the event that operations at the primary site are unsuccessful or are not
possible (Table T2). The drilling strategy for the alternate site is a single hole with RCB coring and
logging to 582 mbsf.

Primary Site MB-17A (Figure AF6) is located on the middle shelf at a water depth of 655 m (Figure
F6; Table T1). There are two goals for this site: (1) capture deposits corresponding to the earliest
shelf-based glaciations in northwest Greenland (earliest glacial clinoforms of Mega-unit A) and
(2) recover Neogene sediments of likely Early Pliocene age in Mega-unit B that can elucidate pale-
oceanographic conditions prior to the major expansion of the GrIS (Late Pliocene and Early Pleis-
tocene) (Scientific Objectives 3, 4, and 6). Site MB-17A targets an interval that is stratigraphically
younger interval than that targeted at primary Site MB-06D. The expected lithologies are diamic-
ton and mudstone with silty-sandy intervals such as would be expected in proglacial settings and
from nearshore to deep marine environments.

Planned drilling at primary Site MB-17A involves RCB coring and logging to 411 mbsf in a single
hole (Figure F9). Three alternate sites have been selected to achieve the key scientific objectives in
the event that operations at the primary site are unsuccessful or are not possible: proposed Sites
MB-05B, MB-13A, and MB-14A (Figures AF15, AF16, AF17). The coring and logging strategies
at the alternate sites emulate those for primary Site MB-17A, with RCB coring and logging at a
single hole.

5.1.4. Late Oligocene and Miocene sites on the middle shelf

Primary Site MB-07B is located at a water depth of 736 m on the middle shelf landward of the
Melville Bay Ridge (Figure F6). The targeted section includes Mega-units C and D of potentially
Late and Middle Miocene age overlying a sedimentary wedge of possible Oligocene age, with a
sequence potentially representing 6—-30 My (Figures F5, AF7). The goal is to elucidate past ocean
and terrestrial climates in northeast Baffin Bay/Greenland and the onset of ephemeral glaciation
in northwest Greenland to satisfy Scientific Objectives 2 and 3. Expected lithology is claystone
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with silty to sandy intervals and siliceous ooze, consistent with predicted hemipelagic marine envi-
ronments.

Planned drilling at Site MB-07B involves RCB coring and logging in the first hole to 620 mbsf
(Figure F9). The second hole will then begin with the installation of a hydraulic release tool (HRT)
reentry system with 600 m of casing. The hole will then be RCB cored from 600 to 978 mbsf and
logged (Figure F9). Four alternate sites have been selected to achieve the key scientific objectives if
operations at the primary site are unsuccessful or are not possible: proposed Sites MB-16A, MB-
11A, MB-12A, and MB-10A (Figures AF18, AF19, AF20, AF21).

6. Wireline logging/Downhole measurements strategy

As part of APC/half-length APC (HLAPC) coring, formation temperature measurements will be
made using the advanced piston corer temperature (APCT-3) tool. If time, sea state, and hole
conditions permit, we also anticipate conducting temperature measurements with the Sediment
Temperature 2 (SET2) tool during RCB coring of primary Sites MB-02C, MB-06D, and MB-07B.

Planned wireline logging includes the triple combo, Formation MicroScanner (FMS), and FMS-
sonic tool strings at all sites (Table T1). Additionally, use of the Versatile Seismic Imager (VSI) is
planned for primary Sites MB-23A, MB-02C, MB-31A, MB-06D, and MB-07B. The triple combo
tool string measures density, natural gamma radiation (NGR), porosity, and resistivity along with
borehole diameter (caliper log).

Because variable recovery rates are expected (>80% in hemipelagic and contourite drift sediments
and <50% for the sites in the aggradational shelf wedge), the downhole logging data, in conjunction
with physical properties measured on the cores, will be important for determining boundaries of
lithologic units and to capture the lithologic signature of the entire succession. The FMS image
tool should provide a more complete understanding of drilled intervals with poor recovery. VSI
calibration and generation of synthetic seismograms will facilitate core-to-seismic integration.
For more information on the wireline logging tools see: http://iodp.tamu.edu/tools and
http://iodp.tamu.edu/tools/logging.

7. Risks and contingency

The area of operation (Baffin Bay) involves several risks. Potential hazards may arise from ice con-
ditions, shallow gas, or technical problems. Hence, flexibility will be required and drilling opera-
tions will need to move forward as dictated by the drilled material and the potential hazards.
Drilling operations could shift between primary and alternate sites; however, due to the generally
close proximity of all sites there is no contingency for an alternate region of operations. There are
currently ~2 days of contingency time included in the operations plan.

7.1. lce conditions

Icebergs pose an additional threat to drilling operations, and JOIDES Resolution will have to move
off site if an iceberg approaches too close to a site location during operations. In these instances,
we will have a free-fall funnel (FFF) ready to deploy that would allow for hole reentry after the
iceberg passes. Icebergs will be monitored visually by radar and where possible by satellite images.

7.2. Shallow gas

From the wealth of industry seismic data collected in Melville Bay, it is obvious that the margin has
been regarded as a potential petroliferous region. The main lithologies expected are (1) hemipe-
lagic and distal glacial-marine muds with thin interbedded sand layers, mainly of turbiditic origin,
(2) proximal glacigenic sediments interbedded with intervals of marine/glacial-marine muddy
deposits, and (3) thick mudstone-siltstone successions with fine sandy intervals. None of the sites
involve drilling into older strata that may have petroleum potential or structural elements (clo-
sures or faults), and the density of data means that high-amplitude anomalies and chimney fea-
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tures can be avoided. As further mitigation of drilling hazards, a gas anomaly study was carried out
based on the 3D seismic volumes (Cox et al., 2020), and the information was used in the final
round of site selection (IODP drilling Proposals 909-Full2 and 909-Add).

During Expedition 344S, where Mesozoic shales presented key drilling targets hydrocarbon gases
were closely monitored by application of gas chromatography at least once for every core using
two sampling techniques: headspace (HS) sampling and gas void (VAC) sampling. Based on the
results from Site U0110, methane levels of up to 5000 ppmv may be expected in the Quaternary,
although this is probably a high estimate because this site was located directly over the Melville
Bay Ridge structure.

For each core, headspace gas will be monitored following established protocols. See
https://wiki.iodp.tamu.edu/display/LMUG/Chemistry#Chemistry-SafetyMonitoring and
https://www.iodp.org/top-resources/program-documents/policies-and-guidelines/1178-
epsp-safety-review-report-guidelines-may-2022/file for details.

7.3. Coring/logging and operational risks

The proposed penetration depth at primary Site MB-07B (and some alternate sites) presents sev-
eral challenges. Hole stability is always a risk during coring operations, and the risk increases with
time. Casing (especially over intervals of unconsolidated sediment) is an effective method to miti-
gate this risk and will be employed at Site MB-07B with an HRT reentry system to 600 mbsf.

A stuck drill string is always a risk during coring operations and can consume expedition time
while attempting to free the stuck drill string. This can result in the complete loss of the hole,
equipment, and time while starting a new hole. JOIDES Resolution carries sufficient spare drilling
equipment to enable the continuation of coring, but the time lost to the expedition can be
significant.

Ice-rafted debris and dropstones may occur in the sedimentary sequences targeted for Expedition
400. This material can be particularly difficult to core with the APC/HLAPC systems, and depend-
ing on clast size and frequency it can also present challenges to XCB and RCB coring.

8. Sampling and data sharing strategy

Shipboard and shore-based researchers should refer to the IODP Sample, Data, and Obligations
Policy and Implementation Guidelines posted on the Web at http://www.iodp.org/top-
resources/program-documents/policies-and-guidelines. This document outlines the policy for
distributing IODP samples and data to research scientists, curators, and educators. The document
also defines the obligations that sample and data recipients incur. The Sample Allocation Commit-
tee (SAC; composed of Co-Chief Scientists, Staff Scientist, and IODP Curator on shore and cura-
torial representative on board the ship) will work with the entire scientific party to formulate a
formal expedition-specific sampling plan for shipboard and postcruise sampling.

Shipboard scientists are expected to submit sample requests (at http://iodp.tamu.edu/cura-
tion/samples.html) ~6 months before the beginning of the expedition. Based on sample requests
(shore based and shipboard) submitted by this deadline, the SAC will prepare a tentative sampling
plan, which will be revised on the ship as dictated by core recovery and cruise objectives. The
sampling plan will be subject to modification depending upon the actual material recovered and
collaborations that may evolve between scientists during the expedition. Modification of the strat-
egy during the expedition must be approved by the Co-Chief Scientists, Staff Scientist, and cura-
torial representative on board the ship.

The minimum permanent archive will be the standard archive half of each core. All sample fre-
quencies and sizes must be justified on a scientific basis and will depend on core recovery, the full
spectrum of other requests, and the cruise objectives. Some redundancy of measurement is
unavoidable, but minimizing the duplication of measurements among the shipboard party and
identified shore-based collaborators will be a factor in evaluating sample requests.
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If some critical intervals are recovered, there may be considerable demand for samples from a lim-
ited amount of cored material. These intervals may require special handling, a higher sampling
density, reduced sample size, or continuous core sampling by a single investigator. A sampling plan
coordinated by the SAC may be required before critical intervals are sampled.

Shipboard sampling will be generally restricted to those required for shipboard measurements;
any samples that are ephemeral; and possibly limited, low-resolution samples for personal
research that are required to define plans for the postexpedition sampling meeting. Whole-round
samples may be taken for, but not limited to, interstitial water measurements, microbiology, and
petrophysical measurements as dictated by the primary expedition objectives, approved research
plans, and the shipboard sampling plan that must be finalized during the first few days of the
expedition. Nearly all sampling for postexpedition research will be postponed until a shore-based
sampling meeting that will be implemented ~3—-5 months after the end of Expedition 400.

9. Expedition scientists and scientific participants

The current list of participants for Expedition 400 can be found at http://iodp.tamu.edu/science-
ops/expeditions/nw_greenland_glaciated_margin.html.
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Site summaries

Site MB-23A

Priority: Primary

Position: 72.9840, —62.9805
Water depth (m): 1821

Target drilling depth (mbsf): | 422

Approved maximum 422

penetration (mbsf):

Survey coverage (track map;
seismic profile):

High-resolution seismic reflection primary:
LAKO_1012; SP 14841

High-resolution seismic reflection crossing:
LAKO_1015; SP 18017

Deep-penetration seismic reflection primary:
BB10-5068125; SP 13370

Objective(s):

Recover high-resolution paleoceanographic record of an
early/middle-late Pleistocene sediment drift system
corresponding to the most recent part of the trough-
mouth-fan history; expanded Units 9, 10, and 11

Coring program:

Hole A: APC to refusal (~250 mbsf)
Hole B: APC to refusal (~250 mbsf)
Hole C: APC/XCB to 422 mbsf

Downhole measurements
program:

Hole C (0-422 mbsf):
« Triple combo

« FMS-sonic

- VSI

Nature of rock anticipated:

Mud with dropstones

NW
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Figure AF1. Top: bathymetric map and locations of high-resolution Seismic Reflection Line LAKO_1012, Crossing Line LAKO_1022, and primary Site MB-23A on the
lower slope of the Melville Bugt TMF. Bottom: location of primary Site MB-23A in Seismic Reflection Profile LAKO_1012 at Shotpoint (SP) 14841 shown with interpreted
horizons. Primary seismic section is shown with interpreted horizons. The sedimentary package is interpreted as a contourite drift incised by downslope channels. The
section below the stratified units displays discontinuous to chaotic reflections interpreted as mass transport deposits and buried channels. Site MB-23A is expected to
recover silty mud with scattered dropstones likely of middle to late Quaternary age. The site is located 0.45 km from the nearest crossing point to avoid disturbances
seen at the edge of the channel.
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Site MB-02C
Priority: Primary
Position: 73.1150, —63.7904
Water depth (m): 1957
Target drilling depth (mbsf): | 522
Approved maximum 522

penetration (mbsf):

Survey coverage (track map;
seismic profile):

Primary: LAKO_1010; SP 10145
Crossing: LAKO_1005; SP 5190
Primary: BB10-5063125; SP 12768
Crossing: BB09-1055; SP 13471

Objective(s):

Recover high-resolution paleoceanographic record of an
early/middle-late Pleistocene sediment drift system
corresponding to the most recent part of the trough-
mouth-fan history; expanded Unit 8; overlaps strata of
23C

Coring program:

Hole A: APC/XCB to 522 mbsf
Hole B: APC/XCB to 522 mbsf

Downhole measurements
program:

Hole B (0-522 mbsf):
« Triple combo

« FMS-sonic

-« VS|

Nature of rock anticipated:

Mud with dropstones

sw
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Figure AF2. Top: bathymetric map (IBCAO V3) and locations of Seismic Reflection Line BB10-5063125, Crossing Line BB09-1055, and primary Site MB-02C on the lower
slope of the Melville Bugt TMF. Bottom: location of primary Site MB-02C in Seismic Reflection Profile Line BB10-5063125 at Shotpoint (SP) 12768 shown with inter-
preted horizons. The strata package above target Horizon 7, displaying a continuous reflection character, is interpreted as a contourite drift abounding a channel
system. Site MB-02C is expected to recover silty-sandy muds, presumably of Early/Middle to Late Pleistocene age. The site is located 1 km off the nearest crossline
(BB09-1055) to obtain optimal stratigraphic coverage of Unit 8 (between Horizons 7 and 8) and avoid amplitude anomaly at the base of this unit.
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Site MB-31A

penetration (mbsf):

Priority: Primary

Position: 73.5607, —62.1512
Water depth (m): 531

Target drilling depth (mbsf): | 282

Approved maximum 282

Survey coverage (track map;
seismic profile):

High-resolution primary: LAKO_1033; SP 46083
Deep-penetration primary: ANU-3D_IL-13392; XL-6920
Deep-penetration crossing: ANU-3D_XL-6920; IL-13392

Objective(s):

Recover deglacial and interglacial intervals of potentially
early to middle Pleistocene age within top-set strata of
the trough-mouth fan; onlap glacial unconformities of
Units 6,7, and 8

Coring program:

Hole A: RCB to 282 mbsf
Hole B: drill down to 70 mbsf; APC/XCB to 282 mbsf

Downhole measurements
program:

Hole A (0-282 mbsf):
+ Triple combo

+ FMS-sonic

- VSI

Nature of rock anticipated:

Diamicton with intercalated pebbly mud and marine mud
units

swW
5P 45854.0

459030 459260
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Figure AF3. Top: bathymetric map with locations of Seismic Reflection Line LAKO_1033 and primary Site MB-31A on the outer shelf margin of the Melville Bugt TMF.
Bottom: location of primary Site MB-31A in Seismic Reflection Profile Line LAKO_1033 at Shotpoint (SP) 46083 showing interpreted horizons. Site MB-31A is aimed at
recovering the stratified intervals between Horizons 6, 7, and 8. The expected lithologies are proximal glacigenic deposits (e.g., tills interlayered with muddy
marine/glacial-marine strata), probably of Early-Middle Pleistocene age. The site is placed ~1 km off the nearest crossline (BB10-107375) to optimize penetration of
flat lying/onlapping reflections and avoid strong reflections in the upper 100 ms interval.
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Site MB-30A

Priority: Primary

Position: 73.9013, —61.8540
Water depth (m): 618

Target drilling depth (mbsf): | 303

Approved maximum 303

penetration (mbsf):

Survey coverage (track map;
seismic profile):

High-resolution primary: LAKO_1035; SP 71423
High-resolution crossing: LAKO_1036; SP 72941
Deep-penetration primary: ANU-3D_IL-14776; Xline 13020
Deep-penetration crossing: ANU-3D_XL-13020;

In-line 14776

Objective(s):

Recover deglacial and interglacial intervals of potentially
early Pleistocene age within top-set strata of the trough-
mouth fan; onlap glacial unconformity (Horizon 3)

Coring program:

Hole A: RCB to 303 mbsf
Hole B: drill down to 100 mbsf; APC/XCB to 303 mbsf

Downhole measurements
program:

Hole A (0-303 mbsf):
+ Triple combo
+ FMS-sonic

Nature of rock anticipated:

Diamicton with intercalated pebbly mud and mud units
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Figure AF4. Top: bathymetric map and location of primary Site MB-30A on high-resolution Seismic Reflection Line LAKO_1035. High-resolution seismic data (LAKO)
with shot numbers (black), TGS regional 2D data (gray) and core sites (red) are shown. Bottom: location of primary Site MB-30A in seismic reflection profile with
interpreted horizons and ages on Line LAKO_1035 at Shotpoint (SP) 71423. Site MB-30A captures the pinch-out of a basal unit within TMF Unit 4 over Horizon 3.The
depth target is the bottom of a minibasin developed at this position below Horizon 3 (light green). Proximal glacigenic deposits interlayered with muddy marine/gla-
ciomarine strata of likely Early Pleistocene age are expected. Site MB-30A is offset 3.2 km from the nearest high-resolution crossline to achieve optimal stratigraphic
coverage of Units 3 and 4 and was selected as a primary site due to overall high reflection continuity.
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Site MB-06D

Priority: Primary

Position: 74.1283,-60.9744
Water depth (m): 614

Target drilling depth (mbsf): | 561

Approved maximum 561

penetration (mbsf):

Survey coverage (track map; | High-resolution primary: LAKO_1044; SP 88383
seismic profile): Deep-penetration primary: ANU-3D_IL-18992; XL 19032

Deep-penetration crossing: ANU-3D_XL-19032; IL 18992

Objective(s): Recover Neogene contourite drift sediments that can
elucidate paleoceanographic conditions prior to the
major basinward expansion of the Greenland Ice Sheet
Coring program: Hole A: RCB to 561 mbsf
Hole B: RCB to 400 mbsf
Downhole measurements Hole A (0-561 mbsf):
program: + Triple combo
+ FMS-sonic
- VSI
Nature of rock anticipated: Diamicton; mudstone with silty-sandy intervals
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Figure AF5. Top: bathymetric map with location of primary Site MB-06D on high-resolution Seismic Reflection Line LAKO_1044 on the middle shelf region fringing the

Melville Bugt trough. Bottom: location of primary Site MB-06D on LAKO_1044 at Shotpoint (SP) 88383. High-resolution seismic section with interpreted horizons and
ages penetrates an expanded interval of contourite drift sediments of likely Pliocene age. Site MB-06D overlaps with primary Site MB-17A and alternate Sites MB-05B,
MB-13A, and MB-14A to produce a composite succession. Total depth is placed above a strong reflector covering a major slide scar.
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Site MB-17A

Priority: Primary

Position: 74.2323,-61.0374
Water depth (m): 655

Target drilling depth (mbsf): | 411

Approved maximum 411

penetration (mbsf):
Survey coverage (track map; | High-resolution primary: LAKO_1033; SP 56182

seismic profile): Deep-resolution primary: ANU_Inline_18624.sgy;
Xline 19032
Deep-resolution crossing: ANU_XLine_19032.sgy;
In-line 18624
Objective(s): (1) Capture deposits corresponding to the earliest shelf-

based glaciations in northwest Greenland;

(2) recover Neogene sediments of likely early Pliocene age
that can elucidate paleoceanographic conditions prior to
the major expansion of the Greenland Ice Sheet

Coring program: Hole A: RCB to 411 mbsf
Downhole measurements Hole A (0-411 mbsf):
program: « Triple combo
+ FMS-sonic
Nature of rock anticipated: Diamicton; mudstone with silty-sandy intervals
SwW NE
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Figure AF6. Top: bathymetric map with location of primary Site MB-17A on high-resolution Seismic Reflection Line LAKO_1033 in the middle shelf region of Melville
Bugt trough. High-resolution seismic data (LAKO; black lines) with shot points (SP), regional TGS 2D data (gray lines), and drilling sites (red) are indicated. Bottom:
location of primary Site MB-17A on LAKO_1033 at Shotpoint 56182 with interpreted horizons and ages. This site is aimed at recovering a composite sequence of high-
accumulation rate contourite drifts of Mega-unit B (likely Pliocene age) and the earliest glacial clinoforms of Mega-unit A (Late Pliocene and Early Pleistocene).
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Site MB-07B

Priority: Primary

Position: 744925, —60.5832
Water depth (m): 736

Target drilling depth (mbsf): | 978

Approved maximum 978

penetration (mbsf):
Survey coverage (track map; | High-resolution primary: LAKO_1033; SP 60045

seismic profile): Deep-penetration primary: PITU 3D: In-line 2499:

Xline 7230
Deep-penetration crossing: Line: Site-7B_PITU-3D_XL-

7230.segy: In-line 2499
Objective(s): Recover an upper Miocene interval and continue coring
through the Middle Miocene horizon to the top of a
sedimentary wedge of possible Oligocene age to
elucidate past ocean and terrestrial climates in northeast
Baffin Bay/Greenland and the onset of ephemeral
glaciation in northwest Greenland

Coring program: Hole A: RCB to 620 mbsf
Hole B: Install HRT with 600 m of casing; RCB 600-978 mbsf|
Downhole measurements Hole A (0-620 mbsf):
program: + Triple combo
+ FMS-sonic
- VSI

Hole B (600-978 mbsf):
+ Triple combo

+ FMS-sonic
.+ VSI
Nature of rock anticipated: Claystone with silty to sandy intervals and siliceous ooze
Seismic Amplitude
+
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Figure AF7. Top: shaded relief bathymetric map of the middle shelf region within the Melville Bugt trough showing location of primary Site MB-07B on Seismic
Reflection Lines PITU 3D inline 2499 and Xline 7230. Seismic crossing lines displayed in the bottom panel are shown in thick white lines. Thin white lines show the 2D
seismic grid. Inset shows the aerial coverage of 3D seismic data used to help refine target location. Black circles show the proposed alternate drill site locations, and the
red circle shows the location for Site MB-07B. Bottom: Line PITU 2499 and Crossing Line PITU 7230 with location of primary Site MB-07B. SP = shot point. Key Inline and
Xline seismic sections from the 3D seismic cube (zero-phase). Mega-unit boundaries are shown. This drill site is aimed at recovering Oligocene and Miocene succes-
sions that are expected to be fine-grained hemipelagic sediments of Mega-units C and D.
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Site MB-01C

penetration (mbsf):

Priority: Alternate
Position: 73.0001, —63.0065
Water depth (m): 1809

Target drilling depth (mbsf): | 473

Approved maximum 473

Survey coverage (track map;
seismic profile):

High-resolution seismic reflection primary:
LAKO_1011; SP 14035

High-resolution seismic reflection crossing:
LAKO_1022; SP 24911

Deep-penetration seismic reflection primary:
BB10-5068125

Deep-penetration seismic reflection crossing:
BB10-10525; SP 14612

Objective(s):

Recover high-resolution paleoceanographic record of an
early/middle-late Pleistocene sediment drift system
corresponding to the most recent part of the trough-
mouth-fan history; expanded Units 9, 10, and 11

Coring program:

Hole A: APC to refusal (~250 mbsf)
Hole B: APC to refusal (~250 mbsf)
Hole C: APC to refusal; XCB to 473 mbsf

Downhole measurements Hole C (0-473 mbsf):
program: + Triple combo
« FMS-sonic
- VSI
Nature of rock anticipated: Mud with dropstones

sSwW

Expedition 400 Scientific Prospectus
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Figure AF8. Top: bathymetric map of the lower slope below the Melville Bugt TMF showing location of alternate Site MB-01C on Seismic Reflection Line BB10-5068125
and nearby Crossing Line BB10-10525. SP = shot point. Bottom: Line BB10-5068125 with location of alternate Site MB-01C at position 13424 shown with interpreted
horizons. The strata package above Horizon 7 (depth target), displaying a wavy, semicontinuous reflection character, is interpreted as a contourite drift formed in
juxtaposition to a channel system. The strong reflections below Horizon 7 are interpreted as channel deposits (e.g., slumps or turbidites). Site MB-01C is expected to

recover silty-sandy muds presumably of Early/Middle to Late Pleistocene age.
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P.Knutz et al.

Site MB-20A

penetration (mbsf):

Priority: Alternate
Position: 72.9118, -63.0642
Water depth (m): 1928

Target drilling depth (mbsf): | 450

Approved maximum 450

Survey coverage (track map;
seismic profile):

Deep-penetration primary: BB08-105; SP 25254
Deep-penetration crossing: BB09-506875; SP 13028

Objective(s):

Recover high-resolution paleoceanographic record of an
early/middle-late Pleistocene sediment drift system
corresponding to the most recent part of the trough-
mouth-fan history; expanded Units 9, 10, and 11

Coring program:

Hole A: APC to refusal (~250 mbsf)
Hole B: APC to refusal (~250 mbsf)
Hole C: APC to refusal; XCB to 450 mbsf

Downhole measurements Hole C (0-450 mbsf):
program: + Triple combo
+ FMS-sonic
A
Nature of rock anticipated: Mud with dropstones
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Figure AF9. Top: bathymetric map of the lower slope below the Melville Bugt TMF showing location of alternate Site MB-20A on Seismic Reflection Line BB08-105 and
nearby Crossing Line BB09-506875. SP = shot point. Bottom: section of seismic Line BB08-105 with location of alternate Site MB-20A at position 25254 showing inter-
preted horizons. The strata package above Horizon 7 (depth target), displaying a wavy, semicontinuous reflection character, is interpreted as a contourite drift formed
in juxtaposition to a channel system. The strong reflections below Horizon 7 are interpreted as channel deposits (e.g., slumps, turbidites, or plumites?). Site MB-20A is
expected to recover silty-sandy muds presumably of Middle to Late Pleistocene age. Site is located ~1.2 km away from crossing line to avoid strong reflections at
target depth that might be channel sands.
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Site MB-22A

penetration (mbsf):

Priority: Alternate
Position: 73.1388, —63.6402
Water depth (m): 1850

Target drilling depth (mbsf): | 611

Approved maximum 611

Survey coverage (track map;
seismic profile):

BB09-506375; SP 12939
Crossing: BB09-1055; SP 13610

Objective(s):

Recover high-resolution paleoceanographic record of an
early/middle-late Pleistocene sediment drift system
corresponding to the most recent part of the trough-
mouth-fan history; expanded Unit 8; overlaps strata of
23C.

Coring program:

Hole A: APC/XCB to 611 mbsf
Hole B: APC/XCB to 611 mbsf

Downhole measurements

Hole B (0-611 mbsf):

program: + Triple combo
+ FMS-sonic
. VSI
Nature of rock anticipated: Mud with dropstones

SwW

TWT (ms)

Expedition 400 Scientific Prospectus

— MB-22A

Figure AF10. Top: bathymetric map of the lower slope below the Melville Bugt TMF showing location of alternate Site MB-22A on Seismic Reflection Line BB09-
506375 at Shotpoint (SP) 12939 and Crossing Line BB09-0155. Bottom: section of Seismic Line BB09-506375 with location of alternate Site MB-22A showing inter-
preted horizons. The strata package above target Horizon 7, displaying a semicontinuous reflection character, is interpreted as a contourite drift abounding a channel
system. Site MB-22A is expected to recover silty-sandy muds presumably of Early/Middle to Late Pleistocene age. Early depositional stage of Unit 8 is marked by a blue
dotted line. The site is placed between two crosslines to optimize stratigraphic coverage of Unit 8 (between Horizons 7 and 8) and avoid drilling into strong reflectors

(e.g., channel sands).
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Site MB-08A

Priority: Alternate
Position: 734870, -62.2682
Water depth (m): 497

Target drilling depth (mbsf): | 370

Approved maximum 370

penetration (mbsf):

Survey coverage (track map;
seismic profile):

BB10-5068125; SP 15796
BB09-10725; SP 21378

Objective(s):

Recover deglacial and interglacial intervals of potentially
early to middle Pleistocene age within top-set strata of
the trough-mouth fan; onlap glacial unconformities of
Units 6,7, 8,and 9

Coring program:

Hole A: RCB to 370 mbsf
Hole B: Drill down to 70 mbsf; APC/XCB to 370 mbsf

Downhole measurements
program:

Hole A (0-370 mbsf):
« Triple combo

« FMS-sonic

.« VS|

Nature of rock anticipated:

Diamicton with intercalated pebbly mud and sandy mud
units
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Figure AF11. Top: bathymetric map of the outer margin of the Melville Bugt TMF showing location of alternate Site MB-08A on Seismic Reflection Lines BB10-5068125
at Shotpoints (SP) 15796 and BB09-10725. Bottom: section of Seismic Line B10-5068125 with location of alternate Site MB-08A and interpreted horizons and ages. This
site will recover the stratified section above seismic Horizon 5. The expected lithologies are proximal glacigenic deposits (e.g., tills interlayered with muddy
marine/glacial-marine strata, probably of Early to Middle Pleistocene age). The site is placed ~1 km off the nearest crossline to optimize penetration of flat lying,

onlapping reflections.

https://doi.org/10.14379/iodp.sp.400.2022

publications.iodp.org - 40
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Site MB-03B

Priority: Alternate
Position: 73.5032,-62.4861
Water depth (m): 498

Target drilling depth (mbsf): | 375

Approved maximum 375

penetration (mbsf):

Survey coverage (track map;
seismic profile):

BB10-5066845; SP 15463
BB09-10725; SP 21096

Objective(s):

Recover deglacial and interglacial intervals of potentially
early to middle Pleistocene age within top-set strata of
the trough-mouth fan; onlap glacial unconformities of
Units 6,7, 8,and 9

Coring program:

Hole A: RCB to 375 mbsf
Hole B: Drill down to 70 mbsf; APC/XCB to 375 mbsf

Downhole measurements

Hole A (0-375 mbsf):

Expedition 400 Scientific Prospectus
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- VSI \\\\ »
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Figure AF12. Top: bathymetric map of the outer margin of the Melville Bugt TMF showing location of alternate Site MB-03B on Seismic Reflection Line BB10-5066875.
Bottom: section of Seismic Line BB10-5066875 with interpreted horizons and location of alternate Site MB-03B at Shotpoint (SP) 15463. Site MB-03B will recover the
stratified section above Seismic Unit 6 (depth target). The expected lithologies are proximal glacigenic deposits (e.g., tills interlayered with muddy marine/glacial-
marine strata, probably of Early to Middle Pleistocene age). The site is placed ~2.7 km off the nearest crossline to optimize penetration of flat lying, onlapping reflec-

tions.
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P.Knutz et al.

Site MB-04C

penetration (mbsf):

Priority: Alternate
Position: 73.8734,-62.0528
Water depth (m): 628

Target drilling depth (mbsf): | 305

Approved maximum 305

Survey coverage (track map;
seismic profile):

High-resolution primary: LAKO_1037; SP 74530

High-resolution crossing: LAKO_1041; SP 77698

Deep-penetration primary: ANU_Inline_13756.sgy;
Xline 12520

Deep-penetration crossing: ANU_XLine_12520.sgy;
In-line 13756

Objective(s):

Recover deglacial and interglacial intervals of potentially
early Pleistocene age within top-set strata of the trough-

mouth fan; onlap glacial unconformity (Horizon 3)

Coring program:

Hole A: RCB to 305 mbsf

Downhole measurements
program:

Hole A (0-305 mbsf):
+ Triple combo
+ FMS-sonic

Nature of rock anticipated:

Diamicton with intercalated pebbly mud and mud units
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Figure AF13. Top: bathymetric map of the middle shelf region south of the Melville Bugt trough showing location of alternate Site MB-04C on Seismic Reflection Line
LAKO_1037. Seismic lines include shot point (SP) numbers. Bottom: section of Seismic Line LAKO_1037 showing interpreted horizons and ages and location of alter-
nate Site MB-04C at SP 74530. This site captures the pinch-out of a basal unit with TMF Unit 4 over Horizon 3. Depth target is a reflection onlap over an internal
unconformity (light green) below Horizon 3. The site is expected to recover proximal glacigenic deposits interlayered with muddy marine/glacial-marine strata of
probable Early Pleistocene age. Site MB-04C is offset 0.6 km from the nearest high-resolution crossline to achieve optimal stratigraphic coverage of the depth target.
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Site MB-15A

penetration (mbsf):

Priority: Alternate
Position: 74.1217,-60.9909
Water depth (m): 605

Target drilling depth (mbsf): | 582

Approved maximum 648

Survey coverage (track map;
seismic profile):

Deep-penetration primary: ANU-3D: In-line 18916.segy;
Xline 17068

Deep-penetration crossing: ANU-3D_XL-17068.segy;
IL18916

Objective(s):

Recover Neogene contourite drift sediments that can
elucidate paleoceanographic conditions prior to the
major basinward expansion of the Greenland Ice Sheet

Coring program:

Hole A: RCB to 582 mbsf
Hole B: RCB to 400 mbsf

Downhole measurements
program:

Hole A (0-582 mbsf):
+ Triple combo

« FMS-sonic

- VSI

Nature of rock anticipated:

Diamicton; mudstone with silty-sandy intervals
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Figure AF14. Top: shaded relief bathymetric map of the middle shelf region within the Melville Bugt trough showing location of alternate Site MB-15A on seismic
reflection crossing lines shown in bottom panel as thick white lines. Inline-Xline: 18916, 17068. Thin white lines show the 2D seismic grid. Inset shows the area cover-
age of 3D seismic data used to help refine target location. Black circles show the proposed alternate drill site location, and the red circle shows the drill site location for
Site MB-15A. Bottom: key Inline and Xline seismic sections from the 3D seismic cube (zero-phase). Mega-unit boundaries are shown. Inline (left)-Xline (right): 18916,

17068 sections with location of alternate Site MB-15A.
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P.Knutz et al.

Site MB-05B

penetration (mbsf):

Priority: Alternate
Position: 74.2116,-61.3397
Water depth (m): 704

Target drilling depth (mbsf): | 520

Approved maximum 520

Survey coverage (track map;
seismic profile):

High-resolution primary: LAKO_1022; SP 66675

Deep-penetration primary: ANU-3D_IL-17168.segy;
XL 18616

Deep-penetration crossing: ANU-3D_XL-18616.segy;
IL17168

Objective(s):

(1) Capture deposits corresponding to the earliest shelf-
based glaciations in northwest Greenland;

(2) recover contourite drift sediments of likely early
Pliocene age that can elucidate paleoceanographic
conditions prior to the major expansion of the Greenland
Ice Sheet

Coring program:

Hole A: RCB to 520 mbsf

Downhole measurements
program:

Hole A (0-520 mbsf):
+ Triple combo
+ FMS-sonic

Nature of rock anticipated:

Diamicton; mudstone with silty-sandy intervals
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Figure AF15. Top: shaded relief bathymetry map of the middle shelf region within the Melville Bugt trough showing location of alternate Site MB-05B on seismic
reflection crossing lines shown as thick white lines in bottom panel. Inline-Xline: 17168, 18616. Thin white lines show the 2D seismic grid. Inset shows the aerial
coverage of 3D seismic data used to help refine target location. Red circle shows the drill site location for MB-05B. Bottom: key Inline and Xline seismic sections from
the 3D seismic cube (zero-phase). Mega-unit boundaries are shown. Inline (left)-Xline (right): 17168, 18616 sections with location of alternate Site MB-05B.
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Site MB-13A

Priority: Alternate
Position: 74.2118,-61.3958
Water depth (m): 707

Target drilling depth (mbsf): | 540

Approved maximum 540

penetration (mbsf):

Survey coverage (track map;
seismic profile):

Primary: ANU-3D: In-line 16896.segy; Xline 18616
Crossing: Site-13A_ANU-3D_XL-18616.segy; IL 16896

Objective(s):

(1) Capture deposits corresponding to the earliest shelf-
based glaciations in northwest Greenland;

(2) recover Contourite drift sediments of likely early
Pliocene age that can elucidate paleoceanographic
conditions prior to the major expansion of the Greenland
Ice Sheet

Coring program:

Hole A: RCB to 540 mbsf

Downhole measurements
program:

Hole A (0-540 mbsf):
+ Triple combo
« FMS-sonic

Nature of rock anticipated:

Diamicton; mudstone with silty-sandy intervals

Inline 16896
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Figure AF16. Top: shaded relief bathymetry map of the middle shelf region within the Melville Bugt trough showing location of alternate Site MB-13A on seismic
reflection crossing lines shown as thick white lines in bottom panel; Inline-Xline: 16896, 18616. Thin white lines show the 2D seismic grid. Inset shows the aerial
coverage of 3D seismic data used to help refine target location. Red circle shows the drill site location for Site MB-13A. Bottom: key (left) Inline and (right) Xline seismic

sections from the 3D seismic cube (zero-phase). Mega-unit boundaries are shown.
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P.Knutz et al. Expedition 400 Scientific Prospectus

Site MB-14A
Priority: Alternate
Position: 74.2109, -61.2704
Water depth (m): 663
Target drilling depth (mbsf): | 510
Approved maximum 510

penetration (mbsf):

Survey coverage (track map; | Deep-penetration primary: ANU-3D: In-line 17504.segy;
seismic profile): Xline 18616

Deep-penetration crossing: Site-14A_ANU-3D_XL-
18616.segy; IL 17504

Objective(s): (1) Capture deposits corresponding to the earliest shelf-
based glaciations in northwest Greenland;

(2) recover contourite drift sediments of likely early
Pliocene age that can elucidate paleoceanographic
conditions prior to the major expansion of the Greenland

Ice Sheet
Coring program: Hole A: RCB to 510 mbsf
Downhole measurements Hole A (0-510 mbsf):
program: « Triple combo
« FMS-sonic
Nature of rock anticipated: Diamicton; mudstone with silty-sandy intervals
Inline 17504 Xline 18616 . SEismicmP"'“de
IL 17504 17504 17504 17504 17504 17504 17504 17504 17504 17504 17504 17504 17504 IL 16556 16716 16876 17036 17196 17356 17516 17676 17836 17996 18156 18316 18476
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Figure AF17. Alternate Site MB-14A is aimed at recovering a composite sequence of high-accumulation rate contourite drifts of Mega-unit B (likely Pliocene age) and
the earliest glacial clinoforms of Mega-unit A (Late Pliocene and Early Pleistocene). Top: shaded relief bathymetric map of the middle shelf region within the Melville
Bugt trough showing location of alternate Site MB-14A on seismic reflection crossing lines shown as thick white lines in bottom panel. Inline-Xline: 17504, 18616.Thin
white lines show the 2D seismic grid. Inset shows the aerial coverage of 3D seismic data used to help refine target location. Red circle shows the drill site location for
Site MB-14A Bottom: seismic reflection profiles with location of alternate Site MB-14A: (left) Inline 17504 and (right) Xline 18616. SP = shotpoint.
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Site MB-16A

penetration (mbsf):

Priority: Alternate
Position: 74.5507,-60.7990
Water depth (m): 734

Target drilling depth (mbsf): | 1080

Approved maximum 1089

Survey coverage (track map;
seismic profile):

High-resolution crossing: LAKO_1035; SP 61758

Deep-penetration primary: PITU 3D: In-line 2825; Xline
2960

Deep-penetration crossing: PITU-3D-Full-Volume_XL-
2960.segy; In-line 2825

Objective(s):

Recover an upper Miocene interval and continue coring
through the Middle Miocene horizon to the top of a
sedimentary wedge of possible Oligocene age to
elucidate past ocean and terrestrial climates in northeast
Baffin Bay/Greenland and the onset of ephemeral
glaciation in northwest Greenland

Coring program:

Hole A: RCB to 630 mbsf
Hole B: Install HRT with 600 m of casing;
RCB 600-1080 mbsf

Downhole measurements
program:

Hole A (0-630 mbsf):

« Triple combo

« FMS-sonic

« VS|

Hole B (600-1080 mbsf):
+ Triple combo

« FMS-sonic

- VSI

Nature of rock anticipated:

Claystone with silty to sandy intervals and siliceous ooze
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Figure AF18. Alternate Site MB-16A aimed at recovering Oligocene and Miocene successions that are expected to be fine-grained hemipelagic sediments of Mega-
units C and D. Top: shaded relief bathymetry map of the middle shelf region within the Melville Bugt trough, shown with 100 m contours. Seismic crossing lines
displayed in the bottom panel are shown as thick white lines: Inline-Xline: 2825, 2960. Thin white lines show the 2D seismic grid. Inset shows the aerial coverage of 3D
seismic data used to help refine target location. Red circle shows the drill site location for alternate Site MB-16A. Dashed and dotted red lines show the high-resolution
subcrop and standard 3D data outlines, respectively. Bottom: seismic reflection profiles with location of MB-16A. Left, Inline 2825; right, Xline 2960. SP = shotpoint.
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P.Knutz et al.

Site MB-11A
Priority: Alternate
Position: 74.4283, -60.4086
Water depth (m): 747
Target drilling depth (mbsf): | 1015
Approved maximum 1200

penetration (mbsf):

Survey coverage (track map;
seismic profile):

Primary: PITU 3D: In-line 2280.segy; Xline 8578
Crossing: PITU-3D_XL-8578.segy; IL 2280

Objective(s):

Recover an upper Miocene interval and continue coring
through the Middle Miocene horizon to the top of a
sedimentary wedge of possible Oligocene age to
elucidate past ocean and terrestrial climates in northeast
Baffin Bay/Greenland and the onset of ephemeral
glaciation in northwest Greenland

Coring program:

Hole A: RCB to 630 mbsf
Hole B: Install HRT with 600 m of casing;
RCB 600-1015 mbsf

Downhole measurements
program:

Hole A (0-630 mbsf):

« Triple combo

« FMS-sonic

.« VS|

Hole B (600-1015 mbsf):
+ Triple combo

« FMS-sonic

+ VS|

Nature of rock anticipated:

Claystone with silty to sandy intervals and siliceous ooze
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Figure AF19. Alternate drill Site MB-11A is aimed at recovering Oligocene and Miocene successions that are expected to be fine-grained hemipelagic sediments of
Mega-units C and D. Top: shaded relief bathymetry map of the middle shelf region within the Melville Bugt trough, shown with 100 m contours. Seismic crossing lines
displayed in the bottom panel are shown as thick white lines: Inline-Xline: 2280, 8578. Thin white lines show the 2D seismic grid. Inset shows the aerial coverage of 3D
seismic data used to help refine the target location. Red circle shows location of Site MB-11A. Dashed and dotted red lines show the high-resolution subcrop and
standard 3D data outlines, respectively. Bottom: seismic reflection profiles with location of Site MB-11A. Left, Inline 2825; right, Xline 2960. SP = shotpoint.
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Site MB-12A

penetration (mbsf):

Priority: Alternate
Position: 74.4597,-60.5049
Water depth (m): 739

Target drilling depth (mbsf): | 971

Approved maximum 1186

Survey coverage (track map;
seismic profile):

Primary: PITU 3D: In-line 2413.segy; Xline 7902
Crossing: PITU-3D_XL-7902.segy; IL 2413

Objective(s):

Recover an upper Miocene interval and continue coring
through the Middle Miocene horizon to the top of a
sedimentary wedge of possible Oligocene age to
elucidate past ocean and terrestrial climates in northeast
Baffin Bay/Greenland and the onset of ephemeral
glaciation in northwest Greenland

Coring program:

Hole A: RCB to 630 mbsf
Hole B: Install HRT with 600 m of casing;
RCB 630-971 mbsf

Downhole measurements
program:

Hole A (0-630 mbsf):

« Triple combo
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Hole B (600-971 mbsf):
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Figure AF20. Alternate drill Site MB-12A is aimed at recovering Oligocene and Miocene successions that are expected to be fine-grained hemipelagic sediments of
Mega-units C and D. Top: shaded relief bathymetry map of the middle shelf region within the Melville Bugt trough, shown with 100 m contours. Seismic crossing lines
displayed in the bottom panel are shown as thick white lines: Inline-Xline: 2413, 7902. Thin white lines show the 2D seismic grid. Inset shows the aerial coverage of 3D
seismic data used to help refine the target location. Red circle shows the location of Site MB-12A. Dashed and dotted red lines show the high-resolution subcrop and
standard 3D data outlines, respectively. Bottom: seismic reflection profiles with location of Site MB-12A. Left, Inline 2413; right, Xline 7902. SP = shotpoint.
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Site MB-10A

penetration (mbsf):

Priority: Alternate
Position: 74.4584,-61.1792
Water depth (m): 698

Target drilling depth (mbsf): | 1200

Approved maximum 1288

Survey coverage (track map;
seismic profile):

Primary: BB10-5065625; SP 19946
Crossing: BB10-109125; SP 25337

Objective(s):

Recover an upper Miocene interval and continue coring
through the Middle Miocene horizon to the top of a
sedimentary wedge of possible Oligocene age to
elucidate past ocean and terrestrial climates in northeast
Baffin Bay/Greenland and the onset of ephemeral
glaciation in northwest Greenland

Coring program:

Hole A: RCB to 630 mbsf
Hole B: Install HRT with 600 m of casing;
RCB 630-1200 mbsf

Downhole measurements
program:

Hole A (0-630 mbsf):

« Triple combo

« FMS-sonic

.« VS|

Hole B (600-1200 mbsf):
+ Triple combo

« FMS-sonic

+ VS|

Nature of rock anticipated:

Claystone with silty to sandy intervals and siliceous ooze
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Figure AF21. Top: multibeam bathymetry map of the middle shelf region, situated within the Melville Bugt trough, shown with 50 m depth contours. 3D data cube
outlined in orange. Alternate Site MB-10A is on seismic reflection Line BB10-5065625 at Shotpoint (SP) 19946 and on Crossing Line BB10-109125 at SP 25337. Bottom:
key Seismic Profile BB10-5065625 with location of alternate Site MB-10A and interpreted horizons and assumed ages. TD is Horizon d2 of possible Oligocene age. Site
MB-10A is expected to recover Late and Early Miocene successions composed mainly of fine-grained hemipelagic sediments, possibly with smectite and intervals rich

in opal-CT.
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