
VarCLR: Variable Semantic Representation Pre-training via
Contrastive Learning

Qibin Chen
qibinc@cs.cmu.edu

Carnegie Mellon University

Jeremy Lacomis
jlacomis@cs.cmu.edu

Carnegie Mellon University

Edward J. Schwartz
eschwartz@cert.org

Carnegie Mellon University Software
Engineering Institute

Graham Neubig
gneubig@cs.cmu.edu

Carnegie Mellon University

Bogdan Vasilescu
bogdanv@cs.cmu.edu

Carnegie Mellon University

Claire Le Goues
clegoues@cs.cmu.edu

Carnegie Mellon University

ABSTRACT

Variable names are critical for conveying intended program behav-
ior. Machine learning-based program analysis methods use variable
name representations for a wide range of tasks, such as suggesting
new variable names and bug detection. Ideally, such methods could
capture semantic relationships between names beyond syntactic
similarity, e.g., the fact that the names average and mean are simi-
lar. Unfortunately, previous work has found that even the best of
previous representation approaches primarily capture “relatedness”
(whether two variables are linked at all), rather than “similarity”
(whether they actually have the same meaning).

We propose VarCLR, a new approach for learning semantic rep-
resentations of variable names that effectively captures variable
similarity in this stricter sense. We observe that this problem is an
excellent fit for contrastive learning, which aims to minimize the
distance between explicitly similar inputs, while maximizing the
distance between dissimilar inputs. This requires labeled training
data, and thus we construct a novel, weakly-supervised variable
renaming dataset mined from GitHub edits. We show that VarCLR
enables the effective application of sophisticated, general-purpose
language models like BERT, to variable name representation and
thus also to related downstream tasks like variable name similarity
search or spelling correction. VarCLR produces models that sig-
nificantly outperform the state-of-the-art on IdBench, an existing
benchmark that explicitly captures variable similarity (as distinct
from relatedness). Finally, we contribute a release of all data, code,
and pre-trainedmodels, aiming to provide a drop-in replacement for
variable representations used in either existing or future program
analyses that rely on variable names.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; • Computing methodologies→ Learning latent rep-

resentations; Natural language processing; Neural networks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510162

ACM Reference Format:

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan
Vasilescu, and Claire Le Goues. 2022. VarCLR: Variable Semantic Representa-
tion Pre-training via Contrastive Learning. In 44th International Conference

on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510162

1 INTRODUCTION

Variable names convey key information about code structure and
developer intention. They are thus central for code comprehen-
sion, readability, and maintainability [7, 46]. A growing array of
automatic techniques make use of variable names in the context
of tasks like but not limited to bug finding [64, 68] or specifica-
tion mining [88]. Beyond leveraging the information provided by
names in automated tools, recent work has increasingly attempted
to directly suggest good or improved names, such as in reverse
engineering [35, 45] or refactoring [3, 5, 52].

Developing (and evaluating) such automated techniques (or
name-based analyses [75]) relies in large part on the ability to model
and reason about the relationships between variable names. For con-
creteness, consider an analysis for automatically suggesting names
in decompiled code. Given a compiled program (such that variable
names are discarded) that is then decompiled (resulting in generic
names like a1,a2), a renaming tool seeks to replace the generic
decompiler-provided identifiers with more informative variable
names for the benefit of reverse engineers aiming to understand it.
Good names in this context are presumably closely related to the
names used in the original program (before the developer-provided
names were discarded). A variable originally named max, for exam-
ple, and then decompiled to a2, should be replaced with a name at
least close to max, like maximum. Modeling this relationship well is
key for both constructing and evaluating such analyses.

Accurately capturing and modeling these relationships is dif-
ficult. A longstanding approach has used syntactic difference —
like various measures of string edit distance — to estimate the re-
lationship between two variables (such as for spellchecking [18]).
However, syntactic distance is quite limited in capturing underly-
ing name semantics. For example, the pairs (minimum, maximum) and
(minimum, minimal) are equidistant syntactically — with a Leven-
shtein distance of two — but maximum and minimum are antonyms.

More recent work has sought to instead encode variable name
semantics using neural network embeddings, informing a variety of

����

�����*&&&�"$.���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH�	*$4&

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

name-based analyses [29, 65, 78]. Unfortunately, although state-of-
the-art techniques for variable name representation better capture
relatedness, they still struggle to accurately capture variable name
similarity, in terms of how interchangeable two names are. Vari-
ables may be related for a variety of reasons. While maximum and
minimum are highly related, they certainly cannot be substituted
for one another in a code base. minimum and minimal, on the other
hand, are both related and very similar. In recent work, Wainakh
et al. [75] presented a novel dataset, IdBench, based on a human
survey on variable similarity and interchangeability, and used it to
evaluate state-of-the-art embedding approaches. They empirically
established that there remains significant room for improvement
in terms of capturing similarity rather than merely relatedness.

In this paper, we formulate the variable semantic representation

learning problem as follows: given a set of variable data, learn a
function � that maps a variable name string to a low-dimensional
dense vector that can be used in a variety of tasks (like the types of
name-based analyses discussed above). To be useful, such a map-
ping function should effectively encode similarity, i.e., whether
two variables have the same meaning. That is, � (minimum) and
� (minimal) should be close to one another. Importantly, however,
the function should also ensure that variable names that are not
similar (regardless of relatedness!) are far from one another. That
is, � (minimum) and � (maximum) should be distant.

Our first key insight is that this problem is well suited for a
contrastive-learning approach [14, 30, 63, 82]. Conceptually, con-
trastive learning employs encoder networks to encode instances
(in this task, variables) into representations (i.e., hidden vectors),
with a goal of minimizing the distance between (the representation
of) similar instances and maximizing the distance between (the rep-
resentation of) dissimilar instances. Contrastive learning requires
as input a set of “positive pair” examples—of similar variables, in
our case—for training.

Our second key insight is that we can construct a suitable weakly-
supervised dataset of examples of similar variables by taking ad-
vantage of large amounts of source control information on GitHub.
Following the definition of “similarity” from prior work [60, 75],
we consider two variable names are similar if they have the same
meaning, or are interchangeable. We therefore automatically mine
source control edits to identify historical changes where developers
renamed a variable but did not otherwise overly modify the code
in which it was used. Although potentially noisy, this technique
matches an intuitive understanding of variable name similarity in
terms of interchangeability, and allows for the collection of a large
dataset, which we call GitHubRenames.

Finally, we observe that the variable semantic representation
learning problem requires more powerful neural architectures than
word2vec-based approaches [8, 59, 75].1 Such approaches are
limited both empirically (as Wainakh et al. showed) and conceptu-
ally; note for example that they cannot capture component order-
ing, such as the difference between idx_to_word and word_to_idx.
Meanwhile, Pre-trained Language Models (PLMs) [9, 20, 67] based
on the powerful Transformer architecture [74] have achieved the
state-of-the-art on a wide range of natural language processing

1word2vec [59] is an embedding algorithm based on the distributional hypothesis,
which assumes words that occur in the same contexts tend to have similar meanings.

tasks, including text classification [20], question answering and
summarization [48], and dialog systems [1]. PLMs tailored specif-
ically for programming languages such as CodeBERT [22] and
Codex [12] are useful in a variety of tasks such as code completion,
repair, and generation [12, 55], though not yet for variable name rep-
resentation. Encouragingly, previous work shows that contrastive
learning can strongly improve BERT sentence embeddings for tex-
tual similarity tasks [24]. And, contrastive learning has been shown
to benefit from deeper and wider network architectures [13].

We combine these insights to produce VarCLR, a novel machine
learning method based on contrastive learning for learning general-
purpose variable semantic representation encoders. In VarCLR, the
contrastive learning element serves as a pre-training step for a tradi-
tional encoder. While powerful modern approaches like CodeBERT
perform poorly on the variable representation problem off-the-shelf,
we show that VarCLR-trained models dramatically outperform the
previous state-of-the-art on capturing both variable similarity and
relatedness. VarCLR is designed to be general to a variety of useful
downstream tasks; we demonstrate its effectiveness for both the ba-
sic variable similarity/relatedness task (using the IdBench dataset
as a gold standard baseline) as well as for variable similarity search,
and spelling error correction.

To summarize, our main contributions are as follows:

(1) VarCLR, a novel method based on contrastive learning that
learns general-purpose variable semantic representations
suitable for a variety of downstream tasks.

(2) A new weakly supervised dataset, GitHubRenames, for bet-
ter variable representation learning consisting of similar
variable names collected from real-world GitHub data.

(3) Experimental results demonstrating that VarCLR’s models
significantly outperform state-of-the-art representation ap-
proaches on IdBench, an existing benchmark for evaluat-
ing variable semantic representations. These results further
substantiate the utility of more sophisticated models like
CodeBERT, with larger model capacity, in place of the pre-
vious word2vec-based methods for learning variable rep-
resentations, while showing that the contrastive learning
pre-training step is critical to enabling the effectiveness of
such models.

(4) Experimental results that demonstrate that both unsuper-
vised pre-training and our proposed weakly-supervised con-
trastive pre-training are indispensable parts for advancing
towards the state-of-the-art, for the former takes advantage
of greater data quantity by leveraging a huge amount of
unlabeled data, while the latter takes advantage of better
data quality with our new GitHubRenames dataset.

Finally, we contribute a release of all data, code, and pre-trained
models, aiming to provide a drop-in replacement for variable repre-
sentations used in either existing or future program analyses that
rely on variable names.2

2 PROBLEM DOMAIN

Variable names critically communicate developer intent and are
thus increasingly used by a variety of automated techniques as a
central source of information. Such techniques increasingly rely on

2Code, data, and pre-trainedmodel available at https://github.com/squaresLab/VarCLR.

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

machine learning and embedding-based representation approaches
to encode variable name meaning for these purposes. However,
recent work [75] shows that while neural embeddings based on
techniques like word2vec do a better job of capturing relation-
ships between variables than syntactic edit distance does, they
still struggle to capture actual variable similarity in terms of their
interchangeability. In this paper, we show that this problem is
amenable to a contrastive learning approach, enabling accurate
general-purpose representations of variable name semantics.

We define the variable semantic representation learning problem

as follows: given a collection of suitable variable data, learn a func-
tion � that maps a variable name string to a low-dimensional dense
vector that can be used to benefit various downstream tasks (like
variable similarity scoring in the simplest case, or arbitrarily com-
plex name-based analyses). A good mapping function � for variable
name representations should:

(1) Capture similarity. � should encode similar names such that
they are close to one another. Two names are similar when
they have similar or generally interchangeable meanings,
like avg and mean. This is especially important for variables
that are related but not similar, such as maximum and minimum.
Indeed, antonyms are often closely related and can appear
in similar contexts (max and min for example may be used
together in loops finding extrema).

(2) Capture component ordering and importance. Variables often
consist of component words or sub-words. We observe that
the order of such components can affect meaning. For ex-
ample, idx_to_word and word_to_idx contain the same sub-
words, but have different meanings. Moreover, the impor-
tance of different componentwords in a variable can be differ-
ent and the importance of the same word can vary between
variables. For example, in variables onAdd and onRemove, on
is less important, while add and remove are more important.
In turnOn and turnOff, on and off are more important than
turn. A good mapping function � should be able to cap-
ture these differences, instead of treating variables as an
unordered bag of sub-words.

(3) Transferability.The representation should be general-purpose
and usable for a wide range of tasks. Benefits of a transfer-
able, shared representation include the ability to (1) improve
accuracy on unsupervised or data-scarce tasks, where it can
be hard to obtain high-quality variable representations from
scratch, and (2) for complex tasks consisting of many sub-
tasks, make better use of labeled data frommultiple sub-tasks
via multi-task learning.

This formulation of the problem motivates our use of contrastive
learning, which is an effective way to learn similarity from labeled
data. Conceptually, given an encoder network �� and a set of similar
“positive pairs”, contrastive learning returns a new encoder that at-
tempts to locate similar “positive pair” instances closer together and
dissimilar “negative pair” instances farther apart. In practice, this
can be accomplished by re-training the original encoder on a new
pre-training task: instance discrimination [82]. Instance discrim-
ination casts the contrastive learning problem as a classification
problem where only the “positive pair” instances are equivalent.
Rather than explicitly adjusting the distances between points, the

7RNHQL]HUVariable

 VARCLR

���(QFRGHU
9DULDEOH�

5HSUHVHQWDWLRQ

'RZQVWUHDP�7DVNV

6LPLODULW\�6FRULQJ

6LPLODULW\�6HDUFK

6SHOOLQJ�(UURU�&RUUHFWLRQ

5HODWHGQHVV�6FRULQJ

*LW+XE5HQDPHV

Variable

Pairs

Encoder

VARCLR

&RQWUDVWLYH

3UH�WUDLQLQJ

fθ

fθ′

Figure 1: Conceptual overview of VarCLR.

encoder’s parameters are trained to optimize its performance at
discriminating similar instance from dissimilar instances. This nat-
urally adjusts the parameters of the encoder such that similar in-
stances are moved closer together (and vice-versa for dissimilar
instances). The actual output of the contrastive learning process is
a new encoder �� ′ that is identical to the original encoder in neural
architecture, but has a different set of parameters � ′ resulting from
training on the instance discrimination task.

There are two central design choices in applying contrastive
learning, however. First,Which neural architectures should be used

for �� ? This is usually decided by the problem domain in question.
For example, in computer vision, ResNet [31] for learning image
representations [13, 30, 63]; in natural language processing, Simple
word embedding or BERT [20, 53] for learning sentence represen-
tations [24, 80]; and in data mining, Graph Neural Network [44]
for learning graph representations [66]. Second, How to construct

similar (positive) and dissimilar (negative) training pairs? Unsuper-
vised data augmentation like cropping or clipping has been used to
create different “views” of the same image as similar pairs in im-
age processing [63, 72]; word dropout can augment text sentences
for natural language processing [24]. For supervised contrastive
learning, positive pairs can be created from labeled datasets di-
rectly [24], or via sampling instances from the same class [42]. Note
that dissimilar pairs typically need not be explicitly defined. Instead,
in-batch negatives [63] can be sampled from instance pairs that are
not explicitly labeled as positive.

The choice of similar instances is very important, as it influences
the learned similarity function and impacts downstream effective-
ness [73]. For example, consider how training can lead to uninten-
tional properties of a learned similarity function for word2vec. At
a high level, word2vec [59] can be viewed as a form of unsuper-
vised contrastive learning. It employs a word embedding layer as
the encoder, and treats words co-occurring in the context window
as similar pairs, while treating other words in the dictionary as
dissimilar ones.3 Due to its choice of “similar instances”, it learns
more of association (or relatedness) between words, instead of simi-
larity in terms of how interchangeable two words are. For example,
word2vec embeddings of cohyponym words such as red, blue,
white, green are very close. While this might not be a problem
in NLP applications, word2vec leads to unsatisfactory behavior

3We leave out the minor difference that word2vec produces two sets of embeddings,
while contrastive learning usually uses a unified representation.

����

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

when applied to variable names [75], e.g., by identifying minLength

and maxLength as similar.

3 METHOD

Figure 1 shows a high-level conceptual overview of VarCLR, our
framework for learning effective semantic representations of vari-
able names. VarCLR consists of a contrastive pre-training phase
that takes two inputs: (1) a positive set of similar variable name
pairs, and (2) an input encoder. The set of similar variables is crucial
for VarCLR’s performance. We thus produce GitHubRenames, a
novel weakly-supervised dataset consisting of positive examples
of similar variables by examining large amounts of source code
history available from GitHub (Section 3.1). These variables must
be suitably tokenized for encoding in a way that captures and
retains relevant information (Section 3.2), both for pre-training
and for downstream tasks. VarCLR also takes an input encoder
�� with learnable parameters � (Section 3.3). This encoder is then
trained using contrastive learning (Section 3.4). The output of our
framework is a contrastively-trained VarCLR encoder that con-
verts tokenized variables into semantic representations suitable for
a variety of tasks and name-based analyses, including similarity
scoring or spelling error correction, among others.

3.1 Similar variables: GitHubRenames
A high-level definition of “similarity” [60, 75], is the degree to which
two variables have the samemeaning. Contrastive learning requires
positive examples for training, and thus we need a set of appropriate
positive pairs of similar variable names. As discussed in Section 2,
these need not be manually constructed. Although IdBench [75]
provides curated sets of human-judged “similar” variables, they are
too small for training purposes (the largest set, has 291 variable
pairs). This motivates an automated mechanism for constructing
training data, with the added benefit that we need not be concerned
about training and testing on the same dataset (as we use IdBench
for evaluation).

Instead, we observe that one way to define variable similarity is
to consider the degree to which two variables are explicitly inter-

changeable in code (close to IdBench’s definition of “Contextual
similarity”). We therefore collect a weakly supervised dataset of
interchangeable variable names by mining source control version
histories for commits where variable names change. These variable
pairs are considered similar because they appear interchangeable
in the same code context.

Concretely, we built upon existing open-source dataset collection
code used to mine source control for the purpose of modeling
changes [84].4 Given a repository, this code mines all commits of
less than six lines of code where a variable is renamed. The intuition
is to look for commits that do not make large structural changes
that might correspond to a major change in a variable’s meaning.
We applied dataset collection to an expanded version of the list of
repositories used in ref [84], consisting of 568 C# projects.5 The
final GitHubRenames dataset contains 66,855 variable pairs, each
consisting of a variable name before and after a renaming commit.

4https://github.com/microsoft/msrc-dpu-learning-to-represent-edits
5https://github.com/quozd/awesome-dotnet

The GitHubRenames dataset is only weakly supervised since
developers were not asked to label variable pairs explicitly. The
dataset may thus be noisy, and in particular we did not attempt to
filter out renames corresponding to bug fixes. Indeed, we note that
a number of pairs in GitHubRenames correspond to fixing spelling
mistakes (Section 4.4). Overall, however, we note that our method
transfers well to the IdBench validation set, and expect that more
data will only improve VarCLR’s effectiveness.

3.2 Input representation

A variable name as a text string must be preprocessed to be used
as input to a neural network encoder. We observe two interest-
ing aspects of variable names that inform our preprocessing. First,
variable names are often composed of multiple words with inter-
changeable case styles, e.g., max_iteration vs maxIteration. Sec-
ond, variable names are sometimes composed of short words or
abbreviations, without an underscore or uppercase to separate them.
e.g., filelist, sendmsg.

For the first problem, we apply a set of regex rules to canonicalize
variable names into a list of tokens, e.g., ["max", "iteration"].
The second problem is more challenging, and could cause Out-of-
vocabulary (OOV) problems. To solve this, we use the pre-trained
CodeBERT tokenizer [22], which is underlying a Byte Pair Encoding
(BPE) model [70] trained on a large code corpus based on token
frequencies. When encountering an unknown composite variable
name such as sendmsg, it is able to split it into subword tokens, e.g.,
["send", "##msg"], where "##" means this token is a suffix of the
previous word.

3.3 Encoders

Generally, a neural encoder takes the input sequence, and encodes
and aggregates information over the sequence to produce a hid-
den vector. That is, given a sequence of tokens � = (�1, �2, . . . , ��)

corresponding to a tokenized variable name, an encoder outputs
a hidden vector � ∈ R� , where � is the dimension of the hidden
representation:

� = �� (�), (1)

�� denotes the encoder with learnable parameters � .
Note that VarCLR is applicable to any encoder with this form.

In this paper, we instantiate it specifically for Word Embedding
Averaging (VarCLR-Avg), the LSTM Encoder (VarCLR-LSTM), and
BERT (VarCLR-CodeBERT).

Word Embedding Averaging. Averaging the embeddings of input
tokens is a simple but effective way to represent a whole input
sequence, given sufficient data [80, 81]. Therefore, we consider this
as a simple baseline encoder. Formally, given the tokenized variable
name � = (�1, �2, . . . , ��), �� ∈ V , and a word embedding lookup
table �� : V → R� :

� =

1

�

�
∑

�=1

�� (��), (2)

where V is the vocabulary, i.e., the collection of all tokens the
model can handle, � ∈ R |V×� | is the learnable embedding matrix.

Although simple and efficient, this Word Embedding Averaging
encoder suffers from two issues: 1) Order. The averaging operator

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

9DULDEOH v1,i Encoder

fθ

 Encoder

fθ
9DULDEOH

v2,i

v2,j

v2,k

FRV

G��6FRUHVF��5HSUHVHQWDWLRQV

&RQWUDVWLYH

�/RVV

v1,i v2,i

v2,jv1,j

v2,kv1,k

*LW+XE5HQDPHV

VLPLODU
GLVVLPLODU

qi

D��9DULDEOH�3DLUV E��0LQL�EDWFK

O

LNCE

ki

kj

kk

Figure 2: Overview of VarCLR’s contrastive pre-training method. a) GitHubRenames contains interchangeable variable pairs. b) At each training

step, sample a mini-batch of variable pairs, and aim to pull close the variables representations within a pair, e.g., �1,� and �2,� , while pushing

away the representations of other variables, e.g., �1,� and �2, � . c) To achieve this, an encoder �� with learnable parameters � , is adopted to encode

the variable string to hidden vectors. d) contrastive loss is calculated based on the similarity scores as the cosine distance between encoded

hidden vectors; the encoder �� is optimized with gradient descent.

discards word order information in the input sequence, and thus
poorly represents variable names where this order is important, e.g.,
idx_to_word and word_to_idx. 2) Token importance. An unweighted
average of word embeddings ignores the relative importance of
words in a variable name, as well as the fact that the importance of
a word can vary by context.

LSTM Encoder. Recurrent Neural Networks (RNNs) [69] general-
ize feed-forward neural networks to sequences. Given the tokenized
variable name � = (�1, �2, . . . , ��), a standard RNN computes a se-
quence of hidden vectors (�1,�2, . . . ,��).

�� = sigmoid
(

� hx��� (��) +�
hh��−1

)

, (3)

where� hx,� hh ∈ R�×� are weight matrices, and �	 is the embed-
ding matrix (as in Equation (2)). RNNs process the input sequence
by reading in one token �� at a time and combining it with the
past context ℎ�−1. This captures sequential order information. After
processing all input tokens, we can average the hidden states at
each step to output a representation of the original variable:

� =

1

�

�
∑

�=1

�� . (4)

We use bi-directional Long Short-Term Memory (LSTM) mod-
els [34], a variant of RNNs widely used in natural language pro-
cessing. LSTMs introduce several new components, including the
input and forget gates, controlling how much information flows
from the current token, and how much to keep from past contexts,
respectively. This better handles the token importance problem by
dynamically controlling the weight of the input token at each step.

BERT. Transformer-basedmodels [74] typically outperform LSTMs
and are considered to be the better architecture for many NLP tasks.
Pre-trained Language Models (PLMs), built upon Transformers, can
leverage massive amounts of unlabeled data and computational
resources to effectively tackle a wide range of natural language
processing tasks. Useful PLMs for programming languages include

CodeBERT [22] and Codex [12] PLMs not only capture compo-
nent ordering and token importance that LSTMs do, but provide
additional benefits: 1) BERT-based models are already pre-trained
with self-supervised objectives such as Masked Language Modeling
(MLM) [20] on a large amount of unlabeled data. It provides a good
initialization to the model parameters and improves the model’s
generalization ability, requiring fewer data to achieve satisfactory
performance [9]. 2) Transformer encoders are much more powerful
than previous models thanks to the multi-head self-attention mech-
anism, allowing for the model to be much wider and deeper with
more parameters. We therefore propose to use PLMs for programs
as our most powerful choice of variable name encoder.

Effectiveness versus efficiency. Although BERT has the largest
model capacity of these encoders, it also requires higher computa-
tion cost for both training and inference, and suffers from a longer
inference latency. The trade-off posted between effectiveness and
efficiency can vary according to different downstream applications.
Therefore, we find it meaningful to compare all encoders in Var-
CLR. Different or better encoder models can be directly plugged
into the VarCLR framework in the future. We omit further interior
technical details of both LSTM and BERTmodels as they are beyond
the scope of this paper.

3.4 Contrastive Learning Pre-training

VarCLR implements the design choices for input data, variable tok-
enization, and input encoder in a contrastive learning framework.
Figure 2 provides an overview. Conceptually, contrastive learning
uses encoder networks to encode instances (in this task, variables)
into representations (i.e., hidden vectors), and aims to minimize the
distance between similar instances while maximizing the distance
between dissimilar instances.

Specifically, given a choice of encoder and set of labeled “positive
pairs” of variable names, we use instance discrimination [82] as
our pre-training task, and InfoNCE [63] as our learning objective.
Given a mini-batch of encoded and L2-normalized representations

����

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

of
 similar variable pairs
{

(�1,� , �2,�) |� = 1, . . . ,

}

, we first encode
them to hidden representations:

�� =
�� (�1,�)

�

��� (�1,�)
�

�

2

, (5)

�� =
�� (�2,�)

�

��� (�2,�)
�

�

2

, (6)

where ‖ · ‖2 is ℓ2-norm, �� denotes the encoder. Then, we define
the InfoNCE loss as:

LNCE (�, �) = −E

(

log

��

⊤��/

∑�
�=1

��
⊤��/

)

, (7)

where � is the temperature hyperparameter introduced by [82].
Intuitively, this objective encourages the model to discriminate the
corresponding similar instance �2,� of an instance �1,� from other
instances in the mini-batch �2, � . This learning objective is very
similar to the cross-entropy loss for classification tasks, while the
difference is that instead of a fixed set of classes, it treats each
instance as a distinct class. Following [26], we further make the
loss symmetric and minimize the following objective function:

L =

1

2
LNCE (�, �) +

1

2
LNCE (�, �) . (8)

In our task, this objective encourages the encoder to push the
representations of a pair of similar variables to be close to each
other, so that they can be discriminated from other variables.

We refer to this process as pre-training in the sense that the
training is not intended for a specific task but is learning a general-
purpose variable representation.

4 EXPERIMENTS

In this section, we evaluate VarCLR’s ability to train models for
variable representation along several axes. Section 4.1 addresses
setup, datasets, and baselines common to the experiments. Then, we
begin by addressing a central claim: How well do VarCLR models
encode variable similarity, as distinct from relatedness? We answer
this question by using pre-trained VarCLR models to compute
similarity (and relatedness, resp) scores between pairs of variables,
and evaluate the results on human-annotated gold standard ground
truth benchmark (Section 4.2).

Next, we evaluate VarCLR-trained models on two other down-
stream tasks, demonstrating transferability: variable similarity search
(Section 4.3), and variable spelling error correction (Section 4.4).

Finally, we conduct an ablation study (Section 4.5) looking at the
influence of training data size, pre-trained language models, and
pre-trained embeddings from unsupervised learning contribute to
VarCLR’s effectiveness.

4.1 Setup

Pre-training. For VarCLR-Avg and VarCLR-LSTM, we use the
Adam optimizer [43] with �1 = 0.9, �2 = 0.999, � = 1 × 10−8, a
learning rate of 0.001, and early stop according to the contrastive
loss on the validation set.We use amini-batch size of 1024. The input
embedding and hidden representation dimensions are set to 768
and 150 respectively. we also initialize the embedding layer with the
CodeBERT pre-trained embedding layer. For VarCLR-CodeBERT,
we use the AdamW optimizer [54] with the same configuration and

learning rate, and a mini-batch size of 32. 6 We use the BERT model
architecture [20] and initialize the model with pre-trained weights
from CodeBERT [22]. For all three methods, we apply gradient
norm clipping in the range [−1, 1], and a temperature � of 0.05. A
summary of the hyper-parameters can be found along with our
data, code, and pre-trained models at https://bit.ly/2WIalaW.

Dataset. While we use the GitHubRenames for training Var-
CLR, we use the IdBench [75] dataset for evaluation.7 IdBench is
a benchmark specifically created for evaluating variable semantic
representations. It contains pairs of variables assigned relatedness
and similarity scores by real-world developers. IdBench consists
of three sub-benchmarks— IdBench-small, IdBench-medium, and
IdBench-large, containing 167, 247, 291 pairs of variables, respec-
tively. Ground truth scores for each pair of variable are assessed
by multiple annotators. Pairs with disagreement between anno-
tators exceeding a particular threshold are considered dissimilar;
the three benchmarks differ in the choice of threshold. The smaller
benchmark provides samples with higher inter-annotator agree-
ment, while the larger benchmark provides more samples with
commensurately lower agreement. The medium benchmark strikes
a balance. We describe customizations of the IdBench dataset to
particular tasks in their respective sections.

Baselines. We compare VarCLR models to the previous state-of-
the-art as presented in IdBench [75]. We reuse the baseline results
provided by the IdBench framework. The IdBench paper evaluates
a number of previous approaches as well as a new ensemble method
that outperforms them; we include as baselines a subset of those
previous techniques, and the ensemble method. Of the string dis-
tance/syntactic functions (still broadly used in various name-related
applications [51, 68]), we include Levenshtein Edit Distance (LV)

(the number of single-character edits required to transform one
string into the other); it performs in the top half of techniques
on scoring similarity, and is competitive with the other syntac-
tic distance metric [62] on relatedness. Of the embedding-based
single models, we include FastText CBOW (FT-cbow) and SG

(FT-sg) [8], extensions of word2vec that incorporate subword in-
formation, to better handle infrequent words and new words. These
were the best-performing embedding-based methods on both relat-
edness and similarity.

Finally, we include two combined models. IdBench [75] pro-
poses an ensemble method that combines the scores of all models
and variable features. For each pair in IdBench, the combined
model trains a Support Vector Machine (SVM) classifier with all
other pairs, then applies the trained model to predict the score of
the left-out pair. Note that this approach is trained on the IdBench
benchmark itself and is not directly comparable to other methods.
For comparison, we add VarCLR-Avg, VarCLR-LSTM, VarCLR-
CodeBERT scores as additional input features to the combined
approach, and report the results for Combined-VarCLR.

6Larger mini-batch sizes make the contrastive learning task more challenging and
improve the quality of learned representation, as shown in [13] and our preliminary
experiments. We use batch size of 32 for VarCLR-CodeBERT due to GPU memory
limitations.
7The IdBench evaluation scripts were updated after publication, leading to minor
differences in evaluation scores. We use their latest code as of May 1st, 2021 to evaluate
the baselines and our models.

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

4.2 Variable Similarity and Relatedness Scoring

Our central claim is that VarCLR is well-suited to capturing and
predicting variable similarity. Formally, given two variables � and
� , we obtain variable representations with pre-trained VarCLR
encoder �� ′ and compute the variable similarity score as the cosine
similarity between the two vectors:

�� ,�� = �� ′ (�), �� ′ (�) (9)

�̂ (�, �) =
�� · ��

‖�� ‖2‖�� ‖2
, (10)

where �̂ (�, �) denotes the VarCLR’s predicted similarity score. Fol-
lowing IdBench [75], we then compare the similarity scores of
pre-trained VarCLR representations with human ground-truth sim-
ilarity scores by computing Spearman’s rank correlation coefficient
between them. This correlation coefficient falls in the range [-1,
1], where 1 indicates perfect agreement between the rankings; -1
indicates perfect disagreement; and 0 indicates no relationship.

Note that the VarCLR pre-training task is explicitly optimiz-
ing the distance between similar variable pairs. Thus, the variable
similarity scoring task only really evaluates the performance of
the pre-training itself. To more fully evaluate whether our method
leads to better representations that can transfer, we also evaluate
on the variable relatedness scoring task.

Results. Table 1 shows the models’ performance on the similarity
and relatedness tasks in terms of Spearman’s rank correlation with
ground truth. Table 1a shows that VarCLR-CodeBERT improves
over the previous state-of-the-art on all three IdBench benchmarks,
with an absolute improvement of 0.18 on IdBench-small and 0.13 on
IdBench-large compared to the previous best approach, FT-cbow.
This shows that VarCLR aligns much better with human develop-
ers’ assessment of variable similarity than any of the previously
proposed models. Interestingly, VarCLR-Avg also outperforms FT-
cbow by a large margin (+0.12 on IdBench-small). This suggests
that most of our gains do not come from the use of a more power-
ful encoder architecture such as BERT. Instead, we conclude that
the GitHubRenames dataset is effective at providing supervision
signals of variable similarity, and the contrastive learning objective
is effective. Although their architectures are very similar, VarCLR-
Avg outperforms FT-cbow.

That said, the improvements in VarCLR-CodeBERT (+0.06) and
VarCLR (+0.03) over VarCLR-Avg verify our assumption that pow-
erful models with larger representational capacity are necessary
for learning better variable representations, since they are able to
capture and encode more information (e.g., sequential order and
token importance) than the embedding averaging methods.

Table 1b shows that VarCLR also achieves the state-of-the-art
performance on IdBench in terms of relatedness prediction. It
surpasses the previous best by 0.07 on IdBench-small and 0.07
on IdBench-large. This is noteworthy because VarCLR training
does not explicitly optimize for relatedness. This suggests that the
VarCLR pre-training task learns better generic representations,
rather than overfitting to the target task (i.e., variable similarity).
This is very important, and supports our major contribution: By pre-
training for the similarity learning task on GitHubRenames with
a contrastive objective, VarCLR achieves better representations
which can be applied to general tasks.

Table 1: Spearman’s rank correlation with IdBench-small,

IdBench-medium, IdBench-large of single models (top) and

ensemble models (bottom), by increasing performance.

(a) Similarity scores

Method Small Medium Large

FT-SG 0.30 0.29 0.28
LV 0.32 0.30 0.30
FT-cbow 0.35 0.38 0.38
VarCLR-Avg 0.47 0.45 0.44
VarCLR-LSTM 0.50 0.49 0.49
VarCLR-CodeBERT 0.53 0.53 0.51

Combined-IdBench 0.48 0.59 0.57
Combined-VarCLR 0.66 0.65 0.62

(b) Relatedness scores

Method Small Medium Large

LV 0.48 0.47 0.48
FT-SG 0.70 0.71 0.68
FT-cbow 0.72 0.74 0.73
VarCLR-Avg 0.67 0.66 0.66
VarCLR-LSTM 0.71 0.70 0.69
VarCLR-CodeBERT 0.79 0.79 0.80

Combined-IdBench 0.71 0.78 0.79
Combined-VarCLR 0.79 0.81 0.85

4.3 Variable Similarity Search

We next evaluate our learned representations in the context of
a more applied downstream application: similar variable search.
Similar variable search identifies similar variable names in a set of
names given an input query. This can be useful for refactoring code,
or for assigning variables more readable names (e.g., replacing fd

with file_descriptor). For a given set of variables V and a pre-
trained VarCLR encoder �� ′ , we compute representation vectors
K = {�� ′ (�) |� ∈ V}. For a query variable �, we find top-� similar
variables in V with the highest cosine similarity to �� ′ (�).

To quantitatively evaluate effectiveness in finding similar vari-
ables, we created a new mini-benchmark VarSim from the original
IdBench benchmark. We select variable pairs which have human-
assessed similarity scores greater than 0.4 in IdBench. This leaves
us with 100 ‘similar’ variable pairs from all 291 variable pairs in the
IdBench-large benchmark. We use the variable collection provided
in IdBench containing 208,434 variables as the overall candidate
pool. We use Hit@K as our evaluation metric, computing the cosine
similarity of the representations of a query variable � and all the
variables in the candidate pool. We select the top-K variables with
the highest similarity scores and check whether the corresponding
similar variable � is in the top-K list. We choose K to be 1, 5, 10, 25,
50, 100, 250, 500, 1000.

Results. As shown in Figure 3a, VarCLR-CodeBERT achieves the
best similarity search performance, with 47% at K=100 and 76% at
K=1000, compared to FT-cbow (37% at K=100, 68% at K=1000). This

����

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

Table 2: Variable Similarity Search. Top-5 most similar variables found by the IdBench method and VarCLR-CodeBERT.

Variable Method Top 5 Similar Variables

substr
FT-cbow substring substrs subst substring1 substrCount

VarCLR-CodeBERT subStr substring substrs stringSubstr substrCount

item
FT-cbow itemNr itemJ itemL itemI itemAt

VarCLR-CodeBERT pItem itemEl mItem itemEls itemValue

count
FT-cbow countTbl countInt countRTO countsAsNum countOne

VarCLR-CodeBERT sCount countOf counts countInt countTh

rows
FT-cbow rowOrRows rowXs rows_1 rowsAr rowIDs

VarCLR-CodeBERT drows allrows rowsArray ows nRows

setInterval
FT-cbow resetInterval setTimeoutInterval clearInterval getInterval retInterval

VarCLR-CodeBERT pInterval mfpSetInterval setTickInterval clockSetInterval iInterval

minText
FT-cbow maxText minLengthText microsecText maxLengthText minuteText

VarCLR-CodeBERT minLengthText minContent maxText minEl min

files
FT-cbow filesObjs filesGen fileSets extFiles libFiles

VarCLR-CodeBERT filesArray aFiles allFiles fileslist filelist

miny
FT-cbow min_y minBy minx minPt min_z

VarCLR-CodeBERT ymin yMin minY minYs minXy

1 10 50 250 1000

Top-K

0%

20%

40%

60%

80%

100%

H
it
@
K

VarCLR-Avg

VarCLR-LSTM

VarCLR-CodeBERT

FT-cbow

(a) Similarity Search

1 5 10 25 50 100

Top-K

20%

40%

60%

80%

H
it
@
K

Avg

LSTM

CodeBERT

(b) Spelling Error Correction

Figure 3: Hit@K score comparison on VarSim and VarTypo.

indicates that our method is effective at finding similar variables,
able to distinguish the most similar variable to the query vari-
able out of 200 distractors around 76% of the time.8 Interestingly,

8Since we evaluate the Hit@1000 score in a candidate pool of size ∼200,000, the
“resolution” of this retrieval task is 1000

200000 =
1
200 . Although inspecting the top 1000

may not be practical as an real-world application itself, it is still an informative metric
of the representation quality, and may indicate effectiveness in other settings, e.g.,

VarCLR-Avg and VarCLR-LSTM are less effective at similarity
search than FT-cbow, even though they outperform FT-cbow by
a large margin in the similarity scoring task. Embedding-based
methods are still a strong baseline for variable similarity search.
However, contrastive methods still amplify the effectiveness of
unsupervised embedding methods.

Similarity scoring and similarity search are distinct tasks, and
so it is not unexpected that techniques will be equally effective
on both. For example, word2vec tends to put the embeddings
of similar rare words close to some common frequent word. This
behavior does not affect the similarity search effectiveness because
the rare words are able to find each other, and the frequent word is
close enough to its similar word than to these rare words. However,
this will hurt similarity scoring between the rare words and the
frequent variable, since they are actually not similar. In comparison,
VarCLR is able to avoid these kinds of scoring mistakes.

Case Study. We demonstrate our results qualitatively by choos-
ing the same set of variables used to demonstrate this task in the
IdBench paper, and displaying the comparative results in Figure 3a.
For space, we omit two of the variables (rows and count) in the
set; the two methods perform comparably (such as on substr). We
observe that the overall qualities of the two methods’ results are
similar. This is understandable since the gap between the two meth-
ods on variable similarity search is relatively small as shown in
Table 2.

Meanwhile, it is worth noting that VarCLR-CodeBERT is bet-
ter at penalizing distractive candidates that are only related but
not similar. For example, for minText, VarCLR-CodeBERT ranks
minLengthText, minContent before maxText, while FT-cbow sug-
gests the opposite. For miny, VarCLR-CodeBERT ranks ymin, yMin,
minY as top-3, while FT-cbow suggests related but dissimilar vari-
ables such as minBy and minx. This provides additional evidence that

a developer looking at the top 5 similar variables from a limited 1,000 candidates,
which has the same requirement on resolution. Another possible application is to use
VarCLR to retrieve a large candidate pool as the first stage to other methods, e.g.,
natural variable name suggestion.

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

our method is able to better represent semantic similarity rather
than pure relatedness.

4.4 Variable Spelling Error Correction

Spelling Error Correction is a fundamental yet challenging task
in natural language processing [37]. We explore the possibility of
applying VarCLR models to perform spelling error correction on
variable names. If the representations of misspelled variable names
are close to their correct versions, corrections may be found via
nearest neighbor search. Fortunately, the GitHubRenames dataset
enables this goal, because a portion of renaming edits in GitHubRe-
names are actually correcting spelling errors in previous commits.
We can therefore reformulate this problem as a variable similarity
search task, since our method treats these misspelled names as
similar to their corrected versions.

We create a new synthetic variable spelling error correction
dataset, VarTypo, with 1023 misspelled variables and their cor-
rections. Specifically, we create this dataset by sampling variables
from the 208,434 variable pool from IdBench, and use the nlpaug9

package [56] to create misspelled variables from the correct ones.
We use KeyboardAug which simulates typo error according to
characters’ distance on the keyboard. This task is challenging be-
cause our method does not leverage any external dictionary or
hand-crafted spelling rules. Meanwhile, although string distance
functions such as Levenshtein distance can potentially perform
better, these functions require expensive one-by-one comparisons
between the query variable and every variable in the pool, which is
very time consuming, while our method uses GPU-accelerated ma-
trix multiplication to compute all cosine distances at once and can
potentially adopt an even more efficient vector similarity search li-
brary such as faiss. Therefore, we believe it is still an informative
benchmark for evaluating variable representations.

Results. Similar to variable similarity search, we evaluate the
effectiveness as the Hit@K score of using the representation of
misspelled variables to retrieve the corresponding correct variable.
As shown in Figure 3b, VarCLR can successfully correct the 29.4% of
the time at Top-1, and 73.6% of the time at Top-100. One interesting
observation we find is that in this task, the gap (-4.5% at Top-1
and -1.0% at Top-100) between VarCLR-Avg and the other two
powerful encoders is relatively small. It even outperforms VarCLR-
CodeBERT after K=25. One possible explanation is that fixing a
typo requires neither word sequential order or word importance
information, i.e., being able to model the variable as a sequence
instead of a bag of words does not benefit this task.

Case Study. For illustration, we randomly select misspelled vari-
able names and use our VarCLR to find the most similar correct
variable names. As shown in Table 3., our model is able to correct
some of the misspelled variables, including insertions, deletions,
and modifications, while failing to recover others. Notably, variable
names consisting of multiple words such as minSimilarity can be
corrected successfully.

9https://github.com/makcedward/nlpaug

Table 3: The top-3 most similar variables to misspelled variables,

found by VarCLR.

Variable Top 3 Similar Variables

temepratures temperatures, temps, temlp

similarlity similarity, similarities, similar

minSimilarlity minSimilarity, similarity, minRatio

program_able programmable, program, program6

supervisior superior, superview, superc

producitons obligations, proportions, omegastructors

transaltion transac, trans, transit

4.5 Ablation Studies

So far we have demonstrated the importance of both contrastive
learning and sophisticated models like CodeBERT for VarCLR per-
formance. Here, perform ablation studies to measure the effect of
additional design decisions in VarCLR: of training data size, of using
pre-trained language models, and of using pre-trained embeddings
from unsupervised learning.

4.5.1 Effect of Data Size on Contrastive Pre-training. Pre-training
VarCLR requires weakly-supervised data scraped from public repos-
itories. Thus, we evaluate how much data is required to train an
effective model, to elucidate data collection costs. To evaluate this,
we train VarCLR-Avg, VarCLR-LSTM, VarCLR-CodeBERT on 0%,
0.1%, 1%, 3.16%, 10%, 21.5%, 46.4%, 100% percent of the full dataset,
measuring the similarity score on IdBench-medium.

Figure 4 shows the results. For all three VarCLR variants, training
data size has a significant positive effect on effectiveness. This is
especially true for VarCLR-CodeBERT, but performance flattens
and converges as training data size approaches 100%. This suggests
that GitHubRenames is of an appropriate size for this task.

Another interesting observation is that VarCLR-Avg outper-
forms VarCLR-LSTM with smaller amounts of training data. This
indicates the more powerful LSTM model does not surpass a simple
one until the data size reaches a critical threshold. This is likely
because a more complex model has more parameters to train and re-
quires more data to reach convergence. With sufficient data, larger
models win, thanks to their representational capacity. This sug-
gests a caveat in applying representation learning models: it is
important to choose a model with an appropriate complexity given
the amount of available data, rather than defaulting to the best-
performing model overall.

4.5.2 Using a Pre-trained Language Model. Before contrastive pre-
training on GitHubRenames, VarCLR-CodeBERT is initialized
with a model (pre-)pre-trained on a large code corpus. The effect of
this pre-training is also illustrated in Figure 4. Although VarCLR-
CodeBERT has a much larger number of parameters, it outperforms
VarCLR-Avg and VarCLR-LSTM after contrastive pre-training on
only 1% of GitHubRenames. While this seems to contradict the
conclusion reached in the comparison between VarCLR-LSTM and
VarCLR-Avg, it displays the benefit of initialization with a pre-
trained model. Compared to VarCLR-LSTM, which contains ran-
domly initialized parameters that have to be trained from scratch,
VarCLR-CodeBERT parameters produce reasonable representa-
tions from the start. Therefore, it requires less data to converge,

����

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

0% 0.1% 1% 10% 100%

Percent of Training Data

0.2

0.3

0.4

0.5

S
p
ea
rm

a
n
’s
R
a
n
k
C
or
re
la
ti
o
n

Avg

LSTM

CodeBERT

Figure 4: Effect of contrastive pre-training data size on learned

VarCLR representations, evaluated on IdBench-medium.

Table 4: Effect of pre-trained CodeBERT embeddings on similarity

score effectiveness (Spearman’s). Models are either randomly ini-

tialized and contrastively pre-trained (Contrastive), initialized with

CodeBERT embeddings (CodeBERT), or both (VarCLR).

Method Small Medium Large

Contrastive-Avg 0.34 0.33 0.30
CodeBERT-Avg 0.44 0.43 0.40
VarCLR-Avg 0.47 0.45 0.44

Contrastive-LSTM 0.35 0.33 0.30
CodeBERT-LSTM 0.36 0.36 0.36
VarCLR-LSTM 0.50 0.49 0.49

and thanks to its large model capacity, ultimately outperforms the
other two variants by a large margin.

Despite the fast convergence, directly applying CodeBERT with-
out contrastive pre-training leads to poor performance (0.13 at
0% data). One possible reason is that CodeBERT was originally
trained for whole-program representations, and using it with vari-
able names as inputs leads to a problematic divergence from its
training data distribution.

4.5.3 Effect of Pre-trained CodeBERT Embeddings. Both VarCLR-
Avg and VarCLR-LSTM are initialized with the word embeddings
from CodeBERT before contrastive pre-training. To study the effect
of these pre-trained embeddings, we measure the Spearman’s cor-
relation coefficient of the similarity scores of the models modified
in two ways: one with randomly-initialized embeddings that is
then contrastively pre-trained (“Contrastive” in Table 4), and one
that is initialized with CodeBERT embeddings but not contrastively
pre-trained (“CodeBERT” in Table 4).

The results show that pre-trained CodeBERT embeddings are
essential to the performance of VarCLR-Avg and VarCLR-LSTM.
However, directly adopting the pre-trained embeddings alone is
still insufficient, especially for LSTMs. This implies that both un-
supervised pre-training and weakly supervised pre-training are
indispensable for useful variable representations: the former takes

advantage of data quantity by leveraging a huge amount of unla-
beled data, while the latter takes advantage of data quality using
the weakly supervised GitHubRenames dataset.

5 RELATED WORK

Variable Names and Representations. Variable names are impor-
tant for source code readability and comprehension [25, 46]. Be-
cause of this, there has been recent work focusing on automatically
suggesting clear, meaningful variable names for tasks such as code
refactoring [3, 5, 52] and reverse engineering [35, 45].

A common approach involves building prediction engines on
top of learned variable representations. Representation learning is
a common task in Natural Language Processing (NLP), and these
techniques are often adapted to source code. Simpler approaches
model variable representations by applying word2vec [58] to
code tokens [8, 16, 59, 75], while more advanced techniques have
adapted neural network architectures [41] or pre-trained language
models [12]. Source code representation is a common enough task
that researchers have developed benchmarks specifically for vari-
able [75] and program representations [76].

Similarity and Relatedness. A fundamental concern with existing
variable representations and suggestion engines is the difference be-
tween “related” and “similar” variables [60, 75]. “Related” variables
reference similar core concepts without concern for their precise
meaning, while “similar” variables are directly interchangeable. For
example, minWeight and maxWeight are related but not similar, while
avg and mean are both. Unlike state-of-the-art techniques, which
only model relatedness, VarCLR explicitly optimizes for similarity
by adapting contrastive learning techniques from NLP and com-
puter vision research. In NLP, systems are often designed to focus
on text relatedness [10, 23, 85], similarity [32], or both [2]. While
document search might only be concerned with relatedness [23]
similarity is particularly important in systems designed for para-
phrasing documents [79, 81].

VarCLR relies on contrastive learning to optimize for similarity.
Contrastive learning is particularly useful for learning visual repre-
sentations without any supervision data [11, 13, 14, 26, 30, 72, 82],
but has also been used for NLP [61]. Recent work has applied con-
trastive learning to the pre-training of language models to learn
text representations [17] and, similar to our task, learn sentence
embeddings for textual similarity tasks [24]. Contrastive learning
has also been used for code representation learning [36] where
source-to-source compiler transformation is applied for generating
different views of a same program. Different from this work, we
focus on learning representations for variable names, and leverage
additional data from GitHub for better supervision.

String similarity and spelling errors. Efficient string similarity
search remains an active research area [6, 19, 49, 87]. Most of these
methods can be categorized as sparse retrieval methods, focusing
on distance functions on the original string or n-grams. These al-
gorithms depend on the lexical overlap between strings and thus
cannot capture the similarity between variables pairs such as avg
and mean. More recently, dense retrieval methods have been shown
effective in NLP tasks [39, 47]. These methods perform similarity
search in the space of learned representations, so that sequences

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

with similar meanings but low lexical overlap can be found. Mean-
while, extremely efficient similarity search frameworks for dense
vectors such as faiss [38] can be applied. VarCLR introduces the
concept of dense retrieval into the variable names domain, enabling
more effective and efficient finding of a list of candidates that are
similar to a given variable name.

Neural models for spelling error correction usually require par-
allel training data which are hard to acquire in practice [28, 86].
Recent work adopts different mechanisms to create synthetic paral-
lel data, including noise injection [37], and back-translation mod-
els [27]. We leave a detailed comparison to future work, but note
that VarCLR shows promise without expensive training data.

Name- andMachine Learning-based ProgramAnalyses. Our down-
stream tasks are examples of program analyses based on infor-
mation gathered with machine learning (ML). Name-based based
program analyses predicated on machine learning have been used
in many contexts. In the context of code modification, they have
been used for variable name suggestion from code contexts [5],
method and class name rewriting [52] and generation [4], code
generation directly from docstrings [12], and automated program
repair [15, 77]. They have also been used for type inference from
natural language information [57, 83], detecting bugs [40, 64, 65, 68],
and detecting vulnerabilities [29]. VarCLR can serve as a drop-in
pre-training step for such techniques, enabling more effective use
of the semantic information contained in variable names for a wide
range of such analyses.

6 DISCUSSION

In this paper, we study variable representation learning, a problem
with significant implications for machine learning and name-based
program analyses. We present a novel method based on contrastive
learning for pre-training variable representations. With our new
weakly-supervised GitHubRenames dataset, our method enables
the use of stronger encoder architectures in place of word2vec-
based methods for this task, leading to better generalized repre-
sentations. Our experiments show that VarCLR greatly improves
representation quality not only in terms of variable similarity, but
also for other downstream tasks.While these downstream tasksmay
not be immediately practical themselves, our approach is promising
as a drop-in pre-training solution for other variable name-based
analysis tasks, which we hope others will attempt in future work.
For example, VarCLR can replace the the word2vec-CBOW em-
beddings used in a name-based bug detector [64], or the n-gram
based language model used as a similarity scoring function for
name suggestion [3]. Existing dictionary-based IDE spell-checkers
may also benefit from using VarCLR to rank suggestions based on
the pretrained semantic similarity.

We note limitations and possible threats in our study. Our dataset
is automatically constructed from git commits from GitHub, and
likely contains noise that can harm contrastive learning perfor-
mance [50]. However, our results show that despite this noise, our
models transfer well, and our evaluation is based on an entirely
distinct test set. Knowledge distillation and self-training meth-
ods [21, 33] such as momentum distillation [50] can be applied
to deal with the noise in weak supervision data [50, 71].

In this work, we applied VarCLR exclusively to unsupervised
downstream tasks. Fine-tuning VarCLR models with labeled data
might further enable significant performance improvements for
more complicated tasks, like natural variable name suggestion [3].
Beyond constructing similar variable names, it is also conceptually
possible to construct similar pairs of larger code snippets from git
diffs describing patches. Applying contrastive learning on these
pairs can potentially improve CodeBERT code representation and
understanding, which could benefit tasks well beyond variable
similarity, such as code search. Finally, we used instance discrimi-
nation [82] to guide our contrastive learning approach, with promis-
ing results. This suggests that more advanced contrastive learning
methods such as MoCo [30], BYOL [26], SwAV [11] be adapted to
this task for better representation learning in general.

ACKNOWLEDGMENTS

The authors would like to thank Michael Pradel and the authors
of IdBench for providing us with data for our experiments. This
material is based upon work supported in part by the National
Science Foundation (awards 1815287 and 1910067).

REFERENCES
[1] Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel,

Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
et al. 2020. Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977 (2020).

[2] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and
Aitor Soroa. 2009. A study on similarity and relatedness using distributional and
wordnet-based approaches. (2009).

[3] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing Natural Coding Conventions. In Symposium on the Foundations of Software
Engineering (FSE). 281–293.

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 38–49.

[5] R. Bavishi, M. Pradel, and K. Sen. 2017. Context2Name: A Deep Learning-Based
Approach to Infer Natural Variable Names from Usage Contexts. Technical Report.
TU Darmstadt, Department of Computer Science.

[6] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
all pairs similarity search. In Proceedings of the 16th international conference on
World Wide Web. 131–140.

[7] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I Maletic, Christopher
Morrell, and Bonita Sharif. 2013. The impact of identifier style on effort and
comprehension. Empirical Software Engineering 18, 2 (2013), 219–276.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[9] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[10] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014. Multimodal distributional
semantics. Journal of artificial intelligence research 49 (2014), 1–47.

[11] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. 2020. Unsupervised learning of visual features by contrasting
cluster assignments. arXiv preprint arXiv:2006.09882 (2020).

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared
Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. 2021.
Evaluating large languagemodels trained on code. arXiv preprint arXiv:2107.03374
(2021).

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[14] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15750–15758.

[15] Zimin Chen and Martin Monperrus. 2018. The Remarkable Role of Similarity in
Redundancy-based Program Repair. arXiv prepring arXiv:1811.05703 (2018).

����

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues

[16] Zimin Chen and Martin Monperrus. 2019. A literature study of embeddings on
source code. arXiv preprint arXiv:1904.03061 (2019).

[17] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In International Conference on Learning Representations.

[18] Fred J. Damerau. 1964. A Technique for Computer Detection and Correction of
Spelling Errors. Commun. ACM (1964), 171–176.

[19] Dong Deng, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2013. Top-k string
similarity search with edit-distance constraints. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 925–936.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[21] Jingfei Du, Édouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael
Auli, Veselin Stoyanov, and Alexis Conneau. 2021. Self-training Improves Pre-
training for Natural Language Understanding. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 5408–5418.

[22] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
1536–1547.

[23] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. 2001. Placing search in context: The concept
revisited. In Proceedings of the 10th international conference on World Wide Web.
406–414.

[24] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. arXiv preprint arXiv:2104.08821 (2021).

[25] Edward M. Gellenbeck and Curtis R. Cook. 1991. An Investigation of Procedure
and Variable Names as Beacons During Program Comprehension. Technical Report.
Oregon State University.

[26] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own la-
tent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733
(2020).

[27] Jinxi Guo, Tara N Sainath, and Ron J Weiss. 2019. A spelling correction model for
end-to-end speech recognition. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5651–5655.

[28] Masato Hagiwara and Masato Mita. 2020. GitHub Typo Corpus: A Large-Scale
Multilingual Dataset of Misspellings and Grammatical Errors. In Proceedings of
the 12th Language Resources and Evaluation Conference. 6761–6768.

[29] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R Kosta,
Akshay Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, Paul M
Ellingwood, et al. 2018. Automated software vulnerability detection with machine
learning. arXiv preprint arXiv:1803.04497 (2018).

[30] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momen-
tum contrast for unsupervised visual representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9729–9738.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[32] Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating
semantic models with (genuine) similarity estimation. Computational Linguistics
41, 4 (2015), 665–695.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[34] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Computation 9, 8 (1997), 1735–1780.

[35] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bogdan
Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A Machine
Translation Approach. In International Conference on Program Comprehension
(ICPC ’18). 20–30.

[36] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E Gonzalez, and
Ion Stoica. 2020. Contrastive code representation learning. arXiv preprint
arXiv:2007.04973 (2020).

[37] Sai Muralidhar Jayanthi, Danish Pruthi, and Graham Neubig. 2020. NeuSpell:
A Neural Spelling Correction Toolkit. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. 158–
164.

[38] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

[39] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[40] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian Elbaum, and Zhaogui Xu.
2018. Phys: probabilistic physical unit assignment and inconsistency detection. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 563–573.

[41] Deborah S. Katz, Jason Ruchti, and Eric Schulte. 2018. Using Recurrent Neural
Networks for Decompilation. In International Conference on Software Analysis,
Evolution and Reegnineering (SANER ’18). 346–356.

[42] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. arXiv preprint arXiv:2004.11362 (2020).

[43] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[44] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR ’17.

[45] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire
Le Goues, Graham Neubig, and Bogdan Vasilescu. 2019. Dire: A neural approach
to decompiled identifier naming. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 628–639.

[46] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In International Conference on Program Com-
prehension (ICPC ’06). 3–12.

[47] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent re-
trieval for weakly supervised open domain question answering. arXiv preprint
arXiv:1906.00300 (2019).

[48] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880.

[49] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient merging and filtering algo-
rithms for approximate string searches. In 2008 IEEE 24th International Conference
on Data Engineering. IEEE, 257–266.

[50] Junnan Li, Ramprasaath R Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caim-
ing Xiong, and Steven Hoi. 2021. Align before Fuse: Vision and Language Repre-
sentation Learning with Momentum Distillation. arXiv preprint arXiv:2107.07651
(2021).

[51] Hui Liu, Qiurong Liu, Cristian-Alexandru Staicu, Michael Pradel, and Yue Luo.
2016. Nomen est omen: Exploring and exploiting similarities between argument
and parameter names. In Proceedings of the 38th International Conference on
Software Engineering. 1063–1073.

[52] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 1–12.

[53] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[54] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

[55] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao KunDeng, Shengyu Fu, and Shujie LIU. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1). https://openreview.net/forum?id=6lE4dQXaUcb

[56] Edward Ma. 2019. NLP Augmentation. https://github.com/makcedward/nlpaug.
[57] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring

JavaScript function types from natural language information. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 304–315.

[58] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffery Dean. 2013.
Distributed Representations of Words and Phrases and their Compositioniality.
Computing Research Repository (CoRR) abs/1310.4546 (2013).

[59] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[60] George A Miller and Walter G Charles. 1991. Contextual correlates of semantic
similarity. Language and cognitive processes 6, 1 (1991), 1–28.

[61] Andriy Mnih and Koray Kavukcuoglu. 2013. Learning word embeddings ef-
ficiently with noise-contrastive estimation. In Advances in neural information
processing systems. 2265–2273.

[62] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal

����

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

of molecular biology 48, 3 (1970), 443–453.
[63] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[64] Michael Pradel and Thomas R Gross. 2011. Detecting anomalies in the order

of equally-typed method arguments. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 232–242.

[65] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

[66] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[67] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[68] Andrew Rice, Edward Aftandilian, Ciera Jaspan, Emily Johnston, Michael Pradel,
and Yulissa Arroyo-Paredes. 2017. Detecting argument selection defects. Pro-
ceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–22.

[69] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533–536.

[70] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1715–1725.

[71] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. Advances in Neural Information Processing Systems 30 (2017).

[72] Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020. Contrastive multiview
coding. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XI 16. Springer, 776–794.

[73] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
Isola. 2020. What makes for good views for contrastive learning? arXiv preprint
arXiv:2005.10243 (2020).

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017. 6000–6010.

[75] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Seman-
tic Representations of Identifier Names in Source Code. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 562–573.

[76] Ke Wang and Mihai Christodorescu. 2019. Coset: A benchmark for evaluating
neural program embeddings. arXiv preprint arXiv:1905.11445 (2019).

[77] Martin White, Michele Tufano, Matías Martínez, Martin Monperrus, and Denys
Poshyvanyk. 2018. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. arXiv preprint arXiv:1707.04742 (2018).

[78] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and transforming program repair ingredients via deep
learning code similarities. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 479–490.

[79] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2015. Towards
universal paraphrastic sentence embeddings. arXiv preprint arXiv:1511.08198
(2015).

[80] John Wieting, Kevin Gimpel, Graham Neubig, and Taylor Berg-Kirkpatrick. 2019.
Simple and Effective Paraphrastic Similarity fromParallel Translations. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics.
4602–4608.

[81] John Wieting, Kevin Gimpel, Graham Neubig, and Taylor Berg-Kirkpatrick. 2021.
Paraphrastic Representations at Scale. arXiv preprint arXiv:2104.15114 (2021).

[82] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3733–3742.

[83] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
probabilistic type inference with natural language support. In Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering. 607–618.

[84] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and
Alexander L Gaunt. 2018. Learning to Represent Edits. In International Conference
on Learning Representations.

[85] Torsten Zesch, Christof Müller, and Iryna Gurevych. 2008. Using Wiktionary for
Computing Semantic Relatedness.. In AAAI, Vol. 8. 861–866.

[86] Shaohua Zhang, Haoran Huang, Jicong Liu, and Hang Li. 2020. Spelling Error
Correction with Soft-Masked BERT. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 882–890.

[87] Zhenjie Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, and Divesh Srivastava.
2010. Bed-tree: an all-purpose index structure for string similarity search based
on edit distance. In Proceedings of the 2010 ACM SIGMOD International Conference

on Management of data. 915–926.
[88] Hao Zhong, Tao Xie, Jian Pei, and Hong Mei. 2009. MAPO: Mining and Rec-

ommending API Usage Patterns. In European Conference on Object-Oriented Pro-
gramming (ECOOP). 318–343.

����

