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ABSTRACT

The increasing proliferation of cyber-physical systems in a multi-
tude of applications presents a pressing need for effective methods
of securing such devices. Many such systems are subject to tight
timing constraints, which are poorly suited to traditional security
methods due to the large runtime overhead and execution time
variation introduced. However, the regular (and well documented)
timing specifications of real-time systems open up new avenues
with which such systems can be secured.

This paper contributes T-SYS, a timed-system method of de-
tecting intrusions into real-time systems via timing anomalies. A
prototype implementation of T-SYS is integrated into a commer-
cial real-time operating system (RTOS) in order to demonstrate its
feasibility. Further, a compiler-based tool is developed to realize a
T-SYS implementation with elastic timing bounds. This tool sup-
ports integration of T-SYS protection into applications as well as the
RTOS the kernel itself. Results on an ARM hardware platform with
benchmark tasks including those drawn from an open-source UAV
code base compare T-SYS with another method of timing-based
intrusion detection and assess its effectiveness in terms of detecting
attacks as they intrude a system.
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1 INTRODUCTION

Simple networked and embedded devices have become increasingly
common throughout the wide range of applications as processors
with the necessary capabilities have become cheaper and more
plentiful. Increasingly, such systems are incorporated into critical
infrastructure (ranging from a single traffic light to a municipal
power grid) and autonomous vehicles, i.e., systems subject to hard
real-time constraints. Failing to control such systems can result
in loss of life or severe environmental damage. Meanwhile, cyber
attacks have become widespread and are penetrating embedded
systems as they are increasingly networked. Hence, it is becom-
ing crucial to protect such cyber-physical systems (CPS) from at-
tacks [7]. However, securing embedded, time-constrained systems
presents a number of unique challenges beyond those of securing
commodity compute systems [11]. Ordinary methods of protection,
particularly kernel-level protection, are insufficient by themselves
in embedded and real-time systems, since they focus on system
functionality and tend to add significant execution overhead, yet
lack the ability to ensure that a system operates within its timing
constraints. In addition, some proposed protection methods are
dependent on hypothetical specialized hardware [10], or require
significant developer effort to configure protection based on known
threats and system performance requirements. To fill this gap, meth-
ods need to be developed for implementing kernel-level protection
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into the RTOS, as well as allow for easy configuration based on
elastic timing bounds.

Real-time systems require accurate timing information and pre-
dictable behavior with regards to execution time. This predictability
can be leveraged to detect attacks by identifying timing irregulari-
ties. Such irregularities are indicative of system malfunction due
to a cyber attack or excessive execution beyond specified WCET
bounds of a task or code region. We assume the former hereafter.

This work contributes T-SYS, a monitoring method for intru-
sion detection that relies on inserting time checks (instrumentation
points) along code paths with known WCET bounds. A compiler-
based tool to allow the automatic integration T-SYS protection
based on a user-defined Maximum Vulnerability Threshold is devel-
oped as well. This allows T-SYS to be configured, at compile time,
according to expected threats, security requirements, or system
performance. When T-SYS is implemented in both kernel- and user-
level code, it is capable of providing end-to-end protection across
the entire execution path. Its instrumentation complements other
conventional security techniques by integrating WCET monitoring
points along execution paths into code. Any intrusions resulting
in execution time exceeding the WCET budget between two in-
strumentation points will be detected, which limits the code of
such injections in length to a so-called “window of vulnerability”
— correlated to the longest WCET path between instrumentation
points. The Maximum Vulnerability Threshold defines the upper
bound of this “window of vulnerability”, which will be tolerated by
the compiler-based integration tool, and is determined by the user.

A number of WCET-based protection methods have been pro-
posed [10, 34, 35]. We compare T-SYS to Bellec et al. [10], as they
developed an algorithm to identify regions, for each of which tim-
ing is tracked in order to identify intrusion by detecting anomalies.
However, the criteria used to divide code into regions, as well as
the requirements for region structure, are vastly different. Where
the Bellec algorithm utilizes single-entry/single exit nested regions,
T-SYS allows for multi-exit regions; Bellec creates a hierarchy of
nested regions requiring stack maintenance of timed context data
while T-SYS neither requires regions nor a region stack. What’s
more, T-SYS supports elastic timing requirements determined prior
to compile time, facilitated by our ROSE compiler tool for placing
instrumentation points. This elasticity allows the user to choose
a desired level of protection based on application requirements
instead of Bellec’s rigid one-sized regions determined by control-
flow shape. We also develop transformations to loop structures to
further reduce overhead.

Bellec relies on a hardware monitor to track the cycle count
within a program, and thereby detect timing anomalies with zero
performance overhead. With a similar hardware design, T-SYS’
overhead could also be reduced to zero. A further description of the
requirements for T-SYS hardware is given in Section 4. However, as
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such hardware does not exist in practice, experiments in this paper
were conducted using software implementations of both T-SYS’ and
Bellec’s methods assessing overheads for instrumentation points.
This also provides an indication of cost for a realistic deployment
of such intrusion protection.

The primary contributions of this work are:

o T-SYS is developed, a novel method for timing-based protection
across user and kernel boundaries.

e A compiler-based tool for automatic integration of elastic T-
SYS instrumentation points is algorithmically developed.

o A prototype implementation of T-SYS is realized in an existing
Autosar/OSEK-compliant RTOS, as well as in a variety of existing
real-world CPS benchmark task sets.

e Experiments comparing T-SYS to existing WCET-based se-
curity methods are conducted, comparing their ability to detect
malware attacks, as well as their performance impact compared to
the unmodified kernel and previous timing-based security method.
They show clear benefits of T-SYS over prior work in terms of lower
overhead, user-configurability and elasticity.

2 RELATED WORK

As cyber-physical systems have become increasingly important to
24/7 operations of critical infrastructure, so has the importance of
protecting them against cyberattacks [13, 23]. In response to the
increasing prevalence of and need for security in real time systems,
a number of new ideas have emerged to meet the unique challenges
of real-time security. This section aims to provide an overview
of existing contributions to security in the domain of real-time
systems, with particular focus on methods that incorporate timing
information as part of their protection. The purpose of this overview
is to determine what options currently exist for protecting real-time
systems, and what problems in the field T-SYS is best suited for.

Prior work on intrusion detection in real-time systems has taken
a variety of approaches [12]. Many of these methods are focused
on increasing security at the network level, as the increasing use
of networks in real-time systems presents an expanding attack
surface [28]. While conventional and embedded network protection
methods complement T-SYS, the most closely related methods are
based on the principle of intrusion detection via timing anomalies.
These methods leverage the unique timing constraints inherent to
real-time systems as a means to identify attacks. Designing a real-
time system inherently entails gathering timing information on the
various components that comprise it [4]. Since sufficiently complex
attacks are liable to generate timing anomalies, some protection
methods incorporate this information into their intrusion detection
strategies by identifying timing anomalies [31]. It is this category
that T-SYS falls into.

Bellec et al. [10] created a protection method that employs a
region-based approach, tracking the time spent executing regions.
Their method employs specialized hardware to monitor execution.
The regions used by Bellec are single-entry, single-exit nested re-
gions. The hardware tracks execution through these regions by
monitoring the a cycle count-down register initialized upon region
entry and tracks nested regions via a stack structure with associ-
ated timer save/restore operations. They also provide an algorithm
for automatically dividing target code into regions based on the
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control-flow graph of the code, which we compare T-SYS to in Sec-
tion 7. T-SYS differs in its criteria for region selection (non-nested,
single-entry/multi-exit), as well as in providing elasticity in its
timing bounds through the MaxVuln parameter to determine the
largest allowable region size.

Zimmer et al. [34] developed a set of methods for providing
security in an RTOS exploiting precise timing information to detect
attacks. T-Rex is a checkpoint based system that relies on fine-
grained timing information (single clock cycle resolution) to detect
buffer overflow attacks on function return and other straight-line
execution paths of application code. T-ProT is a coarser-grained
protection using synchronous checkpoints to validate for each task
that a milestone in execution in reached by some expected time.
T-AxT is integrated with the scheduler and supports asynchronous,
periodic checks of a task’s program counter value, to ensure that it
is within the appropriate range.

Of these, T-SYS is most outwardly similar to T-ProT in that both
use timers to bound a block of code. However, T-ProT implements
its timer checkpoints via scheduler invocations, while T-SYS uses
function calls to instrument code. This allows T-SYS to provide
integrated protection within both application and kernel code and
across their intersection instead of just application code, which cre-
ates novel challenges in that the control flow of a protected region
may originate in the context of one task but lead to that of another
task. T-SYS also supports elastically sized vulnerability windows as
opposed to more the rigid constant sized regions of T-ProT.

Traditionally, the effect of kernel paths in real time systems has
been estimated fairly pessimistically [22], taking the WCET of the
syscall to be that of the longest path the call could possibly take
through the kernel. Prior work [15] has modeled RTOS kernel paths
using control-flow graphs (CFGs). These CFG models were then in-
tegrated with the existing CFG of the userspace programs (crossing
the kernel-application boundary) to create a more complete CFG of
the user task. By including kernel paths, previously-independent
CFGs of different tasks could be connected, thereby creating a
whole-system CFG.

Methods of WCET analysis have been developed to tighten
bounds by incorporating system state information preceding sys-
tem calls [16]. Information about system states is combined with
prior analysis of individual kernel paths’ WCETs as well as the
conditions for taking these paths. In combination, such information
yields tighter bounds on the response time of system calls and,
transitively, application tasks.

3 ATTACK MODEL AND SCENARIO

There are a multitude of ways in which real-time systems can come
under attack. Much of the research in real-time security focuses
on identifying attacks at the network level [19, 21]. In this work, a
general model is presented for both the attack that T-SYS is designed
to detect, together with a model for the system itself, with a focus
on defining how the kernel handles interrupts and what hardware
features are made available.

We assume the existence of a high-precision monotonic counter
provided by the hardware and available to be programmed by the
kernel. This counter is write-protected and can only be modified
via a kernel call preventing an attacker from being able to modify
it without returning to the kernel.
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We further assume that the attacker has managed to compromise
the user data space. The attacker’s goal is to hijack the control flow
of the system in order to execute malicious code under elevated per-
missions, and then return undetected. We assume that the attacker
cannot modify hardware factors or protected kernel memory. An
attacker under these limitations may still be able to divert kernel
execution, e.g., by triggering a buffer overflow within kernel code.

4 DESIGN

The primary objective of T-SYS is to detect intrusions, thereby
allowing the system to respond rapidly to such an intrusion, e.g.,
by switching into a safe mode or shutting down a node entirely
— but the exact response to the attack is outside the scope of this
paper. Our approach to intrusion detection relies on tracking the
execution time of code regions during runtime, and detecting when
a region’s execution time has exceeded its statically-determined
WCET budget. Code regions are bounded by instrumentation points
(IPs). The use of worst case execution time to construct these bounds
(over less pessimistic estimates) is paramount, as by definition a
code region’s execution time will never exceed its WCET. Thus,
we can assume that a region exceeding its WCET bound indicates
the presence of an attack. The algorithms for generating regions
(and thereby placing IPs) from a control-flow graph annotated with
WCET information and with an elastic timing bound are discussed
in Section 5.

In a software-based implementation, IPs are implemented as
system calls when inserted into application-level code, and as simple
function calls when added inside kernel paths. This provides the
necessary level of data protection to the IP code by ensuring that
important data (e.g., timing bounds or IP return addresses) reside
in a different address space than application code, reducing an
attacker’s ability to tamper with this information. In a hardware
implementation, a dedicated component tracks the program counter
and executes all the functions of the IP (setting up timer, raising
alarm) once the PC reaches an IP without extra code added to the
application or kernel path. In this paper, we focus on a software
implementation of T-SYS since it is applicable to today’s hardware
as implemented in our experimental evaluation.

4.1 Protection Model

T-SYS identifies timing anomalies along execution paths. Execution
paths are represented as regions of contiguous basic blocks within
the system’s control flow graph, having a single entry and one or
more exit points (in contrast to more constrained single-exit control
flow [10], which does not match C/C++ control flow with break
within loops). As every basic block within the CFG is associated
with exactly one region, successors of an exit point of one region
represent entry points for a subsequent regions. Execution time is
tracked via IPs placed at region boundaries. Because regions are
pairwise disjoint with an empty intersection in basic blocks (in
contrast to nested regions [10]), each IP is associated with exactly
one region. Figure 1 shows a sample CFG with 4 IPs and color-coded
regions associated with each one.

At each IP, a timer with a deadline equal to the longest path
through the associated region region (i.e., the longest time before
reaching another IP) is set up. IPs are placed at the beginning of
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the first block in a region. Notice that program profiling/tracing [6,
8,9, 20] places instrumentation in a basic block anywhere within a
path, and often not at the top, which is one of several differences
between T-SYS and profiling/tracing). Concrete rules for dividing a
CFG into regions are discussed in Section 5.

o ) e
15us  35ps  25ps

Figure 1: CFG with WCETs per block, regions denoted by
color, with instrumented blocks labeled by letter, where
pathWCET table contains timeout deadlines for each region.

Figure 1 shows a CFG with IPs A, B, C and D, along with WCETs
per basic block. The table to the right shows the WCET bound for
each IP. On encountering point A, the next IP reached could be
either B or C, where it reaches in either case after 15ms (the length
of A’s basic block). Both blocks directly following A contain IPs.
As IPs are always placed at the start of a block, the length of the
containing block is included. For B, the same case is seen with a
WCET of 35ms. At point C, however, there are two paths to D, with
WCETs of 10ms and 25ms, respectively. The longest of the possible
paths defines the IP deadline, so the timer at C is set to 25ms.

Consider the effect of executing injected code of an attack that
diverts from the expected control flow. Upon reaching an IP, a call is
made to set up a timer, with a deadline equal to the WCET distance
to the next IP. When the control flow is diverted off the path to
the next IP, execution continues until the timer deadline is reached.
When this happens, an interrupt is triggered, flagging an intrusion.
With no diversion, the next IP would be reached before the deadline,
and the timer would be reprogrammed with a new deadline. Also
consider an attack using a suspend-and-resume strategy, where the
attack is split up into multiple parts, suspending its own execution
and returning to the diverted region to avoid allowing the total re-
gion execution time to exceed the timer deadline. In this case, every
fragment of the attack would need to fit within the vulnerability
window for the region. Given that the size of this window changes
each time the region is executed (due to caching or control flow
differences), the attacker would need to guarantee that they are
always diverting back to the region with enough time left to finish
execution within the deadline.

4.2 Interrupt Handling

Consider a user-level task executing in a system involving multi-
ple tasks of varying priority in a preemptively scheduled system.
The execution of application code may be interrupted and then
temporarily suspended while execution is transferred to a higher-
priority task. In general, the exact time and the location in the
application where the interrupt occurs cannot be statically deter-
mined as preemptions may be asynchronously triggered.
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To account for asynchronous actions, it is necessary for the
operating system’s interrupt handler to interface with the T-SYS
timer when interrupting a T-SYS protected task. When an interrupt
arrives during the execution of a T-SYS protected application, the
remaining time left for the current timer is recorded in kernel (i.e.,
protected) memory. The timer is then canceled before the rest of
the interrupt is processed.

Similarly, when returning execution to a protected task, the
interrupt handler must reinstate the T-SYS timer with the recorded
remaining time plus some constant to account for the overhead
associated with handling the interrupt before the timer is paused,
as well as for returning from the interrupt after resetting the timer.
However, this overhead is constant and can therefore be directly
credited to the T-SYS timer within the timer resume operation. If T-
SYS is integrated into the kernel, the interrupt handler may contain
an IP that sets up a new timer to protect a kernel region, e.g., to
handle the interrupt or to call the dispatcher. This case is discussed
further in Section 6.

4.3 Instrumentation Points

At each IP, the return address is read from the call stack and checked
for validity against a table of known valid return addresses. If
invalid, an attack is flagged by raising an alarm. Otherwise, the
return address is used to extract the IP’s unique ID by indexing
into the pathWCET table, which contains the relevant region WCETs
(and thus relative timer deadlines) for each IP. The pathWCET table
is stored in protected kernel memory, and its contents are hard-
coded at compile time by the ROSE-based implementation tool. A
timer is then set up for this deadline. This timer setup operation
also cancels the timer for the previous IP encountered. Pseudocode
for implementation points is shown in Listing 1.

Listing 1: Instrumentation Point Pseudocode
void inst_point ():
ret_addr = get_return_address ()
if !is_valid_addr(ret_addr){
alarm ()
}
point_id = get_pid(ret_addr)
current_time = get_timestamp ()
deadline = current_time + pathWCET[point_id]
setup_timer (deadline)

IPs are represented in application code as system calls, and in
kernel code by singular function calls. The return address checking
prevents attackers from evading detection by inserting their own
IPs into malicious code. Since the return address is unique to each
IP, it can be extracted at compile time.

5 PLACEMENT OF IPS

A tool to support automatically implementing protection into ar-
bitrary code, both user and kernel, is provided. To this end, the
ROSE [27] compiler framework was utilized to create an instru-
mentation tool from a specification that incorporates previously
acquired timing information, control-flow analysis and a vulner-
ability threshold, MaxVuln. This tool automatically divides the
control flow graph of a given code base into regions based on the
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user-specified maximum vulnerability threshold, MaxVuln, and
places IPs in desired locations throughout. Use of user-specified
MaxVuln parameter supports elasticity with respect to instrumen-
tation granularity. Furthermore, this tool is capable of performing
loop transformations to reduce the overhead of instrumentation.

A prerequisite for utilizing our instrumentation tool is that the
developer has extracted worst-case execution time information
for each basic block in the system. The difficulty of this process
is largely dependent on which method is used to acquire basic
block WCETs. Extraction of timing information was performed
experimentally for this work, but other implementations of T-SYS
may use any method available, including static WCET analysis
tools [32]. T-SYS is agnostic to how basic block WCETs are extracted
and will work with any method, so there is no need to specify a
precise method for determining the WCET of a basic block.

Our tool provides elastic instrumentation, which takes the granu-
larity of instrumentation as an input in terms of cycles to denote the
vulnerability threshold. This allows the user to directly specify the
minimum frequency of IPs rather than deriving this value indirectly
from other user parameters, as is the case in other methods [10, 34].

The tool also supports basic block instrumentation (by simply
treating every block as a separate region), which we used as a first-
order approximation of WCET bounds, later refined in a second-
order pass over regions with multiple blocks. This step achieves
much tighter bounds on the WCET of each region.

5.1 Placement Algorithm

To place IPs, all basic blocks within a CFG are assigned into contigu-
ous regions. Each region represents a section of code over which a
given timer will be active. From here on, we refer to partitioning
the CFG into regions as coloring it; blocks of the same region share
a color, which is unique to that region. Regions created must fol-
low a particular set of rules governing their structure to support

instrumentation placement for timing protection:

e A basic block must share its color with either all of its chil-
dren, or with none of them.

o A basic block must share its color with either all of its parents,
or with none of them.

e A region may have only one entrance block.

e The WCET of the longest path through a region must not
exceed the MaxVuln threshold.

e MaxVuln must be greater than or equal to the WCET of the
longest basic block. (If finer granularity was needed, one
could even dissect a block into multiple blocks.)

By these rules, a single basic block may constitute a region.

Once the CFG is partitioned into regions, an instrumentation
point is placed at the beginning of the first basic block per region.
Such a block exists because, as per the region structure requirements
defined above, each region will have a single entry point. Placement
is always performed at the top of a basic block for two reasons:

1) Placement in the middle of a basic block would divide the
execution time between two regions, but given that timing informa-
tion is stored at the granularity of single basic blocks, it would be
unclear how this time should be divided up. 2) Placement at the end
of a basic block would be complicated due to branch instructions
whose time needs to be accounted for, yet the IP cannot be placed
after them since they affect the program counter.
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In order to properly handle loops within a given CFG, a prepro-
cessing step is necessary during which each loop is represented
as a single (compound) block. In the event that the loop’s total
WCET is larger than MaxVuln, the compound block will initially
be treated as having an indefinite WCET. (We use this property in
our algorithm to force it being treated as its own region when first
creating regions.) Once the remainder of the CFG has been divided
into separate regions, the loop’s CFG will then be passed into our
algorithm as a single compound object (without further internal
analysis).

Loop bounds are expected to be statically bounded, either explic-
itly by a constant bound that can be statically evaluated at compile
time or by user hints/pragmas to provide such a constant. For such
constant number of iterations of a loop and a total WCET not ex-
ceeding MaxVuln, the compound block will be treated as having
the same WCET as the loop it represents. In the event that the loop
bounds are not available (and thus cannot be evaluated at compile
time), the algorithm will assume the loop’s total WCET is larger
than MaxVuln and thus follow the behavior for long loops outlined
in the preceding paragraph. In addition, the loop structure may
be transformed into a semantically equivalent one to ensure low
instrumentation overhead, which is discussed in subsection 5.5.

Once this preprocessing step is complete, the CFG is partitioned
according to the 3-step algorithm outlined below:

(1) Regions are created delimited by dominator and post-
dominator blocks, which are uniquely colored with respect
to other regions.!

(2) All interior blocks of a region beyond the delimiter blocks
are colored with their region color.

(3) Regions are combined within the MaxVuln threshold and
region property requirements to reduce the total number of
regions and thus instrumentation overhead.

Pseudocode of the placement algorithm is given in the appendix,
along with a proof sketch for correctness and a complexity analysis.

Figure 2 depicts the coloration of a control flow graph after
each step in the point placement process. The CFG displayed was
taken from the ext_tsk kernel path, a portion of the scheduler
within the Autosar/OSEK-compliant Toppers RTOS [33], which
was instrumented as part of the evaluation in Section 7.

5.2 Partial Regions

In the PartialRegions step, only some of the blocks in the CFG are
colored in; others are left uncolored, with no region membership.
The objective of this step is to generate single-entry, single exit
regions within the CFG.

A depth-first traversal of the CFG is performed. At each uncol-
ored block S, a list of the node’s post-dominators, Spost, is acquired.
Any block in Spos; that does not have S as a pre-dominator is
removed from Spos¢. The resulting pruned list is then sorted by
distance from S (where distance represents WCET), with the fur-
thest entry first (the remaining blocks, if any, can be ordered this
way [26], as the furthest block will also be a post-dominator for

A dominator block in a CFG indicates a prior block execution must have passed
through to reach the current block, whereas a post-dominator indicates a block ex-
ecution will have to pass though after leaving this block, i.e., these blocks denote
must-information [5].
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Figure 2: CFG after each step in coloring regions of the CFG
for the Toppers scheduler

all earlier blocks in the list). For each remaining block in Spos¢, E,
a depth-first algorithm is used to determine the longest path (in
terms of worst case execution time) between S and E. If the com-
puted region WCET is less than the MaxVuln parameter, then all
of the blocks between S and E are assigned a single color, and the
depth-first traversal of the CFG continues from E.

In the event that none of the blocks in Spos: pass the criteria
above (i.e., S is not a dominator for any of its post-dominators, or no
post-dominator is found with a longest path of less than MaxVuln)
or S has no post-dominator, no blocks will be colored and the depth-
first traversal of the CFG continues. This process is complete once
every node in the CFG has been checked. As seen in the first graph
of Figure 2, only some blocks are colored after step 1 (here, 40% of
the blocks are colored. Uncolored nodes are shown as white, with a
black background). Listing 2 in the appendix shows the pseudocode
for the Partial Regions step.

5.3 Filling Regions

The Filling Regions step colors all remaining blocks that were left
uncolored by the previous Partial Regions step. This eventually
results in a fully cornered CFG. The methods begins with a depth-
first traversal of the CFG. When an uncolored block is encountered,
it is colored. After coloring a block, an attempt is made to grow the
new region by painting all of its successors with the same color.
This attempt can only succeed if, for every successor C,

e C is uncolored,

o C has no parents of a different color than S (including uncol-
ored blocks), and

e adding C to the region will not create a path through the
region that exceeds MaxVuln.

These rules ensure that any region created in this manner will
(1) not interfere with the regions created in the previous step, and
(2) will obey the rules for region structure defined previously. If the
growth attempt succeeds, all successors obtain the predecessor’s
color, and growth attempts start for each newly-colored block in a
breadth-first fashion. If the growth attempt fails, then the algorithm
resumes looking for uncolored blocks to start new regions.
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The second graph in Figure 2 depicts the state of the CFG after the
Filling Regions step is complete. Note that every block in the graph
has been colored at this point. The previously described process
corresponds to the pseudocode in Listing 3 within the appendix.

5.4 Region Adjustment

The final phase of loop adjustment, Region Adjustment, optimizes
the graph to reduce the number of IPs placed. This reduces the re-
quired size of the pathW CET table, which also reduces performance
in a software implementation of T-SYS (where IPs have associated
execution time overhead).

Region Adjustment uses the same dominator/post-dominator
pair method from the Partial Regions step to identify potential re-
gions. However, only region exit blocks that do not share a color
with any sibling blocks (i.e., successors of the block’s predeces-
sor) are checked as possible new entry points. If a viable region
is identified, then a check is performed to determine if creating
the new region will reduce the total number of regions within the
CFG. If so, then all blocks within the region are repainted a new
color making them part of the new region. The check for reduction
simply involves counting the number of unique colors identified
among the prospective region’s blocks. If it is more than 3, or if the
new region contains a superset of the blocks in at least 2 regions (as
is the case in Figure 2), then the check succeeds and the region is
created. Pseudocode for this is shown in Listing 4 in the appendix.

We refer to this algorithmic approach of delimiting maxVuln as
elastically sizing regions: Our automated process allows users to call
the instrumentation tool with their preferred MaxVuln threshold,
which could even differ from task to task depending on a task’s
real-time criticality.

5.5 Loop Transformation by Thresholding

The process of instrumenting loops opens up an interesting prob-
lem with regard to the cost of IPs. Specifically, how can a loop be
efficiently instrumented when multiple loop iterations can pass
within the MaxVuln time limit, but the total number of iterations
makes the loop exceed MaxVuln? When a single loop iteration
can be longer than MaxVuln, the loop’s internal structure can be
instrumented using the 3-step method from above. But the 3-step
method does not allow IPs to occur on every k-th loop iteration
due to the region constraints. Instead, each loop iteration would
trigger an IP, which increases T-SYS’ overhead.

Our solution to this problem is to transform the loop into a
nested loop with a single IP on top of the outer loop and all of
the logic of the untransformed loop placed in an inner loop. We
bound the number of inner loop iterations such that it will not
exceed MaxVuln. We limit loop transformations to loops with stat-
ically known iteration bounds so that the transformation can be
performed at compile time.

An example of this transformation’s effect of the loop CFG is
depicted in Figure 3. The blue segment represents the original
loop. The outer loop (orange segment) contains an additional TP
(highlighted in yellow) and a conditional branch (enclosed in green)
that determines the number of inner loop iterations to execute
on a given iteration of the outer loop. The dynamic number of
instructions increases slightly due to upper bounds calculations
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for the inner loop, but this overhead is easily compensated by the
lower number of IPs.
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Figure 3: CFG of a loop before and after the l(;op threshold-
ing transformation

Consider an untransformed loop with N iterations, where at
least K iterations can execute within the MaxVuln time limit. After
the loop transformation, the resulting outer loop will iterate Ny,
times, where N,,; = [%J +1.

The inner loop will iterate N, = K times, except for the final
iteration of the outer loop, where Nj;,; = N — K X (Npy — 1).

The value of Nj, on the final outer loop iteration may be lower
than during others to account for the case N is not an integer
multiple of K. Handling this case is the reason for including the
conditional statement within the outer loop.

Note that the calculation for K must take into account the addi-
tional time spent calling the IP and executing the branch statement
as well as the outer loop return, and so will be smaller than the
exact value of MaxVuln divided by the iteration WCET.

5.6 Generation of IPs

Once the process of transforming loops and partitioning the CFG
into regions has completed, we may begin actually placing in-
strumentation points into the code. First, the completed CFG is
re-formed by expanding any loops that were reduced to a single
compound block and instrumented separately back into their orig-
inal form. Subsequently, a single function call is inserted to the
IP function at the beginning of every basic block that does not
share a color with its parents (ie., the beginning of each colored
region). In addition, a table is generated relating each IP to its as-
sociated region’s WCET. This WCET data is then populated into
the pathWCET table (see Section 4), which is stored in protected
kernel memory.

6 IMPLEMENTATION

We implemented the design using the ROSE [27] compiler to gener-
ate a T-SYS instrumentation for user/kernel source code and subject
it to timing experiments with different MaxVuln parameters ex-
ploiting the elasticity of our tool.

We utilized an Autosar/OSEK-compliant [2, 3] RTOS, Top-
per [1, 29], that is commercially deployed by Suzuki (among others)
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for automotive systems adhering to ISO 26262 [18] and MISRA-
C [24] requirements. In particular, we employ the Toppers RTOS
(EV3RT) version with available source code targeting a 32-bit ARM
9 processor clocked at 300 MHz featuring 16 KB instruction and 16
KB data caches in experiments [30].

We created a software implementation of T-SYS within Toppers,
including all of the components outlined in Section 4. Syscalls for
application-embedded IPs were added, along with reserved space
for the pathWCET table. Modifications to the interrupt handler
were made in order to handle pausing and resuming timers for
interrupted tasks.

Actual tool-based integration of instrumentation points was per-
formed on several CPS benchmark applications as well as within the
Toppers kernel itself in order to ensure protection across the user-
kernel boundary. Implementations were performed using various
MaxVuln levels. The task sets instrumented included a selection of
tasks from PapaBench [14, 17, 25] with benchmarks from the open-
source Paparazzi UAV codebase and selected Malardalen WCET
Benchmarks. All instrumentation of IPs in kernel and application
code was performed using our ROSE-based placement tool.

A high-precision, write-protected monotonic counter is a require-
ment for T-SYS, as discussed in Section 3. Most existing hardware
platforms provide components that meet this need [12]. Toppers
does not innately provide such a device, however, the AM1808
processor of the hardware platform used for testing features an
eCAP (enhanced CAPture) module, which can be configured to act
as a monotonic counter to generate an interrupt upon reaching a
programmable deadline [30]. This device was used in our implemen-
tation of T-SYS within Toppers. In the general case, the difficulty
of adding support for the T-SYS timer will depend on the precise
details of the system being modified. In particular, if the timer hard-
ware is already employed by the RTOS for another purpose, then
additional modifications will be needed to multiplex it so as to add
T-SYS support while retaining existing OS timers. In the Toppers
case, the eCAP module was not being used, so modifications were
straightforward.

Modifications to the Toppers interrupt handler were made to
handle preemptions of T-SYS protected tasks. The task control block
(TCB) structure was extended with a field to store the remaining
timer budget at time of interruption. The timer is reinstated upon
task resumption, using the remaining budget time plus a constant
amount of additional time to account for the overhead associated
with the interrupt handler diverting execution before processing
the timer pause. The additional time required was measured at 25
cycles in our implementation. Using the TCB to store T-SYS related
data is safe as the TCB is part of kernel (i.e., protected) memory.

In case that an interrupt initiated an instrumented kernel path,
the T-SYS timer is recorded, and the diverted execution reaches an
instrumentation point within the handler marking the entry into
the protected section of kernel code. By recording the timer, we
can credit the known execution time of the kernel path back to the
task upon returning from the interrupt.

In the event that a context switch occurs during the kernel path
(as would be likely during a scheduler interrupt), everything up to
the dispatcher is considered part of the interrupted task’s execution.
Once the dispatcher is invoked, the timer’s budget is recorded
again, in order to be replaced (and credited with the needed extra
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time) once we return from the dispatched task. Another crediting
operation is issued upon return from the interrupt back into the
interrupted user task, using the recorded timer value from when
the interrupt first arrived.

In addition to the minimum support required for handling pro-
tected applications (i.e. syscalls for instrumentation points & other
modifications mentioned above), kernel paths related to mutex han-
dling and those related to context switching were instrumented by
applying T-SYS protection across the kernel/user boundary to en-
sure end-to-end protection across the runtime of an entire task set.
The instrumented kernel paths constituted task entry/exit, mutex
lock/unlock operations, and scheduler interrupts.

7 EXPERIMENTAL EVALUATION

The elasticity of the placement algorithm described in Section 5
supports experiments for a variety of applications with different
timing requirements to be instrumented using a varying MaxVuln
parameter to conform to the timing bound requirements of each
application. Our experiments focus on demonstrating the ability
of T-SYS to detect timing anomalies using simulated intrusions.
These experiments were performed using benchmark task sets and
feature detection at both user and kernel levels.

We select benchmarks from the CPS PapaBench suite with mi-
nor modifications to adhere to the Toppers kernel API, and addi-
tional benchmarks from the Malardalen set. PapaBench is based
on the real-world Paparazzi code base, an open-source framework
for UAVs (e.g., quad-copters). It provides a good testing ground
for emulating the protection methods’ behavior in a realistic envi-
ronment, particularly in the realm of cyber-physical systems. We
modified PapaBench to make it compatible with the Toppers RTOS.
PapaBench features precedence constraints, data exchange, syn-
chronization and context switches between tasks, which allowed
us to test the effectiveness of T-SYS’ protection inside the kernel,
as well as within user tasks. The Malardalen tasks were used for
comparison to the Bellec algorithm (as it was tested using the same
Benchmarks). PapaBench tasks were run together as a real-time
task set, as they share mutex-protected data, while tasks from the
Malardalen benchmark set were run separately (i.e., one task in the
system at a time).

We further compare our T-SYS implementation with Bellec et
al. [10]. Our analysis compares intrusion detection capabilities as
well as number of instrumentation points executed at runtime for a
software instrumentation of both. Notice that the Bellec algorithm
is rigid while T-SYS supports elasticity in the maximum allowed
vulnerability. Because of this, we use the rigid Maximum Attack
Width (MAW) value by Bellec as a base MaxVuln value for each
benchmark. We then present additional data for multiples of this
value to demonstrate benefits of T-SYS’ elastic nature.

Tasks from PapaBench which were instrumented include
servo_transmit, send_data_to_autopilot (shortened to autopilot), and
navigation. These modified PapaBench tasks incorporate context
switches and mutual exclusion locks to facilitate task communica-
tion. These properties were used to assess T-SYS’ ability to detect
intrusions to the kernel. Benchmark tasks from the Malardalen set
were fft, cnt, Ims, st, edn, statemate, and gsort-exam and adpcm. For
both benchmark sets, we also assessed the sensitivity to timing
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Figure 4: Minimum attack vulnerability vs. MaxVuln for Figure 5: Minimum attack vulnerability vs. MaxVuln for Pa-

Malardalen tasks.

overhead induced by T-SYS analyzing performance under different
MaxVuln levels.

7.1 Attack Detection Experiments

These experiments demonstrate T-SYS’ efficacy in detecting attacks
while monitoring the time of protected regions under execution,
both within and outside the kernel. As MaxVuln defines the upper
bound on T-SYS timer deadlines, it is impossible for an attack with
an execution time greater than MaxVuln to go undetected (see
Section 4). These experiments focus on determining the longest
attack that is capable of bypassing T-SYS for a given MaxVuln
level. Simulated attacks were conducted against T-SYS protected
tasks using various MaxVuln values. These simulated attacks were
conducted by inserting function calls with known execution times
into the tasks after instrumentation. Attacks were always placed
immediately after the IP at the top of the longest region in the
tested task or kernel path. This is the worst case for an attack to
occur, as it gives the longest time window for the attacker.

By varying the length of the intruding function calls, we simulate
attacks of different lengths. This was leveraged to assess how the
MaxVuln parameter affects attack detection. Thus, for each value
of MaxVuln shown in the table, the simulated attack length was
increased in 5psecs increments until an attack length was found that
always resulted in intrusion detection after 100 attack attempts. The

simulation of kernel attacks (Figure 6) followed the same principle.
The results of this experiment are depicted in Figures 4 and 5.

The results show that increasing MaxVuln leads to an increase in
the minimum observed detectable attack in most cases. This reflects
an increase in the size of protected regions and their variability
in execution time. If the gap between BCET and WCET is large,
attackers have an easier time intruding as less time spent inside
the loop provides more slack for the attacker to exploit: As long
as the execution time of the original code plus that of the attack
does not exceed the region’s WCET, the attack will not trigger any
alarms. As MaxVuln is increased, regions encompass more basic
blocks with larger differences between BCET and WCET.
Sometimes, the minimum observed detectable attack stagnates
after a certain MaxVuln value. This occurs once the entire task is

paBench tasks.

contained within one region; increasing MaxVuin does not lead to
an increase in region length after that, i.e., there is no further loosen-
ing of timing bounds as MaxVuln increases. This is seen in Figure 6,
which details the maximum observed vulnerability for attacks that
occur within the kernel, particularly during mutex releases/acquisi-
tion, and context switches as a result of task completion. Results
for these kernel paths were obtained from the modified PapaBench
task set representing protected user code. The kernel path attacks
are graphed separately to indicate that they occur within the kernel
(and not user code as previously for PapaBench attacks).
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Figure 6: Minimum attack vulnerability vs. MaxVuln for se-

lected kernel paths.

We also remark that one could establish a minimum guaranteed
vulnerability if attach vectors were placed in each region and then
gradually increased as in our experiment. Such an approach as linear
complexity if the BCET can be triggered within a given region and
would results in a tighter bound than a given MaxVuln value.

7.2 Performance Impact

The elastic nature of MaxVuln provides a customizeable tradeoff
between vulnerability and performance for a software implementa-
tion of T-SYS. Raising MaxVuln allows for reduced overhead due to
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less frequent IPs — at the cost of increased vulnerability due to laxer
timing bounds. Similarly, lowering MaxVuln reduces the vulnera-
bility of the system — at the cost of introducing more frequent IPs,
and thus greater execution time overhead. In the case of hardware
support for T-SYS, time overhead is zero (see Section 4). Execution
times reported in Tables 1 and 2 were gathered experimentally and
averaged over 50 runs.

As can be seen in Table 1, integrating T-SYS does induce some
overhead in execution time as the unprotected control group always
has the lowest execution time. The overhead is highest for the
smallest MaxVuln. It consistently drops as MaxVuln is increased.
An exception is cnt, which stays leveled for values of MaxVuln
above 2,000. As cnt has a WCET less than 2,000, for all values
above that, it still has only one IP at the start of the program, and
thus has nearly no overhead. Table 2 displays similar behavior in
most entries (for kernel and user tasks). It should be noted that,
even for the lowest value of MaxVuln tested (corresponding to the
highest overhead), all PapaBench tasks still completed before their
deadlines, indicating that enough slack existed with in the original,
unprotected code base to accommodate significant protection.

MaxVuln (usec) | unprotected| 1000| 2000| 3000| 4000| 5000
adpcm 321079 (613574 | 484969 | 458921 | 423463 | 362904
Ims 518362 (989697 | 782991 | 741223 | 684509 | 585666
fft 68315|130266|103367| 97615| 90156| 76695
cnt 1981 2601 2226 1991| 1992 1990
statemate 295433563840 | 446305 | 422211 | 390409 | 334027
edn 147086 | 280464 | 221775 | 209940 | 193686 | 166191
qsort-exam 6518| 12180| 9848| 9659| 8603| 6871
st 426710( 813607 | 642774 | 609665 | 562184 | 481264

Table 1: Average execution time (in psec) of Malardalen
benchmarks for different values of MaxVuln.

MaxVuln (usec) | unprotected 100 | 200 | 300 | 400 | 500
navigation 614 | 1162 | 921 | 863 | 821 | 685
servo_transmit 186 262 | 199 | 201 | 197 | 198
autopilot 292 426 | 385 | 342 | 301 | 305
context_switch 157 197 | 176 | 157 | 158 | 156
mutex_acquire 245 297 | 278 | 246 | 244 | 245
mutex_release 221 271 | 245 | 223 | 221 | 220

Table 2: Average execution time (in ysec) of PapaBench tasks
and kernel paths for different values of MaxVuin.

7.3 Comparison with Bellec

We compare T-SYS to Bellec in terms of number of regions created
during instrumentation and number of regions entered during exe-
cution, analogous to instrumentation points executed. For purposes
of comparison, the MaxVuln parameter used was the correspond-
ing maximum attack width (MAW) determined by Bellec. For each
task, we use this value as a baseline for four separate T-SYS in-
strumentations: (1) base MaxVuln (T-SYS), (2) % of base MaxVuln
(T-SYS(0.5x)), (3) 2X base MaxVuln (T-SYS(2x)), and (4) 5X base
MaxVuln (T-SYS(5x)). This allows us to analyze how T-SYS com-
pares when taking advantage of its elasticity.

Table 3 reports the number of regions created per algorithm.
T-SYS creates fewer regions than Bellec for Malardalen tasks for an
equivalent MaxVuln (baseline), ranging from ~ 3%-28% depending
on code shape. When MaxVuln is cut in half (T-SYS(0.5x)), signifi-
cantly more regions are created than for base T-SYS or for Bellec.
This is expected, as reducing MaxVuln limits the length of regions.
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Base T-SYS | T-SYS | T-SYS
Task MAW Bellec | T-SYS 05% | @v) (5%)
adpcm 9007 36 31 74 23 6
Ims 1210 47 34 68 17 11
fft 1117 41 38 72 19 12
cnt 274 15 9 17 5 2
statemate 2970 21 19 34 13 7
edn 3155 32 26 49 18 10
qsort-exam 614 25 23 62 14 9
st 8001 18 16 28 9 5
navigation 121 5 5 9 3 1
servo_transmit 93 3 3 5 1 1
autopilot 134 7 6 10 4 1

Table 3: Comparison of Bellec vs T-SYS algorithms, by num-
ber of regions created.

When MaxVuln is increased above the base value, the number
of regions created drops compared to base instrumentation of both
Bellec and T-SYS. With 2X MaxVuln, the drop in region count varies
widely (between 23% and 50%) as T-SYS has more rules for region
structure than maximum length requirements. Thus, granularity
does not always scale linearly with MaxVuln. When increasing
MaxVuln to 5X, a consistently large drop is observed in most cases.
Notice that smaller tasks from PapaBench are entirely contained
within a single region at 5X.

Next, the number of regions encountered dynamically during
execution is compared, each of which corresponds to a timer update
for the software implementation of both algorithms. In experiments,
the Malardalen benchmarks were run to completion while the Pa-
paBench task set ran for 3 seconds, constituting 6 hyperperiods.

Base T-SYS | T-SYS | T-SYS
Task MAW Bellec | T-SYS 05%) | (2x) (5%)
adpcm 9007 | 14256 | 12275 | 24912 6240 1504
Ims 1210 407 351 906 241 191
fft 1117 2017 1736 3302 960 580
cnt 274 534 498 1011 278 101
statemate 2970 791 754 1294 452 239
edn 3155 1125 1052 1926 618 348
gsort-exam 614 971 956 1835 572 320
st 8001 640 601 1209 384 198
navigation 121 521 513 1017 221 71
servo_transmit 93 312 254 531 61 61
autopilot 134 548 457 1102 246 87

Table 4: Comparison of Bellec vs T-SYS algorithms, by num-
ber of regions entered during execution.

The results of this experiment are depicted in Table 4. T-SYS
was observed to have an equivalent or lower number of regions
encountered dynamically than Bellec for all benchmarks. Note that
the percentage difference between T-SYS and Bellec is lower in
runtime than in the static case. This is due to T-SYS incorporat-
ing code paths into adjacent regions in some cases that are less
frequently executed. Bellec sometimes creates separate regions for
such paths, but since they are hardly executed, the dynamic counts
remain nearly the same. Overall, the dynamic region count follows
the same trend as the static one — reducing MaxVuln increases it
while increasing MaxVuln reduces it. Note that the dynamic region
count also stagnates for servo_transmit once the number of regions
hits 1, as there is no difference between instrumentation under
T-SYS(2x) and T-SYS(5x) for that task.



Conference’17, July 2017, Washington, DC, USA

Overall, the elasticity of our T-SYS approach provides significant
savings over Bellec as MaxVuln is increased, which makes T-SYS
far more flexible and user-configurable.

8 CONCLUSION

This work has contributed T-SYS, a method for securing real-time
applications via monitoring execution time. We have implemented a
compiler-based tool for integrating T-SYS into user and kernel code.
Timestamp checks are automatically placed at specific locations
according to an elastic, user-specified MaxVuln parameter. We have
implemented support for T-SYS into a commercial operating system
and used the compiler tool to implement protection for benchmark
tasks as well as the kernel itself, crossing the user/kernel boundary.

We have compared T-SYS with another state-of-the-art timing-
based security method and found that T-SYS is competitive in terms
of regions created, as well as in terms of region entry operations
executed during runtime, while providing the unique ability of uni-
fied protection outside and inside the kernel as well when crossing
kernel boundaries. Overall, T-SYS provides a versatile, user-friendly
and elastic environment for enhancing real-time tasks with timed
protection, which can complement conventional security means in
safety-critical environments with lower overhead than prior work.
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A FUTURE WORK

Future work on T-SYS will focus on expanding support for addi-
tional platforms. In particular, the current T-SYS models restricted
to single-core systems. However, multicore processors are increas-
ingly common in embedded systems, making expanding the T-SYS
model to multicore systems a valuable prospect. The difficulty of
doing so is dependent on the particular hardware available, par-
ticularly the timer module used to keep track of region execution
time. If there is a separate module available for each core and tasks
are pinned to cores, then expansion is relatively straightforward
with the main challenge being the complexity of WCET analysis
on multicore systems. Difficulties arise with a single timer shared
amongst all cores, as this would require a timer queue to ensure
the shortest deadline amongst all currently-executing regions is
tracked by the timer. Handling this queue would add some overhead
to instrumentation points, as well as interrupts where the timer is
accessed.

B POINT PLACEMENT ALGORITHMIC
COMPLEXITY

The three steps in the IP placement process are performed sequen-
tially. Therefore, its complexity is bounded by the most complex
step. As each step is a graph traversal process, we determine the
complexity in terms of the number of basic blocks (i.e., nodes) in
the control flow graph.

The Partial Regions step has a worst-case complexity of O(n?).
The step1_dfs() function is recursively called on all basic blocks,
however, it is possible for basic blocks to be visited multiple times.
All cycles in the CFG have been eliminated by the preprocessing
step, so the CFG is now a directed acyclic graph. Therefore, even
if we assume the worst case, where the current node has all other
nodes as children (and thus the loop will iterate n — 1 times), each
recursive call can iterate at most n — 2 times, and so on. Thus, the
total complexity is the sum of integers 1 to n, which is bounded by
o(n?).

The Region Filling step has a worst-case complexity of
O(n?). The outer step2() function is O(n?) (for similar reasons
as step1_dfs()). The expandRegion() function’s recursion is
bounded by the MaxVuln parameter (a constant), which is O(1),
giving us a total complexity bound of O(n?).

The Region Adjustment step has a worst-case complexity of
O(n?), as it is structurally identical to the Partial Regions algorithm,
with additional constant-time operations.

Thus, as the IP placement algorithm is comprised of three O(n?)
algorithms run sequentially, with an overall complexity of O(n?)
as well.
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C POINT PLACEMENT PSEUDOCODE

Listing 2: Instrumentation Placement Partial Regions Step

stepl_dfs(P): for S in P.children
skip = false
if S.hascolor == false
S_post = S.postDoms
for E in S_post
if S not in E.Doms
S_post.remove(E)
sortByDom (S_post)
for E in S_post
rWCET = longestPath(S, E)
if r'WCET < MaxVuln
paintRegion (S, E)
skip = true
skipToBlock = E
break
if skip == true
stepl_dfs (skipToBlock)
else
stepl_dfs(S)

Listing 3: Instrumentation Placement Filling Regions

step2(P): for S in P.children
if !S.hasColor
paint (S, newcolor())
expandRegion(S)
step2(S)

expandRegion (P):
for S in P.children

if S.color != P.color
return

if longestPath(P, S) > MaxVuln
return

for S_p in S.parents
if S_p.color != P.color
return
for S in P.children
paint (S, P.color)
for S in P.children
expandRegion (S)

Listing 4: Instrumentation Placement Region Adjustment

step3_dfs(P): for S in P.children
skip = false
if S.children[0].color != S.color
S_post = S.postDoms
for E in S_post
if S not in E.Doms
S_post.remove (E)
sortByDom (S_post)
for E in S_post
rWCET = longestPath (S, E)
if r'WCET < MaxVuln
paintRegion (S, E)
skip = true
skipToBlock = E

break
if skip == true
step3_dfs (skipToBlock)
else

step3_dfs(S)
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D SKETCHED CORRECTNESS PROOF

We establish the correctness of several components of the placement
algorithm.

LemmA D.1. Regions created via pre/post dominator pairs are cor-
rectly formed.

There are three ways in which a region can be incorrectly formed:

© By having a WCET that exceeds MaxVuln. This cannot happen
as MaxVuln compliance is explicitly checked at region formation.

o A block in the region shares a color with a successor and has a
successor that it does not share a color with. This cannot happen:
As the region’s exit is a post-dominator for the entry point, all
paths from the entry must eventually reach the exit block, and
every block included in one of these paths is colored for the region.
If a block within the region has a successor outside the region and
a successor inside the region, then this would imply that there is
an execution path from the start that does not lead to the exit. This
is a contradiction, as the exit is a post-dominator for the start block.
Therefore, this case cannot happen.

o A block in the region shares a color with a predecessor and
has a predecessor that it does not share a color with. This is also im-
possible, with a proof similar to the previous one, this time relying
on the fact that the start is also a dominator for the end block.

Given this, we have shown that regions built using the pre/-
post dominator algorithm used in the Partial Regions and Region
Adjustment steps are correctly formed.

LEMMA D.2. Regions created via the Filling Regions step are cor-
rectly formed.

The correctness of the Filling Regions algorithm is not fully
proven due to space concerns. It can be shown that the regions
generated are correct by noting that the correctness of the region
is checked at each stage of growth (analyzing the new predecessors
and successors created after each change), and growth only occurs
if no rules were violated.

Based on these assumptions, we can show that the Region Ad-
justment step will also produce correctly-formed regions, provided
the regions it starts with are correctly formed, as they should be
according to Lemmas D.1 and D.2.

There are 4 ways in which the Region Adjustment step can
violate the rules for region structure laid out in Section 5:

e By creating a region with a WCET exceeding MaxVuln. This
cannot happen as the region’s WCET is checked against MaxVuln
before creation.

o By creating a region that violates the structural rules for re-
gion shape. This does not happen, as the regions are generated via
pre/post dominator pairs, which generate correctly shaped regions,
according to the Lemma D.1.

o Recoloring nodes causes the regions they were previously a
part of to no longer obey the shape rules. This cannot happen: For
the new region to break existing regions, the old regions would
need to have at least one block with a successor that was recol-
ored, and a successor that was not recolored (or likewise for a
pair of predecessors). However, for this to be true, the recolored
block, part of the new region, would need to have a predecessor or
successor color violation as well. Because we know that the new
region is properly formed, we can infer that regions with blocks
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removed (due to being recolored and added to the new region) are
still properly formed.

e Recoloring nodes causes the WCET of the regions they were
previously a part of to exceed MaxVuln. This will not happen: The
region WCET is calculated as the sum of block WCETs along the
longest path through the region. Assuming absence of hardware
anomalies, removing a block can only reduce WCET (if the block
was on the longest path), or leave it unaffected (if the block was
not).

Based on these proof steps, the algorithms described in Section 5
properly generates regions according to the region shape assump-
tions that our protection is based on.



