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The decompiler is one of the most common tools for examining executable binaries without the corresponding source code. It
transforms binaries into high-level code, reversing the compilation process. Unfortunately, decompiler output is far from
readable because the decompilation process is often incomplete. State-of-the-art techniques use machine learning to predict
missing information like variable names. While these approaches are often able to suggest good variable names in context,
no existing work examines how the selection of training data influences these machine learning models. We investigate
how data provenance and the quality of training data affect performance, and how well, if at all, trained models generalize
across software domains. We focus on the variable renaming problem using one such machine learning model, DIRE. We first
describe DIRE in detail and the accompanying technique used to generate training data from raw code. We also evaluate
DIRE’s overall performance without respect to data quality. Next, we show how training on more popular, possibly higher
quality code (measured using GITHUB stars) leads to a more generalizable model because popular code tends to have more
diverse variable names. Finally, we evaluate how well DIRE predicts domain-specific identifiers, propose a modification to
incorporate domain information, and show that it can predict identifiers in domain-specific scenarios 23% more frequently
than the original DIRE model.
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1 INTRODUCTION

Decompilers, i.e., tools such as Hex-Rays [22] and Ghidra [17], which help translate binaries into code that
resembles high-level languages such as C, are essential for software reverse engineers looking to predict the
behavior of malware [14, 56, 57], discover vulnerabilities [48, 52, 57], and patch bugs in legacy software [48, 52].
Decompilers use sophisticated program analysis and heuristics to reconstruct information about a program’s
variables, types, functions, and control flow structure, effectively increasing program comprehension for reverse
engineers who would otherwise work directly with binaries or with assembly code.

Still, the output of all existing decompilers is far from readable, as decompilation is often incomplete. Compilers
discard source-level information and lower its level of abstraction in the interest of binary size, execution time,
and even obfuscation. As a result, comments, variable names, user-defined types, and idiomatic structure are all
lost at compile time, and are typically unavailable in decompiler output. In particular, variable names, which
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are highly important for code comprehension and readability [16, 31], become nothing more than arbitrary
placeholders such as vAR1 and vAR2. While many compilers offer the option to include debugging information
that preserves variable names in the resulting executable, malware authors and commercial vendors typically
set compiler flags to prevent this in an effort to frustrate security researchers or protect corporate intellectual
property.

To improve on existing decompilers, researchers have been developing a suite of deep-learning based techniques
to automatically infer informative variable names (and in some cases also user-defined types) in a given context,
e.g., DIRE [30], DIRECT [39], and DIRTY [9]. Since programmers tend to write similar code in similar contexts [13,
23], such techniques can learn to infer natural names, even if not necessarily the original ones pre-compilation.
These techniques can be applied as a post-processing step to decompilation, taking the output of decompilers
as input and automatically refactoring it. While the specifics of the learning approaches vary, the key idea that
enables learning such models is that one can generate arbitrary amounts of parallel training data given access to
open-source software repositories and standard compilers and decompilers; these data consist of pairs of original
source, with presumably human-written variable names, and corresponding decompiler output, with placeholder
variable names.

However, while results from prior work [9, 30, 39] show that, on average, the performance of existing techniques
on decompiled open-source binaries is high, i.e., it is often possible to recover the exact variable names chosen by
the authors of that code pre compilation/decompilation, open questions remain about how the provenance and
quality of the training data affect performance, and how well, if at all, trained models generalize across software
domains. We argue that answers to these questions are direly needed. Indeed, data quality is a universal issue that
affects machine learning models in all domains. In addition, closer to our problem, researchers have already raised
concerns about neural models of code, e.g., that they are negatively affected by code duplication in the training
data [1, 33], do not scale well on code completion tasks because, of large vocabularies and out-of-vocabulary
issues [27], are not robust to semantic-preserving program transformations [42], and do not readily generalize to
other downstream tasks [26]. In essence, while much work, including the original ASE ’19 paper [30], has focused
on increasing the power of models of operations on code, here we focus on the orthogonal, underexplored issue
of better selecting and harnessing the data used to train these models to increase performance.

Specifically, in this paper we investigate how data quantity, quality, and software domain provenance affect the
performance of the neural identifier renaming technique DIRE [30]. Issues of data quality and model robustness
have, thus far, been underexplored by researchers interested in the decompiled identifier renaming problem. Our
work is an extension of an ASE 2019 paper [30] where DIRE was originally presented, the technical details of
which we reproduce verbatim here, for completeness. These include the technical description of DIRE and the
approach used to generate its parallel training data, plus a data-provenance-agnostic evaluation of DIRE, all
originally reported in the ASE 2019 paper [30]. In addition, relative to the conference paper, in this paper we make
two major new contributions. First, we study how the performance of DIRE varies when trained on decompiled
binaries from more versus less popular repositories (using GITHUB repository stars, the measure of popularity,
also as a loose proxy for code quality), and contribute empirical results showing that training on highly-starred
code leads to a more generalizable model because such code tends to be more diverse, i.e., it has a higher-entropy
distribution of variable names. Second, we evaluate how well DIRE learns to predict domain-specific identifiers,
propose a modification to incorporate domain information, and show empirically that the modified version can
predict identifiers in domain-specific scenarios 23% more frequently than the original DIRE model.

Note that contemporaneously with our current work, two competing decompiler identifier renaming techniques
have been proposed, DIRECT [39] and DIRTY [9]. The two use different learning approaches than DIRE (both use
a transformer-based architecture [54]) and report higher accuracy than DIRE when compared directly; however,
neither addresses the data provenance and model robustness research questions of interest here, although the
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Fig. 1. Overview of our paper.

approaches to train all three systems are fundamentally similar. Therefore, our current work (i.e., the new research
questions and experiments relative to the ASE 2019 paper [30]) can be seen as orthogonal.
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2 PAPER OVERVIEW

This paper is organized in three main parts, summarized in Fig. 1.

In the first part, we cover the technical details of the DIRE approach. Specifically, in Section 3 we provide
background on the decompilation process, the challenges it raises, and related work to help address these
challenges, as well as background on statistical models of source code. Next, we present DIRE (the Decompiled
Identifier Renaming Engine) in Section 4, our technique for assigning meaningful names to decompiled variables.
DIRE is an ensemble of two different machine learning models, one which captures sequential lexical information
about the source code and another which captures graphical structural information. Finally, in Section 5, we
address the challenges with obtaining and cleaning DIRE’s training data, a nontrivial task.

In the second part (Section 6), we answer our first set of research questions about the overall efficacy of the
DIRE technique, a breakdown by each of the two model components, and a comparison to its closest predecessor;
these results were all part of the original ASE 2019 conference paper [30].

Specifically, in RQ1 we establish a baseline for DIRE’s performance on our corpus, without focusing on any
dataset characteristics.

e RQ1: How effective is DIRE at assigning names to variables in decompiled code?

DIRE incorporates multiple streams of information when making predictions. Some approaches [25], inspired
by natural language processing techniques, treat source code as a sequence of tokens, as might be produced from
a lexer. However, source code has a formally defined structure. In designing DIRE, we incorporated this structural
information as well, using enhanced abstract syntax tree representations in addition to a lexical representation. In
RQ2, we investigate how each of these two components influences and contributes to DIRE’s overall performance.

e RQ2: How does each component of DIRE contribute to its efficacy?
In RQ3, we compare DIRE against its closest predecessor.
e RQ3: Is DIRE more effective than prior approaches?

Finally, in the third part (Section 7), which is almost entirely new relative to the conference paper, we answer
our second set of research questions about the impact of data provenance on the performance of DIRE. Prior
work has generally not focused on the curation of training data for such models, instead implicitly treating all
such data as equivalent. As discussed above, we hypothesize that even if all training data for such models comes
from one open source super-repository like GitHub, because of the inherent diversity of projects hosted there,
there are systematic differences between data sampled in different ways that will significantly affect the behavior
and performance of decompiled variable renaming models.

To test this general hypothesis, we address research questions about how the characteristics of the training set
influence the performance of DIRE. Specifically, in RQ4, we investigate how DIRE performs in data-constrained
environments, given that training deep neural networks can be computationally expensive, and it may not always
be feasible to train DIRE on a large data set.

e RQ4: How does the quantity of data influence the efficacy of DIRE?

In RQ5, we study to what extent there are noticeable differences in the performance and behavior of DIRE
when trained on data coming from popular, “high-star” repositories compared to data from unpopular, “no-star”
repositories. On transparent, social coding platforms like GitHub, project popularity as indicated by the number
of repository stars indicates more community interest, attention, and ultimately pressure on the project owners
to follow software engineering best practices, and to provide and maintain high-quality code [8].

e RQ5: How does the provenance of training data influence the efficacy of DIRE?

Some identifiers occur more frequently in context of other identifiers. For example, a variable named url is
more likely to occur near a variable named http_request than in code in general. We define a software domain
as a collection of contexts like this that share a similar purpose. Examples of software domains include networking
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Fig. 2. Two different C loops that compile to the same assembly code. Note the normalized structure and names.

and graphics. Software domains, however, can be very unevenly distributed on GiTHUB, leading to potential bias
— the model may learn to disproportionately suggest names from overrepresented domains. We account for this
effect by modifying DIRE to make it domain-aware and evaluate this modification.

e RQ6: How well can DIRE perform on diverse code from various domains if it is made aware of its software
domain?

The paper ends with a discussion of threats to validity in Section 8 and conclusions in Section 9.

3 BACKGROUND

Before diving into the technical details of our approach, we start with some background on decompilation,
statistical models of source code, and the two particular classes of deep learning models we rely on, recurrent
neural networks (RNNs) and gated-graph neural networks (GGNNs).

3.1 Decompilation

At a high level, a compiler generates binaries from source using a pipeline of processing stages, and decompilers
try to reverse this pipeline using various techniques [28]. Typically, a binary is first passed through a platform-
specific disassembler. Next, assembly code is typically lifted to a platform-independent intermediate representation
(IR) using a binary-to-IR lifter. The next stage is the heart of the decompiler, and is where a number of program
analyses are used to recover variables, types, functions and control flow abstractions, which are ultimately
combined to reconstruct an abstract syntax tree (AST) corresponding to an idiomatic program. Finally, a code
generator converts the AST to the decompiled output.

Decompilation is more difficult than compilation, because each stage of a compiler loses information about
the original program. For example, the lexing/parsing stage of the compiler does not propagate code comments
to the AST. Similarly, converting from the AST to IR can lose additional information. This loss of information
allows multiple distinct source code programs to compile to the same assembly code. For example, the two loops
in Fig. 2 are reduced to the same assembly instructions. The decompiler cannot know which source code was
the original, but it does try to generate code that is idiomatic, using heuristics to increase code readability. For
example, high-level control flow structures such as while loops are preferred over goto statements.

The choice of which code to generate is largely heuristic, but can be informed by the inclusion of DWARF
debugging information [15]. This debugging information, which can optionally be generated at compile-time,
greatly assists the decompiler by identifying function offsets, types of variables, identifier names, and user-defined
structures and unions.
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3.2 Statistical Models of Source Code

Identifiers play an important role in program comprehension [16, 31]. Researchers have employed the renaming
of identifiers as a way to ensure that they are consistently named within the program [35] or are consistent
with program semantics. However, the relationship between identifiers and program semantics is complex and
difficult to describe explicitly. Thus, researchers have recently begun turning to statistical models of source code
to capture these relationships, e.g., determining if a method’s name is consistent with its body [36] or determining
why an identifier was changed when a given piece of code was refactored [7].

A wide variety of statistical models for representing source code have been proposed based on the naturalness
of software [13, 23]. This key property states that source code is highly repetitive given context, and is therefore
predictable. Statistical models capture the implicit knowledge hidden within code, and apply it to build new
software development tools and program analyses, e.g., for code completion, documentation generation, and
automated type annotation [4].

Predicting variable names is no exception. Work has shown that statistical models trained on source code
corpora can predict descriptive names for variables in a previously-unseen program, given the contextual features
of the code in which the variable is used. These naming models can help to distill coding conventions [2] or
analyze obfuscated code [43, 53]. Several classes of statistical models have been used for renaming, including
n-grams [2, 53], conditional random fields (CRFs) [43], and deep learning models [3, 5, 6].

Two recent approaches aim to suggest informative variable names in decompiled code. Our prior work [25]
proposed a lexical n-gram-based machine translation model that operates on decompiler output. That approach
used heuristics to align variables in the decompiler output and original source, which are needed for training,
and is able to exactly recover 12.7% of the original names in the test set.

Contemporaneously, He et al. [21] proposed a two-step approach that operates on a stripped binary rather
than the decompiler output. First, the authors predict whether a low-level register or a memory offset maps to
a variable at the source-level. Then, using structured prediction with CRFs, they predict names and types for
the mapped variables. 63.5% of the variables in the test set for which the first step succeeded could be recovered
exactly.

3.3 Neural Network Models

Our approach builds on two advances in statistical models for representing source code: recurrent neural networks
(RNNs) and gated-graph neural networks (GGNNs).

3.3.1 Recurrent Neural Networks. RNNs are networks where connections between nodes form a sequence [44].
They are typically used to process sequences of inputs by reading in one element at a time, making them well-
suited to modeling source code tokens. In this work, we use long short-term memory (LSTM) models [24], a
variant of RNNs widely used in text processing. Formally, an LSTM has the following structure: given a sequence

n

— -
of tokens {x;}1,, an LSTM f 1stm processes them in order, maintaining a hidden state h; for each subsequence

up to token x; using the recurrent function }_l), = ?LSTM(emb(xi), Z:_l), where emb(:) is an embedding function
mapping x; into a learnable vector of real numbers. As we will elaborate later in Section 4, we use two types
of LSTMs in DIRE: encoding LSTMs and decoding LSTMs. An encoder LSTM reads the input sequence (e.g., a
sequence of source code tokens, as in Section 4.2.1) and encodes it into continuous vectors, while a decoder LSTM
takes these vectors and generates the output sequence (e.g., the sequence of predicted names for all identifiers, as
in Section 4.3).

3.3.2 Gated-Graph Neural Networks. While LSTMs are useful for representing and generating sequences, they
do not capture any additional structural information. Within the decompilation task, structured information

ACM Trans. Softw. Eng. Methodol.



DIRE and its Data: Neural Decompiled Variable Renamings with Respect to Software Class « 1:7

Token
Stream

Binary

a — Decompiler DIRE Variable

Names

AST
Fig. 3. High-level overview of our approach.

provided by the AST is a natural information source about choice of variable names. For this purpose, we also
employ structural encoding of the code using GGNNS, a class of neural models that map graphs to outputs [34, 47].

At a high level, GGNNs are neural networks over directed graphs. Initially, we associate each vertex with a
learned or computed hidden state containing information about the vertex. GGNNs compute representations for
each vertex based on the initial vertex information and the graph structure.

Formally, let G = (V, E) be a directed graph describing our problem, where V ={v;} is the set of vertices and
E = {(v; = v}, 7)) is the set of typed edges. Let Ny (v;) denote the set of vertices adjacent to.v; with edge type 7.
In a GGNN, each vertex v; is associated with a state h? , indexed by a time step f. At each time step ¢, the GGNN
updates the state of all nodes in V via neural message };)assing (NMP) [18]. Concurrently for each node v; at time

t, NMP is performed as follows: First, for each v; € Ny (v;) we compute a message vector mz(;vai =Wg - hﬁ iy
where Wy is a type-specific weight matrix. Then, all m{*~ " are aggregated, and summarized into a single vector
xig via element-wise mean (pooling):

i

xig = MeanPoo]({m;ﬂ i v; € Ny (v;), YT }).

Finally, the state of every node v; is updated using a nonlinear activation function f: h?, = f(x?,hY,_|). GGNNs
use a Gated Recurrent Unit (GRU) update function, fgry(+), introduced by Cho et al. [12] By repeatédly applying
NMP for T steps, each node’s state gradually represents information about that node and its context within the
graph. The computed states can then be used by a decoder, similarly to the LSTM-based decoder architectures.
As in LSTMs, all GGNN parameters (parameters foru(-) and the Wy-s) are optimized along with the rest of the

model.

4 THE DIRE ARCHITECTURE

We start with an overview of our approach, then dive into the technical details of each component.

4.1 Overview

We designed DIRE to work on top of a decompiler as a plugin that can automatically suggest more informative vari-
able names. We use Hex-Rays, a state-of-the-art industry decompiler, though our approach is not fundamentally
coupled to Hex-Rays and can be adapted to other decompilers.

Fig. 3 gives a high-level overview of our workflow. First, a binary is passed to a decompiler, which decompiles
each function in the binary. For each function, our plugin traverses the AST, inserting placeholders at variable
nodes. This produces two outputs: the AST and the tokenized code. These outputs are provided as input to our
neural network model, DIRE, which generates unique variable names for each placeholder in the input. The
decompiler output can then be rewritten to include the suggested variable names.

Fig. 4 gives an overview of the neural architecture. DIRE follows an encoder-decoder architecture: An encoder
neural network (Section 4.2) first encodes the decompiler’s output—both the sequence of decompiled code tokens
and its internal AST—and computes distributed representations (i.e., real-valued vectors, or embeddings) for each
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Fig. 4. Overview of DIRE’s neural architecture. For clarity, we omit the data-flow links in the AST in the structural encoder.

identifier and code element. These encoded representations are then consumed by a decoder neural network
(Section 4.3) that predicts meaningful names for each identifier based on the contexts in which it is used.

The key takeaway is that DIRE uses both lexical information obtained from the tokenized code as well as
structural information obtained from the corresponding ASTs. This is achieved by using two encoders—a lexical
encoder (Section 4.2.1) and a structural encoder (Section 4.2.2)—to separately capture the lexical and structural
signals in the decompiled code. As we will show, this combination of lexical and structural information allows
DIRE to outperform techniques that rely on lexical information alone [25].

4.2 The Encoder Network
Each encoder network in DIRE outputs two sets of real-valued vector representations:

o A code element representation for each element in the decompiler’s output. Depending on the type of the
encoder, a code element will either be a token in the surface code (for the lexical encoder), or a node in the
decompiler’s internal AST (for the structural encoder).

o An identifier representation for each unique identifier defined in the input binary, which is a real-valued
vector that represents the identifier in the neural network.

The lexical and structural representations are then merged to generate a unified encoding of the input binary
(dashed boxes in Fig. 4). By computing separate representations for code elements and identifiers, the DIRE
decoder can better incorporate the contextual information in the encodings of individual code elements to
improve name predictions for the different identifiers; see Section 4.3.

4.2.1 Lexical Code Encoder. The lexical encoder sequentially encodes the tokenized decompiled code, projecting
each token x; into a fixed-length vector encoding x;. Specifically, the lexical encoder uses the sub-tokenized
code as the input, where a complex code token (e.g., the function name mystrcopy) in Fig. 4) is automatically
broken down into sub-pieces (e.g., my, str, and copy) using SentencePiece [29], based on sub-token frequency
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statistics. Sub-tokenization reduces the size of the encoder’s vocabulary (and thus its training time), while also
mitigating the problem of rare or unknown tokens by decomposing them into more common subtokens. We treat
the placeholder and reserved variable names (e.g., VAR1, VAR2, and the decompiler-inferred name result) in the
decompiler’s output as special tokens that should not be sub-tokenized.

DIRE implements the lexical encoder using LSTMs (described in Section 3.3.1). We use a bidirectional LSTM:

The forward network ?LSTM processes the tokenized code {x;}1 ; sequentially. The backward LSTM processes

—
the input tokenized code in backward order, producing a backward hidden state h; for each token x;. Intuitively, a
bidirectional LSTM captures informative context around a particular variable both before and after its sequential
location. Element Representations We encode a token x; by concatenating its asssociated state vectors, i.e.,

x; = [z : lTl], a common strategy in source code representations using LSTMs [4]. For a particular token
x; we compute the forward (resp. backward) representation using both its embedding and the hidden states
of its preceding (resp. succeeding) tokens. This is important because the resulting encoding x; captures both
the local and contextual information of the current token and its surrounding code. To compute the identifier
representation » for each unique identifier v, we collect the set of subtoken representations 4, of v, and perform
an element-wise mean over H,, to get a fixed-length representation: o = MeanPool(H,,).

4.2.2  Structural Code Encoder. The lexical encoder only captures sequential information in code tokens. To also
learn from the rich structural information available in the decompiler AST, DIRE employs a gated-graph neural
network (GGNN) structural encoder over the AST (Section 3.3.2). This requires a mechanism to compute initial
node states, as well as design choices of which AST edges to consider in the node encoding:

Initial Node States. The initial state of a node v;, hz ;=q is computed from three separate embedding vectors,
each capturing different types of information of v;: 1) An embedding of the node’s syntactic type (e.g., the root
node in the AST in Fig. 4 has the syntactic type block). 2) For a node that represents data (e.g., variables, constants)
or an operation on data (e.g., mathematical operators, type casts, function calls), an embedding of its data type,
computed by averaging the embeddings of its subtokenized type. For instance, the variable node vArR1 in Fig. 4
has the data type char *; its embedding is computed by averaging the embeddings of the type subtokens char
and =. 3) For named nodes, an embedding of the node’s name (e.g., the root node in Fig. 4 has a name mystrcopy),
computed by averaging the embeddings of its content subtokens. The initial state hz,t=o is then derived from a
linear projection of the concatenation of the three separate embedding vectors. For nodes without a data type or

name, we use a zero-valued vector as the respective embedding.

Graph Edges. Our structural encoder uses different types of edges to capture different types of information in
the AST. Besides the simple parent-child edges (solid arrows in the AST in Fig. 4) in the original AST, we also
augment it with additional edges [5]:

e We add an edge from the root block node containing the function name to each identifier node. The function
name can inform names of identifiers in its body. In our running example the two arguments VAR1 and VAR2
defined in the mystrcopy function might indicate the source and destination of the copy. This type of link
(“Function name to args.” in Fig. 4} captures these naming dependencies.

e To capture the dependency between neighboring code, we add an edge from each terminal node to its
lexical successor (“Successor terminal”).

e To propagate information among all mentions of an identifier, we add a virtual “supernode” (rectangular
node labeled var1) for each unique identifier v;, and edges from mentions of v; to the supernode (“Super
node link”) [18].

e Finally, we add a reverse edge for all edge types defined above, modeling bidirectional information flow.
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Representations. For the element representation, we use the final state of the GGNN for node n;, Ko asits

LT’
representation: n; = h?  (the recurrent process unrolls T times; T = 8 for all our experiments). For the identifier
representation for each unique identifier v;, its representation v; is defined as the final state of its supernode
as the encoding of v;. Since the supernode has bidirectional connections to all the mentions of v;, its state is
computed using the states of all its mentions. Therefore, v; captures information about the usage of v; in different

occurrences.

4.2.3 Combining Outputs of Lexical and Structural Encoders. The lexical and the structural encoders output
a set of representations for each identifier and code element. In the final phase of encoding, we combine the
two sets of outputs. Code element representations are computed by unioning the lexical set(of code tokens)
and structural set (of AST nodes) of element representations as the final encoding of each input code element;
identifier representations are computed by merging the lexical and structural representations of each identifier v
using a linear transformation as its representation.

4.3 The Decoder Network

The decoder network predicts names for identifiers using the representations given by the encoder. As shown in
Fig. 4, the decoder predicts names based on both the representations of identifiers, and contextual information in
the encodings of code elements. Specifically, as with the encoder, we assume an identifier name is composed of a
sequence of sub-tokens (e.g., destAddr — dest, Addr; see Section 4.2.1). The decoder factorizes the task of predicting
idiomatic names to a sequence of time-indexed decisions, where at each time step, it predicts a sub-token in
the idiomatic name of an identifier. For instance, the idiomatic name for VAR1, destAddr, is predicted in three
time steps (s; through s3) using sub-tokens dest, Addr, and </i>, (the special token </i> denoting the end of the
token prediction process). Once a full identifier name is generated, the decoder continues to predict other names
following a pre-order traversal of the AST. As we will elaborate in Section 5, not all identifiers in the decompiled
code will be labeled with corresponding “ground-truth” idiomatic names, since the decompiler often generates
variables not present in the original code. DIRE therefore allows an identifier’s decompiler-assigned name to be
preserved by predicting a special </identity> token.

The probability of generating a name is therefore factorized as the product of probabilities of each local decision
while generating a sub-token y;:

T
p(1X) = [ | ptyely<e. X).
t=1
where X denotes the input code, and Y is the full sequence of sub-tokens for all identifiers, and y.; denotes the
sequence of sub-tokens before time step ¢.
We model p(y;|y<;, X) using an LSTM decoder, following the parameterization proposed by Luong et al. [37].
Specifically, to predict each sub-token y,, at each time step ¢, the decoder LSTM maintains an internal state s,

defined by
st = fustm[ye-1 2 o1 2 1], 80-1)s

where [:] denotes vector concatenation. The input to the decoder consists of two representations: the embedding
vector of the previously predicted name, y,_1; and the encoder’s representation of the current identifier to be
predicted, v;. Our decoder also uses attention [11] to compute a context vector ¢;, generated by aggregating
contextual information from representations of relevant code elements. ¢; is computed by taking the weighted
average over encodings of AST nodes and surface code tokens, for each current sub-tokenized name y;. The
decoder’s hidden state is then updated using the context vector, incorporating the contextual information into the
decoder’s state s, = W - [s, : ¢;], where W is a weight matrix. Then, the probability of generating a sub-token
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(y:) is:
exp (ytT§t)
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4.4  Training the Neural Network

Since DIRE is constructed from neural networks, training data is required to learn the weights for each neural
component. Our training corpus is a set D = {(X;, Y;)}, consisting of pairs of code X and sub-token sequences Y,
denoting the decoder-predicted sequence of identifier names. DIRE is optimized by maximizing the log-likelihood
of predicting the gold sub-token sequence Y; for each training example X;:

|Y: ]

D logp(VilXp) = >0 > wp - logp(ys,|Xa),

(Xi, Yi) (X3, Yy) t=1

where Y; , denotes the #-th sub-token in the decoder’s prediction sequence Y;. As discussed in Section 4.3, there
are intermediate variables in the decompiled code. To ensure the decoder network will not be biased towards
predicting </identity> for other identifiers, we use a tuning weight w; and set it to 0.1 for sub-tokens that
correspond to intermediate variables (and 1.0 otherwise).

5 DATA PREPARATION

In this section, we address the challenges surrounding the data: training DIRE requires a large corpus of structure-
rich, annotated data. We describe our technique to automatically generate such data from C code at scale. With
the ability to automatically generate training data this way, we must choose appropriate projects from the large
number of C-language repositories on social coding platforms.

5.1 Generating a Parallel Corpus

The scale of the structure-rich, annotated corpus needed to train DIRE practically necessitates a technique to
generate this corpus automatically. Fortunately, it is possible to do this starting from a large repository of existing
C code.

At a high level, each entry in our corpus corresponds to a source code function, and consists of the information
necessary to train our model. An entry in the training corpus is illustrated in Fig. 5. Each entry contains three
elements: (a) the tokenized code, with variables replaced by an ID that uniquely identifies the variable in the
function; (b) the decompiler’s AST (Section 3.1) modified to contain the same unique variable IDs; and (c) a
lookup table mapping variable IDs to both the decompiler- and developer-assigned names. It is important to
assign a unique name to each variable to disambiguate any shadowed variable definitions. The tokenized code
and AST representations are used in both the model’s input and output. The input representation uses the
decompiler-assigned names, while the output uses the developer-assigned names.

Generating the placeholders and decompiler-chosen names is relatively straightforward. First, a binary is
compiled normally and passed to the decompiler. Next, for each function, we traverse its AST and replace each
variable reference with a unique placeholder token. Finally, we instruct the decompiler to generate decompiled
C code from the modified AST, tokenizing the output. Thus, we have tokenized code, an AST, and a table
mapping variable IDs to decompiler-chosen names. The remaining step, mapping developer-chosen names to
variable IDs, is the core challenge in automatic corpus generation. Following our previous approach [25], we
leverage the decompiler’s ability to incorporate developer-chosen identifier names into decompiled code when
DWAREF debugging symbols [15] are present in the binary. However, this alone is not sufficient to identify which
developer-chosen name maps to a particular variable ID generated in the first step.
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Fig. 5. Entry in the training corpus. Each corresponds to a function and contains (a) tokenized code (b) the AST, both with
variables replaced with unique IDs, and (c) a lookup table containing decompiler- and developer-assigned names.

Specifically, challenges arise because decompilers use debugging information to enrich the decompiler output in
a variety of ways, such as improving type information. Recall from Section 3 that decompilers often make choices
between semantically-identical structures: the addition of debugging information can change which structure is
used. Unfortunately, this means that the difference between code generated with and without debugging symbols
is not always an a-renaming. In practice, the format and structure of the code can greatly differ between the
two cases. An example is illustrated in Fig. 6. In this example, the first pass of the decompiler is run without
debugging information, and the decompiler generates an AST for a while loop with two automatically-generated
variables named v1 and v2. Next, the decompiler is passed DWARF debugging symbols and run a second time,
generating the AST on the right. While the decompiler is able to use the developer-selected variable names i and
z, it generates a very different AST corresponding to a for loop.

An additional challenge is that there is not always a complete mapping between the variables in code generated
with and without debugging information. Decompilers often generate more variables than were used in the original
code. For example, return (x + 5); is commonly decompiled to int v1; v1 = x + 5; return v1;. The decompiled
code introduces a temporary variable v1 that does not correspond to any variable in the original source code. In this
case, there is no developer-assigned name for v1, since it does not exist in the original code. The use of debugging
information can change how many of these additional variables are generated. One solution to these problems
proposed by prior work is to post-process the decompiler output using heuristics to align decompiler-assigned
and developer-assigned names [25].

However, this technique can only correctly align 72.8% of variable names, therefore limiting the overall accuracy
of any subsequent model trained on this data. Instead, we developed a technique that directly integrates with the
decompiler to generate an accurate alignment without using heuristics. Our key insight is that while the AST
and code generated by the decompiler may change when debugging information is used, instruction offsets and
operations on variables do not change. As a result, each variable can be uniquely identified by the set of instruction
offsets that access that variable. For example, in Fig. 6, although there is not an obvious mapping between the
nodes in the trees, the addresses of the variable nodes in the trees have not changed. This enables us to uniquely
identify each variable by creating a signature consisting of the set of all offsets where it occurs. The variables
vl and i have the signature {492,49E,4A1,4A5}, while v2 and z have the signature {49E}. Note that some uses of
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(a) AST without DWARF. (b) AST with DWARF.

Fig. 6. Decompiler ASTs for the code in Fig. 2. Hexadecimal numbers indicate the location of the disassembled instruction
used to generate the node. While the ASTs are different, operations on variables and their offsets are the same, enabling
mapping between variables (i.e., vi—i and v2r-z).

variables overlap, e.g., v1 (i) is summed with v2 (z) in the instruction at offset 49€. This necessitates collecting the
full set of variable uses to disambiguate these instances.!

In summary, to generate our corpus we: 1) Decompile binaries containing debugging information. 2) Collect
signatures and corresponding developer-assigned names for each variable in each function. 3) Strip debugging
information and decompile the stripped binaries. 4) Identify variables by their signature, and rename them in
the AST, encoding both the decompiler- and developer-assigned names. 5) Generate decompiled code from the
updated AST. 6) Post-process the updated AST and generated code to create a corpus entry. The final output is a
per-binary file containing each function’s AST and decompiled code with corresponding variable renamings.

5.2 Selecting Data

As with any machine learning model, the characteristics of the data used to train DIRE can have a large impact
on its performance. We consider multiple different classes of data and how each affects DIRE. We sort data into
classes by mining metadata from GiTHUB and selecting repositories according to some signal for the desired
characteristic. In particular, we look at two ways of partitioning GiITHUB repositories into classes:

e by GiTHuUB stars, an indicator of popularity.
o by use case that the software is intended for (i.e., the software’s domain).

5.2.1 Stars. We use GITHUB stars as a signal for level of popularity. On the GrtTHus platform, users can “star”
a repository that they appreciate, find useful, or find interesting (similar to a “like” on social media platforms).
The star count is thus a crowd-sourced measure for popularity, but it also tends to correlate with improved
maintenance activities and other software engineering best practices [8, 51].

We partition code into classes based on stars because of what popularity and maintenance might mean for
identifiers. Source code which is popular or well-maintained is more frequently read and understood, sometimes
for the purpose of correcting errors or otherwise making modifications. Descriptive identifier names are critical

YWhile it is possible for two variable signatures to be identical, we found these collisions to occur very rarely in practice. In these cases we do
not attempt to assign names to variables.
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Fig. 7. Dimensionality-reduced visualizations of the embeddings generated by our model. Note how the different domains
tend to form separable clusters.

to these processes [46], so out of necessity, the identifiers from highly-starred projects are likely to be useful to
developers. In contrast, identifiers from poorly maintained projects with few stars may not be useful. Note that
for our purposes, the project need not be actively maintained nor currently popular; rather, it needs only to have
been actively maintained at some point, so that it is more likely that the variables names have been subjected to
scrutiny.

In our evaluation, we use two star-related classes of software on either end of the star count spectrum.
We created the high-star dataset by sampling repositories sorted by the number of stars in descending order.
The minimum number of stars of any selected high-star repository was 50 stars, the maximum, 76301 (from
torvalds/1linux), the median, 155, and the mean, 589.2.

The no-star dataset consists of all repositories which have no stars at all. We sample repositories randomly
with uniform probability when we select from this dataset.

We ascertain star information from the GHTorrent database [19] which contains snapshots of metadata for all
publicly-available GitHub projects at certain intervals; we used the version from June, 2019.

5.2.2  Software Domain. DIRE works best when predicting general, common variable names like len, value,
and buf as discussed in Section 6. However, DIRE can struggle on identifiers that are more rare and unique to a
particular software domain. For example, an identifier named lexeme likely occurs most frequently in compilers,
and less often in unrelated domains like graphics. This motivates the construction of a corpus of domain classes.

We can mine software domains from repository metadata, though not all repositories have the requisite
metadata, nor do binaries found in the wild without context. We built a simple classifier to assign domain class to
binaries for which we have no explicit domain classification and to check our expectation that binaries contain
domain information. The classifier is an amalgamation of two models in sequence: doc2vec [32], which converts
a piece of text of arbitrary size into an embedding (with 64 dimensions in our case), and a support vector machine
(SVM) with a radial basis function (RBF) kernel.

To develop our classifier, we iterated on a smaller and easier to use set of data drawn from the Debian ALLSTAR
dataset [50] with domain class assignments drawn from the Ultimate Debian Database [40]. In this dataset,
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domain classes are scientific and technical disciplines (e.g., biology and geography). To localize which parts of
the code contained significant amounts information, we experimented with removing different code features. We
found that the collective string literals from a given binary are often sufficient to correctly identify that binary’s
domain using our classifier.

We applied the classifier to our GiTHUB data, excluding some very small object files containing only a few
functions functions and no string literals (artifacts of the automated compilation process). Here, we use the
repository’s topic labels to assign repositories to domains. Topic labels are tags voluntarily assigned by project
maintainers to give viewers of the project a rough idea of the project’s characteristics at a glance. Not all repository
maintainers elect to supply topic labels, and not all topic labels are software domains (perhaps unsurprisingly, c
is the most common topic label in our dataset). For the purposes of demonstration, we hand-selected seven of
the most common topic labels that corresponded to software domains: kernel, game, shell, compiler, network,
embedded, graphics.

Our domain classifier is able to correctly classify binaries 96.53% of the time on the Debian dataset and
83.54% of the time on the GrTHuB dataset. Fig. 7 shows a plot of embeddings generated by our model after
we dimensionality-reduced each via the t-distributed stochastic neighbor embedding (t-SNE) method into two
dimensions for viewing. While it is impossible to perfectly represent a 64 dimensional space in just two dimensions,
it is still possible to see how different domains form distinct, separable clusters.

Embeddings from a structural model may perform better on the source code itself, but we leave this to future
work.

5.2.3 Data Cleaning and Deduplication. We performed several types of data cleaning on our large GitHub stars
corpus. We excluded all binaries written in languages other than C (our decompiler’s target language); it is com-
mon to find C++ and other languages in majority-C repositories. We also removed automatically generated code,
the repetitive structure and machine-generated names of which undermines the naturalness hypothesis. We used
a simple heuristic to exclude these repositories: any repository for which any of the strings "generated code",
"autogenerated", "auto-generated", "automatically generated", or "automatically-generated" ap-
peared was excluded. This is a rather harsh criterion, but due to the abundance of data available on GiTHuB, we
opted to potentially exclude some acceptable training data to prevent unnatural code from infiltrating our corpus.

We also performed deduplication on our corpus. Duplicate projects abound on GiTHUB, and can be detrimental
to the model’s ability to generalize [1]. We used a multi-layer deduplication strategy. The first layer applies
the gh-dedup dataset [49], which lists duplicate repositories along with their parent repositories, excluding
any duplicate repositories whose parents were also in the data set. While this dataset is able to identify some
duplicates, it does not identify all of them. We hashed each binary, and ensured only one copy of each binary
occurred in our dataset. Unfortunately, this approach is very sensitive to any changes in the binary. It does not
detect common situations which result in large numbers of duplicate functions, such as when slightly different
versions of a project appear in our dataset.

To help address these concerns, we performed a clustering-based deduplication step. See Fig. 8 for an illustration
of and pseudocode for our clustering algorithm. We initialize the algorithm with one cluster for each repository;
the elements of each cluster are the hashes for each binary from that repository. The goal of performing clustering
is to form groups of repositories that differ slightly, perhaps by a few versions; that is, most binaries in the project
are the same and only a few differ. Clusters are stored sequentially in an arbitrary order. We attempt to merge
the first cluster with each other in the sequence; when a merge occurs, we continue attempting to merge until
we have attempted (successfully or not) to merge against all other clusters in the sequence. This cluster is then
placed at the end of the sequence. A merge occurs when the size of the intersection between two clusters exceeds
some threshold percentage of either of the two clusters involved. We do this repeatedly until no more merges can
occur. The result is a set of repository clusters which represent groups of near-identical repositories.
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Fig. 8. Clustering algorithm for deduplication. Shown right is one pass through the while loop with a threshold of 0.5. The
repositories that are merged to form each cluster are also tracked; as the members of each cluster constitute duplicates, only
one member repository is sampled from each cluster when selecting data for a given model.

Repositories can share binaries if they are duplicates, but also if they use the same libraries. Thus, any choice
of threshold incurs a trade-off. Too low a threshold produces clusters or repositories that happen to use the same
library. Too high a threshold clusters fewer true duplicates.

To choose the threshold, we manually evaluated a sample of the dataset. We consider two projects duplicates if
they meet one of the following criteria:

e the names of the repositories are the same.

o the project’s README indicates the projects are the same or based on the same source.

e the intersection of the sets of folder names make up at least 90% of the folder names of at least one of the
two repositories under consideration. This method is especially useful for identifying duplicates that are
missing READMEs or projects for which one is heavily based on another but without acknowledgement in
the README.

We sampled ten clusters repositories from each threshold level (every 5%) and chose two repositories from those
clusters evaluating how many were duplicates using the above criteria. We chose the lowest threshold level for
which 90% or more or these were duplicates on each of the high-star and no-star partitions of our corpus. This
method resulted in a threshold of 50%.

When we sample from these data sets, we sample one repository from each cluster.
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Table 1. Evaluation of DIRE. Values are percentages, higher accuracy and lower character error rate (CER) are better.

DIRE Lexical Enc. Structural Enc.
Acc. CER Acc. CER Acc. CER

Overall 74.3 283 729 285 64.6 37.5
Body in Train 85.5 16.1 843 163 757 25.5
Body not in Train 35.3 67.2 33.5 67.7 263 76.1

6 EFFECTIVENESS

In this section, we establish the efficacy of DIRE as a technique and compare it to prior work. These results are
reproduced from the original presentation of DIRE [30].

e RQ1: How effective is DIRE at assigning names to variables in decompiled code?
e RQ2: How does each component of DIRE contribute to its efficacy?
e RQ3: Is DIRE more effective than prior approaches?

Data Preprocessing. To answer our first two research questions, we trained DIRE on 3,195,962 decompiled
functions extracted from 164,632 binaries mined from GrTHus. First, we automatically scraped GiTHuB for
projects written in C. Next, we modified project build scripts to include debug information when compiling the
project, and collected all successfully generated 64-bit x86 binary files. We then hashed each binary to remove any
duplicates. We then passed these binaries through our automated corpus generation system. Finally, we filtered
out any functions that did not have any renamed variables and, for practical reasons, any functions with more
than 300 AST nodes. After filtering, 1,259,935 functions with an average AST size of 77 nodes remained. These
functions were randomly split per-binary into training, development and testing sets with a ratio of 80:10:10.
Splitting the sets per-binary ensures that binary-specific identifiers are not included in both the training and test
sets.

Evaluation Methodology. After training, we ran DIRE to generate name suggestions on the test data. We evaluate
the accuracy of these predictions, comparing the predicted variable names to names used in the original code
(i.e., names contained in the debugging information) counting a successful prediction as one that exactly matches
the original name. However, there can be multiple, equally acceptable names (e.g., file_name, fname, filename)
for a given identifier. An accuracy metric based on exact match cannot detect these cases. We therefore use
character error rate (CER), a metric that calculates the edit distance between the original and predicted names,
then normalizes by the length of the original name [55), assigning partial credit to near misses.

Recall from Section 5.1 that there are often many more variables in the decompiled code than in the original
source; these variables will not have a corresponding original name. In our corpora, the median number of
variables in each function is 5, with 3 having a corresponding original name. Although DIRE generates predictions
for all variables, we do not evaluate predictions on variables that do not have a developer assigned name. We do
this because it is not necessarily incorrect for a renaming system to assign names to variables not present in the
original source code. Recall the example where return (x + 5); is decompiled to int v1; v1 = x + 5; return v1;.
The name sum is likely more informative than v1, and it would be unhelpful to penalize a system that suggests this
renaming. However, although renaming in these cases could be helpful, we do not want to overapproximate the
effectiveness of our system by claiming any renaming of these variables as correct: it is also possible to assign
variables a misleading name that decreases the readability of code by obfuscating the purpose of a variable. For
example, suggesting the name filename to replace v1 in the above code would be misleading.
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void *file_mmap(int V1, int V2)

{
void xV3; ID DIRE Dev.
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Fig. 9. Decompiled function (simplified for presentation), DIRE variable names, and developer-assigned names.

Neural Network Configuration. For our experiments we replicate the neural network configuration of Allamanis
et al. [5]. We set the size of word embedding layers to be 128. The dimensionality of the hidden states for the
recurrent neural networks used in the encoders is 128, while the hidden size for the decoder LSTM is 256. For
both the sequential and structural encoders, we use two layers of recurrent computation, adding another identical
recurrent network to process the decompiled code using the output hidden states of the first layer. For both DIRE
and the baseline neural systems, we train each model for 60 epochs. At test time, we use beam search to predict
the sequence of sub-tokenized names for each identifier (Section 4.3), with a beam size of 5.

6.1 RQ1: Overall Effectiveness

Experimental results are summarized in Table 1. The “Overall” row shows the performance of our technique
on the full test set and the leftmost column shows the accuracy of DIRE. From this, we can see that DIRE can
recover 74.3% of the original variable names in decompiled code, demonstrating that it is effective in assigning
contextually meaningful names to identifiers in decompiled code.

Figure 9 shows an example renaming generated by DIRE. Here, DIRE generates the variable names shown
in the “DIRE” column of the table. The developer-chosen names are shown in the “Dev” column. Two of three
names suggested by DIRE exactly match those chosen by the developer. Though DIRE suggests buf instead of
ret as the replacement for v3, the name is not entirely misleading: mmap returns a pointer to a mapped area of
memory that can be written to or read from. Work has shown that large code corpora may contain near-duplicate
code across training and testing sets, which can cause evaluation metrics to be artificially inflated [1]. Though
our corpus contains no duplicate binaries, splitting test and training sets per-binary still results in functions
appearing in both. A common cause of duplicate functions in different binaries is the use of libraries. We argue
that it is reasonable to allow such duplication since reverse-engineering binaries that link against known (e.g.,
open source) libraries is a realistic use case.

Nevertheless, to better understand the performance of our system, we partition the test examples into two
sub-categories: Body in Train and Body not in Train. The Body in Train partition includes all functions whose
entire body matches at least one function in the training set; similarly, the Body not in Train set includes only
functions whose body does not appear in the training set. The last two rows in Table 1 show the performance
on these partitions. DIRE performs well on the Body in Train test partition (85.5%). This indicates that DIRE is
particularly accurate at name prediction when code has appeared in its training set (e.g., libraries, or code copied
from another project). DIRE is still able to exactly match 35.3% of variable names in the Body not in Train set,
indicating that it still generalizes to unseen functions.

We note that it is possible to perform better on the body-in-train portion by storing the training data in a
dictionary indexed by the canonicalized decompiled code and checking the dictionary before using the model to
make variable name predictions. The pseudocode for this experiment is as follows:

ACM Trans. Softw. Eng. Methodol.



DIRE and its Data: Neural Decompiled Variable Renamings with Respect to Software Class « 1:19

Table 2. Example identifiers from the Body not in Train testing partition and DIRE’s top-5 most frequent predictions.

len value new_node bytes_read

len (60%) value (28%) node (48%) size (38%)

n (6%) data (7%) child (31%) bytes_read (13%)
size (5%) val (3%) treea (0.3%) len(13%)

length (1%) name (3%) tree (0.3%) cmd_code (13%)
1(1%) key (2%) root (0.3%) read (13%)

if decompiled_code is in dictionary:

variable_names = get_names_from_dictionary(decompiled_code)
else:

variable_names = DIRE(decompiled_code)

Because the test set is 77.6% body-in-train, this apporach achieves an overall accuracy of 85.5%. The cost of this
improvement is storing and loading this large dictionary in addition to the model at test time. A more nuanced
approach might involve curating a set of library functions that occur frequently in decompiled code for use in
the dictionary instead. We leave this to future work.

Table 2 contains example identifiers from the Body not in Train test set, along with DIRE’s most frequent
predictions. We observe that inexact suggested names are often semantically similar to the original names. DIRE
also performs best on simple identifiers such as len and value. This is because it is difficult to predict the exact
name for long, complex identifiers with compositional names. Each subtoken in the variable name is predicted
with a probability of correctness less than one. Thus, probability of predicting an entirely correct name generally
decreases with length. In addition, any given long, complex identifier will likely occur relatively infrequently in
the dataset. This means the model has less chance to adjust to the context around these variable names. However,
DIRE is still often able to suggest semantically relevant identifiers (e.g., node, child).

RQ1 Answer: We find that on average DIRE is able to suggest variable names identical to
those chosen by the original developers 74.3% of the time, in a best case scenario that does
not explicitly deduplicate functions between the training and test sets.

6.2 RQ2: Component Contributions

Table 1 also shows the results for models using only our lexical or structural encoders. We find that the lexical
encoder is able to correctly predict 72.9% of the original variable names, while a model using the structural
encoder is able to correctly predict 64.6% of the original variable names. These simpler models still perform well,
but by combining them in DIRE we are able to achieve even better performance.

Figure 10 illustrates how DIRE can effectively combine these models to improve suggestions. Here, the
placeholders v1, v2, and v3 are variables which should be assigned names. The “Lexical”, “Structural”, and “DIRE”
columns show the predictions from each model, and the “Developer” column shows the name originally assigned
by the developer. In this example, the lexical and the structural models are unable to predict any of the original
variable names, while DIRE is able to correctly predict two of the three names. This example also shows the
contributions from each of the submodels. For example, for v1, the lexical model predicts file while the structural
model predicts fname. Combining the predicted subtokens generates filename, the same name chosen by the
developer. For v2, the lexical and structural models both fail to predict mode, but note that the lexical model does
predict mode for v3. By combining the models, DIRE instead correctly predicts mode for v2.
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1  file xf_open{char *xV1, char *v2, int Vv3) {

2 int fd;

3 if (1v3)

4 return fopen(xV1i, V2); ID Lexical Structural DIRE Developer
5 if (*V2 1= 119)

6 assert_fail("fopen"); 1 file fname filename filename

7 fd = open(*V1, 577, 384);

3 if (fd >= 0) 2 name oname mode mode

9 return fdopen(fd, v2); 3 mode flags create is_private
10 else

11 return 9;

Fig. 10. Decompiled function (simplified for presentation), suggested names, and developer-assigned names. The lexical and
structural models are unable to correctly predict the name filename for variable 1, but DIRE can by combining them.

1 long gray(unsigned al, 1  void gray() {
2 int a2) { 2 unsigned vo;
3 unsigned v3, v4; 3 int vi;
4 int v5; 4 unsigned i, v3;
5 if (a2 >= @) 5 int x;
6 return al * (a1l >> 1); 6 if (v1 < 08) ¢
7 vs = 1; 7 X = 1;
8 v4 = al; 8 v3 = vo;
9 while (1) { 9 while (1) {
10 v3 = v4 >> v5; 10 i =v3 > x;
11 v4 "= v4 >> v5; 11 V3 "= v3 >> x;
12 if (v3 <=1 || 12 if (i <=1 11
13 v5 == 16) 13 x == 16)
14 break; 14 break;
15 v *= 2; 15 X *= 2;
16 3} 16 3}
17 return v4; 17 }
18 3 8 3
(a) Hex-Rays. (b) Hex-Rays w/ DEBIN.

Fig. 11. Effects of incorrect debugging information on decompiler output. The gray function computes the Gray code of a1
in a2 bytes [41]. On the left, (a) is the output of Hex-Rays without debugging symbols; it is able to correctly identify the
arguments and return type. On the right, (b) is the output with incorrect DWARF information generated by DEBIN: note
missing arguments, return statements, and incorrect type.

RQ2 Answer: Each component of DIRE contributes uniquely to its overall accuracy.

6.3 RQ3: Comparison to Prior Work

To answer RQ3, we compare to our prior work [25] and to DEBIN [21], the state-of-the-art technique for predicting
debug information directly from binaries. In our earlier work, which used a purely-lexical model based on statistical
machine translation (SMT), we were able to exactly recover 12.7% of the original variable names chosen by
developers. In contrast, DIRE is able to suggest identical variable names 74.3% of the time. We attribute this
improvement to two factors: 1) the improved accuracy of our corpus generation technique, and 2) the use of
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Table 3. Comparison of DIRE and DEBIN trained on 1% and 3% of our full corpus of 164,632 binaries. All accuracy values are
percentages, higher accuracy is better.

1% of corpus 3% of corpus
DIRE Depin DIRE DEeBIN

Training Time (h) 1.8 13.3 6.1 17.2
Accuracy — Overall 32.2 24 384 3.9
Accuracy - Body in Train 40.0 3.0 47.2 4.8
Accuracy - Body not in Train 5.3 0.6 8.6 0.7

a model that incorporates both lexical and structural information. To better understand the performance of
DIRE, we also compare to DEBIN, a different approach to generating more understandable decompiler output.
DEBIN uses CRFs to learn models of binaries and directy generate DWARF debugging information for a binary,
which can be used by a decompiler such as Hex-Rays. The debugging information generated by DEBIN contains
predicted identifiers, types, and names. To choose a variable name, DEBIN proceeds in two stages: it predicts
which memory locations correspond to function-local arguments and variables, and then predicts names for the
variables it identified. In contrast, DIRE leverages the decompiler to-identify function offsets and local variables.
Building on top of the decompiler helps DIRE maintain the quality of pseudocode output. An example is shown
in Fig. 11, which contains a C function for converting between a number a1 and its Gray code representation in a2
bits [41]. Figure 11 (a) shows the output of Hex-Rays when passed a binary with no debug information. Although
these variables do not have meaningful names, it is clear that gray is a function that takes two arguments and
returns a long. Figure 11 (b) information was generated using DEBIN’s bundled model.? We observe that DEBIN
does not accurately recover variable names in this case, perhaps since its model was trained on a different set of
code. However, this example also surfaces a fundamental limitation of the DEBIN approach: both the inferred
structure and the types of the variables in the program have changed. This occurs because Hex-Rays prioritizes
debugging information over its own analyses and heuristics. In this case, the debugging information generated
by DeBIN does not indicate a return value of the gray function nor any arguments, misleading the decompiler.
By starting at the point shown in Fig. 11 DIRE maintains structure and typing even in the presence of incorrect
predictions. To evaluate our performance compared to DEBIN, we trained it on binaries in our dataset. Due to
time restrictions, we found it impractical to train DEBIN on the full dataset. For a fair comparison, we instead
subsampled our training set at 1% and 3% and trained both DEBIN and DIRE on these sets.® After training, we
ran DEBIN on binaries in our test set, extracted names using our corpus generation pipeline, and measured the
accuracy of predictions. Our results are shown in Table 3. We find that DIRE is able to outperform DeBIN at all
sampling sizes. When trained on 1% of the corpus DIRE is able to exactly recover 32.2% of all identifiers, while
DEBIN recovers 2.4%. On the 3% partition, DIRE is able to recover 38.4% of names, while DEBIN is able to recover
3.9%. The lower performance of DEBIN we observed could be attributed to compound error: in addition to variable
names themselves, DEBIN must predict what memory locations correspond to variables. If a memory location is
not predicted to be a variable, DEBIN cannot assign it a name. We also note that we were able to train DIRE much
faster than DEBIN, although DIRE is GPU-accelerated, while DEBIN as distributed is limited to execution on the
CPU.

Zhttps://files.sriinf.ethz.ch/debin_models.tar.gz, accessed April 10, 2019
3The 3% subsampling we used is a slightly larger training set than the 3,000 binaries used to train DEBIN in the original paper [21].
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(b) CER of DIRE (lower is better).
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(a) Accuracy of DIRE (higher is better). (¢) Accuracy of each neural model on the

Body not in Train partition.

Fig. 12. The impact of training corpus size on the performance of DIRE. Figures (a) and (b) show how increasing the amount
of training data improves the performance of DIRE; (c) shows the performance of each of the submodel as training size
changes.

RQ3 Answer: DIRE is a more accurate and more scalable technique for variable name selection
than other state-of-the-art approaches.

7 THE EFFECT OF DATA

Any machine learning system’s performance is related to both the model’s structure and the data used to train it.
Here, we investigate the impact that data has on DIRE. Training a model is computationally expensive, and it may
not always be feasible to train DIRE on alarge data set. This motivates investigating the performance of DIRE
on data quantity. Data can also encode biases, which in turn become encoded in machine learning models [38].
This motivates our investigation of the impact of data provenance on DIRE. We show that models of source code
tend to strengthen biases towards common, generic variable names. This motivates us to modify DIRE to better
predict uncommon domain-specific variable names which nonetheless provide important context.

We ask the following research questions. Only RQ4 is reproduced from the original presentation of DIRE [30].

e RQ4: How does the quantity of data influence the efficacy of DIRE?

e RQ5: How does the provenance of training data influence the efficacy of DIRE?

e RQ6: How well can DIRE perform on diverse code from various domains if it is made aware of its software
domain?

7.1 RQ4: Effect of Data Quantity

To answer RQ4, we varied the size of the training data and measured the change in performance of our models.
Training data was subsampled at rates of 1%, 3%, 10%, 20%, and 40% (equivalent to 31,960, 95,879, 319,596, 639,192,
and 1,278,385 functions, respectively). The results of these experiments are shown in Fig. 12. Figures 12a and 12b
show the change in accuracy and CER of DIRE respectively. The size of the training data is plotted on the x-axes,
while accuracy and CER are plotted on the y-axes. While DIRE has low accuracy on the Body not in Train set
at the lowest sampling rates, at a 1% sampling rate it is still able to correctly select names over 40% of the time
for the Body in Train test set, suggesting that it is possible to use much less data to train a model if the target
application is reverse engineering of libraries rather than binaries in general. Note however that the CER of
DIRE is still high at low sampling rates. This implies that in the cases where DIRE selects an incorrect variable
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Table 4. Examples of the variable name quality characterizations on variable names drawn from our corpus. For all character-
izations, higher is better.

Fluency Recognizability
Name Length Tokenization Value English Words Value
nofile_limit 12 no file _ limit 5 no file _ limit 1.000
phmmap_map 10 ph mmap _ map 4 hmm a _ map 0.800
wpid 4 w pid 3 id 0.500
gstring 7 gstring 7 string 0.857
tdbRef 6 tdb Ref 3 db Ref 0.833
X 1 x 1 0.000

name the chosen name is quite different from the correct name. Sampling at a higher rate dramatically decreases
the CER, allowing for namings that are closer the developers’ choices. At a sampling rate of 40%, DIRE comes
quite close to the performance of the model trained on the full training set, with an overall accuracy of 68.2% (vs.
74.2%) and a CER of 33.6% (vs. 28.2%). Figure 12¢ shows the effect of training set size on the performance of DIRE
and its component neural models on the Body not in Train test set. Note how at sampling rates at or below 10%
the models have similar performance. In cases where there is little training data, training time can be further
reduced by using only one of the two submodels.

RQ4 Answer: DIRE is data-efficient, performing competitively using only 40% of the training
data. DIRE is also robust, outperforming the lexical and structural models in most sub-
sampling cases.

7.2 RQ5: Effect of Data Provenance

Biased selection of training data may impact the performance of the model trained on that data. Given that
unpopular projects far outnumber popular ones, a random sample of data from GrTHuB is likely to contain mostly
unpopular projects. However, as popular projects are better maintained and subjected more scrutiny, variable
names from popular projects may be systematically different from unpopular projects’ variable names.

We analyze the impact of project popularity on DIRE’s predictions.

7.2.1 Methodology. We train two versions of the DIRE model, one on our high-star corpus and another on our
low-star corpus.

We prepare the datasets for training and testing each model by sampling roughly the same number of functions
from each of the high and no-star partitionsportion of the corpus (2,739,098 and 2,737,104, respectively), following
the same data preparation steps described in Section 6. Thus, we have two training sets, two development sets,
and two test sets, one for the high-star portion and one for the no-star portion, respectively. We train two models:
one on the high-star training set, and another on the no-star training set. We evaluate each model on each test
set, resulting in four evaluations: the model trained on the high-star training set (henceforth the high-star model)
on the high-star test set, the high-star model on the no-star test set, the no-star model on the high-star test set,
and the no-star model on the no-star test set.

As in RQ4, we report accuracy and character error rate on predictions. These metrics have some weaknesses:
accuracy is sensitive to semantic-perserving differences (for example, predicting length instead of len) and
character-error rate will grade misses of different lengths differently. We use the VarCLR technique [10] as a
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Table 5. DIRE’s performance when trained and tested on each permutation of high or low star training data and tested on
high or low star test data. Values are percentages. Higher accuracy, lower character error rate (CER), and higher VarCLR
scores are better.

Training  Test Overall Body in Train Body not in Train

Data Data Acc CER VarCLR Acc CER VarCLR Acc CER VarCLR
High Stars High Stars 62.8 40.0 82.2 745 271 89.2 336 723 70.8
High Stars No Stars 509 53.2 76.4 68.7 36.1 864 36.6 66.5 71.9
No Stars High Stars 31.8 71.8 66.2 69.6 329 869 156 87.1 62.2
No Stars No Stars 735 285 87.5 819 193 92.2 396 629 73.4

third metric. VarCLR uses contrastive learning to put similar variable names, that is, those that can be substituted
for one another, close to each other in an embedding space, while pushing names that are opposite farther away.
A VarCLR score is generated by computing the cosine similarity between embeddings for two variable names. A
score around 50% indicates a lack of relationship between the two variables, higher indicates increasing degrees
of similarity, and lower indicates increasing anti-similarity: the names have opposite meanings.

VarCLR scores provide a notion of similarity, but the score is symmetric and thus does not indicate which
variable name is more descriptive, if either. Thus, we present three additional ways to characterize the quality of
DIRE’s predictions:

e Length: more information can be contained in a longer message, meaning the variable is potentially more
useful.

e Fluency: Given a byte-pair-encoding (BPE) as discussed in Section 4.2.1 based on the developer variable
names in the corpus, the fluency score is the length of the longest subword when the name is broken up
into subwords. This metric rewards longer names and those that are common among developers. A higher
score indicates that the model’s predictions are more "fluent” in the developers’ vernacular. Because the
high-star and no-star corpora do not have identical vocabularies, we report the average fluency value for
each prediction.

e Recognizability: The fraction of the variable name that consists of words from an English dictionary (GNU
aspell), along with a short list of 127 common abbreviations in computing (such as str for string and
lib for 1ibrary). With the exception of a and i, we remove single letters from the dictionary. Single letter
“words" communicate little information in the context of identifiers; rather, acronyms and full words are
most useful to developers [31].

Examples of all three variable name quality characterizations are shown in Table 4. We expect that high-star
code will score higher on these metrics.

In addition, we reason that better maintained code may be more likely to contain more descriptive variables
customized for specific use cases; that is, we expect high-star code and thus the predictions of models trained
on it to be more diverse. To quantify variable diversity, we calculate Shannon’s Entropy on the variable name
frequency distribution. Entropy is measured in bits and quantifies how skewed a distribution is towards common
names. Entropy captures both the number of variable names that occur and the frequency at which each variable
name occurs. Low entropy indicates low variable diversity. At the lowest possible entropy, zero bits, one variable
name has probability one and all others have probability zero; that is, every variable name is the same. At the
other extreme, the maximum possible entropy occurs when every variable name that occurs does so with equal
probability; that is, every variable name occurs the same number of times.
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Table 6. The percentage of all test-set variables that are in body-in-train functions.

Training Data Test Set Percent Body-in-Train

High Stars High Stars 71.4
High Stars No Stars 443
No Stars High Stars 30.0
No Stars No Stars 80.3

Table 7. The entropies of the high-star and no-star data sets with respect to the original variable names as well as with
respect to the predicted names. Entropy values are calculated based on a normalized frequency distribution of variable names
in each test set. Lower entropy values indicate that the distribution is more skewed towards a few frequently used variable
names. Entropies are measured in bits.

Training Data  Test Set Entropy: Entropy: Predicted  Entropy: Predicted Names
Developer Names ~ Names (Overall) (Body not in Train)
High-Star High-Star 11.487 10470 9.966
High-Star No-Star 10.784 9.695 9.248
No-Star High-Star 11.487 9.629 9.246
No-Star No-Star 10.784 10.046 9.663

7.2.2  Results. We show results in Table 5. It is difficult to compare overall accuracy directly because the fraction
of variables that are body-in-train varies considerably among the four training data/test set combinations, as
shown in Table 6. Instead, we examine both the body-in-train and body-not-in-train portions separately.

In all four cases, the model performs well on the body-in-train portion, with accuracies of nearly 70% or above.
The “cross testing” scenarios—where models trained on the high-star data is evaluated on the low-star test set
and vice versa—receive lower overall accuracies and slightly lower VarCLR scores than the other two trials. This
suggests that there are systematic differences in variables between high-and-low star code, though in all cases
the model is often able to select a variable name that is appropriately similar. One cause for the existence of a
body-in-train portion for the high-star model’s predictions on the low star test set and vice versa is libraries. For
example, the open-source libavcodec library, which helps encode and decode video content, is used in multiple
projects across the high-star and low-star data sets related to multimedia.

The body-not-in-train, however, is different. The model trained on the high-star data yields fairly even results
across all three metrics: However, while the model trained on low-star data performs very well on the low-star
dataset, it performs especially poorly on the high-star dataset, with an accuracy of just 15.6%, under half any other
body-not-in-train accuracy. Similarly, the CER is much higher and VarCLR score is much lower. This suggests
that high-star data leads to models which are more generalizable.

The differences in performance can be attributed to a distribution mismatch between high-star and no-star
datasets. We show the entropies of the high and no-star test sets with respect to the original developer names as
well as with respect to the predicted names in Table 7. The high-star test set has significantly higher entropy than
the low-star test set with respect to the developer-given variable names, indicating that high-star code uses a
greater variety of variable names more often. Both overall and on the body-not-in-train portion, the entropies of
the predictions by both models are lower than the original entropy for that test set; DIRE tends to predict common
variables disproportionally often. In effect, the training process results in a narrowing of the distribution, skewing
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Fig. 13. The table on the left shows the entropy loss. Entropy loss is calculated by subtracting the entropy of the distribution
of developers’ names from the entropy of the distribution of the predictions. Entropy loss is highly correlated with accuracy
as shown right. While overall accuracy is shown, this holds true for other types of accuracy as well.
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Fig. 14. Each bar in the bar graphs represents the number of variables for which that distribution has a higher probability
value than the other distribution. The high-star distribution is more diverse; density of the high-star distribution is better
spread over a wider variety of variable names, while much of the density of the no-star distribution is concentrated in the

most common types of variable names.

it towards common variable names at the expense of less common ones. Because the high-star distribution starts
from a position of higher entropy, it is in a better position after the narrowing effect of training occurs.

We can measure the narrowing of the distribution by calculating the amount of entropy lost as shown in Fig. 13.
No-star data has has a lower entropy (and thus is less diverse) than high-star data. After training’s narrowing
effect, the no-star model’s predictions are even less diverse, leading to especially poor performance. Figure 14
shows how the high-star model is more likely to predict a wider variety of variable names. Ultimately, such a
higher-entropy, more diverse distribution helps the high-star model generalize better than its no-star counterpart.

However, we find that while high-star code is more diverse, the differences in the quality of variable names
from high-star and no-star code is much less pronounced. We consider six collections of variables:

e The high-star developer-given names (High/Dev)
e The no-star developer-given names (No/Dev)
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Table 8. Values of the three quality metrics both on the original developer-given variable names as well as on the predictions of
the No-Star model on the High-Star training set. None of the distributions of any quality characterization for any predictions
are meaningfully different from one another, except the predictions of the No-Star distribution on the High-Star test set,
shown in the last row.
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No-Star Model Predictions on High-Star Test Set

e The high-star model’s predictions on the high-star test set (High/High)
e The no-star model’s predictions on the high-star test set (No/High)

e The high-star model’s predictions on the low star test set (High/No)

e The no-star model’s predictions on the no star test set (No/No)

Distributionsin variable quality on each metric are shown in Table 8. The distributions are largely identical for
five of the six collections of variables. The outlier is the no-star model’s predictions on the high-star test set
(the No/High set). Table 9 quantifies these differences with the Cohen’s d scaled differences between the means.
All differences are negligible (< 0.20) except when the No/High set (the lowest entropy of the sets of variables)
is compared with the highest-entropy sets of variables on length and fluency (bolded in Table 9). The no-star
model performs poorly on variable names from the more diverse high-star test set and often chooses shorter,
more generic variable names for many of the names it fails to predict correctly. Indeed, the predictions of the
no-star model on variable names it predicts incorrectly are shorter on average (3.50 vs. 4.10) and less fluent (2.98
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Table 9. Cohen’s d differences in the means of each distribution of each set of variables for each quality metric. In the tables
below, High/Dev represents the high-star code’s developer names, High/No represents the high star model’s predictions on
the no-star test set, and so on. All differences are negligible (< 0.20) except when comparing to the no star model’s predictions
on the high-star test set, for which the difference is small (<0.50) when compared with the original developers’ names of
both high-star and no-star code in terms of both length and fluency. The difference of the no-star model’s predictions on
high-star test set compared to the high-star model’s predictions on its own test set is also small in terms of fluency.

(a) Length

High/Dev No/Dev High/High No/High High/No No/No

High/Dev 0.00 0.10 0.05 0.28 0.16 0.20

No/Dev 0.00 0.00 0.21 0.10 0.11

High/High 0.00 0.12 0.06 0.05

No/High 0.00 0.07 0.12

High/No 0.00 0.02

No/No 0.00
(b) Fluency

High/Dev No/Dev High/High No/High High/No No/No

High/DeV 0.00 0.02 0.09 0.32 0.15 0.10
No/Dev 0.00 0.07 0.31 0.14 0.08
High/High 0.00 0.23 0.06  0.01
NO/High 0.00 0.16 0.22
High/No 0.00  0.05
No/No 0.00

(c) Recognizability

High/Dev No/Dev High/High No/High High/No No/No

High/DeV 0.00 0.00 0.05 0.16 0.09 0.08
No/Dev 0.00 0.05 0.16 0.09 0.08
High/High 0.00 0.12 0.05  0.04
NO/High 0.00 0.07 0.08
High/No 0.00  0.01
No/No 0.00

vs. 3.62) than those it predicts correctly (Cohen’s d 0.125 and 0.327, respectively). Thus, although high-star and
no-star code don’t have meaningfully different variable name quality, models trained on low-star code may have
somewhat lower quality names.

RQ5 Answer: Training DIRE on data with higher variable-name distribution entropies leads
to a more generalizable model. High star code has a higher entropy distribution of variable
names than no-star code.
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7.3 RQe6: Effects of Software Domain

In Section 7.2 we show that training causes the model to "narrow" its distribution, making it less likely to predict
variable names which are already relatively unlikely. Unfortunately, sometimes these rare variable names play
important roles. This is the case for domain-specific identifiers, which can provide crucial context for some
functions. To help DIRE account for this effect and predict domain-specific identifiers more accurately, we modify
DIRE to make it domain-aware.

7.3.1 Methodology. We performed several interventions on DIRE to incorporate domain information:

e Borrowing a technique from natural language processing, we added domain labels as appropriate to each
member of each class. Labels consisted of the domain name surrounded by angle brackets, as in <kernel>
or <shell>. For consistency, all of the additional data with indeterminate domain were given the label
<unknown>. Domain labels were added to the vocabulary as special tokens. To incorporate domain labels
into the sequence model, we prepended them to the input token sequence; to incorporate them into the
graph model, we added an additional "label" node with edges to every AST node. The goal of this process is
to create an association between a particular domain and identifiers common in that domain.

Recall from Section 4.2.2 that the names of named AST nodes are incorporated into the model through an
embedding computed by averaging the subtokens of that name. By default, DIRE considers the name of a
constant to be a generic placeholder value based on that constant’s type, meaning all constants of the same
type have identical nodes in the AST. Similarly, all constants are replaced with generic placeholders based
on their types in the lexical encoder as well. Due to our earlier finding that string literals are indicative of
domain, we opted to not replace string literals with these generic placeholders and instead leave them in.
This necessitated increasing the model’s vocabulary size to include words that appear in string literals but
not identifiers.

Unfortunately, domain-specific data is relatively scarce because many GITHUB project maintainers do not
elect to tag their repositories. To address this challenge, we sampled additional data from a pool of data with
indeterminate domain. This "unknown" data allows DIRE to learn about common patterns in code, while the
tagged domain-specific data help DIRE adjust to the idiosyncrasies of particular domains.

We created train/development/test splits for each domain and the unknown data separately. We trained the
model on a pool of all training data from all domains and the unknown data, but kept each test set separate. To
evaluate our model, we report accuracy numbers for each test set separately—one for each of the seven domains,
and one for the unknown data—for a total of eight.

In addition, we trained two control models following the same process (and using the same data with the same
train/development/test splits), but without any of the interventions. Thus, the control trials had no domain labels
and had placeholders instead of string literals. The two control models varied in vocabulary size. Vocabulary
size incurs a trade off: a larger vocabulary increases memory consumption and can become a computational
bottleneck [20], but a larger vocabulary can boost accuracy as the model needs to predict fewer subwords per
variable name on average [45]. We trained one model with the same vocabulary size as used in the evaluation of
RQ1 (10,000) and another with the same vocabulary size as used in the domain-aware version of DIRE (30,000).
All other hyperparameters were held constant, though embedding sizes were increased by 50% (on all models) to
give the model additional capacity to store domain information. We report results for both DIRE and its lexical
component of DIRE alone, which performed almost as well as DIRE—within 2%—in the evaluation of RQ1 (see
Table 1).

7.3.2  Results. Table 10 shows the results. With the interventions applied, the lexical component of DIRE alone
performed the best with an average accuracy score of 57.62% across all seven domain-specific data sets. Then next-
best performing model, the lexical model with expanded vocabulary size, had an accuracy of 51.31%. Increasing
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Table 10. A comparison of the original DIRE model vs. the domain-aware version. Results for both DIRE and its lexical
component are shown. Accuracy information for each domain and for performance on the "unknown" data set sampled
from the data used in RQ1 are shown. Domain-Aware DIRE requires a larger vocabulary size than the original version of
DIRE because it must handle tokens in string literals. Increasing the vocabulary size improves the performance of the lexical
component of DIRE; therefore, results for the original version of DIRE are shown at both the original (10000 subtokens) and
expanded (30000 subtokens) vocabulary sizes. Across all domains, the lexical component of DIRE with interventions applied
outperforms the model as a whole.

(a) Overall
Lexical Model DIRE

Original Original Domain-Aware Original Original Domain-Aware
Domain (10K Vocab) (30K Vocab) (30K Vocab) (10K Vocab) (30K Vocab) (30K Vocab)
unknown 73.92% 76.85% 80.16% 72.38% 74.22% 75.90%
kernel 69.73% 72.28% 78.64% 67.84% 68.87% 71.70%
game 34.92% 42.48% 49.46% 34.77% 38.30% 40.77%
shell 33.69% 37.22% 43.25% 32.71% 33.85% 35.24%
compiler 43.70% 46.90% 51.35% 42.89% 43.49% 47.38%
network 57.77% 61.30% 64.00% 56.45% 58.99% 57.72%
embedded 76.33% 75.84% 84.84% 72.29% 72.57% 75.86%
graphics 22.97% 23.18% 31.80% 21.12% 18.50% 23.74%
Mean (Domains) 48.44% 51.31% 57.62% 46.87% 47.80% 50.34%
Performance Rank 4 2 1 6 5 3

(b) Body not in Train

Lexical Model DIRE

Original Original = Domain-Aware Original Original Domain-Aware
Domain (10K Vocab) (30K Vocab) (30K Vocab) (10K Vocab) (30K Vocab) (30K Vocab)
unknown 35.89% 38.55% 43.85% 32.88% 35.51% 37.09%
kernel 39.99% 39.94% 46.07% 36.21% 38.65% 38.86%
game 22.40% 26.84% 32.51% 21.46% 23.23% 24.34%
shell 19.63% 20.90% 24.49% 19.10% 17.73% 19.20%
compiler 22.97% 24.93% 27.42% 21.97% 21.51% 24.68%
network 20.13% 23.03% 25.60% 20.77% 17.55% 18.84%
embedded 46.19% 48.13% 54.33% 43.87% 43.83% 46.26%
graphics 18.58% 18.28% 26.67% 16.57% 13.14% 18.40%
Mean (Domains) 27.13% 28.86% 33.87% 25.71% 25.09% 27.23%
Performance Rank 4 2 1 5 6 3

the vocabulary size alone impacted the lexical model’s performance, but not the performance of DIRE. Although
the difficulty of different domains varied significantly, gains across domains were fairly consistent. While the
lexical model performed better than DIRE, in both cases, applying the interventions lead to increased performance
over the controls. The performance of the lexical model with interventions applied improves the accuracy on

ACM Trans. Softw. Eng. Methodol.



DIRE and its Data: Neural Decompiled Variable Renamings with Respect to Software Class + 1:31

domain-specific test sets to an average of 57.62% from an average of 46.87% on the original base DIRE model, a
22.94% increase.

RQ6 Answer: By applying domain-labelling techniques and harnessing the domain-rich
information in string literals, DIRE can be made domain-aware and its best performing
submodel alone can predict identifiers correctly in domain-specific scenarios 22.94% more
frequently than the base DIRE model.

8 THREATS TO VALIDITY

In answering research questions 1-4, when collecting code and binaries to generate our corpus, we did no filtering
of the repositories beyond ensuring that they were written in C and built. In answering all of our research
questions, it is possible that the code we collected does not accurately represent the types of binaries that are
typically targets of reverse-engineering effort. Additionally, we did not experiment with binaries compiled with
optimization enabled, nor did we experiment with intentionally obfuscated code. It is possible that DIRE does
not perform as well on these binaries. However, reverse engineering of these binaries is a general challenge for
decompilers, and we do not believe that our technique applies exclusively to the test code we experimented
with. Although we have found that it is possible to uniquely identify variables in Hex-Rays based on the code
offsets where it is accessed, we have found that other decompilers do not have this property. In particular, our
approach did not work well with the newly released Ghidra decompiler [17]. One of the primary causes is the
way that Hex-Rays and Ghidra use debug symbols to name variables. Hex-Rays uses debug symbols in a very
straight-forward manner, and generally does not propagate local names outside of their function. Ghidra, however,
will actually propagate variable names at some function calls. For example, if an unnamed variable is passed
as an argument to a function whose parameter has a name, in some cases Ghidra will rename the variable to
match the parameter’s name. This behavior is problematic for corpus generation because it does not reflect the
developer’s intended names. A new approach for corpus generation would be required for compatibility with
Ghidra, but Ghidra’s open-source nature (as opposed to Hex-Rays’ closed model) allows potential modification
of the decompiler, including disabling the problematic propagation of names at function calls. We leave Ghidra
integration to future work.

In answering research question 5, we selected a set of metrics to characterize variable names in various corpora.
Determining what counts as a "good" variable name is a difficult problem and is often both subjective and context
dependent. We acknowledge that there may be other ways to characterize variable name quality that we did not
consider.

Ultimately, all of the metrics used to evaluate DIRE are imperfect proxies for the quality that is most important:
how useful the variable names generated by DIRE are to reverse engineers. We leave a study on how reverse
engineers interact with DIRE to future work.

Finally, while we evaluate DIRE against prior state-of-the-art approaches in Section 6.3, we only do so with a
random sample from the entire dataset. It is possible that some techniques perform best in specific circumstances.
We leave this to future work.

9 CONCLUSION

Semantically meaningful variable names are known to increase code understandability, but they generally cannot
be recovered by decompilers. In this paper, we presented the Decompiled Identifier Renaming Engine (DIRE), a
probabilistic technique for variable name recovery which uses both lexical and structural information. We also
presented a technique for generating corpora suitable for training DIRE, which we used to generate a corpus
from 164,632 unique x86-64 binaries.
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In addition, we extended the work originally published at ASE 2019 [30] to demonstrate that the choice of
data used to train DIRE can have a profound impact on the resulting model. In particular, we find that models
trained on data with more diverse, higher-entropy variable-name distributions tend to generalize better, and that
the training process concentrates probability towards variable names which were already more common in the
original distribution.

As another novel contribution in this extended paper, we modify DIRE to incorporate software domain
information to help alleviate the impact of the latter effect on rare but important domain-specific variable names.
In other words, we find that we can improve generalizability and performance by better selecting and augmenting
the training data. While we performed our experiments on DIRE, the principle is not fundamentally tied to DIRE
and we expect it to be generally applicable to machine learning models on code.

Our findings suggest that it may be possible to predict the performance of a model trained on a specific class
of data on a specific test set without training. Assuming most of the probability in each variable name probability
distribution falls on the intersection of the supports, it may be possible to use regression as in Fig. 13 to predict
accuracy if the "narrowing" effect of training is taken into account. We leave this to future work.
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