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Abstract—Distributed data processing frameworks such as
Hadoop, Tez, Spark, and Flink are exclusively used by public
cloud tenants for executing large scale data analytics applica-
tions in various domains including but not limited to content
management, financial sector, healthcare etc. These frameworks
slice a job into a number of smaller tasks, which are then
executed by a job scheduler on a multi-node compute cluster.
While making scheduling decisions, the State-of-art schedulers
employed in these frameworks assume hardware resources such
as CPU, disk I/0 and network I/O to offer a fixed service rate.
However, in a public cloud environment, many of these resources
are associated with burstable service rates. More specifically, the
resources offer a guaranteed baseline service rate with an option
to burst above their baseline rate by expending accumulated
burst credits. Being unaware about this underlying hardware
burstability, schedulers tend to make sub-optimal task placement
decisions, thereby adversely affecting the job completion times,
leading to higher deployment costs.

In this paper, we propose CASH, a burst credit aware scheduler,
which is cognizant about the burst credits associated with
the individual hardware resources in the public cloud cluster.
Through coarse grained task annotations depicting the burst
credit demand of individual tasks and dynamically monitoring
the credits for the underlying resources, CASH performs opti-
mal task placement decisions. We prototype CASH on YARN,
Hadoop, and Tez, and extensively evaluate it using both batch
and streaming workloads. Our experimental results with CASH
show CPU-credit based instances, like AWS T3, are a viable cost
effective alternative when compared to self-managed offerings
like Amazon EMR, for running large scale batch workloads.
Furthermore, we demonstrate that CASH can accelerate stream-
ing SQL queries on a large Hive database by up to 39.4% ,
leading to public cloud cost savings by up to 22%.

Index Terms—Public Cloud, Burst Credits, Cluster Scheduling,
Parallel Data Processing, Cost Savings

[. INTRODUCTION

Public cloud computing has become a ubiquitous part of
every enterprise IT infrastructure owing to its flexibility and
cost savings when compared to private data centers. Public
cloud offerings include enterprise services spanning compute,
storage and networking. Since many of the hardware resources
are shared in a multi-tenant setting, cloud operators provide
both fixed service rate and burstable service rate, in an effort
to maximize their cluster utilization .

Tenants running bursty workloads whose service rate de-
mand fluctuates with time can particularly benefit from the
burstable service rate offering of the public cloud. When the
service rate demand for a particular burstable resource is less
than the baseline (guaranteed minimum) rate of the resource,

burst credits accumulate in the burst bucket of the resource
limited by the bucket capacity. These accumulated credits
can later be used to burst above their baseline service rate
up to the maximum rate allowed by the burst bucket. The
expected service rate of burstable resources is determined by
their baseline service rate and the accumulated burst credits
in their associated burst bucket.

In terms of CPU burstability, cloud operators like AWS
[1] and Azure [2] offer burstable Virtual Machines (VMs)!
that have burstable CPU service rate and are less expensive
than regular VMs. These VMs are resource-provisioned with
the peak resource allocations as a regular VM and are at-
tractive to the budget-conscious tenant. Along with burstable
CPU services, block storage solutions such as AWS-EBS
[3] and Azure premium SSD [4] also offer burstable 1/O
performance. In the case of AWS, tenants are provided with
EBS as the general-purpose persistent block storage service
across all instance offerings [5]. Besides CPU and storage,
network burstability is also present across predominantly used
AWS VM instances (VMs within “8xlarge”) [5]. Public cloud
providers expose the different forms of burstability through
Service-level-agreements (SLAs). Specifically for CPU and
storage, providers publish burst metrics which can be queried
by tenants to determine the expected service rate of corre-
sponding resources at any given time. Tenants can use the
published burst credit metrics of their hardware resources to
accelerate workload completion time and thereby save costs.
However, state-of-art data processing framework schedulers
are not cognizant about burstability in their cluster resources
and make sub-optimal scheduling decisions.

Distributed data processing frameworks such as MapReduce
[6], Spark [7], Flink [8] and Tez [9] work by slicing a
particular job into various small microtasks® [11] and execute
the tasks by using a job scheduler or an external cluster
manager. A middleware cluster manager, e.g., Kubernetes [12],
Mesos [13] or YARN [14], serves as a resource arbitrator, i.e.,
it offers resources to a framework for its task execution. The
scheduling algorithms employed in cluster managers typically
consider every hardware resource in the cluster in an (often

'VMs are herein a.k.a. nodes or instances.

2Such microtasks could also be executed using serverless cloud functions,
which are arguably simpler to use than VMs and more readily available, but
are more costly and have I/O limitations. In [10], for a partially predictable
workload, we argue for the cost-effective use of serverless functions (jointly
with VMs) for purposes of autoscaling.
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crude) attempt to provide a fixed service rate. In the case of
burstable CPU resources, having an assumption that all cores
deliver the same service rate would be sub-optimal. Besides
CPU, tasks may also be allocated on a VM with other critical
(for the task) hardware resource, whose service rate is throttled
(baseline rate) such as storage and network. While storage and
network resources are typically not taken into consideration
for making scheduling decisions, these tasks can potentially
straggle due to a lower service rate availability than their
demand. Hence, it is essential to identify and exploit this
burstability in data processing frameworks.

In this paper, we propose a novel burst credit aware cluster
scheduler — CASH - that leverages both the burst credit
state associated with its hardware resources and the (only
roughly disclosed) critical resource needs of the tasks it is
scheduling. CASH queries the cloud provider for the burst
credit state and categorizes task requests with their critical
resource needs through the application frameworks. Unlike
prior works like [15] (HeMT), which only consider CPU burst
credit for determining the input partition size of long running
data-processing jobs (unstructured input only) for the VMs
of the cluster, CASH can be applied over a wide variety of
workloads including batch (long running) and database query
(short and structured). Also, while HeMT relies upon more
complex workload profiling, CASH works with only coarse
grained task categorization and can generically work for any
burstable hardware resource like CPU, storage and network.

In summary, we make the following contribution in this
work:

o We conduct qualitative profiling of a job by categorizing
task requests according to their critical resource needs,
i.e., CPU, storage I/O or network I/O. The application
framework “annotates” task requests with their burst
credit demand before sending it to the scheduler or the
cluster manager.

o CASH makes efficient use of burst credit information
associated with hardware resources of the cluster VMs.
The scheduler matches burst credit annotated tasks to
VMs based on decreasing priority of corresponding burst
credit state.

o We prototype CASH on YARN, Tez and Hadoop. Specifi-
cally we modify the frameworks to associate vertices of
a job’s execution DAG to a critical resource. Tasks are
then annotated based on their associated vertex.

o We extensively evaluate CASH using both batch work-
loads and streaming SQL queries. Our experimental anal-
ysis demonstrates that credit based burstable VMs are a
viable and economical solution for executing batch based
workloads. Further, our results show a job completion
time reduction by a maximum of 39.4% for streaming
SQL queries which translated to an overall wallclock
completion time shortening by a maximum of 22%.

This paper is organized as follows. In section II, we provide
some background discussion. In section III, we motivate our
problem in detail, including through experimental case studies.

Memory | Baseline CPU credits
Type VCPUs (GiB) Performance/vCPU | earned / hr
t3.large 2 8 30% 36
t3.xlarge 4 16 40% 96
t3.2xlarge 8 32 40% 192
TABLE 1

AWS T3 CPU CREDITS

Our scheduling scheme is described in section IV and how
it was prototyped on Tez/Hadoop-over-YARN is described
in section V. The results of our experimental performance
evaluations are given in section VI. In section VII we discuss
related work. Finally, we summarize in section VIII and
discuss future work.

II. BACKGROUND

In this section, we discuss some service offerings by AWS,
the world’s largest public cloud provider, which are relevant
to this paper. Other large public cloud providers (including
Azure and GCE [16]) offer similar services. We particularly
stress variable-rate CPU and storage 1/O service aspects.

A. Credit Burst

1) CPU Burst: AWS burstable instances, a.k.a. T series
instances, have a guaranteed baseline CPU service rate which
is a fraction of an actual VM CPU core of a comparable
general purpose (M series) type. These instances have a
constant flow of CPU burst credits based on their size in
memory. Table I provides a few AWS T3 instance sizes,
their configurations and their CPU credit properties from the
AWS website [17]. The baseline service rate (u235¢m°) can
be calculated from the credits earned per hour (Acpy) and the
number of cores (n) of the instance as:

pesee = (Acpu/n)/3600 (1)

The instance acquires surplus CPU burst credits (Bcpu)
when the instance CPU utilization rate (Ucpy) is less than
ucpu. For newer generation burstable instances Bcpy is
initialized to O at startup and may change depending upon
Ucpy and calculated as:

By = maz[0, BEgy + (ugBy™ — (Ucpu)] ()
Each surplus CPU credit can be used to “burst” to 100%
CPU for one minute or 50% CPU for 2 minutes. Credit earn
and expenditure of each instance is calculated by AWS at
millisecond granularity but available at 5 minutes granularity
using APIs provided by AWS.
AWS T3 also supports an unlimited credit option which
prevents tenants from being throttled to baseline service rate
if they run out of surplus credits. The surplus credit balance
formula changes to:

BEpy = Bepy + (1™ — Uoru) 3)
Any negative Bcpy is billed on a 24 hours granularity or

the instance lifetime, whichever is shorter.

228

Authorized licensed use limited to: Penn State University. Downloaded on September 23,2022 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.



2) Storage Burst: AWS Elastic Block Storage (EBS) is
a storage volume service that can be attached to any AWS
instance. These volumes offer persistent storage and their
lifetime is independent of the instance they are attached to.
AWS SSD volume performance is burstable as well and is
measured in the unit of IOPS (Input/Output per second). In
case of EBS SSD, the baseline credit rate (u?fj‘f;iglge) is simply
three times the volume size in GB:

phaseline — 3 TOPS per GB of Volume Size )

storage

Similar to CPU burst, whenever the storage volume per-
forms lesser operations than its baseline rate, credits are
conserved. Each accumulated surplus credit can be used by
the volume to burst to the maximum performance of 3000
IOPS. Give a volume’s utilization rate measured in operations
performed in a second (Opsg;oyage)s surplus disk credit (Baisk)
can be calculated similarly to CPU as:

new _ old baseline
Bstoragc - maX[O, Bstoragc + (/‘Lstoragc - Opsstorage)} (5)

3) Network Burst: Public cloud providers do not explicitly
expose their network variability [18] and instead provide a
rough ballpark figure of the expected network performance
[5]. [18] empirically showed that AWS and GCE use obscure
dual token bucket mechanisms to regulate their network per-
formance. However, there is no publicly available API to query
expected network service rate or the state of network credits
for an instance.

B. Relevant AWS Services

We list two services by AWS relevant to this research in
this section.

1) AWS Elastic MapReduce (EMR): AWS EMR [19] is
essentially a SaaS offering by AWS which runs data pro-
cessing frameworks like Hadoop, Spark, Tez, etc., along with
databases such as Hive [20]. Tenants can provision EMR
within minutes and run workloads to process their data without
the hassle of any configuration or system administration.
EMR comes with the YARN capacity scheduler as the cluster
manager. Tenants choose the type of hardware they want to
use to create their cluster.

2) AWS S3: AWS S3 [21] is an object based storage service
offering by Amazon which offers cheap and reliable storage
service. Tenants of S3 can expect to receive 99.999999999%
durability for their data [21] along with flexibility to store
data of any arbitrary size and access it from anywhere over the
internet. More importantly, object store such as S3 provides the
cheapest storage option in the public cloud. On AWS, while
SSD backed volume costs $0.10 per GB and a HDD backed
volume costs $0.045 per GB, S3 costs only $0.023 per GB for
the first 50 TB with a $0.0004-$0.005 per API call charge to
data objects [21].

III. MOTIVATION

A. CPU Utilization in Compute Clusters

Large compute clusters commonly face low resource uti-
lization and efficiency even after collocating online services
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Fig. 1. CPU utilization in EMR: (a) CDF of CPU utilization, (b) CPU
utilization timeline

and batch workloads. Analysis [22], [23] done on recently
released Alibaba production traces [24] shows that average
CPU utilization remains below 40% for about 60% of the
machines and below 50% for 75% of the machines in their
cluster. However, the CPU usage follows a bursty pattern with
CPU utilization going above 60% for only about an hour in
a 24 hour window for majority of the machines. This should
prevent Alibaba from using fewer CPUs to run their workloads
as it would violate their SLAs due to transient increases in
CPU demands. Analysis of the Taoboa Hadoop cluster [25]
also found CPU utilization to not exceed 40%. Even the
Google trace analysis [26] reveals that CPU utilization doesn’t
exceed 60%, where the trace comprised of a mix of long
running services, MapReduce and HPC. An additional factor
which contributes to low CPU utilization in a public cloud is
a preference to use cheap object based external storage which
has high I/O latency [27], [28]. We also tested CPU utilization
using Hibench [29] batch workloads on EMR and we discuss
the observations in the sequel.

1) CPU utilization on EMR: We observed low CPU utiliza-
tion while running HiBench test workloads with a utilization
average of about 30% per VM. We plot the CDF of CPU
utilization sampled at 1 minute intervals for all VMs in the
cluster in Figure 1(a). The low CPU utilization is primarily
due to high object read/write latency of S3 [28] which will
throttle any application on I/O. One might be tempted to
reduce the number of VMs to improve CPU utilization, but
this will further degrade I/0O performance as there will be
less parallelism during read/write to S3. The timeline of CPU
utilization on EMR is given in Figure 1(b) and a bursty pattern
of CPU utilization can be clearly seen.

2) CPU Burst Credits in Scheduling: Workloads that have
low average CPU utilization can particularly benefit from
the low cost offering of burstable instances. M5 (regular)
instances are more than 15% pricier than T3 instances and
EMR on M5 is more than 44% pricier than on (burstable)
T3. Tenants can obtain significant cost savings by using credit
based CPU instances over regular instances with the same peak
resource allocations. For example, workloads using object
stores such as S3 and MapReduce workloads are often low
CPU utilization workloads and can particularly benefit from
low cost, low CPU throughput instances like T3. That said,
random scheduling approach on burstable instances leads to
sub-optimal job execution time due to the uneven consumption
of CPU credits in the nodes of the cluster. We give a timeline
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Fig. 2. Burst Credit Balance on Two Nodes: (a) CPU Burst Credits, (b)
Storage Burst Credits
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’\ Task needing no Burst Credits

Fig. 3. Scenario depicting worst case scheduler behavior. Tasks needing burst
credits are allocated to VMs without burst credits. On the other hand, tasks
needing no burst credits are allocated on VMs with available burst credits.

of CPU burst credit consumption of two of our VMs from one
of our experiments in figure 2(a). Tasks that are assigned on
the VM with O credits are throttled while the other instance
have a large amount of CPU credits accumulated. This is an
artifact of the opaqueness of the service rate variability to the
job scheduler.

B. Storage Burst Credits in Scheduling

An analysis of TPC-DS workloads in [30] shows very high
I/O utilization (up to 100%) for their big-data systems based
on HDFS. Anecdotal evidence also suggests that storage is
typically a significant bottleneck in I/O intensive workloads.
However, similarly to burstable CPUs, public cloud providers
offer burstable storage volume offerings as well and as ex-
plained in section II. Hence, it is consequential to use storage
burst credits while running heavy I/O workload and exploit
the burst performance available to them in the cluster.

Storage I/O Burst Credits in Scheduling: We ran a two VM
experiment with TPC-DS workload and observed the changes
in storage burst credit state of each VM as shown in Figure
2(b). We observe a significant difference in consumption of
storage burst credits between the two VMs in the cluster. While
this does not cause any slowdown as both the VMs in the
cluster have a full storage burst credit balance, we notice the
uneven consumption in burst credits which has the potential for
slowing down tasks if the storage volumes were running low
on burst credits. This is similar to the problem of underlying
opaqueness in CPU service rate in our previous experiment.

C. Problem Description

Job schedulers like YARN choose VMs for scheduling tasks
in random order. A job scheduler will not differentiate between
VMs which have burst credit balance and VMs which have
been throttled for either CPU or storage (or network) access.

In the worst case, tasks needing burst credit for a particular
resource (CPU, storage, etc.) may be scheduled on VMs with
insufficient credits corresponding to the tasks needs. This
scenario is depicted in Figure 3. This worst case scenario
will lead to significant degradation in execution time owing to
tasks being scheduled on throttled VMs and thereby increase
the cost of running the workload on the public cloud. Hence,
there is a need to bring cognizance of the underlying burst
credit mechanism to the job scheduler.

Suppose we need to execute N tasks t,, n € {1,...., N} on
a cluster having M VMs. Also suppose there are K burstable
hardware resources on each of the A/ VMs and that each task
t,, primarily needs one bottleneck burstable hardware resource
k € {1,..,K} for work w, ;. The service rate of the k*}
hardware resource on VM m € {1,..., M} is fiy, . where
pbaseline <y < /f’eak and the time needed to run task ¢,
on VM m is w

Ty = (©6)
Hom K

To elaborate equation 6 further, suppose a task is bottle
necked on one hardware resource (say disk) and the resource
has a certain service rate or “speed”. The time spent for task
execution would be the work that needs to be accomplished
(say reading a few sectors from the disk) divided by the
“speed” of the underlying resource. The speed or the service
rate fim k is the disk (k) speed on VM m.
Now, we calculate cumulative elapsed time for all tasks (spent
using bottleneck hardware) as:

TC'le - ZT’H < Z

nlu

Wn, k
" baseline *

(N

Consider a job which is sliced on to several tasks. In order
for the job to complete, all its tasks must run to completion.
Assuming such task is bottleneck on one hardware resource,
we can sum equation 6 for all tasks to get a cumulative elapsed
time. This cumulative elapsed time would always be less than
or equal to the time it takes for all tasks to run on their
respective bottleneck hardware with reduced (baseline) speeds.
This is our equation 7.

And finally, our scheduling objective is:

Wn, k
Hlln E

,U/mk

®

i.e. we want to minimize the cumulative time spent on all
task execution by varying the work that is assigned on various
VMs.

IV. PROPOSED SCHEME

We propose CASH, a novel scheme which utilizes burst
credits through two complimentary techniques. First, task
requests are annotated in the application framework in order to
attribute them to be needing burst credits. Second, we build a
burst credit aware scheduler which periodically collects burst
credit and usage information (CPU or storage I/O) of the
cluster VMs from the public cloud and uses this information
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for task placement. The two techniques of the scheduling
scheme are discussed below.

A. Task Annotation

In general, CASH supports annotations of tasks as being
intensive with respect to particular hardware resources, e.g.,
CPU, storage /0, and network I/O. The annotations happen
via the framework which has a good knowledge about the
characteristics of its tasks. The scheme uses either CPU burst
credits or storage burst credits but not both (i.e., one will be
more of a bottleneck than the other). The choice of using
either CPU or storage I/O burst credits is a user configuration.
These annotations happen through the framework based on
the characteristics of the DAG vertex a task is associated with.
The framework follows a simple heuristic that vertices that are
expected to heavily use a particular type of resource can be
annotated as such. For e.g. vertices of type “shuffle” transfer a
lot of data over the network and are annotated to be “network”.
Users also have an option to manually attach annotation
to vertices or override the framework attached annotation.
Essentially, users are free to mix and match annotations with
vertices of their choice based on the type of tasks they wish to
prioritize for burst credits. We provide implementation-specific
details on task annotation in section V. Schematic details in
sequel.

1) CPU Annotation: CPU annotation may be used while
using lower cost burstable instances. Tasks requests annotated
as CPU are prioritized to be run over VMs with CPU burst
credits. The framework annotates task requests belonging to
“map-like” vertices such as “map”, “initialmap”, “tokenizer”
etc. of the DAG as CPU. This is because generally map
vertices of a DAG involve the bulk of the workload processing
and so utilize CPU intensively. These CPU intensive map tasks
need CPU burst credits to avoid slowdown (and heightened
possibility of being deemed stragglers). Hence, task requests
belonging to map vertices of a DAG are annotated for CPU
credits. Users may also attach CPU annotation to vertices
such as “sort” in their application code. A sample annotated
orderedWordCount DAG is given in figure 4 and its shown
that the framework has attached CPU annotation to map-like
vertex — “Tokenizer” and “Summation”.

2) Storage Annotation: DAG vertices which are the source
of initial data in the DAG are generally at a greater need of
storage burst credits than the rest of the vertices of the DAG.
This is because a workload which is I/O intensive such as
database queries will need to process a large amount of data
during initial read from storage drive resulting in large disk
spillage. Hence such tasks should be assigned on VMs with
storage burst credits and are annotated accordingly. A sample
annotated terasort DAG is given in figure 5 and its shown that

Storage 3

Map

: //’(r‘> ST ol
Map }-{ Shuffle }—( Reduce

Fig. 5. A Tez TeraSort DAG with Storage and Network Annotations

the framework has attached Storage annotation to data source
vertices of type Map. Again, the user may choose to annotate
vertices of their choice such as “sort” to be storage annotated.

3) Network Annotation: The vertices of reduce-like tasks
(e.g., “reduce”, “shuffle” and “collate”) are typically less
resource hungry compared to vertices of map-like tasks and
can be assigned on VMs where CPU/storage burst has been
throttled. However, the reduce phase is generally network
intensive and the framework attaches a network annotation
for reduce-like tasks. This leads to load balancing of network
tasks in the cluster. AWS or other cloud providers do not
expose their network credit information® and hence we use
simple load balancing to approximate optimal network credit
consumption. We distribute the network tasks “fairly” across
the cluster so that no VM accumulates too many network
credits compared to any other. As a result of this, we observed
marked improvement in reduce task execution time with
MapReduce as reduce tasks are heavily network intensive.
The network annotation is attached along with CPU or storage
annotation and a sample is given in figure 5. The “Reduce”
vertex in the figure is not annotated as its not network heavy
due to the presence of “Shuffle” vertex.

B. Credit Aware Scheduling

We modify the cluster-manager’s (YARN’s) scheduler to
make scheduling decisions based upon the burst credit bal-
ance of the bottleneck hardware of the VMs. The bottleneck
hardware is a user configuration, which is currently either
CPU or storage. Figure 6 shows the main components of the
proposed scheduler CASH. The optimizations are described
below for two cases: scheduling burstables (AWS T3) based on
CPU burst credits and scheduling regular instances (AWS M5)
based on storage burst credits. In both cases, different types of
tasks of a job stream are considered by YARN. Each YARN
node which is a logical abstraction of a physical compute unit
such as a VM, has a number of slots (each corresponding
to a pre-configured vCPU or virtual core) so that a node
can simultaneously execute more than one task, i.e., one task
per slot. We assume the cluster manager pools all pending
(annotated) tasks from all of its application frameworks into
a single task queue.

At a long (one minute) time scale, YARN nodes are ordered
in decreasing order of their corresponding VM CPU/storage

3AWS’s unorthodox dual token-bucket mechanism for network 1/O of its
burstable instances was reverse engineered in [18].

231

Authorized licensed use limited to: Penn State University. Downloaded on September 23,2022 at 17:39:51 UTC from IEEE Xplore. Restrictions apply.



Receive
Cloud
Metrics

YARN Capacity Scheduler

Populate Burst Credits
—
and Sort
( ~ | I
|5 | vaRN YARN YARN
i | Node Node Node

Sorted List of nodes by CPU or Storage Burst Credits
I (Descending from left)

Schedule Schedule Network
CPU/Storage Annotated Task
Annotated Task (One per Node)

—

Node Sorting
Thread

Scheduler
Thread

Fig. 6. A high-level overview of the proposed scheduler

burst credit balance (node sorting thread). At a short (millisec-
onds) time-scale, the cluster manager’s scheduler (scheduler
thread) first visits each node in descending order of burst
credits and assigns to it as many burst (CPU or storage)
annotated tasks as possible given its current number of free
slots, before proceeding to the next node. This phase ends
after all YARN nodes have been visited. In the second phase,
non-burst intensive tasks which are annotated as network are
considered by the scheduling thread. Starting from the node
with the least burst credits, in each round at most a single
free slot per node is allocated to such tasks in an effort to
load balance such tasks among the nodes and reduce the
risk of network congestion. Note here that network tasks are
long running tasks and can easily tolerate slight delays in
scheduling. In the final phase, any remaining (non-annotated)
tasks are assigned to available free slots (if any) in arbitrary
node-order. Algorithm 1 describes our credit based scheduling
logic.

Algorithm 1: Schedule Thread of CASH

nodeList <— nodes in decreasing order of burst credits
sleepInterval <— Time interval in between scheduling
while Scheduler is running do

forall node € nodeList do

tasks < getBurstAnnotatedTasks()
AttemptToScheduleTasks(node, tasks)

end
reverseList < reverse(nodeList)

forall node € reverseList do
tasks < getNetworkAnnotatedTasks()

AttemptToScheduleOneTask(node, tasks)

end

randomList < shuffle(nodeList)

forall node € randomList do

tasks < getRemainingTasks()
AttemptToScheduleTasks(node, tasks)

end
sleep(sleepInterval)

end

One pass of the scheduling thread is at the milliseconds
time scale during which new tasks may be generated by the

application frameworks and slots may become freed up. These
new tasks are scheduled in the next iteration of the scheduling
thread.

V. IMPLEMENTATION

We have developed a prototype of our burst credit aware
task scheduler within the YARN capacity scheduler and con-
ducted experiments through Tez and Hadoop frameworks. We
made changes to Apache Tez to annotate task requests and
leveraged the existing node label feature of Hadoop to pass
on annotations to YARN. All changes were made in java. We
discuss our implementation in the sequel.

A. Hadoop

Every Hadoop job can be expressed as a DAG with two
vertices - “map” and “reduce”. We associate burst annotation
(CPU or storage based on user configuration) with map vertex
and network annotation to reduce vertex. Hadoop users have
an option to specify node labels for their tasks (map or reduce)
which is then passed to YARN as part of task requests. We
specify our annotations as labels for map and reduce tasks
in user configuration. YARN recognizes these “special” labels
and interprets them as task annotation for its scheduling logic.
Using this existing feature, we were able to use Hadoop for
CASH without any code changes.

B. Tez

Tez comes with an abstraction called vertex managers
which can be used by Tez users to dynamically control the
characteristics of Tez vertices, such as task parallelism. These
managers are associated with vertices by Tez based on the
individual vertex features. We exploit these managers to im-
plement our annotation logic. These vertex managers annotate
the task requests to YARN for their associated vertices. We
modify two such vertex managers — RootInputVertexManager
and ShuffleVertexManager — to implement our burst credit
logic. The RootInputVertexManager is associated with vertices
that are the source of input data in the DAG and hence
can be used to annotate tasks with storage annotation. The
ShuffleVertexManager is associated with vertices that shuffle
data over the network and we attach network annotation to
them. For CPU annotation, we simply infer the vertex type in
Tez runtime and assign annotation if the vertex is one of pre-
selected set of CPU intensive vertices. Tez allows its users to
create their own vertex managers and associate them explicitly
with the vertices of the DAG. We have added the annotation
feature to the base level class of vertex manager in Tez source
code allowing users to associate annotation with their user
defined vertex managers. This allows users to associate any
annotation with any vertex of their choice in their execution
DAG.

C. YARN

We extract the burst credit balance of each VM from
Amazon Cloudwatch [31] every 5 minutes and update the
internal YARN node data structure for making scheduling
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decisions. Cloudwatch populates burst credit balances at the
smallest interval of 5 minutes. Since we do not want YARN
to make scheduling decisions based on stale burst credit
information, we also pull CPU utilization for each VM or
storage IOPS for each storage drive from Amazon Cloudwatch
every 1 minute and predict the burst balance. Prediction is
made easy by the fact that AWS exposes the exact formula
to calculate burst credits at any given point of time based on
the instance/storage size and its CPU/storage utilization and
as given in Section II. The instance type and storage size can
also be retrieved from Cloudwatch. We update the internal
YARN node data structure with predicted burst credit every 1
minute and actual burst credit every 5 minutes. This is done
in a separate asynchronous thread inside the YARN capacity
scheduler and is part of our design Figure 6.

VI. EVALUATION AND RESULTS

In this section, we provide some exemplary experimental
results of our prototype. We use batch based workloads for
CPU burst evaluation and streaming SQL queries for storage
burst. As summarised in our objective equation 8, we want
to minimize the elapsed time for all tasks in the workload.
We compare the cumulative task elapsed time (CPU burst)
and query run time (storage burst) to stock YARN in the
evaluation of our prototype. We only use time as a performance
metric because we want to finally reduce the cost of running
workloads on the public cloud. Details in sequel.

A. CPU Burst

We run PageRank, K-means clustering and Hive SQL
aggregation from Intel HiBench test suite [29] for CPU burst
evaluation. These workloads are representative of popular
Hadoop batch workloads. Pagerank and K-means have an
average CPU demand less than the baseline CPU service rate
of the burstable instances that we use and SQL aggregation
have a higher demand than the baseline CPU service rate.
The input data for these workloads are generated synthetically
through HiBench and written to AWS S3 [21]. Each HiBench
workload comprises several jobs, submitted sequentially, with
the input of a job being dependent on the output of the job
prior to it. All jobs read their input data from S3 and write
their output data to S3. We use S3 as storage due to it being the
cheapest [21] and a popular storage offering for MapReduce
workloads [27].

1) Experiment Design and Setup: We compare our scheme
against EMR and stock YARN. Comparing against EMR
removes any biases that we might inadvertently introduce
into the comparison. Our EMR cluster consists of 10 EC2
MS5.2xlarge instances and burstable cluster running stock
YARN consists of 10 EC2 T3.2xlarge instances. We run all
experiments in an orderly manner such that burst credits are
made available for high CPU demanding SQL aggregation
workload by the low CPU demanding workloads in the be-
ginning. In a real world setup, this effort is not needed as
the burst credits will get averaged out after the first batch run
cycle. We run workloads in the order PageRank, K-means and

SQL aggregation except for the worst case analysis when we
run them in the order SQL aggregation, followed by PageRank
and K-means.

The first two experiments — (i) EMR, uses general purpose
instances to create the best case scenario for our evaluation
and, (ii) Ordered workload submission, uses burstable in-
stances with workloads submitted in an orderly manner to
gauge the performance of stock YARN running over burstable
hardware. We then evaluate the (iii) Worst-case scenario in
our third experiment by running high CPU workload on the
cluster with depleted burst credits and finally, evaluate (iv)
CASH in our fourth experiment by comparing it against (i) and
(ii). We also run a fifth experiment (v) T3 unlimited, in which
burstable instances with unlimited option ON is evaluated with
stock YARN.

2) Results: We report experimental results through a cu-
mulative elapsed time comparison of the three phases a job
goes through in Hadoop, namely map, shuffle and reduce.
Figure 7 provides the results observed. We do not report the
overall makespan of our workloads as access to AWS S3
storage varies widely over time [28]. This may be due to
dynamic demand or due to an undocumented token-bucket
mechanism or both. For this reason, in the experimental results
that follow, we report component task execution-times rather
than overall workload wall-clock (makespan) execution times.
Also, considering EMR is SaaS, we expect that generally,
S3 variation will be larger for non-SaaS implementations
proposed herein. We discuss the results in the sequel.

a) Elapsed Time: CASH performs faster than ordered
workload submission by 6% in elapsed time over all phases
and degrades by about 13% when compared to EMR. How-
ever, running T3 is about 30.7% cheaper than running EMR
(not shown in graphs) and hence tenants would save on billing
cost by running their workloads on T3 using CASH. Running
workloads over T3 by simply using stock YARN in the case of
ordered workload submission leads to a degradation of about
19% compared to EMR which doesn’t translate to as much
cash savings as CASH. In fact in the worst case, running
SQL aggregation over stock YARN caused as much as 111%
degradation in cumulative elapsed time compared to EMR as
shown in figure 7 (d). All tasks of this workload were throttled
to baseline CPU service rate due to unavailability of any CPU
burst credits. As implied by equation 7, the total elapsed time
of the job is the worst case scenario when its critical burstable
resource need (CPU) is throttled. Hence, its safe to assume
this degradation to be the worst case upper bound. In the
best case, all tasks of the job experience peak service rate
which happens when workloads are run over EMR (general
purpose instances). CASH’s performance is near the best case
scenario and therefore shields tenants from degrading near to
the worst case which may be caused by the random scheduling
algorithms of YARN.

b) CPU Utilization: We further assert on the fact that
running workloads via CASH would yield better task exe-
cution time compared to stock YARN by looking at CPU
utilization of the clusters. T3 instances running CASH show
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higher CPU utilization compared to ordered submission and
EMR, pointing to better load balancing as shown in Figure
8(a). This will protect the tasks from being scheduled on
YARN nodes which are throttled, degrading task execution
time.

¢) T3 unlimited: FElapsed time on T3 with unlimited
option ON is about the same as CASH but the former has
caveats. T3 unlimited averages CPU utilization on a per
instance basis instead of the entire cluster. Tasks can be
scheduled on VMs which have zero credit balance causing
them to be billed for additional credits. This is possible while
there are other VMs present in the cluster with surplus credits.
Hence, tenants will be billed for additional credits while there
are surplus credits available in the cluster. This phenomenon
can be ascertained by observing the standard deviation of CPU
credit balance across all VMs of the cluster in Figure 8(b).
Hence, running workloads on CASH is cheaper than on T3
unlimited.

B. Storage Burst

We use hive-testbench [32] to run streaming queries for
storage burst evaluation. Hive-testbench is a benchmark suite
based on industry standard TPC-DS queries [30] to test
database systems. We use three TPC-DS queries to be run
over Hive database using Tez — query 66, query 49 and query
37. These queries are chosen such that they have high I/O
requirements including the tendency for disk spillage. Input
data is generated by hive-testbench and is stored in HDFS as
a Hive warehouse. The application stack is Hive-2.3.6 with
Tez-0.9.2 over YARN-2.8.5, the equivalent versions used in
EMR.
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1) Experiment Design and setup: All three TPC-DS queries
are run in parallel and to avoid bias due to query caching, the
feature is disabled in Hive. The VMs of the cluster are restarted
in between all experiments and random data is written on the
storage volumes so as to also invalidate the disk cache. We
test our optimization gains by comparing execution time of
individual query and wall-clock completion time of all queries
against running the same queries on stock YARN keeping the
cluster and the database same. The wall-clock time (makespan)
is the time it takes for all three queries to have returned
their output and query completion time is the time taken for
individual query to return its output.

At the beginning of each experiment, we wipe out the
storage credits and start from zero burst credits due to two
reasons: (i) Amazon SSD volumes come with 5.4 million
startup burst credits which is an unrealistic burst credit balance
to expect in a long running cluster. (ii) We want to explore
the scenario in which VM volumes run out of burst credits,
potentially leading to task slowdown, and how this threat can
be addressed.

We run our experiments on three different cluster setups
which differ by the number of VMs, size of storage device
and database size. We do this to gauge performance of CASH
under changing task characteristics due to alterations in cluster
hardware and database. For each cluster, we first run the
queries over stock YARN followed by CASH so as to compare
their performance. The cluster setups of the three experiments
are — (i) Two VMs, has two EC2 MS5.2xlarge instances with
Hive database size of 280 GB and attached SSD volume size
of 200 GB per VM; (ii) Ten VMs, our main experiment has
ten EC2 MS5.2xlarge instances with Hive database size of 1.2
TB and EBS SSD volume size of 170 GB per VM and finally
we test scalability through (iii) Twenty VMs, by running our
evaluation on twenty EC2 MS5.2xlarge instances with Hive
database size of 2.5 TB and EBS SSD volume size of 200
GB per VM.

2) Experimental Results:

a) Two VMs: In our first experiment running CASH over
2 VMs, we observe an average improvement of about 5% in
query completion time and overall wall-clock time improve-
ment of 4.85% compared to stock YARN. The improvements
are modest as the I/O requirement of the queries on a 280 GB
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database is low and the tasks spawned for query execution
needed few burst credits. Results in Figure 9 (a).

b) Ten VMs: However in our second experiment, run-
ning CASH over 10 VMs with a 1.2 TB hive database improved
average query completion time by about 10.7% and overall
wall-clock time by about 13% compared to stock YARN.
Results in Figure 9 (b). An increase in the I/O requirement
of the queries due to the larger size of the database and the
availability of ten burstable storage volumes in the cluster (in
place of two) awarded CASH more optimization opportunities.
CASH was able to opportunistically schedule I/O bound tasks
on VMs with higher storage burst credits leading to improved
I/O throughput. This is seen in Figure 11 (a). Query 66 has a
lower I/O throughput due to the query being less I/O intensive
than the other two and conversely being more CPU intensive
than the other two. The cluster while running CASH showed
much higher average I/O utilization and a lower standard
deviation of burst credits compared to stock YARN as shown
in Figure 10. A lower standard deviation of burst credit balance
points to better load balancing of I/O tasks in the cluster
resulting in maximum burst credit utilization. We also observe
a higher CPU utilization for each query (Figure 11 (b)) which
is an artifact of the higher data processing throughput of the
cluster.

c¢) Twenty VMs: We hypothesize that an increase in /O
requirement of the workload and burst credit availability in
the cluster will augment CASH’ benefits. In order to test this
hypothesis, we ran several experiments with larger cluster sizes
and we report one such experiment here. Running CASH over
a 20 VM cluster with a 2.5 TB Hive database, improved query
completion time by a maximum of 39.4% and wall-clock time
by 22% as shown in Figure 9(c).

Any improvement in end-to-end wall-clock time directly
translates to cost savings of equal valuation in terms of
public cloud billing. Hence, our maximum wall clock time
improvement of 22% directly translates to a cost savings of
equal amount for tenants of the public cloud using CASH. We
summarize our cost savings in Figure 9(d).

VII. RELATED WORK

We can classify related work into two categories — Startup
credit based approach and Burstable instance applications. We
discuss them below.

= = Avg IOPS-Stock — = Std Dev-Stock ~——Std Dev-CASH

Avg IOPS-CASH
50000

»

40000

w

30000

10PS

20000

Standard Deviation
-

10000

o h I h b
chruNvbLwihsw

]

0246 8101214161820222426283032 1 2 3 4 5 6 7
Minutes from start Normalized 5 minute Intervals

(a) (b)
Fig. 10. (a) Avg Total IOPS, (b) Std Deviation of Burst Credits in the cluster

£ Stock YARN  m CASH [AStock YARN ®m CASH
9.2%

6.9%

N
(=]
w
o

25%

%

NN
(=
N
P
X

4.1%
., 7m 7/m 3

Query37 Query49 Query 66

(a) (b)

CPU Utilizatio
S\iy
.
-
N

Query37 Query49 Query 66

Fig. 11. (a) I/O throughput per query, (b) CPU throughput per query

1) Startup Credit based approach: Older generation AWS
burstable instances (T1 and T2) came with free CPU burst
“launch credits” upon instance creation. While T1 instance
are no longer offered, T2 instances run on older generation
hardware and are pricier than T3 instances [33]. Prior work
such as [34] try to exploit the launch credits in T2 instances
by delaying the launch credit consumption. However as stated
in section VI, its unrealistic to rely on launch credits in a
long running cluster. In [35] the authors use a similar free
storage burst “launch credits” approach for AWS SSD drives.
In addition to delaying the consumption of the launch credits,
the authors propose to use a number of smaller volumes in
place of a larger volume as the launch credits are fixed per
volume. This too is impractical for a number of reasons —
(i) Having multiple volumes of lower baseline service rate
in place of larger volume with higher baseline rate will be
detrimental once the launch credits is exhausted, (ii) Their
work doesn’t deal with “optimally” expending storage burst
credits in a long running cluster.
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2) Burstable Instance applications: Prior work such as
[36] show that burstable instances can be used as a passive
backup system which is also highly available. [18] charac-
terizes the unorthodox dual token-bucket mechanism used by
AWS burstables and proposes some use cases. [37] gives
an empirical study on burstable instances and two more use
cases. And finally [38] create a theoretical model to maximize
revenue from burstable instances from a provider perspective.

VIII. CONCLUSIONS

State-of-the-art cluster schedulers do not utilize burstable
hardware resources (e.g., CPU or disk I/O) efficiently in
scheduling incoming tasks. Burstable resources offer a base-
line service rate and a higher burst service rate depending upon
their burst credit state. Tasks whose critical resource need is
a burstable resource should be placed on a VM that has burst
credits for the corresponding burstable resource. However,
cluster schedulers are unaware of both — critical resource needs
of a task and the state of burstability in their cluster. In view of
this, this paper proposes a novel scheduler, CASH, for cluster
VMs of a public cloud, which relies upon the knowledge of the
burst credit states of the burstable resources of each VM and
the estimated burst resource needs of tasks indicated through
annotations. The scheduler was prototyped on YARN, Tez
and Hadoop and experiments were conducted using batch and
streaming workloads. With the proposed scheduler, low CPU
intensive batch workloads running on T3 burstable instances
were cost-effective compared to running on EMR and stock
YARN. CASH was able to accelerate streaming hive queries by
upto 39.4%, while saving public cloud costs by up to 22%. In
our on-going work, we are experimenting with joint scheduling
of plural credit-based resources (CPU, storage I/0 and network
1/0).
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