Kraken : Adaptive Container Provisioning for
Deploying Dynamic DAGs in Serverless Platforms

Vivek M. Bhasi

The Pennsylvania State University

Jashwant Raj Gunasekaran
The Pennsylvania State University

Prashanth Thinakaran

The Pennsylvania State University

vmb5204@psu.edu jashwant.raj92@gmail.com prashanth.thina@gmail.com
Cyan Subhra Mishra Mahmut Taylan Kandemir Chita Das
The Pennsylvania State University The Pennsylvania State University The Pennsylvania State University
cyan@psu.edu mtk2@psu.edu cxd12@psu.edu
Abstract Keywords
The growing popularity of microservices has led to the pro- serverless, resource-management, scheduling, queuing

liferation of online cloud service-based applications, which
are typically modelled as Directed Acyclic Graphs (DAGs)
comprising of tens to hundreds of microservices. The vast
majority of these applications are user-facing, and hence,
have stringent SLO requirements. Serverless functions, hav-
ing short resource provisioning times and instant scalability,
are suitable candidates for developing such latency-critical
applications. However, existing serverless providers are un-
aware of the workflow characteristics of application DAGs,
leading to container over-provisioning in many cases. This
is further exacerbated in the case of dynamic DAGs, where
the function chain for an application is not known a pri-
ori. Motivated by these observations, we propose Kraken,
a workflow-aware resource management framework that
minimizes the number of containers provisioned for an ap-
plication DAG while ensuring SLO-compliance. We design
and implement Kraken on OpenFaa$S and evaluate it on a
multi-node Kubernetes-managed cluster. Our extensive ex-
perimental evaluation using DeathStarbench workload suite
and real-world traces demonstrates that Kraken spawns up
to 76% fewer containers, thereby improving container uti-
lization and saving cluster-wide energy by up to 4x and 48%,
respectively, when compared to state-of-the art schedulers
employed in serverless platforms.

CCS Concepts

« Computer systems organization — Cloud Comput-
ing; Resource-Management; Scheduling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC °21, November 1-4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11...$15.00
https://doi.org/10.1145/3472883.3486992

153

ACM Reference Format:

Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das.
2021. Kraken : Adaptive Container Provisioning for Deploying
Dynamic DAGs in Serverless Platforms. In ACM Symposium on
Cloud Computing (SoCC ’21), November 14, 2021, Seattle, WA, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3472883.
3486992

1 Introduction

Cloud applications are embracing microservices as a pre-
mier application model, owing to their advantages in terms
of simplified development and ease of scalability [29, 40].
Many of these real-world services often comprise of tens or
even hundreds of loosely-coupled microservices [42] (e.g. Ex-
pedia [15] and Airbnb [2]). Typically, these online service ap-
plications are user-facing and hence, are administered under
strict Service Level Objectives (SLOs) [47, 48] and response
latency requirements. Therefore, choosing the underlying
resources (virtual machines or containers) from a plethora of
public cloud resource offerings [31, 33, 37, 41, 45, 50] becomes
crucial due to their characteristics (such as provisioning la-
tency) that determine the response latency. Serverless com-
puting (FaaS) has recently emerged as a first-class platform
to deploy latency-critical user facing applications as it miti-
gates resource management overheads for developers while
simultaneously offering instantaneous scalability. However,
deploying complex microservice-based applications on FaaS
has unique challenges owing to its design limitations.

First, due to the stateless nature of FaaS, individual mi-
croservices have to be designed as functions and explicitly
chained together using tools to compose the entire appli-
cation, thus forming a Directed Acyclic Graph (DAG) [33].
Second, the state management between dependent functions
has to be explicitly handled using a predefined state ma-
chine and made available to the cloud provider [6, 23]. Third,
the presence of conditional branches in some DAGs can
lead to uncertainties in determining which functions will

https://doi.org/10.1145/3472883.3486992
https://doi.org/10.1145/3472883.3486992
https://doi.org/10.1145/3472883.3486992

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

be invoked by different requests to the same application.
For instance, in a train-ticket application [40], actions like
make_reservation can trigger different paths/workflows (sub-
set of functions) within the application. These design chal-
lenges, when combined with the scheduling and container
provisioning policies of current serverless platforms, result in
crucial inefficiencies with respect to application performance
and provider-side resource utilization. Two such inefficien-
cies are described below:

e The majority of serverless platforms [32, 44, 46, 50] assume
that DAGs in applications are static, implying that all com-
posite functions will be invoked by a single request to the
application. This assumption leads to the spawning of equal
number of containers for all functions in proportion to the
application load, resulting in container over-provisioning.

e Dynamic DAGs, where only a subset of functions within
each DAG are invoked per request type, necessitate the ap-
portioning of containers to each function. Recent frame-
works like Xanadu [27], predict the most likely functions to
be used in the DAG. This results in container provisioning
along a single function chain. However, not proportionately
allocating containers to all functions in the application can
lead to under-provisioning containers for some functions
when requests deviate from the predicted path.

To address these challenges, we propose Kraken, a DAG
workflow-aware resource management framework specifi-
cally catered to dynamic DAGs, that minimizes resource con-
sumption, while remaining SLO compliant. The key compo-
nents of Kraken are (i) Kraken employs a Proactive Weighted
Scaler (PWS) which deploys containers for functions in ad-
vance by utilizing a request arrival estimation model. The
number of containers to be deployed is jointly determined by
the estimation model and function weights. These weights
are assigned by the PWS by taking into account function
invocation probabilities and parameters pertaining to the
DAG structure, namely, Commonality (functions common
to multiple workflows) and Connectivity (number of descen-
dant functions), (i) In addition to the PWS, Kraken employs
a Reactive Scaler (RS) to scale containers appropriately to re-
cover from potential resource mismanagement by the PWS,
(iii) Further, we batch multiple requests to each container in
order to minimize resource consumption.

We have developed a prototype of Kraken using OpenFaas,
an open source serverless framework [11], and extensively
evaluated it using real-world datacenter traces on a 160 core
Kubernetes cluster. Our results show that Kraken spawns
up to 76% fewer containers on average, thereby improving
container utilization and cluster-wide energy savings by up
to 4x and 48%, respectively, when compared to state-of-the
art serverless schedulers. Furthermore, Kraken guarantees
SLO requirements for up to 99.97% of requests.

154

V. Bhasi, J.R. Gunasekaran et al.

2 Background and Motivation

We start with providing an overview of serverless DAGs
along with related work (Table 1) and discuss the challenges
which motivate the need for Kraken.

2.1 Serverless Function Chains (DAGs)

Many applications are modeled as function chains and
typically administered under strict SLOs (hundreds of mil-
liseconds) [30]. Serverless function chains are formed by
stitching together various individual serverless functions
using some form of synchronization to provide the func-
tionality of a full-fledged application. Function chains are
supported in commercial serverless platforms such as AWS
Step Functions [4, 23], IBM Cloud Functions [8], and Azure
Durable functions [6]. By characterizing production appli-
cation traces from Azure, Shahrad et.al [42] have elucidated
that 46% of applications have 2-10 functions. Excluding the
most general (and rare) cases where applications can have
loops/cycles within a function chain [27], applications can be
modeled as a Directed Acyclic Graph (DAG) where each ver-
tex/stage is a function [26] Henceforth, we will use the terms
‘function’ and ‘stage’ interchangeably. We define a workflow
or path within an application as a sequence of vertices and
the edges that connect them, starting from the first vertex
(or vertices) and ending at the last vertex (or vertices). An
application invokes functions in the sequence as specified by
the path in the DAG. Based on the nature of the workflow,
function chains can be classified as Static or Dynamic.

2.1.1 Static DAGs In static function chains (or DAGs), the
workflows are specified in advance by the developer (using a
schema), which is then orchestrated by the provider. This re-
sults in a predetermined path being traversed in the event of
an application invocation. For example, in Hotel Reservation
(Figure 1c), if only one path (say, NGINX-Make_Reservation)
is always chosen, it represents a static function chain. Hence-
forth, we refer to static function chains as Static DAG Ap-
plications (SDAs). Clearly, having prior knowledge of what
functions will be invoked for an application makes container
provisioning easier for SDAs.

2.1.2 Dynamic DAGs Although the application DAG con-
sists of multiple functions that may be invoked, there are
cases where the functions can themselves invoke other func-
tions depending on the inputs they receive. We refer to such
functions as Dynamic Branch Points (DBPs), and the chains
they are a part of as Dynamic Function Chains. In such cases,
deploying containers without prior knowledge about the
possible paths in the workflow leads to sub-optimal con-
tainer provisioning for individual functions. Figure 1 shows
the DAGs for three Dynamic Function Chains. Social Net-
work (Figure 1a), for example, is one such chain that has 11
functions in total, with each subset of functions contribut-
ing to multiple paths (7 paths in total). For instance, from

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

g
—_ | = —_ g
) s)
— — | S
21Z|_|8|%|8|2 g
s || 8l=z8 = —
Sl 5125|8323 || 9|8
Sl | =s|g|ls|a|EB|E =
S| (S| |8 |2 5|8
Features <|ER|E|X|T|a|T|0 |
SLO Guarantees VI X | VIV V|V
Dynamic DAG Applications X | X | X |V | X | X | Xx|Xx |V
Slack-aware batching X | X |V | X |V | X|X|X]|V
Cold Start Spillover Prevention | X | X | X | X | X | X | X | X |V
Function Weight Apportioning | X | X | X | X | X | X | X | X | V/
Energy Efficieny X | V|V |V | X | X |V |V |V
Request Arrival Prediction VIX | VIV XX
Satisfactory Tail Latency VIX | VX | V| V||

Table 1: Comparing the features of Kraken with other state-of-the-
art resource management frameworks.

App DBP | Total Fanout | Possible Paths | Max Depth
Social Network 2 8 7 5
Media Service 3 7 5 6
Hotel Reservation 1 2 2 4

Table 2: Analyzing Variability in Application Workflows.

the start function NGINX, any one of Search, Make_Post,
Read_Timeline and Follow can be taken. Henceforth, we refer
to such Dynamic DAG Applications as DDAs.

2.2 Motivation

Two specific challenges in the context of DDAs along with
potential opportunities to resolve them are described below:
Challenge 1: Path Prediction in DDAs. DDAs will only
have a subset of their functions invoked for an incoming
request to the application due to the presence of conditional
paths within their DAGs. Figure 1 depicts the DAGs of three
such applications from the DeathStar benchmark suite [29],
and Table 2 summarizes the various workflows that can be
triggered by an incoming request to them. “Total fan-out’ and
‘Max Depth’ denotes the total number of outgoing branches
and maximum distance between the start function and any
other function in a DAG, respectively. Note that each func-
tion triggers only one other function in the application at
a time. The decision to trigger the next function typically
depends on the input to the current function, although there
are cases like Media Service where this decision may de-
pend on previous function inputs as well. Therefore, there is
considerable variation in the functions that can be invoked
in DDAs, thus, negating the inherent assumption in many
frameworks [32, 42, 44, 50] that all functions will be invoked
with the same frequency as the application. This discrepancy
can lead to substantial container overprovisioning.
Opportunity 1: In order to reduce overprovisioning of contain-
ers, it is vital to design a workflow-aware resource management
(RM) framework that can dynamically scale containers for each
function, as opposed to uniformly scaling for all functions. To
design such a policy, the RM framework needs to know each
function’s invocation frequency, which is a good estimator of
its relative popularity.

155

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

We introduce weights to estimate the appropriate number
of containers to be spawned for each function. A function’s
weight is calculated using the relative invocation frequency of a
function along with other DAG-specific parameters (explained
in the next section). The relative invocation frequency of a
function is measured with respect to the application it consti-
tutes. The same function belonging to multiple applications
can, therefore, have distinct weights in each application.

To analyze the benefits of using invocation frequency, we
designed a probability-based policy that employs weighted
container scaling. For the purposes of this experiment, we
base our function weights only on invocation frequencies
that are periodically calculated at the beginning of each
scaling window. Figure 2 depicts the number of containers
provisioned per function for three container provisioning
policies subject to a Poisson arrival trace (u = 25 requests
per second (rps)) for three applications. The static provision-
ing policy is representative of current platforms [50] which
spawn containers for functions in a workflow-agnostic fash-
ion. Xanadu [27] represents the policy that scales containers
only along the Most Likely Path (MLP), which is the request’s
expected path. If the request takes a different path, Xanadu
provisions containers along the path actually taken, in a
reactive fashion, and scales down the containers it provi-
sioned along the MLP. Consequently, Xanadu, when subject
to moderate/heavy load, over-provisions containers by 32%
compared to the Probability-based policy (from Figure 2) as
a result of being locked into provisioning containers for the
MLP until it is able to recalculate it. Our probability-based
policy, on the other hand, provisions containers for func-
tions along every possible path in proportion to their assigned
weights. Note that variability in application usage patterns
can lead to changes in function probabilities within each
DDA, which the policy will have to account for.
Challenge 2: Adaptive Container Provisioning. While
probability-based container provisioning can significantly
reduce the number of containers, the presence of container
cold-starts leads to SLO violations (requests not meeting
their expected response latency). This is because cold starts
can take up a significant proportion of a function’s response
time (up to 10s of seconds [13, 14]). A significant amount
of research [18, 22, 24, 38, 39, 43, 52] has been focused to-
wards reducing cold-start overheads (in particular, proactive
container provisioning [3, 32, 44, 46]). However, in the case
of DDAs, DBPs make it unclear as to how many containers
should be provisioned in advance for the functions along
each path in the DAG.

We identify two interlinked factors, in the context of
DDAs, that need to be accounted for when making container
scaling decisions. The first, is what we call critical functions.
These are functions within a DAG that have a high number
of descendant functions that are linked to it and we use the

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

=

\NGle/

(a) Social Network.

Z_\\

USER TAG

COMFOSE POS’

OST STORAGE|

e

-<I

(b) Media Service.

V. Bhasi, J.R. Gunasekaran et al.

SEARCH

(CHECK_RESERVATION—| GET_PROFILES

o

IMAKE_RESERVATION

(c) Hotel Reservation.

Figure 1: DAGs of Dynamic Function Chains.

Xanadu Xanadu

Probability-based Probability-based

Static Provisioning Static Provisioning

Xanadu
Probability-based

Static Pr

0 100 200 300 0 100 200 300 0 50 100 150
Containers # Containers # Containers
BNGINX mSearch O Make_Post BNGINX [=]]s]
OText @Media mUser_Tag OMovie_ID OText BNGINX BCheck_Reservation
8 User_Service @Rating DOGet_Profiles OSearch

BURL_Shortener @Compose_Post BPost_Storage

mCompose_Review
BRead_Timeline ®Follow

mUser_Review

(a) Social Network.

(b) Media Service.

®Movie_Review

mReview_Storage BMake_Reservation

(c) Hotel Reservation.

Figure 2: Function-wise Breakdown of Container Provisioning across Applications.

’g 800 /\ 99.90%
s 600 99.45% &
£ N — "8
= 400 — 99.00% §
@ o
a 4
§200 — 98.55% &
& o 98.10%
Critical Non-Critical Critical Non-Critical Critical Non-Critical
Social Network Media Service Hotel Reservation

== End-to-End Response Time =8—SLO Guarantee

Figure 3: Performance Deterioration resulting from Container De-
ficiency at Critical Functions. The Primary Y-axis denotes the Av-
erage End-to-End Response Time, the Secondary Y-axis represents
the percentage of SLOs satisfied and the X-axis indicates the Appli-
cation under consideration.

term Connectivity to denote the ratio of number of descen-
dant functions to the total number of functions. Inadequately
provisioning containers for such functions causes requests
to queue up as containers are spawned in the background.
Moreover, this additional request load trickles down to all
the descendants, adversely affecting their response times
as well. We refer to this effect as Cold Start Spillover. Fig-
ure 3 compares the performance degradation resulting from
underprovisioning both Critical and Non-Critical functions.
The (Critical, Non-Critical) function pairs chosen for this
experiment were (Make_Post, Text), (ID, Rating) and (NGINX,
Search) for Social Network, Media Service and Hotel Reserva-
tion, respectively. It can be observed that underprovisioning
containers for just one Critical function has a greater im-
pact on application performance than doing so for a single
Non-Critical function, with the end-to-end response time
and SLO guarantees becoming 24ms and 0.25% worse on
average. This effect can worsen if the same were to happen
with multiple critical functions.

In addition to critical functions, it is also crucial to assign
higher weights to common functions as well. Common func-
tions refer to those which are a part of two or more paths
within an application DAG. Figure 4 shows the ‘hit rate’ of

156

functions within an application that is subject to a constant
load where any path in the application is equally likely to be
picked. It can be seen that functions which are common to a
larger number of paths are invoked at a higher rate by such
a request arrival pattern. Therefore, common functions have
a higher chance of experiencing increased load due to be-
ing present in multiple paths. Consequently, higher weights
have to be assigned to such functions to ensure resilience in
the presence of varying application usage patterns.
Opportunity 2: Although proactive provisioning combined
with probability-based scaling is useful, it is essential to iden-
tify critical and common functions in each DDA and assign
them higher weights in comparison to standard functions.
Hence, rather than simply measuring the weights only in
terms of function invocation frequency, we also need to
account for DAG specific factors like Commonality and Con-
nectivity. The above discourse motivates us to rethink the
design of serverless RM frameworks to cater to DDAs as well.
One key driver for the design lies in a Probability Estimation
Model for individual functions, which is explained below.

3 Function Probability Estimation Model

As elucidated in Opportunity-1, to specifically address the
container over-provisioning problem for DDAs, we need to
estimate the weights to be assigned to their composite func-
tions, a key component of which is the function invocation
probability. In this section, we model the function probability
estimation problem using a Variable Order Markov Model
(VOMM) [21]. VOMMs are effective in capturing the invo-
cation patterns of functions within each application while
simultaneously isolating the effects of other applications
that share them. This aids us in the calculation of function
invocation probabilities. Wherever appropriate, we draw in-
spiration from related works that model user web surfing

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

1 1
© 075 H _ 2075 (H|— M 2 0.75 |—
S s 1 M € 05 [[05— = = =
,ollnpnnam pal o [0o
KON U S S S S S S F 9 9 & &E O &S o N < g & &
eo“; & & ’\"’7@@& 3’» (@“0 & o«”‘)@@‘&q&\o \\(’\‘\ g ¢ e“é\ & Q-é&@é@‘z-i‘&e“’@ © 0‘4@0 Q‘é\ < °é°¢
e & o° &G < &7 RN VY & el &
~ & & D7 & S RC e < & &
say/oo@ s Qg"b N} &Q & O §F ea./ 6‘9/
(4 o &
(a) Social Network. (b) Media Service. (c) Hotel Reservation.
Figure 4: Function Hit Rate for an Evenly Distributed Load across all Paths in each Application.
& & e S The Probability Vector is an nx1 column vector that cap-
& & o o fe s ol T . . .

7 \ &S FSESIT RIS tures the probabilities of the model being in different states
™ 1 oo ey after a number of time steps have elapsed, given that the
"/ > " e e P biee 8

. 0| Follow

\1 sz
032 T=

U
(st) [~ [Port s
=

0| Media
0|user_Tag
0| URL

0Post_Storage

&
0
0
0
0
0
0.5
0.3
0.1
0.1
0
0
0 olend

~occococococococooo
cococococococococococog

6,
~occococococoooo o,
corocococoococoocooi
corococococcocooy,

%
comocococcooooy

<
0
0
0
0
0
0 0] Text
0
0
0
0
0
1

cocococoo

Figure 5: Transforming the Social Network DAG into a Transition
Matrix.

behavior [19, 20]. VOMMs are an extension of Markov Mod-
els [28], where the transition probability from the current
state to the next state depends not only on the current state,
but possibly on its predecessors (which we refer to as the
‘context’ of the state). Such behavior is seen in some of our
workloads such as Media Service. The order of the VOMM
denotes the number of predecessors that influence the tran-
sition decision.

An application DAG can map neatly onto a Markov model
wherein the functions within the application DAG are mod-
eled as states of the VOMM. The process of one function
invoking another function corresponds to a transition from
the caller function state to the callee function state. The
weight for each function corresponds to the state transition
probability from the start state to the current one (note that
this may require possibly transitioning through a number of
intermediate states).

Thus, for a DAG with n functions, the transition probabil-
ity matrix, T, is an n X n matrix, where n is the total number
of states and each entry, t; ;, is the transition probability
from the state corresponding to the function along the col-
umn j, (f;), to that of the function along the row i, (f;). An
example of a Transition Matrix for the Social Network, with
11 functions, is depicted in Figure 5. An additional state, end,
is added to represent the state the model transitions to after
a path in the DAG is completely executed. In Figure 5, as-
suming both column and row indices of T start at 0, an entry
to 4 represents the transition probability from NGINX’s state
to Follow’s state and is equal to 0.2. In general, this transition
probability, ¢; ;, is calculated as the number of requests from
f; to fi divided by the number of incoming requests to f; in
the context of the application being considered.

0|Compose_Post

157

model was initialized at a known state. A ‘time step’ refers to
a unit of measuring state change in the Markov Model. For
practical purposes, we fix it to be the execution time of the
slowest function at the current function depth. The ‘depth’
of a function, in this context, is defined as the distance, in
terms of the number of edges in the DAG, from the start state
to the current state. The Probability Vector after d number
of time steps can be represented as P;. Then, the Probability
Vector for the next time step, d + 1, is given by the transition
equation, P;11 = T - P;. This equation infers that the Proba-
bility Vector at the next time step is obtained by performing
a transition operation across all possible current states.
Repeatedly carrying out this transition process, starting
from the initial Probability Vector, enables the estimation of
probabilities of each function along all possible workflows.
Iterating this process for d time steps would yield the proba-
bilities of functions at a depth of d from the start function,
given by Py = T? - P,. Thus, we can compute the probability
of any function in the DAG by varying the depth, d, using
this equation. In order to apply this to proactive container
allocation decisions, we can adopt the following procedure.
The incoming load to the application at time stamp, ¢, is
denoted as PL; and can be predicted using a load estimation
model. Assuming each request to a function within the appli-
cation spawns one container for that function, the number
of containers to be provisioned in advance for functions at

depth d is given by:
NG = [PL, - (T4 Py)]

Here, N Cf is a column vector of n elements, each correspond-
ing to the number of elements required to be provisioned for
functions at a depth, d, from the start function. Provisioning
these containers at a fixed time window in advance from ¢
prevents cold starts from affecting the end-user experience.
For example, if PL, is estimated to be 25 requests, then from
Figure 5, we obtain the number of containers needed for
functions at depth, d = 1, by multiplying 25 with P, (which
is T1-Py). Consequently, the total number of containers re-
quired for each function in the application can be computed

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Notation Meaning
T Transition Matrix
Py Probability Vector for functions at depth, d
n # functions in application or # states in model
fi fj functions along row, i or column, jin T
tji Transition probability from f; to f;
Wy Probability calculation time window
t Request arrival time
d # time steps for which transitions are done
PL; Scalar that represents the anticipated # requests at time, t
NC? # containers needed for functions at depth d, at time ¢

Table 3: Notations used in Equations.

by performing a summation of NC? across all possible depths,
d, from the start function.

We can now transform our previously-assumed Markov
Model into a VOMM by splitting up context-dependent states
into multiple context-independent states (the number of
which is dependent on the DAG structure and the order of the
VOMM). For example, in Figure 5, if the transition from Com-
pose_Post to Post_Storage depended on the immediate prede-
cessors of Compose_Post, the Compose_Post state would be
context-dependent and would therefore, be split into context-
independent states, namely, Compose_Post|Text (Compose
Post given Text was already invoked), Compose_Post|Media
etc. for the previous equations to hold. This changes the to-
tal number of states from n to N, the number of extended
states, resulting in a larger Transition Matrix and Probability
Vector. To calculate the required number of containers for a
single function that has multiple context-independent states
associated with it, we take the sum of the calculated values
for all of those states.

4 Overall Design of Kraken

Kraken! leverages the function weight estimation model
from the above section along with several other design choices
as outlined in this section (Figure 6). Users submit requests in
the form of invocation triggers to applications @ hosted on a
Serverless platform. In Kraken, containers are provisioned in
advance by the Proactive Weighted Scaler (PWS) @ to serve
these incoming requests by avoiding cold starts. To achieve
this, the PWS @ first fetches relevant system metrics (using
a monitoring tool @ and orchestrator logs). These metrics, in
addition to a developer-provided DAG Descriptor @, are then
used by the Weight Estimation module €& of PWS @ to assign
weights to functions on the basis of their invocation probabil-
ities. Commonality and Connectivity (parameters in @) are
additional parameters used in weight estimation to account
for critical and common functions. Additionally, a Load Pre-
dictor module) makes use of the system metrics to predict

IKraken is a legendary sea monster with tentacles akin to multiple
paths/chains in a Serverless DAG.

158

V. Bhasi, J.R. Gunasekaran et al.

SCALE

& Om

kubernetes

. —@PPLICATIDNS@

DECISION

KRAKEN

Function 1

[ProBaBILITY][coMmONALITY[connEcTIvITY]

WEIGHT ESTIMATOR

Dev-Provided
DAG ip
i
LOAD PREDICTOR
PROACTIVE WEIGHTED SCALER

REPLICA IED]
Q _E"_TRACKER
* [uouron T
MONITOR

Prometheus

Function n

Z OVERLOAD e FUNCTION
DETECTOR IDLER
REACTIVE SCALER

Scrape Metrics

Figure 6: High-level View of Kraken Architecture

incoming load and uses this in conjunction with the calcu-
lated function weights to determine the number of function
containers to be spawned by the underlying resource orches-
trator @. However, only a fraction of these containers are
actually spawned, as determined by the function’s batch size.
The batch size denotes the number of requests per function
each container can simultaneously serve without exceed-
ing the SLO. In order to effectively handle mis-predictions
in load, Kraken also employs a Reactive Scaler (RS) @ that
consists of two major components. First, is an Overload De-
tector @) that keeps track of request overloading at functions
by monitoring queuing delays at containers. Subsequently,
it triggers container scaling @ by calculating the additional
containers needed to mitigate the delay. Second, a Function
Idler component @) evicts containers from memory @ when
an excess is detected. Thus, Kraken makes use of PWS and
RS to scale containers to meet the target SLOs while simul-
taneously minimizing the number of containers by making
use of function invocation probabilities, function batching,
and container eviction, where appropriate.

4.1 Proactive Weighted Scaler

We describe in detail the components of PWS below.
4.1.1 Estimating function weights Since workflows in
SDAs are pre-determined, pre-deploying resources for them
is straightforward in comparison to DDAs, whose workflow
activation patterns are not known a priori. For DDAs, de-
ploying containers for each function in proportion to the
application load will inevitably lead to resource wastage.
To address this, we design a Weight Estimator €@ to assign
weights to all functions so as to allocate resources in propor-
tion to them. Explained below is the working of the proce-
dure Estimate_Containers in Algorithm 1 which is used to
estimate function weights.

Probability: As alluded to in Section 2, one of the factors
used in function weight estimation is its invocation probabil-
ity. The procedure in Section 3 describes how the transition
probabilities of the states associated with functions are com-
puted through repeated matrix multiplications of the Transi-
tion Matrix, T with the Probability Vector, P. Compute_Prob,

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

in Algorithm 1, first estimates the invocation probabilities
of a function’s immediate predecessors and uses it along
with system log information and load measurements of the
function to calculate its invocation probability.
Connectivity: In addition to function invocation probabil-
ities, it is necessary to also account for the effects of cold
starts on DDAs while estimating function weights. Cold start
spillovers (that often occur due to container underprovision-
ing), as described in Section 2, can impact the response la-
tency of applications harshly. Provisioning critical functions
with more containers helps throttle this at the source. To
this end, Kraken makes use of a parameter called Connec-
tivity, while assigning function weights. The Connectivity
of a function is defined as the ratio of number of its descen-
dant functions to the total number of functions. The Conn
procedure in Algorithm 1 makes use of this formula. For ex-
ample, in Figure 1c, the Connectivity of Check_Reservation
is % since it has two descendants and there is a total of five
functions. Bringing Connectivity into the weight estimation
process helps Kraken assign a higher weight to critical func-
tions, in turn, ensuring that more containers are assigned to
them, resulting in improved response times for the functions
themselves, as well as their descendants.

Commonality: As described in Section 2, in addition to
cold start spillovers, incorrect probability estimations may
arise due to variability in workflow activation patterns. This
may be due to change in user behavior manifesting itself as
variable function input patterns. Such errors can lead to sub-
optimal container allocation to DAG stages in proportion
to the wrongly-calculated function weights. To cope with
this, we introduce a parameter called Commonality, which is
defined as the fraction of number of unique paths that the
function can be a part of with respect to the total number of
unique paths. This is how the procedure Comm calculates
Commonality in Algorithm 1. For example, in Figure 1a, the
Commonality of the function Compose_Post in the Social
Network application is given by the fraction % as it is present
in four out of the seven possible paths in the DAG. Using
Commonality in the weight estimation process allows Kraken
to tolerate function probability miscalculations by assigning
higher weights to those functions that are statistically more
likely to experience rise in usage because of their presence
in a larger number of workflows. Note that we deal with
the possibility of container overprovisioning due to the in-
creased function weights by allowing both Connectivity and
Commonality to be capped at a certain value.

4.1.2 Proactive Container Provisioning Once function
weights are assigned by considering the above factors, they
are employed in estimating the number of containers needed
per DAG stage (Estimate_Containers in Algorithm 1). These
containers have to be provisioned in advance to service fu-
ture load to shield the end user from the effects of cold starts

159

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

and thereby meet the SLO. This load will have to be predicted
in order to make timely container provisioning decisions.

Algorithm 1 Proactive Scaling with weight estimation

for Every Monitor_Interval= PW do
Proactive Weighted_Scaler(N functions)

: procedure PROACTIVE_WEIGHTED_SCALER(FUNC)
: cl « Current_Load(func)
plispw — Load_Predictor(cl, pl;) @

_ Phpw
batches «— ’Vfunc.butch_size Q

total_con < Estimate_Containers(batches, func)
reqd_con «— max(min_con, total_con)
9: Scale_Containers(func, reqd_con)

1:
2
3
4:
5:
6
7
8

10: procedure ESTIMATE CONTAINERS(LOAD, FUNC) > Output: reqd_con

11: func.prob < Compute_Prob(func)

12: reqd_con « [load * func.prob]
13: extra < [(Comm(func) + Conn(func)) x reqd_con]
14: reqd_con < reqd_con + extra

Kraken makes use of a Load Predictor) (Algorithm 1 @)
which uses the EWMA model to predict the incoming load
at the end of a fixed time window, PW. This time window
is chosen according to the time taken to scale all functions
in the respective application. Note that ¢ in the algorithm
refers to the current time. We choose this model so as to
have a light-weight load prediction mechanism that has min-
imal impact on the end-to-end latency (~ 1073 ms). This
Load Predictor € can be used in conjunction with the afore-
mentioned Weight Estimator €@) to calculate the fraction of
application load each function will receive. Kraken uses this
load distribution to pre-provision the requisite number of
containers for all functions in the application.

4.2 Request Batching

Many serverless frameworks [5, 10, 17, 27, 44, 46, 50]
spawn a single container to serve each incoming request to a
function. While this approach is beneficial to minimize SLO
violations, comparable performance can be achieved by using
fewer containers by leveraging the notion of slack [32, 34].
Slack refers to the difference in expected response time and
actual execution time of functions within a function chain.
Functions in a chain can have widely varying execution
times. Allotting stage-wise SLOs to each function in a chain
in proportion to their execution times reveals that there are
cases where there is significant difference (slack) between the
function’s expected SLO and its run-time. Figure 7 depicts
this slack for all functions in the applications considered.

This slack is leveraged by Kraken by batching multiple
requests to the functions by queueing requests at their con-
tainers. Requests are batched onto containers in a fashion
similar to the First Fit Bin Packing algorithm [36]. Batching
reduces the number of containers spawned for each function
by a factor of its batch size (Algorithm 1 @). The batch size

for a function, f, is defined as BatchSize (f) = {%J

(Algorithm 1 @). Note that ExecTime (f) is estimated by aver-
aging the execution times of the function obtained through

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

V. Bhasi, J.R. Gunasekaran et al.

600
M M -
> @)
£ 400 E 450 E 300
g 200 “E’ 300 g 200
i F 150 = 100
0 0 1]
O L& d o9 e O Y < N 2 o
0\\;'\' & o F <P & S O & T @ @ @ & ° & & &°
T er N & el i s o P @ o oF o < & < <
& ¥ & ,}.? g;}\ N £ &7 N Qg"e & anﬁ
\)Qy /oo& Q° Q!:b S & ¥ o & 0&/ '3‘9/

BExec Time(ms) @ Stage-wise SLO(ms) BExec Time (ms)

(a) Social Network.

@ Stage-wise SLO (ms)

(b) Media Service.

o
o.Exec Time (ms) @Stage-wise SLO (ms)

(c) Hotel Reservation.

Figure 7: Slack for various Functions in each Application.

offline profiling and StageSLO (f) is allotted in proportion
to it. The batch size represents the number of requests that
can be served by a function without violating the allotted
stage-wise SLO.

4.3 Reactive Scaler (RS)

Though the introduction of Request Batching @ allows
Kraken to reduce the containers provisioned, load mispredic-
tions and probability miscalculations can still occur, leading
to resource mismanagement, which could potentially affect
the SLO compliance. To deal with this, Kraken also employs
the RS @ to scale containers up or down in response to re-
quest overloading at containers (due to under-provisioning)
and container over-provisioning, respectively.

In case of inadequate container provisioning, the Overload
Detector @ in the RS @ detects the number of allocated con-
tainers for each DAG stage and calculates the estimated wait
times of their queued requests (Algorithm 2 @). If it detects
requests whose wait times exceed the cost of spawning a
new container (the cold start of the function), overloading is
said to have occurred at the stage. In such a scenario, Kraken
batches these requests (#_delayed_requests in Algorithm 2)
onto a newly-spawned container(s) (Algorithm 2 @). This
is because requests that have to wait longer than the cold
start would be served faster at a newly created container
than by waiting at an overloaded container. Similarly, for
stages where container overprovisioning has occurred, the
RS @ gradually scales down its allocated containers to the
appropriate number, if its Function Idler module @) detects
excess containers for serving the current load (Algorithm
2 @). Thus, the RS @, in combination with the PWS @ and re-
quest batching @, helps Kraken remain SLO compliant while
using minimum resources.

5 Implementation and Evaluation

We have implemented a prototype of Kraken using open-
source tools for evaluation with synthetic and real-world
traces. The details are described below.

5.1 Prototype Implementation
Kraken is implemented primarily using Python and Go on
top of OpenFaa$ [11], an open-source serverless platform.

160

Algorithm 2 Reactive Scaling

: for Every Monitor_Interval= DR do
Reactive_Resource_Manager(V functions)

1
2
3: procedure REACTIVE_RESOURCE_MANAGER(FUNC)
4 cl « Current_Load(func)

5: func.existing_con < Current_Replicas(func)
6

7

8

9

if [ﬁm-| < func.existing_con then @
cl
reqd_con «— |’ﬁ4nc.hatch?size‘|

else
#_delayed_requests — Delay_Estimator(func) @)

. #_delayed_requests
10: extra_con «— [ﬁ:.inc.batchfsize (c)
11: reqd_con « func.existing_con + extra_con
12: Scale_Containers(func,reqd_con)

OpenFaas is deployed on top of Kubernetes [9], which acts
as the chief container orchestrator. OpenFaaS, by default,
comes packaged with an Alert Manager module which is re-
sponsible for alerting the underlying orchestrator of request
surges by using metrics scraped by Prometheus, which is an
open-source systems monitoring toolkit [12]. This, in turn,
triggers autoscaling to provision extra containers to service
the load surge. We disable this Alert Manager and deploy the
Proactive Weighted Scaler (PWS) and Reactive Scaler (RS) to
carry out our container provisioning policies.

Both the PWS and RS collect metrics, such as the current
container count, load history and request rate for a function
for a given time window, from Prometheus and the Kubernetes
system log, using the Replica Tracker and Load Monitor mod-
ules. Although fetching function metrics incurs a latency in
the order of tens of milliseconds, it is performed in the back-
ground (during autoscaling) and hence, does not affect the
critical path. The load to each function within each applica-
tion is calculated separately using the collected information.
This prevents other applications from interfering with the
probability calculation of shared functions. Additionally, the
PWS uses a DAG descriptor, which is a file that contains
a python dictionary that specifies the connectivity among
functions. Although constructing this is a one-time effort,
automating this process through offline DAG profiling can
be explored in future work. Table 4 gives an overview of
Kraken’s policies and their implementation details.

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

Policy Component Implemented using/as
Probability System log info, Sparse Data Structures
PWS Commonality & Connectivity DAG Descriptor
Load Predictor Pluggable model (EWMA)
Batching Function containers persisted in memory
RS Ri(;?ii:d;;:ilctl:r Metrics from Prometheus & System logs

Table 4: Implementation details of Kraken’s policies.

5.2 Evaluation Methodology

We evaluate the Kraken prototype on a 5 node Kuber-
netes cluster with a dedicated manager node. Each node is
equipped with, 32 cores (Intel CascadeLake), 256GB of RAM,
1 TB of storage and a 10 Gigabit Ethernet interconnect [35].
For energy measurements, we use an open-source version of
Intel Power Gadget [16] that measures the energy consumed
by all sockets in a node.
Load Generator: We provide different traces as inputs to
a load generator, which is based on Hey, an HTTP Load
generator tool [7]. First, we use a synthetic Poisson-based
request arrival rate with an average rate p = 100. Second,
we use real-world request arrival traces from Wiki [49] and
Twitter [1] by running each experiment for about an hour.
The Twitter trace has a large variation in peaks (average =
3332 rps, peak= 6978 rps) when compared to the Wiki trace
(average = 284 rps, peak = 331 rps).
Applications: Each request is modeled after a query to
one of the three applications (DDAs) we consider from the
DeathStar benchmark suite [29]. We implement each ap-
plication as a workflow of chained functions in OpenFaas.
To model the characteristics of the original functions, we
invoke sleep timers within our functions to emulate their
execution times (including the time for state recovery, if any).
Transitions between functions are done using function calls
on the basis of pre-assigned inter-function transition proba-
bilities. The probabilities vary by approximately +20% of a
seed. Note that these probabilities are not visible to Kraken,
but are only used to model function invocation patterns.
Metrics and Resource Management Policies: We use
the following metrics for evaluation: (i) average number
of containers spawned, (ii) percentage of requests satisfy-
ing the SLO (SLO guarantees), (iii) average application re-
sponse times, (iv) end-to-end request latency percentiles,
(v) container utilization, and (vi) cluster-wide energy sav-
ings. We set the SLO at 1000ms. We compare these metrics
for Kraken against the container provisioning policies of
Archipelago [44], Fifer [32] and Xanadu [27], which we will,
henceforth, refer to as Arch, Fifer and Xanadu, respectively.
Additionally, we compare Kraken against policies with (a)
statically assigned function probabilities (SProb) and (b) func-
tion probabilities that dynamically adapt to changing invoca-
tion patterns (DProb). These policies use all the components
of Kraken except Commonality and Connectivity.

161

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

5.3 Large Scale Simulation

To evaluate the effectiveness of Kraken in large-scale sys-
tems, we built a high fidelity, multi-threaded simulator in
Python using container cold start latencies and function
execution times profiled from our real-system counterpart.
It simulates the working of DDAs running on a serverless
framework that are subjected to both real-world (Twitter
and Wiki) and synthetic (Poisson-based) traces. We have
validated its correctness by correlating various metrics of
interest generated from experiments run on the real system
with scaled-down versions of the same traces (average ar-
rival rate of ~100rps). Therefore, the simulator allows us to
evaluate our model for a larger setup, where we mimic an
11k core cluster which can handle up to 7000 requests (70X
more than the real system). Additionally, it helps compare
the resource footprint of Kraken against a clairvoyant policy
(Oracle) that has 100% load prediction accuracy.

6 Analysis of Results

This section presents experimental results for single ap-
plications run in isolation for all schemes on the real system
and simulation platform. We have also verified that Kraken
(as well as the other schemes) yield similar results (within
2%) when multiple applications are run concurrently.

6.1 Real System Results

6.1.1 Containers Spawned Figure 8 depicts the function-
wise breakdown of the number of containers provisioned
across all policies for individual applications. This repre-
sents NC¢ (Section 3) for all possible depths, d. It can be ob-
served that, existing policies, namely, Arch, Fifer and Xanadu
spawn, respectively, 2.41x, 76% and 30% more containers
than Kraken, on average, across all applications. Overallo-
cation of containers in case of Arch is due to two reasons:
(i) it assumes that all functions in the application will be
invoked at runtime; and (ii) it spawns one container per in-
vocation request. On the other hand, Fifer improves upon
this by reducing the total number of containers spawned
using request batching. However, it does not take workflow
activation patterns into consideration while spawning con-
tainers, leading to container overprovisioning. The recently
proposed scheme, Xanadu, is based on a workflow-aware
container deployment mechanism, but does not employ re-
quest batching, leading to extra containers being deployed
in comparison to Kraken. Furthermore, it can be seen that
Xanadu provisions a relatively high number of containers
for a particular group of functions as compared to the rest.
This is because it allocates containers to serve the predicted
load along only the Most Likely Path (MLP) of a request.
The rest of the containers are a result of reactive scaling that
follows from MLP mispredictions, which accounts for 34%
of the total number of containers spawned.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA V. Bhasi, J.R. Gunasekaran et al.

Xanadu Xanadu Xanadu
SProb SProb SProb
Kraken Kraken Kraken
DProb DProb DProb
Fifer Fifer Fifer
Arch Arch Arch
0 500 . 1000 1500 0 500 1000 1500 [200 400 600
NGINX : Cor:amers Make_Post NGINX #Containerg # Containers
=} @ Searcl O Make_Posf) o .
_| N BNGINX mCheck_Reservation
OText @Media @User_Tag E Movleng . E'[';e;('l] -
BURL_Shortener mCompose_Post mPost_Storage s Ci?r:ﬁo::lllgzview = Mi",'i‘g Review OGet_Profiles OSearch
BRead_Timeline ®Follow mUser_Review BReview_Storage mMake_Reservation
(a) Social Network. (b) Media Service. (c) Hotel Reservation.

Figure 8: Real System: Stage-wise Breakdown of Containers spawned by each policy.

The reduction in the number of containers spawned by spawns more containers as well (up to 70% more) and satisfies
Kraken in comparison to other policies is roughly propor- fewer SLOs on average (0.2% lesser). This can be attributed
tional to the total number of application workflows and the to Xanadu’s container pre-deployment policy which causes
slack available for each function within a workflow (see Ta- reactive scale outs as a result of MLP mispredictions. This ef-
ble 2 and Figure 7). For instance, Figure 8 indicates that the fect is highlighted in applications such as Social Network and
Social Network, Media Service and Hotel Reservation applica- Media Service which have relatively high MLP misprediction
tions show the highest (73%, 53% and 36%), moderate (40%, rates (80% and 50%, respectively?)) due to the presence of
28% and 7%) and least (at most 33%) reductions in the number multiple possible paths (Table 2). Media Service suffers from
of containers spawned with respect to existing policies, Arch, higher end-to-end response times, further exacerbating this
Fifer and Xanadu, respectively. Both Social Network and Me- effect. Xanadu has only a 34% misprediction rate for Hotel
dia Service have a high number of workflows, but the former Reservation, due to the lower number of workflows, and is
has more functions with higher slack, leading to increased seen to match Kraken in terms of SLOs satisfied (99.87%).
batching, thereby resulting in the most reduction in con- The breakdown of the average response times in Figure 9
tainers spawned. Hotel Reservation has the least number of shows that both Arch and Xanadu do not suffer from queue-
workflows as well as the lowest overall slack for all functions, ing delays. This is because both policies spawn a container
resulting in the least reduction in the number of containers. per request, resulting in almost zero queueing. The relatively
On the other hand, DProb and SProb spawn fewer containers high cold start-induced delay experienced by Xanadu can be
than Kraken as a consequence of not using Commonality and attributed to the reactive scaling it uses to cope with MLP
Connectivity to augment function weights, while making mispredictions. Kraken exhibits delay characteristics simi-
container allocation decisions. As a result, Kraken provisions lar to Fifer owing to both policies having batching and a
up to 21% more containers than both DProb and SProb for similar container pre-deployment policy. However, Kraken
the three applications. Note that, these additional containers allocates fewer containers (57% lesser, on average across all
are necessary to reduce SLO violations. applications) along each workflow compared to Fifer. DProb
6.1.2 End-to-End Response Times and SLO Compli- and SProb exhibit higher overall end-to-end response times
ance Figure 9 shows the breakdown of the average end-to- compared to Kraken, with SProb experiencing a dispropor-
end response times and Figure 10 juxtaposes the total number tionately high queueing delay compared to its cold start delay.
of containers provisioned against the SLO Guarantees for all This is because it uses statically assigned function weights,
policies and applications, averaged across all traces. From which prevents it from being able to proactively spawn con-
these graphs, it is evident that Kraken exhibits comparable tainers according to the varying user input. This results in
performance to existing policies while having a minimal re- the majority of requests getting queued at the containers.
source footprint. For the Social Network application, Kraken 6.1.3 Analysis of Key Improvements This subsection fo-
remains within 60 ms of the end-to-end response time of cuses on the key improvements offered by Kraken in terms
Arch (Figure 9a), which performs the best out of all policies of Container Utilization, Response Latency Distribution and
with respect to these metrics, while ensuring 99.94% SLO Energy Efficiency. Although we use specific combinations of
guarantees (Figure 10a) . However, Arch uses 4x the number applications and traces to highlight the improvements, the
of containers used by Kraken (Figure 10a). results are similar for other workload mixes as well.

Kraken also performs similar to Fifer, while using 58% Container Utilization: Figure 11 plots the average num-
reduced containers for Social Network. From Figures 9 and ber of requests executed per container (Jobs per container)
10, it can be seen that Xanadu has similar (or worse) end-
to-end response times than Kraken (up to 50 ms more), but ZMLP misprediction rates are not shown in any Figure

162

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

300

[N
=]
=]

=

=)

t=]

T -}
a
o

Response Time (ms)

(23
o o
S o

-
a
=]

Response Time (ms)

Response Time (ms)

o

Fifer
OQueueing OCold Start @Execution Time

Arch Fifer DProb Kraken SProb Xanadu Arch

OQueueing OCold Start BExecution Time

(a) Social Network.

DProb Kraken SProb Xanadu

(b) Media Service.

o

Arch Fifer DProb Kraken SProb Xanadu
BQueueing OCold Start @Execution Time

(c) Hotel Reservation.

Figure 9: Real System: Breakdown of Average End-to-End Response Times in terms of queueing delay, cold start delay and execution time.

1200 100.00%

1200

600 100.00%

100.00%

900

99.75%

99.85% &
s
99.70% &

<
99.55% o
%

600
300

Containers
3
5

Containers

99.40% 0
Arch
mmm # Containers

Arch Fifer
= # Containers

Dprob Kraken Sprob Xanadu
SLO Guarantees

(a) Social Network.

Fifer DProb Kraken SProb Xanadu
SLO Guarantees

(b) Media Service.

99.50%

IS
S
=3

99.50%

N
=3
=3

99.00%

Percentage
ercentage

99.25% o

98.50%

Containers

o

99.00%
Arch Fifer DProb Kraken SProb Xanadu
m # C iners sLO

(c) Hotel Reservation.

Figure 10: Real System: Comparison of Total Number of Containers spawned VS SLOs satisfied by each policy. The Primary Y-Axis denotes
the number of containers spawned, The secondary Y-axis indicates the percentage of SLOs met and the X-axis represents each policy.

-
a
S
=3

1200
900
600
300

0

Jobs per Container

Arch Fifer DProb Kraken SProb Xanadu
Figure 11: Real System: Comparison of Container Utilization (a.k.a.
average #jobs executed per Container).

1200

z
= 900
@
3
= 600 e —
[
2
S 300 =
a
@
&' 0

0.25 0.5 0.75 0.98 0.99

CDF
Archipelago Fifer DProb

Kraken SProb

Xanadu

Figure 12: Real System: Response Time Distribution.

across all functions in Social Network for the Poisson trace.
An ideal scheme would focus on packing more number of
requests per container to improve utilization without caus-
ing SLO violations. Kraken shows 4x, 2.16x and 2.06x more
container utilization compared to Arch, Fifer, and Xanadu
respectively. This is because Kraken limits the number of
containers spawned through function weight assignment
and request batching. DProb and SProb both exhibit higher
utilization compared to Kraken (15%) as a result of spawning
fewer containers overall, owing to not accounting for crit-
ical and common functions while provisioning containers.
Consequently, they exhibit up to 0.24% more SLO Violations
compared to Kraken, for this workload mix.

Latency Distribution: The end-to-end latency distribution
for all policies for the Social Network application with the
Twitter trace is plotted in Figure 12. In particular, Arch, Fifer
and Kraken show comparable latencies, with P99 values re-
maining well within the SLO of 1000ms. However, Arch and
Fifer use 3.51x and 2.1x more containers than Kraken to

163

1200

©
3
3

o
@
3
3

N 2 N
o
w
3
3

a
Latency (ms)

°
&
°

0.25 0.5 0.75

CDF

0.98 0.99

Energy Consumption Rate

o

Arch Fifer DProb Kraken SProb Xanadu Kraken Comm Only

Conn Onl;
(a) Energy Consumption Rate. ’
(b) Response Time Distribution.

Figure 13: Real System: Normalized Energy Consumption of all
Schemes and Response Time Distribution of Kraken, Comm Only
and Conn Only

achieve this. The tail latency (measured at P99) for DProb
almost exceeds the SLO, whereas it does so for SProb. Kraken
manages to avoid high tail latency by assigning augmented
weights to key functions, thus, helping it tolerate incorrect
load/probability estimations. SProb does worse than DProb at
the tail because of its lack of adaptive probability estimation.
Kraken makes use of 21% more containers to achieve the
improved latencies. Xanadu experiences a sudden rise in tail
latency, with it being 100ms more than that of Kraken, while
using 96% more containers. This is due to Xanadu’s MLP
misprediction and the resultant container over-provisioning.
Energy Efficiency: We measure the energy-consumption
as total Energy consumed divided over total time. Kraken
achieves one of the lowest energy consumption rates among
all the policies considered, with it bettering existing policies,
namely, Arch, Fifer and Xanadu by 26%, 14% and 3% respec-
tively (for the workload mix of Media Service application
with Wiki trace) as depicted in Figure 13a. These savings can
go up to 48% compared to Arch for applications like Social
Network. The resultant energy savings of Kraken are a direct
consequence of the savings in computation and memory
usage from the fewer containers spawned. Only DProb and
SProb consume lesser energy than Kraken (4% lesser), due to
their more aggressive container reduction approach.

6.1.4 Ablation Study This subsection conducts a brick-by-
brick evaluation of Kraken using Conn Only and Comm Only,

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Kraken
(99.94%, 284)
(99.73%, 572) | (99.66%, 561) | (99.64%, 552)
(99.87%, 316) | (99.77%, 290) | (99.74%, 282)
Table 5: Real System: Comparing (SLO Guarantees,#Containers
Spawned) against Comm Only and Conn Only.

Application
Social Network
Media Service
Hotel Reservation

Comm Only
(99.91%, 276)

Conn Only
(99.89%, 256)

schemes that exclude Commonality and Connectivity com-
ponents from Kraken, respectively. From Table 5, it can be
seen that Comm Only spawns 8% more containers than Conn
Only for Social Network. This difference is lesser for the other
applications. Upon closer examination, we see that this is
due to functions having different degrees of Commonality
and Connectivity. Moreover, the majority of functions whose
Commonality and Connectivity differ, have a high batch size,
thereby reducing the variation in the number of containers
spawned. Following this, we observe that the variation in the
number of containers in Social Network is mainly due to the
significant difference in the Commonality and Connectivity
of the Compose Post function whose batch size is only one.
There is lesser difference in containers spawned by Comm
Only, Conn Only and Kraken for Media Service because we
have implemented Kraken with a cap on the additional con-
tainers spawned due to Commonality and Connectivity when
the sum of their values exceeds a threshold. This threshold is
exceeded in Media Service for the majority of functions. Due
to the difference in container provisioning, the difference
in response times between the three schemes is evident at
the tail of the response time distribution (Figure 13b). Comm
Only and Conn Only are seen to exceed the target SLO at the
99th percentile. The tail latency of Kraken, in comparison,
grows slower and remains within the target SLO.

6.2 Simulator Results

Since the real-system is limited to a 160-core cluster, we
use our in-house simulator, which can simulate an 11k-core
cluster, to study the scalability of Kraken. We mimic a large
scale Poisson arrival trace (¢ = 1000rps), Wiki (u = 284 rps)
and Twitter (u = 3332 rps) traces. Figure 14 plots the con-
tainers spawned versus the SLO guarantees for each appli-
cation for all traces. The simulator results closely correlate
to those of the real system. Kraken is seen to reduce con-
tainer overprovisioning when applications have numerous
possible workflows and enough slack per function to exploit.
Notably, Kraken spawns nearly 80% less containers for Social
Network in comparison to Arch. Container overprovisioning
is inflated 15% more than the corresponding real system re-
sult, due to the large-scale traces. Table 6 shows the median
and tail latencies of each policy averaged across all appli-
cations for the three traces. The trend we observe is that
traces with higher variability, such as the Twitter trace, af-
fect the tail latencies of policies more harshly than the other,
more predictable, traces. Nevertheless, Kraken is resilient to

164

V. Bhasi, J.R. Gunasekaran et al.

Wiki
Med
336
360
368
358

Twitter
Med
336
373
381
371

Poisson

Med | Tail
336 568
362 612
371 746
366 634
SProb 395 1101 382 1073 395
Xanadu | 343 723 340 774 340

Table 6: Simulator: Median and tail latencies (in ms) averaged across
all applications for the three traces

Policy

Tail
568
611
753
633

Tail
599
833
1549
974
1610
1244

Arch
Fifer
DProb
Kraken

unpredictable loads as well, with tail latencies always remain-
ing within the SLO (1000 ms). However, the tail latencies
of DProb and SProb sometimes exceeds the SLO, since they
don’t use Commonality and Connectivity. It is observed that
Xanadu also violates the SLO for the Twitter trace, owing to
the reactive scale-outs resulting from MLP mispredictions.

6.2.1 Sensitivity Study This subsection compares Kraken
against Oracle, which is an ideal policy that is assumed to
be able to predict future load and all path probabilities with
100% accuracy and also has request batching. Consequently,
Oracle does not suffer from cold starts and minimizes con-
tainers spawned. Figure 15 shows the breakdown of total
number of containers spawned for each application, aver-
aged across all realistic large-scale traces using the simulator.
It is observed that Kraken spawns more containers (7%)
than Oracle, on average. This is due to Kraken’s load/path
probability miscalculations and the usage of Commonality
and Connectivity to cope with this. It is seen that Kraken
spawns 10% more containers for Media Service and 6% more
for Hotel Reservation and Social Network. This may be due to
Media Service having higher path unpredictability than Hotel
Reservation (Table 2) as well as lower slack per function than
Social Network (Figure 7). From Figure 16b, it is observed
that Oracle, being clairvoyant, spawns containers in accor-
dance with the peaks and valleys of the request arrival trace.
Kraken, while spawning more containers, also is seen to lag
behind the trend of the trace due to load prediction errors.

Performance under Sparse Load: Analysis of logs col-
lected from the Azure cloud platform [42] shows request
volumes that are much lighter (average of 2 requests/hour)
than those of the traces we have considered. Moreover, more
than 40% of requests show significant variability in inter-
arrival times. To deal with such traces, we modified Kraken’s
load prediction model to predict future request arrival times,
owing to the sparse nature of the trace. We also spawn con-
tainers much more in advance than the predicted arrival time
and also keep them alive for at least a minute before evicting
them from memory, to account for arrival unpredictability.
It is seen that Kraken meets the SLOs for all requests from
the lightly-loaded trace over 18 hours while averaging 0.85
memory-resident containers at any given second®. Other

3These results are not shown in any graph.

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

30000 100.00% 30000

100.00% 12000 100.00%

99.60% 20000

)

s o

S o

S o

s o
|

©
©
N
o
S

10000

Containers
Percentage
Containers

98.80% 0

Y

Arch Fifer DProb Kraken SProb Xanadu
mmm# C i SLO

Arch Fifer DProb Kraken SProb Xanadu
mmm# C i sLo

- wd
w050 & 2 9000 99.75% g
g & 6000 99.50% 3
o © g
99.00% 5 S 3000 99.25% &
3+
98.50% 0 99.00%

Arch Fifer DProb Kraken SProb Xanadu

(a) Social Network.

(b) Media Service.

mmm # Containers SLO Guarantees

(c) Hotel Reservation.

Figure 14: Simulator: Comparison of Total Number of Containers spawned VS SLOs satisfied by each policy. The Primary Y-Axis denotes the
number of containers spawned, The secondary Y-axis indicates the percentage of SLOs met and the X-axis represents each policy.

6000 12000 6000

a
&
8
8
IS
k3
3
3

8000

Containers
N
8
8
8

Containers
Containers

2000 4000

o

Oracle
BNGINX
mCheck_Reservation
oGet_Profiles
DOSearch
EMake_Reservation

o [Kraken

Oracle Kraken
BNGINX BSearch
©Make_Post oText

=Media mUser_Tag
BURL_Shortener B Compose_Post
mPost_Storage ®Read_Timeline
EFollow

Oracle Kraken
BNGINX
@Movie_ID

BUser_Service

OText

BRating
mCompose_Review mMovie_Review
mUser_Review mReview_Storage

Hotel Reserva-

(t_:)

mon.

(a) Social Network. (b) Media Service.

Figure 15: Simulator: Comparison of Function-wise Breakdown of
Containers spawned by Kraken and Oracle.

w
]
S

2 600
3 450
E 300
@ 150
0

o
3
3

~

S

3
@
S
&

Containers
N
3
8

Requests/second

Oracle Kraken|Oracle Kraken|Oracle Kraken

Hotel 1 10 19 28 37 46 55

Reservation PRI "
DQueueing ©Cold Start mExecution Time 5;’:;';"':9 '"‘e';’:k(e':'"“'es)mce

Respons

@
3
3
N
X
o

Social Network | Media Service

(a) E2E Response Time Break—(b) Containers spawned over
down. time.

Figure 16: Simulator: Comparison of End-to-End (E2E) Response
Times and Containers Spawned Over Time (60 minutes) of Kraken
and Oracle.

Arch
(99.91%, 2737)
(99.72%, 45,107)

Xanadu
(99.66%, 1737)
(99.10%, 25,132)

Kraken
(99.86%, 1396)
(99.50%, 22,377)

Fifer
(99.90%, 2092)
(99.63%, 34,210)

Comm Only
(99.78%,)
(99.22%,)

Conn Only
(99.75%,)
(99.15%,)

Trace
Wiki
Twitter

Table 7: Simulator: Comparing (% SLO met,# Containers Spawned)
against Existing Policies after Varying the Target SLOs.

existing policies such as Arch and Fifer exhibit similar perfor-
mance and resource usage when their prediction models and
keep-alive times are similarly adjusted. Xanadu, on the other
hand, while having 0.74 memory-resident containers per sec-
ond, suffers from 55% SLO Violations on average across all
applications as a result of MLP mispredictions whose effects
are exacerbated in this scenario, due to low request volume.
Varying SLO: Table 7 shows the SLO guarantees and num-
ber of containers spawned for existing policies as well as
Comm Only and Conn Only, when the SLO is reduced from
1000ms to a value 30% higher than the response time of the
slowest workflow in each application. The resultant SLOs
are 500ms, 910ms and 809ms for Social Network, Media Ser-
vice and Hotel Reservation respectively. Reducing the SLO, in
turn, can potentially reduce the batch sizes of functions as
well. Moreover, the reduced SLO target results in increased
SLO violations across all policies. However, Kraken is able to

165

maintain at least 99.5% SLO guarantee and spawns 50%, 34%
and 15% less containers compared to Arch, Fifer and Xanadu,
respectively. It can be seen that the difference in SLO compli-
ance between Kraken, Comm Only, and Conn Only increases
due to the reduced target SLO. This difference, in terms of
percent of SLO violations, changes from being at most 0.1%
to being between 0.1 to 0.35%. This is a result of Kraken being
more resilient at the tail of the response time distribution as
it uses both Commonality and Connectivity while spawning
containers. In comparison, Comm Only and Conn Only fail
to spawn enough containers for each important function
as they do not consider both these parameters, resulting in
increased tail latency and exacerbates the SLO violations.

7 Concluding Remarks

Adopting serverless functions for executing microservice-
based applications introduces critical inefficiencies in terms
of scheduling and resource management for the cloud provider,
especially when deploying Dynamic DAG Applications. To-
wards addressing these challenges, we design and evalu-
ate Kraken, a DAG workflow-aware resource management
framework, for efficiently running such applications by uti-
lizing minimum resources, while remaining SLO-compliant.
Kraken employs proactive weighted scaling of functions,
where the weights are calculated using function invocation
probabilities and other parameters pertaining to the appli-
cation’s DAG structure. Our experimental evaluation on a
160-core cluster using Deathstarbench workload suite and
real-world traces demonstrate that Kraken spawns up to 76%
fewer containers, thereby improving container utilization
and cluster-wide energy savings by up to 4x and 48%, respec-
tively, compared to state-of-the art schedulers employed in
serverless platforms.

8 Acknowledgement

We are indebted to the anonymous reviewers for their in-
sightful comments. This research was partially supported by
NSF grants #1931531, #1955815, #1763681, #2116962, #2122155
and #2028929. We also thank the NSF Chameleon Cloud
project CH-819640 for their generous compute grant. All
product names used here are for identification purposes only
and may be trademarks of their respective companies.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

References

[1] [n.d.]. Twitter Stream traces. https://archive.org/details/twitterstream.

[21

[22

[23

[24

[25

26

—_ =

—_

— =

—

—

= =

=

=

Accessed: 2020-05-07.

2019. Airbnb AWS Case Study. https://aws.amazon.com/solutions/
case-studies/airbnb/.

2019. Provisioned Concurrency. https://docs.aws.amazon.com/
lambda/latest/dg/configuration-concurrency.html.

2020. Amazon States Language. https://docs.aws.amazon.com/step-
functions/latest/dg/concepts-amazon-states-language.html.

2020. AWS Lambda. Serverless Functions. https://aws.amazon.com/
lambda/.

2020. Azure Durable Functions.
us/azure/azure-functions/durable.
2020. hey HTTP Load Testing Tool. https://github.com/rakyll/hey.
2020. IBM-Composer. https://cloud.ibm.com/docs/openwhisk?topic=
cloud-functions-pkg_composer.

2020. Kubernetes. https://kubernetes.io/.

2020. Microsoft Azure Serverless Functions. https://azure.microsoft.
com/en-us/services/functions/.

2020. OpenFaaS. https://www.openfaas.com/.

https://docs.microsoft.com/en-

2020. Prometheus. https://prometheus.io/.

2021. AWS Lambda Cold Starts. https://mikhail.io/serverless/
coldstarts/aws/.

2021. Azure Functions Cold Starts. https://mikhail.io/serverless/
coldstarts/azure/.

2021. Expedia Case Study - Amazon AWS.
serverless/coldstarts/azure/.

Feb 24, 2020. Intel Power Gadget. https://github.com/sosy-lab/cpu-
energy-meter.

February 2018. Google Cloud Functions. https://cloud.google.com/
functions/docs/.

Istemi Ekin Akkus et al. 2018. SAND: Towards High-Performance
Serverless Computing. In ATC.

Mamoun Awad, Latifur Khan, and Bhavani Thuraisingham. 2008. Pre-
dicting WWW surfing using multiple evidence combination. The VLDB
Journal 17, 3 (2008), 401-417.

M. A. Awad and I. Khalil. 2012. Prediction of User’s Web-Browsing
Behavior: Application of Markov Model. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 42, 4 (2012), 1131-1142.
https://doi.org/10.1109/TSMCB.2012.2187441

Ron Begleiter, Ran El-Yaniv, and Golan Yona. 2004. On Prediction
Using Variable Order Markov Models. Journal of Artificial Intelligence
Research 22 (2004), 385-421.

Marc Brooker, Andreea Florescu, Diana-Maria Popa, Rolf Neugebauer,
Alexandru Agache, Alexandra Iordache, Anthony Liguori, and Phil
Piwonka. 2020. Firecracker: Lightweight Virtualization for Serverless
Applications. In NSDL

Jyothi Prasad Buddha and Reshma Beesetty. 2019. Step Functions. In
The Definitive Guide to AWS Application Integration. Springer.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1-15.

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML
Workflows. In Proceedings of the ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 13-24. https://doi.org/10.1145/3357223.
3362711

Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. 2019. In
search of a fast and efficient serverless dag engine. In 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW). IEEE,

https://mikhail.io/

166

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

V. Bhasi, J.R. Gunasekaran et al.

1-10.

Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu:
Mitigating cascading cold starts in serverless function chain deploy-
ments. In Proceedings of the 21st International Middleware Conference.
356-370.

Paul A Gagniuc. 2017. Markov chains: From Theory to Implementation
and Experimentation. John Wiley & Sons.

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
3-18.

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley,
and Bjorn B. Brandenburg. 2017. Swayam: Distributed Autoscaling
to Meet SLAs of Machine Learning Inference Services with Resource
Efficiency. In USENIX Middleware Conference.

Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Tay-
lan Kandemir, Bhuvan Urgaonkar, George Kesidis, and Chita Das.
2019. Spock: Exploiting Serverless Functions for SLO and Cost Aware
Resource Procurement in Public Cloud. In 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). 199-208. https:
//doi.org/10.1109/CLOUD.2019.00043

Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C
Nachiappan, Mahmut Taylan Kandemir, and Chita R Das. 2020. Fifer:
Tackling Resource Underutilization in the Serverless Era. In Proceedings
of the 21st International Middleware Conference. 280-295.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing
SLAs for Jobs in Microservices Execution Frameworks. In EuroSys.
Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, Fran¢ois Halbach, Alex
Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

Bernhard Korte and Jens Vygen. 2018. Bin-Packing. In Combinatorial
Optimization. Springer, 489-507.

Jorn Kuhlenkamp, Sebastian Werner, and Stefan Tai. 2020. The ifs and
buts of less is more: a serverless computing reality check. In 2020 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 154-161.
Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile cold starts for
scalable serverless. In 11th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 19).

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX ATC.

Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk,
and Ravishankar K Iyer. 2020. {FIRM}: An Intelligent Fine-grained
Resource Management Framework for SLO-Oriented Microservices.
In 14th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20). 805-825.

https://archive.org/details/twitterstream
https://aws.amazon.com/solutions/case-studies/airbnb/
https://aws.amazon.com/solutions/case-studies/airbnb/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://github.com/rakyll/hey
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-pkg_composer
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-pkg_composer
https://kubernetes.io/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.openfaas.com/
https://prometheus.io/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://github.com/sosy-lab/cpu-energy-meter
https://github.com/sosy-lab/cpu-energy-meter
 https://cloud.google. com/functions/docs/
 https://cloud.google. com/functions/docs/
https://doi.org/10.1109/TSMCB.2012.2187441
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1109/CLOUD.2019.00043

—_

[l

[

—

—

Kraken : Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms

[41] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.

Architectural implications of function-as-a-service computing. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 1063-1075.

Mohammad Shahrad, Rodrigo Fonseca, fiiigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20). 205-218.

Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proceedings
of the 21st International Middleware Conference. 1-13.

Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019. Archipelago: A scalable low-latency serverless platform.
arXiv preprint arXiv:1911.09849 (2019).

Davide Taibi, Nabil El Ioini, Claus Pahl, and Jan Raphael Schmid
Niederkofler. 2020. Patterns for Serverless Functions (Function-as-
a-Service): A Multivocal Literature Review.. In CLOSER. 181-192.

Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling quality-of-service in serverless com-
puting. In Proceedings of the 11th ACM Symposium on Cloud Computing.
311-327.

Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma,
Mahmut Taylan Kandemir, and Chita R. Das. 2017. Phoenix: A

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Constraint-Aware Scheduler for Heterogeneous Datacenters. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 977-987. https://doi.org/10.1109/ICDCS.2017.262
Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma,
Mahmut Taylan Kandemir, and Chita R. Das. 2019. Kube-Knots: Re-
source Harvesting through Dynamic Container Orchestration in GPU-
based Datacenters. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER). 1-13. https://doi.org/10.1109/CLUSTER.2019.
8891040

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2009.
Wikipedia workload analysis for decentralized hosting. Computer
Networks (2009).

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In ATC.

Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang,
and Jason Mars. 2017. PowerChief: Intelligent power allocation for
multi-stage applications to improve responsiveness on power con-
strained CMP. In Computer Architecture News.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yonggiang Xiong, and Guihai Chen. 2018.
KylinX: a dynamic library operating system for simplified and efficient
cloud virtualization. In 2018 USENIX Annual Technical Conference. 173~
186.

https://doi.org/10.1109/ICDCS.2017.262
https://doi.org/10.1109/CLUSTER.2019.8891040
https://doi.org/10.1109/CLUSTER.2019.8891040

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Function Chains (DAGs)
	2.2 Motivation

	3 Function Probability Estimation Model
	4 Overall Design of Kraken
	4.1 Proactive Weighted Scaler
	4.2 Request Batching
	4.3 Reactive Scaler (RS)

	5 Implementation and Evaluation
	5.1 Prototype Implementation
	5.2 Evaluation Methodology
	5.3 Large Scale Simulation

	6 Analysis of Results
	6.1 Real System Results
	6.2 Simulator Results

	7 Concluding Remarks
	8 Acknowledgement
	References

