
CLAIRE: Enabling Continual Learning for
Real-time Autonomous Driving with a Dual-head

Architecture

Hao Zhang
Dept. of Computer Science

North Carolina State University

Raleigh, NC, United States

hzhang47@ncsu.edu

Frank Mueller
Dept. of Computer Science

North Carolina State University

Raleigh, NC, United States

mueller@cs.ncsu.edu

Abstract—Autonomous vehicles rely on a pre-trained object
detector to perceive surroundings. However, when never seen
before scenarios are encountered, late decisions may result in
hard braking due to perceived threats. Image sequences leading
to such a situation provide the potential to learn and improve over
time. Yet instant re-training on board with all prior training data
is infeasible given computational, storage and power constraints.
What’s more, exposure of a pre-trained CNN to only images of
the new scenario is known to result in “catastrophic forgetting”
for already learned features.

This work makes several contributions: A novel lightweight
dual-head detection network architecture is proposed to over-
come forgetting and to support fast on-board continual learning
on small sets of new images and assesses the feasibility of contin-
ual learning methods for autonomous driving. A sensitivity study
on the quality and quantity of continually learned images for
our dual-head technique is performed, including an assessment
of its real-time suitability. Experiments show that our method’s
accuracy is improved by up to 13% and performance increases
by 5.8X over a state-of-the-art continual learning framework.
This makes it suitable for autonomous driving scenarios with
real-time constraints. Source code is made available via Github.

Index Terms—Autonomous Systems, On-board Continual
Learning, Real-Time Deep Learning Inference

I. INTRODUCTION

Automobiles are increasingly becoming complex computer-

ized control systems consolidated into electronic control units

(ECUs). This evolution is also driven by green energy trends

replacing combustion engines with electric motors. Today,

major technology companies, including Intel, Nvidia, Huawei,

Baidu, Amazon, and Alphabet (Google), are pushing into the

world of autonomous driving, where they find themselves com-

peting with the “old” automotive giants, newcomers (Tesla),

and automotive suppliers (Bosch, ZF, and Magna). In this

setting, traditional control software is increasingly replaced by

machine learning as control tasks are becoming more complex.

Many vendors are promoting their own on-board automotive

hardware and software packages, often with customized oper-

ating systems (OS). Intel provides Mobileye [1], Nvidia offers

its Drive OS [2], Volkswagen and Daimler have announced an

OS [3] while Tesla has already deployed theirs [4], whereas

Google promises Android Auto OS [5], which Ford and GM

plan to use in next generation models. Many of these on-board

auto OSs (including Nvidia’s/Telsa’s) are based on customized

Linux versions, augmented with real-time kernels via virtual-

ization (e.g., Autosar Adaptive Platform), delivering security,

capability, and performance for drivers and passengers for

higher-level control functionality. This trend to replace simple

hardware control of traditional vehicles with more complex

software systems provides new capabilities for autonomous

driving and flexibly through over-the-air (OTA) updates. And

while software updates have the potential to improve capabili-

ties over time, making vehicles safer, smarter, and more energy

efficient, these trends pose significant technical challenges.

To realize vehicular autonomy, today’s prototypes combine

subsystems for perception, localization, prediction, planning,

and control. In a perception subsystem, machine learning (ML)

is widely employed. Camera/lidar images are subject to object

detection and tracking based on CNNs. To decide on steering,

acceleration and braking actions, object detection has to be

accurate and fast, i.e., subject to real-time constraints.

YOLO [6], [7] is a state-of-the-art object detection frame-

work based on one-stage CNN architecture that can meet real-

time constraints (30 FPS). In contrast, two-stage architectures,

such as R-CNN [8], Fast R-CNN [9] and Faster R-CNN [10],

are more accurate but cannot meet real-time constraints as

it suffers from much slower detection speed than one-stage

detectors. The follow-up one-stage CNN architecture conquers

two-stage ones in both accuracy and speed [11]. E.g., the

inference speed of Faster R-CNN is 9.4 FPS, while one-stage

Yolo achieves an inference speed of 54 FPS on the same

hardware with a 1.4% improvement in accuracy [11]. To reach

such frame rates, autonomous driving systems (ADS) feature

hardware acceleration via embedded GPUs and FPGAs, but

with lower performance than discrete acceleration devices.

For these reasons, most autonomous driving systems (Tesla

Autopilot, Baidu Apollo, etc.) leverage a one-stage detector in

their perception system [6], [11], [12], as does our work.

Our work breaks new ground as we hypothesize that an978-1-6654-0627-7/22/$31.00 ©2022 IEEE

on-board ADS should provide the ability to learn from “near-

mistakes” with current hardware capabilities. Existing CNNs

are far from perfect due to a bias in learning limited to the

training set of images. If such a set lacks certain images,

safety can be compromised. E.g., the image detector fails

to detect a stop sign at first, but the secondary radar-based

crash prevention system forced the vehicle to stop before

hitting an object. If the system has the ability of reviewing

image frames prior to the hard braking action, it would be

able to detect the similar scenario next time. The concept

of the automated online learning is based on rewinding a

sequence of images (say, from a near impact where objects

were identified late) and labeling the same, smaller objects of

previous frames by tracking objects backwards. This labeling

process can be unsupervised and is subject to ongoing work.

(Another example would be a stop sign obscured by parked

vehicles from a distance seen late, but smaller intersection

indications including lines on the ground or the backside of a

stop sign on the opposite lane could have alerted the system

earlier. Rewinding and auto-labeling can help here as well.)

A simple solution would be to re-train a CNN with addi-

tional images plus all seen before images to improve detection

capabilities, yet this would require days of computational

training, e.g., on a GPU cluster. While such rigorous training

is useful to update inference parameters of the CNN via OTA

protocols on a regular basis (weekly or monthly), our work

aims to provide instant on-vehicle training to better handle a

similar critical situation if encountered again on the same day,

even within minutes.

To account for limited on-board compute and storage , a

pre-trained CNN could be exposed to just a few new images,

but such attempts have been shown to result in “catastrophic

forgetting” — the prediction accuracy of already learned

features drops significantly — known as the stability-plasticity

dilemma [13].

In this paper, we propose CLAIRE, a continual learning

real-time framework based on YOLO [11], which enables the

on-board system to learn new scenarios from a few image

frames in a very short time. The novel lightweight architecture

is designed to elastically support continual learning from new

data. In addition, this architecture design can be applied to any

general one-stage CNN-based object detector. We demonstrate

that our design fits on-board continual learning for autonomous

driving and still meets real-time constraints in a sensitivity

study. We compare our work with existing continual learning

methods in object detection, i.e., joint-training and state-of-

the-art feature-reweighting [14], in both timing and accuracy.

Experimental results show that our method outperforms others

in both learning time and detection accuracy and only incurs

a 3.25ms delay in real-time deep learning inference.

The rest of the paper is organized as follows. Related

work on continual learning algorithms and real-time objection

detection is discussed in Section II. Section III introduces our

novel continual learning framework, CLAIRE, detailing both

design and implementation. In Section IV, the timing and

accuracy of surveyed methods and our newly proposed method

are compared. Also, a sensitivity study is performed on our

proposed method. Section V summarizes the contributions and

discusses the potential directions of future work.

II. RELATED WORK

Object Detectors: As addressed in Section I, deep CNN

based objectors can be divided into two-stage and one-stage

detectors. Two-stage detectors [8] and their variants [9], [10],

[15]–[19] identify regions of interest (containing some object)

in the first stage, and send the region proposals to the sec-

ond stage for object classification and localization. Single-

stage detectors can be anchor-based (YOLO [6], [7], [11],

[20], SSD [12], RetinaNet [21], RefineDet [22]) or point-

based (CenterNet [23], CornerNet [24], FCOS [25]) and are

capable of predicting the categories and locations of objects

without the region proposal stage. The majority of research has

focused on optimizing one-stage detectors, in both accuracy

and speed, to make them a better fit for ADS. Nowadays, Tesla

Autopilot [4] and Baidu Apollo [26] leverage the one-stage

detector due to its higher performance and accuracy compared

to a two-stage detector.

Continual Learning: The challenge of continual learning

with deep CNN models is catastrophic forgetting [13]. We

investigate the forgetting problem caused by direct continual

learning, a crucial and general problem in incremental learning

with CNNs. Well-known image classification ML methods

focus mainly on learning new categories while preserving

previously learned knowledge with different techniques, e.g.,

via ensemble modeling [27]–[29], transfer learning [28], [30],

fine tuning [31]–[35], distillation or data exemplars from

previously learned knowledge [30], [31], [36], [37], attention-

based meta-learning [38], [39], and addition or adaption of

the network architecture [40]. Bi-objective [41] focuses on

learning new instances instead of new classes.

Object detection models leverage deep CNN as well.

RILOD [29] follows the incremental learning methodology

from [31] and applies to one-stage anchor-based object de-

tection. Kang at al. [14] propose a module to change weights

in the YOLO-based architecture to recognize novel categories

from few images. ONCE [42] and PNPDet [43] leverage the

meta-learning and dedicated sub-network techniques, respec-

tively, for incremental learning in a point-based one-stage

detector. Our work focuses on the object detection’s capability

to learn additional data to improve the accuracy of existing

categories. Both of these learning techniques suffer from

potential memory loss triggered by the change in distribution

of in continual learning, which is the root cause of forgetting.

Lightweighed Models: PatDNN [44], SqueezeNet [45],

HashedNets [46], Xnor-Net [47], MCDNN [48] and Deep

Compression [49] take advantage of pruning, compression,

asymmetric encoding, and related techniques to minimize the

size of ANNs such that a lighter weight ANN can be de-

ployed on smartphones, FPGAs, and other embedded devices.

SubFlow [50] dynamically selects sub-graphs of ANNs for

both training and inference based on real-time constraints

so that training/inference can meet deadlines. However, all

learning. Instead, only the weights of convolutional layers in

the detection head (green boxes in the figure) are updated. This

has two advantages: First, accuracy is guaranteed because we

share low level features and update high level ones during

continual learning of new data to fine-tune the incremental

head. Second, without any back-propagation and backbone

updates during training, computation power is conserved while

also reducing training time significantly. Since the volume

of data for incremental training is small, we leverage data

augmentation (i.e., image cropping, flipping, rotating, etc.) to

increase the diversity of input images. This data augmentation

is also applied to the training of the base head.

Any periodic OTA update can still be applied to the base

model in the proposed architecture since we do not modify

the structure of the backbone and the base detection head,

i.e., the base model network architecture is retained. Thus,

weights from both offline retraining with massive old/new

data and online/on-board training with (smaller) new data are

accommodated simultaneously for the dual-head design.

C. Online Testing:

During inference/testing, image sequences are sent to the

backbone of the network. The backbone is responsible for

extracting features per image. During this process, the low-

, medium-, and high-level feature outputs are routed to the

associated detection blocks of the base head while the back-

bone caches the intermediate output state. Both the base and

the incremental heads are activated during the online inference.

The purpose of the gate function is to choose the top detection

from the final layers with the highest probability. For example,

detecting a single object may have multiple prediction results

in both class IDs and locations. The gate selects the best

among all of these results.

The output of the base head is a list. Each item within the

list includes objectiveness score, class scores, and coordination

information of predicted bounding box. The algorithm first

filters out detection with predicted objectiveness score lower

than a pre-defined threshold value, and then uses quicksort to

order the detections by descending class score. In this way,

the detection with highest class score is first in the list. Any

subsequent list item is compared to the class score of the

first item, and if they differ by only a small threshold ǫ, the

corresponding (top-k) classes are activated for detection. If the

difference exceeds ǫ, the loop is terminated and the selected

classes are returned (as differences only increase in subsequent

iterations). The gate selection is presented in Algorithm 1.

The final prediction bar at the bottom of Figure 1 combines

the outputs from both base and incremental heads and selects

the prediction output with maximum probability, i.e., either a

class from the base or from the incremental head. This fusion

step guarantees that prediction outputs enjoy the best of both

worlds. After all, the incremental head may not always predict

the best result for all data.

Algorithm 1 Select Class IDs

for i = 0 to N − 1 do

if detections[i].objscore < threshold then

detections.remove(i)

end if

end for

Sort detections in descending order by class score

for i = 1 to N − 1 do

if (detections[0].cs− detections[i].cs) < ǫ then

selectedCls.insert(detections[i].clsId)

else

break

end if

return selectedCls

end for

D. Implementation

The implementation of our method is based on the state-

of-the-art real-time object detector framework Yolo [7]. It is

compatible with Yolov3 and Yolov4, since both use the same

architecture in the detection head. The framework is written

in C and CUDA, as is our implementation of the incremental

multi-scale head. The incremental learning based on data from

a single or more classes is realized by appending an incremen-

tal detection head to the end of the current backbone network.

Three-level feature outputs are consolidated within each head

to provide a single prediction. The incremental head can be

dedicated to a subset of the n classes, which differs from

the base head that covers all n classes. A reflection interface

implemented via a member variable, the so-called classid,

identifies the classes of a given head (or returns the base as

an identification). This facilitates (a) the selection of classes

using the output of the base head and (b) the identification

of the prediction class resulting from multiplexing of final

predictions from base and incremental heads.

The gate activates any incremental detection classes based

on the objectiveness scores and class probability from the

prediction of the base head. If there is an “approximate tie”

in the selection condition, the gate triggers multiple corre-

sponding incremental classes simultaneously. An approximate

tie exists if the probabilities of the top class and another

class differ by less than some threshold ǫ. The implementation

uses an ǫ of 10%. Additionally, if the base head fails to

detect a class altogether, all classes within the incremental

head are activated. The gate function can also selectively

only trigger the base head if and only if this newly OTA

updated model includes the incrementally learned scenarios.

This avoids duplicate predication on the incremental head,

thereby reducing the inference cost.

Since the incremental head has the same number of layers,

any selected classes are mapped to a range of layers within

the network. This allows an incremental head to automatically

obtain (a) input from layers belonging to the backbone and (b)

forward output of the incremental head to the final prediction

multiplexer. These capabilities are replicated in C and CUDA

for both CPU and GPU computation. A local barrier within

each head consolidates the output from the prediction layers

corresponding to the small/medium/large image sizes while a

global barrier within the final prediction block ensures that the

multiplexer provides as a final output the highest prediction

probability among both heads (base and incremental ones).

Testbed Experiments were conducted on an X86 64 plat-

form with two Intel Sandy bridge processors (with a combined

16 cores) utilizing 16GB DDR3 1600 ECC DRAM and a

Nvidia RTX 2070 GPU with 8 GB of memory. The CUDA

and CUDNN version are 10.0 and 7.4, respectively, running

on a CentOS 7.7.1908 distribution with a 4.10 Linux kernel.

This setup provides GPU acceleration for both training and

inference/testing, both of which exploit the linear algebra

libraries provided by Nvidia. Our source code and dataset are

available on the Github repository.

IV. EXPERIMENTS

A. Dataset

The dataset for both training and testing is Microsoft’s

Common Objects in Context (COCO) [52]. As indicated by its

name, images in the COCO dataset are taken from everyday

scenes augmented by a “context” to the objects captured. There

are 80 object categories in COCO. We extract the object label

from the annotation file associated with the image and cus-

tomize the label format based on our needs. Since our research

focuses on autonomous driving, we use a subset of COCO

categories related to driving. Other categories, such as food,

appliance, and kitchenware, do not contribute to autonomous

driving. A reduction in categories also significantly reduces the

training time and, to a smaller extent, inference cost as the total

number of images is reduced. This facilitates experimentation

with a larger set of model variations.

We leverage COCO’s APIs to filter out excluded categories

as we select the relevant subset of COCO. To meet the image

label requirement of the Yolo model, we convert the label from

COCO to Yolo format, i.e., each image is associated with a

corresponding label file (distinguished by file extension). A

label file has one or more entries, each representing a five

tuple to identify an object with a class ID, object center (x,y

coordinates), width, and height.

Table I depicts the number of images (for training and

testing/inference) and the number of objects in them, where

images may contain multiple objects that can partially overlap,

i.e., only parts of an object are visible.

B. Evaluation Metrics

We use the conventional ML metrics of precision, recall,

and F1-score, detailed in the following, to assess experimental

results.

The Intersection over Union (IoU) measures the overlap

between the predicted bounding box and the ground truth box

divided by the union of the two boxes in object detection.

We include IoU as a metric since the predicted location of

an object is of significant importance in autonomous driving,

and it affects object classification. In the experiments, we

TABLE I
DATASET DETAILS

Class ID # train imgs # train objs # test imgs # test objs

0 2287 4955 1098 2439
1 8680 19741 6117 19230
2 2442 6021 1200 3023
3 2243 3833 840 1445
4 2791 4327 1044 1935
5 2464 3459 1278 1599
6 4321 7050 1602 2923
7 2098 7590 1046 3597
8 2893 9159 1116 3472
9 1205 1316 570 628
10 1349 1372 454 594
11 481 833 257 501
12 3844 6571 1958 3494

use a uniform IoU threshold 0.5 for all incremental learning

methods. If the IoU value exceeds the threshold, an object is

detected; otherwise, no object is detected.

A model recognizes an object detection as a true posi-

tive (TP) when the object is detected (IoU greater than the

threshold) and classified correctly. For detecting class A, the

predicted result counts as a false positive (FP) when the object

is recognized as A but the ground truth is ¬ A. There are two

cases counting as a false negative (FN). One is no detection

and the other is detected as ¬ A while the ground truth of the

object is A for both cases.

We also measure the training and inference time for each

continual learning method. Training time is important since we

want to start using the new model with additional capabilities

as soon as possible. While continual learning is not subject

to the hard real-time constraints (in contrast to inference), any

training performed at a lower priority in the background as best

effort should still provide a new model within minutes. Infer-

ence can then switch over to the new model, and automated

driving decisions may benefit from earlier object detection in

high-level decision making. Inference time is crucial as well

since it has hard real-time constraints, where the continually

learned on-board model has to predict the result by a deadline

(before the next image frame arrives).

C. Analysis of Our Dual-Head Method

We compare our dual-head architecture with the state-

of-the-art work called feature reweighting [14] due to the

following considerations: First, based on our literature survey,

all continual learning approaches on object detection focus

on learning new classes. Yet, our method is on continually

learning new data with different distributions for existing

classes. Second, although it adapts the model to new classes,

feature reweighting is the most relevant work to compare to.

It only uses a small amount of new data like ours to train

the model continually. This is practical in an onboard contin-

ual learning scenario. Their approach is based on the same

object detection model as ours. Third, feature reweighting

has released their source code, which allows us to reproduce

their approach. We have also compared our method with joint

training. Our approach has almost the same accuracy with that

of joint training. Due to space constraints, we have to omit the

experimental result of joint training in the following figures.

We next assess detection accuracy with newly learned data,

never seen before, and seen before data. A comparison in terms

of timing analysis is given Sec. IV-D (Timing Analysis). In

this comparison, the base method is trained with the full base

data as it is not subject to continual learning. Instead, it should

be considered an OTA update resulting from vendor-initiated

periodic retraining in their data center, with both old and

new data from the field collected over longer periods of time

(weeks to months). We take a snapshot of such a base model as

a baseline to compare to the two continual learning methods,

(1) feature reweighting and (2) our dual-head method. These

two are trained with the same baseline data plus new data

under continual learning. The hyperparameters are unchanged

and remain the same for all methods.

Evaluation with New Data: The purpose of this experiment

is to determine how well the dual heads have learned the new

data during continual training. We use 20 new images from

each class to train the incremental detection heads and thus

assess our dual-head architecture. As shown in Figure 2, the

x-axis denotes the class ID. Compared to the base detection

head (top) that has never seen these data, our dual-head method

(bottom) has detected 0%–150% more TPs and dramatically

reduced the number of FNs. Moreover, there is a decrease in

the number of FPs 0% – 22%. The precision of the dual head

has increased by 1%–13% across all n classes, and the recall

of the dual head has improved by 17% – 59% for all n classes.

Although the recall of the reweighting method (middle)

remains about the same as that of the base model across

all n classes, accuracy drops significantly among all classes

due to the high number of FPs, which are misclassifications.

For detection of a ground truth with only one class (id = 1),

the reweighting method tends to predict multiple bounding

boxes with classes (nearly all n), thereby generating n times

more FPs for every class. Our method performs detection,

on average, 61.4% better in terms of precision and 44.4%

in recall over all classes than that of the reweighting method.

The results show that the incremental head has learned new

data for all n classes. This is the key advantage of the dual-

head method over other methods, without access to previously

trained data.

Evaluation with Never Seen Before Data: Figure 3 de-

picts the detection metrics of n classes contrasting the base,

reweighting, and dual-head methods for the given testing data

(not subject to prior training).

Our dual-head detection architecture results in a larger

number of TP cases and fewer FNs across all n incrementally

learned classes. Although our method incurs a slightly higher

FP rate than that of base-head detection, the average precision

over all n classes is 3.4% lower, with a standard deviation of

0.03. The dual head resulted in 247 more TPs than the base

head. The average recall over all n classes is 1.1% higher

than that of base-head detection, with a standard deviation

of 0.01. However, the average precision and recall over all

classes of the reweighting method is 51.8% and 14.5% lower

than those of the base model. The prediction results of the

reweighting model have both high FP and FN, which is an

indication forgetting issues during continual learning. This

is rooted in their method that focuses on learning new data

from new classes instead of learning new data from existing

classes. If there is not new class to learn, the reweighting factor

balances across all n classes, which makes the model associate

an object with all n classes, leading to high FP for all classes.

In contrast, our continual dual-head method has learned new

data with high precision and recall while still retaining prior

levels for both metrics of the base method for other test data.

Moreover, its testing results on new data outperform that of

the feature-reweighting method in Figures 2 and 3.

Sensitivity Analysis: The purpose of this experiment is to

test the robustness of our dual-head method, i.e., to ensure

that continual learning over many images does not result in

catastrophic forgetting of learned features. This sensitivity

study exposes the base to all training data. The incremental

head is then continually trained with 20 new images of each

class. We then expose this trained dual-head system in testing

(inference) to the same training data across all n classes.

Notice that this is only done as a validation experiment to

assess the ability to retain prior seen knowledge. Figure 4

(bottom) depicts detection results of our dual-head architecture

over all n classes indicated by their index (see dataset details

in Table I).

Results of the dual-head configuration remain nearly the

same across classes as for the base head, i.e., continual training

retains prior knowledge across original and retrained classes.

The average precision and recall difference is 4.3% and 0.1%,

respectively, with a standard deviation of 0.03 and 0.003.

In contrast, the average precision and recall difference is

59.9% and 26.5% between the base model (top) and the

reweighting method (middle). The experiment in Section IV-C

(New Data) additionally showed that new knowledge could

also be retained. In other words, our dual-head method is

not subject to memory loss with respect to already learned

features.

D. Timing Analysis

In this section, we compare both learning and test-

ing/inference time among multiple learning methods and as-

sess why our continual learning method with its dual-head

architecture is the fastest. We also conduct a preliminary

experiment that executes both online testing/inference and

continual learning instances on the same machine to outline

directions of future work.

Training Time: The second column of Table II shows

the single image re-training time of each continual learning

method performed on our testbed. The indicated training time

is per image. This implies that the model retraining time for

the base method is much longer since it is exposed to both

new and old data.

[11] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint

arXiv:2004.10934, 2020.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on

computer vision. Springer, 2016, pp. 21–37.

[13] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity
dilemma: Investigating the continuum from catastrophic forgetting to
age-limited learning effects,” Frontiers in psychology, vol. 4, p. 504,
2013.

[14] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-shot ob-
ject detection via feature reweighting,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), October 2019.

[15] J. Gao, J. Wang, S. Dai, L.-J. Li, and R. Nevatia, “Note-rcnn: Noise
tolerant ensemble rcnn for semi-supervised object detection,” in Pro-

ceedings of the IEEE international conference on computer vision, 2019,
pp. 9508–9517.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[17] Z. He and L. Zhang, “Multi-adversarial faster-rcnn for unrestricted
object detection,” in Proceedings of the IEEE International Conference

on Computer Vision, 2019, pp. 6668–6677.

[18] T. Wang, J. Huang, H. Zhang, and Q. Sun, “Visual commonsense r-cnn,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 10 760–10 770.

[19] T. Wang, X. Zhang, L. Yuan, and J. Feng, “Few-shot adaptive faster
r-cnn,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 7173–7182.

[20] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 7263–7271.

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in IEEE international conference on computer

vision, 2017, pp. 2980–2988.

[22] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement
neural network for object detection,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 4203–
4212.

[23] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv

preprint arXiv:1904.07850, 2019.

[24] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer Vision

(ECCV), September 2018.

[25] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-
stage object detection,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), October 2019.

[26] “Apollo, an open autonomous driving platform,” http://apollo.auto/,
2019.

[27] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE

transactions on systems, man, and cybernetics, part C (applications and

reviews), vol. 31, no. 4, pp. 497–508, 2001.

[28] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of
object detectors without catastrophic forgetting,” in IEEE International

Conference on Computer Vision, 2017, pp. 3400–3409.

[29] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and L. Heck, “Rilod:
near real-time incremental learning for object detection at the edge,”
in ACM/IEEE Symposium on Edge Computing, 2019, pp. 113–126.

[30] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in IEEE conference

on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

[31] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions

on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[32] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” National

academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[33] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 7765–7773.

[34] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in European

Conference on Computer Vision (ECCV), 2018, pp. 67–82.
[35] A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep

adaptation,” IEEE transactions on pattern analysis and machine intelli-

gence, 2018.
[36] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,

“End-to-end incremental learning,” in European Conference on Com-

puter Vision, 2018, pp. 233–248.
[37] A. Chrysakis and M.-F. Moens, “Online continual learning from

imbalanced data,” in Proceedings of the 37th International Conference

on Machine Learning, ser. Proceedings of Machine Learning
Research, H. D. III and A. Singh, Eds., vol. 119. Virtual:
PMLR, 13–18 Jul 2020, pp. 1952–1961. [Online]. Available:
http://proceedings.mlr.press/v119/chrysakis20a.html

[38] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 4367–4375.
[39] M. Ren, R. Liao, E. Fetaya, and R. Zemel, “Incremental few-shot learn-

ing with attention attractor networks,” Advances in Neural Information

Processing Systems, vol. 32, pp. 5275–5285, 2019.
[40] S. W. Yoon, D.-Y. Kim, J. Seo, and J. Moon, “XtarNet: Learning

to extract task-adaptive representation for incremental few-shot
learning,” in Proceedings of the 37th International Conference

on Machine Learning, ser. Proceedings of Machine Learning
Research, H. D. III and A. Singh, Eds., vol. 119. Virtual:
PMLR, 13–18 Jul 2020, pp. 10 852–10 860. [Online]. Available:
http://proceedings.mlr.press/v119/yoon20b.html

[41] X. Tao, X. Hong, X. Chang, and Y. Gong, “Bi-objective continual
learning: Learning ‘new’while consolidating ‘known’,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 5989–5996.

[42] J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang, “Incremental
few-shot object detection,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 13 846–13 855.
[43] G. Zhang, K. Cui, R. Wu, S. Lu, and Y. Tian, “Pnpdet: Efficient few-

shot detection without forgetting via plug-and-play sub-networks,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2021, pp. 3823–3832.
[44] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,

“Patdnn: Achieving real-time dnn execution on mobile devices with
pattern-based weight pruning,” arXiv preprint arXiv:2001.00138, 2020.

[45] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[46] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International conference

on machine learning, 2015, pp. 2285–2294.
[47] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:

Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[48] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints,” in International

Conference on Mobile Systems, Applications, and Services, 2016, pp.
123–136.

[49] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[50] S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy
toward real-time dnn inference and training,” in IEEE Real-Time and

Embedded Technology and Applications Symposium, 2020.
[51] R. T. Mullapudi, W. R. Mark, N. Shazeer, and K. Fatahalian, “Hy-

dranets: Specialized dynamic architectures for efficient inference,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018.
[52] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

