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Abstract The combinatorial Mandelbrot set is a continuum in the plane, whose boundary is defined as the
quotient space of the unit circle by an explicit equivalence relation. This equivalence relation was described by
Douady (1984) and, separately, by Thurston (1985) who used quadratic invariant geolaminations as a major
tool. We showed earlier that the combinatorial Mandelbrot set can be interpreted as a quotient of the space
of all limit quadratic invariant geolaminations with the Hausdorff distance topology. In this paper, we describe
two similar quotients. In the first case, the identifications are the same but the space is smaller than that used
for the Mandelbrot set. The resulting quotient space is obtained from the Mandelbrot set by “unpinching” the
transitions between adjacent hyperbolic components. In the second case we identify renormalizable geolami-
nations that can be “unrenormalized” to the same hyperbolic geolamination while no two non-renormalizable

geolaminations are identified.
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1 Introduction

To study families of complex polynomials one may construct models for them. A famous case here is
the quadratic family of polynomials P.(z) = 22 + ¢, where ¢ belongs to the complex plane C. The
set My of all parameters ¢ such that P. has a connected Julia set is called the filled Mandelbrot set;
we call its boundary the Mandelbrot set (notice that our terminology is not entirely standard). In his
seminal preprint [12], Thurston constructed a combinatorial geometric model M$§ of M. There exists
a monotone map from My onto M$5. The MLC (Mandelbrot set is locally connected) conjecture states
that this map is a homeomorphism.

The set M§ contains a countable and dense family of homeomorphic copies of itself. Thus, MS$ is
an example of a so-called fractal set. According to Douady, the process of constructing M$ can be
described as “pinching the closed unit disk D”, which is why M is often called the “pinched disk model”
of Ms. “Pinching” refers to collapsing a chord of D (or a polygon with vertices in S); each additional
act of pinching creates an increasingly complicated new quotient space of D. One can understand the
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Figure 1 The geolamination QML

“pinched disk model” by doing only some of the pinchings and ignoring other ones. The resulting partial
quotient spaces of D are steps towards understanding M$. This motivates our work. Also, producing
similar models in the higher degree cases is a difficult problem that has not yet been solved. Partial
quotients of D constructed in this paper admit cubic analogs that may be viewed as simplified models of
the cubic connectedness locus. This serves as our second motivation.

The main results of the paper use concepts related to laminational equivalence relations, geolamina-
tions (geodesic laminations), etc. They require intimate knowledge of the structure of the combinatorial
Mandelbrot set M$. All these notions and precise statement of our main results can be found in Sec-
tion 2. Here, we only describe our main results assuming the knowledge of the above mentioned concepts.
Notice that when talking about os-invariant objects (e.g., geolaminations) we often call them quadratic.

The combinatorial Mandelbrot set M$ is defined by Thurston [12] (see also [11]) as the quotient space
of the unit circle S under the laminational equivalence relation ~qui, generated by the quadratic minor
geolamination (QML, see Figure 1). In [3] we interpret this as follows. First, we define the space L of all
quadratic laminational equivalence relations ~ on the unit circle S by defining, for each such equivalence
relation ~, the geodesic lamination L. generated by ~ which is the union of S and all the edges of
convex hulls of all classes of ~ (in what follows we often call geodesic laminations geolaminations); then
we identify ~ with £.. We define a metric on LI by using the Hausdorff distance function on the set
of geolaminations L£.. Since the space in question in non-compact, we take its closure ]IT%. The space
LY consists of Hausdorff limits of geolaminations £. where ~ belongs to L. The main result of [3]
is that M$ is a quotient of the space ILTS. More precisely, two geolaminations from I[Tg are identified if
their minors (see [12]) are non-disjoint (we call it minor equivalence). We prove in [3] that each class
of equivalence in ]IT% contains a unique geolamination £.. Hence the corresponding quotient of ]IT% can
be identified with L set-theoretically. Each laminational equivalence relation in LI is identified with
a point of M$§, and we show in [3] that the resulting one-to-one identification between classes of minor
equivalence in HT% and points of M$ is a homeomorphism.

In this paper we describe a similar quotient M} of the space L, C I[Tg consisting of all geolaminations
which are non-isolated in LZ; the space M) is obtained from M$ by “unpinching” all points of M$ at
which two hyperbolic components of M$§ meet. It is generated by the parametric geolamination QML!
(see Figure 2) obtained from QML by replacing all isolated leaves of QML by their endpoints. We also
consider another modification M3" of M$ obtained by replacing all maximal “baby-Mandelbrot” sets
by the corresponding gaps of D and thus defining yet another parametric geolamination QML™" (see
Figures 3 and 4 for zoom-ins of this lamination).

2 Preliminaries

We write D for the open unit disk, and S = Bd(D) for its boundary, the unit circle. Let a, b € S. By
[a, b], (a,b), etc., we mean the closed, open, etc., positively oriented circle arcs from a to b, and by |I| the
normalized length of an arc I in S (a normalization is made so that the length of S is 1).
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Figure 2 The geolamination QML! Figure 3 A zoom-in of QML!

Figure 4 Another zoom-in of QML!

2.1 Laminational equivalence relations

Denote by C the Riemann sphere. For a compactum X C C, let U*(X) be the component of C \ X
containing infinity. If X is connected, there exists a Riemann mapping ¥y : C \D — U®(X); we always
normalize it so that ¥y (c0) = 0o, and U (z) tends to a positive real limit as z — cc.

Consider a monic polynomial P of degree d > 2, i.e., a polynomial of the form P(z) = 2%+ lower order
terms. Consider the Julia set Jp of P and the filled-in Julia set Kp of P. Extend the map z — 2% to a
map 04 on C. If Jp is connected, then U, =U: C\D — U®(Kp) is such that ¥ 06y = P o ¥ on the
complement of the closed unit disk, and ¥ is asymptotic to the identity at infinity [6,10].

If Jp is locally connected, then ¥ extends to a continuous function W : C \D— C \ Kp,and ¥o f; =
P oW on the complement of the open unit disk. Thus, we obtain a continuous surjection ¥: Bd(D) — Jp
(the Carathéodory loop). Identify S = Bd(D) with R/Z. Set 1) = W |s. We will write o4 for the restriction
of 84 to S.

Define an equivalence relation ~p on S by « ~p y if and only if ¢(x) = 9(y), and call it the (og4-
invariant) laminational equivalence relation of P; since ¥ defined above semiconjugates 6; and P, the
map 1) semiconjugates o4 and P |;py, which implies that ~p is invariant. Equivalence classes of ~p
have pairwise disjoint convex hulls. The topological Julia set S/ ~p= J., is homeomorphic to Jp, and
the topological polynomial f~,. : Jo, — J~,, induced by gy, is topologically conjugate to P |,.

An equivalence relation ~ on the unit circle, with similar properties to those of ~p above, can be
introduced with no references to polynomials.

Definition 2.1 (Laminational equivalence relations).  An equivalence relation ~ on the unit circle S is
said to be laminational if

(E1) the graph of ~ is a closed subset in S x S;

(E2) convex hulls of distinct equivalence classes are disjoint;

(E3) each equivalence class of ~ is finite.
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Figure 5 The Juliaset of f(z) = 22 —1 (so-called “basilica”)
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Figure 6 The geolamination for the Julia set of 22 — 1
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For a closed set A C S, let CH(A) be its convex hull. An edge of CH(A) is a closed straight segment I
connecting two points of S such that I C Bd(CH(A)). By an edge of a ~-class we mean an edge of its
convex hull.

Definition 2.2 (Laminational equivalences and dynamics). A laminational equivalence relation ~ is
(04-)invariant if

(D1) ~ is forward invariant: for a class g, the set o4(g) is a class too;

(D2) for any ~-class g, the map 7 = o4 |q extends to S as an orientation preserving covering map 7
such that g is the full preimage of 7(g) under the covering map 7.

Definition 2.2(D2) has an equivalent version. Given a closed set @ C S, a (positively oriented) hole (a, b)
of @ (or of CH(Q)) is a component of S\ Q. Then (D2) is equivalent to the fact that for a ~-class g either
c4(g) is a point or for each positively oriented hole (a, b) of g the positively oriented arc (o4(a),cq(b)) is
a hole of 04(g). From now on, we assume that, unless stated otherwise, ~ is a o4-invariant laminational
equivalence relation.

Given ~, consider the topological Julia set S/ ~= J. and the topological polynomial f.. : J. — Jo
induced by o4. Since S C C, we can use Moore’s theorem to embed J. into C and then to extend the
quotient map .. : S = J. to a map 9. : C — C with the only non-singleton fibers being the convex
hulls of non-degenerate ~-classes. A Fatou domain of J. (or of f.) is a bounded component of C\ J..
If U is a periodic Fatou domain of f. of period n, then f |gq) is either conjugate to an irrational
rotation of S or to oy, for some 1 < k (see [1]). In the case of irrational rotation, U is called a Siegel
domain. The complement of the unbounded component of C\ J. is called the filled-in topological Julia
set and is denoted by K.. Equivalently, K. is the union of J. and its bounded Fatou domains. If the
laminational equivalence relation ~ is fixed, we may omit ~ from the notation. By default, we consider
f~ as a self-mapping of J.. For a collection R of sets, denote the union of all sets from R by RT.

Definition 2.3 (Leaves). If A is a ~-class, call an edge ab of CH(A) a leaf of ~. All points of S are
also called (degenerate) leaves of ~.
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Figure 7 An example of a geolamination which is not a g-lamination

The family of all leaves of ~ is closed (the limit of a converging sequence of leaves of ~ is a leaf of ~);
the union of all leaves of ~ is a continuum. Figure 5 shows the Julia set of the polynomial 22 — 1, and
Figure 6 displays all leaves of the corresponding laminational equivalence ~. For any subset X C D with
the property X = CH(X NS), we set 04(X) = CH(o4(X NS)). In particular, for any leaf ¢ of ~, the set
cq(f) is a (possibly degenerate) leaf.

2.2 Geolaminations

Assume that ~ is a gg-invariant laminational equivalence relation.
Definition 2.4. The set L. of all leaves of ~ is called the geolamination generated by ~.
Geolaminations “visualize” laminational equivalence relations.

Definition 2.5 (Geolaminations, see [12]).  Distinct chords in D are unlinked if they meet at most
in a common endpoint; otherwise they are linked, or cross each other. A geodesic pre-lamination L
is a set of (possibly degenerate) chords in D such that any two distinct chords from £ are unlinked.
A geodesic pre-lamination £ is a geolamination if all points of S are elements of £, and L% is closed.
Elements of £ are leaves of L. A degenerate leaf (chord) is a singleton in S. The continuum £+ C D
is the solid of L. Let L be a geolamination. The closure in C of a non-empty component of D\ LT is
a gap of L. If a leaf (a gap) satisfies all the properties of leaves (gaps) of geolaminations but is not a
part of any geolamination, we will call them stand alone leaves/gaps. If G is a gap or a leaf, call the
set G' = SN G the basis of G. A gap is finite (infinite, countable, uncountable) if its basis is finite
(infinite, countable, uncountable). Uncountable gaps are also called Fatou gaps. Points of G’ are called
vertices of G. Geolaminations of the form L., where ~ is a laminational equivalence relation, are called
g-laminations (“q” from “equivalence”). A chord is (o4-)critical if its endpoints have the same image
under o4 (we often omit o4 from notation).

The notion of sibling invariant geolaminations introduced below is slightly different from the original
notion of invariant geolaminations in the sense of Thurston [12]. However, sibling invariant geolamina-
tions form a closed set and include all g-laminations. Thus, for all our purposes, it will suffice to consider
sibling invariant geolaminations only. Some advantage of working with sibling og4-invariant geolamina-
tions is that they are defined through properties of their leaves; gaps are not involved in the definition. It
was shown in [2] that all sibling invariant geolaminations are also invariant in the sense of Thurston [12].
In particular for any gap G of a sibling invariant £ the set 04(G) is a point, or a leaf of £, or a gap of L.
Moreover, if 04(G) = H is a gap then og|pa(e) : Bd(G) — Bd(H) is a composition of a monotone map
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and a positively oriented covering map. In that case we call the degree of 04 |ga() the degree of 04|c.

Definition 2.6. A geolamination L is sibling o4-invariant provided that

(1) for each ¢ € L, we have o4({) € L;

(2) for each ¢ € L there exists 1 € L so that o4(¢1) = ¢;

(3) for each ¢ € L so that o4(¢) is a non-degenerate leaf, there exist d disjoint leaves f1,...,¢; in L
so that ¢ = £1 and o4(¢;) = o4q(¥) for alli=1,...,d.

Let us list a few properties of sibling o4-invariant geolaminations.

Theorem 2.7 (See [2]).  The space of all sibling oq-invariant geolaminations is compact. All geolami-
nations generated by og-invariant laminational equivalence relations are sibling oq-invariant.

In what follows instead of “sibling o4-invariant geolaminations” we say “og4-invariant geolaminations”.
Also, we talk interchangeably about leaves (gaps) of ~ or of £.. Let us now discuss gaps in the context
of og4-invariant laminational equivalence relations and geolaminations.

Definition 2.8 (Critical gaps). A gap G of a geolamination is called (o4-)critical if for each y € o4(G")
the set ng(y) N G’ consists of at least 2 points. If it does not cause ambiguity, we talk about critical
gaps.

Definition 2.9 (Periodic and (pre)periodic gaps). Let G be a gap of an invariant geolamination £. A
gap/leaf U of L., is said to be (pre)periodic if o7 ™(U") = o'7*(U’) for some m > 0, k > 0. Choose m
and k to be minimal. Then U is said to be preperiodic if m > 0 or periodic (of period k) if m = 0. If
the period of G is 1, then G is said to be invariant. Define precritical and (pre)critical objects similar to
(pre)periodic and preperiodic objects defined above.

Consider infinite periodic gaps of og-invariant geolaminations. Observe that, by [7], infinite gaps are
eventually mapped onto periodic infinite gaps. First, we state (without a proof) a well-known folklore
lemma about the edges of preperiodic (in particular, infinite) gaps (see, e.g., [5, Lemma 2.28]).

Lemma 2.10.  Any edge of a (pre)periodic gap is either (pre)periodic or (pre)critical.

Let us now classify infinite gaps. It is known that there are three types of such gaps: caterpillar gaps,
Siegel gaps, and Fatou gaps of degree greater than one.

Definition 2.11.  An infinite gap G is said to be a caterpillar gap if its basis G’ is countable.

An example of a caterpillar gap is shown in Figure 7. A general description of os-invariant caterpillar
gaps is given in [4]. The fact that the basis G’ of a caterpillar gap G is countable implies that there are
lots of concatenated edges of G. Other properties of caterpillar gaps can be found in Lemma 2.12.

Lemma 2.12 (See [3, Lemma 1.15]). Let G be a caterpillar gap of period k. Then the degree of
0’5 |Bda(c) s one, and G’ contains some periodic points of period k.

Definition 2.13. A periodic Fatou gap G of period n is said to be a periodic Siegel gap if the degree
of o} |¢ is 1, and the basis G’ of G is uncountable.

The next lemma is well-known (see, e.g., [3, Lemma 2.12]).

Lemma 2.14.  Let G be a Siegel gap of period n. Then o |pa(a) is monotonically semiconjugate to an
irrational circle rotation, contains no periodic points, and one of its iterated images has a critical edge.

A period n Fatou gap is said to have degree k > 1 if the degree of o [gq(q) is k > 1; if k = 2, then G
is said to be quadratic. The next lemma is well-known.

Lemma 2.15. Let G be a Fatou gap of period n and of degree k > 1. Then the map o7 |pa(c) 15
monotonically semiconjugate to oy,.
3 Limit geolaminations and their properties

Take the space F of all chords (including degenerate ones) in the unit disk with the Hausdorff distance.
Every geolamination £ can be viewed as a closed subset of E' (each leaf of £ is a point of E). Define the
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Hausdorff distance between two geolaminations £1 and L5 using the Hausdorff distance between the two
closed subsets £1 and Lo of E. This defines a metric on the set of geolaminations. We speak of limits of
geolaminations only in this sense.

Fix a degree d and consider limits of o4-invariant g-laminations. In the lemmas below, we assume that
a sequence of og4-invariant g-laminations £; converges to a og-invariant geolamination L,. By a strip we
mean an (open) part of the unit disk contained between two disjoint chords. By a strip around a chord ¢
we mean a strip containing £. In what follows, when talking about convergence of leaves/gaps, closeness
of leaves/gaps, and closures of families of geolaminations, we always use the Hausdorff metric on E.

Definition 3.1.  Let LY be the family of all o4-invariant geodesic g-laminations. We will write I[TZ for
the closure of LY.

Even though we state below a few general results, we mostly concentrate on periodic objects of limit
geolaminations.

Lemma 3.2 (See [3, Lemma 2.2]).  Let £ be a periodic leaf of L € ]]Tg. IfL € LY is sufficiently close
to L, then any leaf of L sufficiently close to ¢ is either equal to £ or disjoint from €.

Definition 3.3 introduces the concept of rigidity.
Definition 3.3. A leaf/gap G of L is rigid if any g-lamination close to £ has G as its leaf/gap.

Some lemmas proved in [3] study rigidity of periodic leaves/gaps of geolaminations from I[Tg. These are
combinatorial counterparts of the fact that repelling periodic points survive under small deformations of
complex polynomials. By a (o4-)collapsing polygon we mean a polygon @, whose edges map under o4 to
the same non-degenerate chord /; if a point moves around @, its o4-image moves back and forth along /.
If it does not cause ambiguity, we omit o4 from notation. We say that @ is a collapsing polygon of a
geolamination L if all edges of @) are leaves of L£; we also say that £ contains a collapsing polygon Q.
However, this does not imply that @ is a gap of £ as @) might be further subdivided by leaves of L
inside Q.

Lemma 3.4 (See [3, Lemmas 2.5-2.10]). Let L € ]]TZ. If 0 € L is a non-degenerate rigid leaf, a leaf
€ L is such that ok ({) = { for some k >0, and no leaf £, aq(f), ..., o*(€) is contained in a collapsing
polygon of L, then ¢ is rigid. Also, the following objects are rigid:

(1) periodic leaves that are not edges of collapsing polygons;

(2) finite periodic gaps;

(3) (pre)periodic leaves of a gap eventually mapped to a periodic gap;

(4) finite gaps that eventually map onto periodic gaps;

(5) periodic Fatou gaps whose images have no critical edges.

Using these results and other tools, we characterize all os-invariant limit geolaminations. Each such
geolamination £ can be described as a specific modification of an appropriate geolamination £9 from LJ.

Definition 3.5. Geolaminations coezist if their union is a geolamination.

This notion was used in [4]. If two geolaminations coexist, then a leaf of one geolamination is either
also a leaf of the other geolamination or is located in a gap of the other geolamination.

For a og-invariant geolamination £, Thurston [12] defined its major M(L) as a longest leaf of L;
either £ has a unique major (a diameter of D), or £ has two distinct majors with equal op-images.
Thurston defined the minor of £ as m(L) = oo(M (L)) and showed that the family of the minors of all
oo-tnvariant geolaminations is a geolamination itself, called the quadratic minor lamination QML and
generated by an equivalence relation ~qumr. Each class of ~qur, is associated with a unique op-invariant
laminational equivalence relation and its topological polynomial. The quotient S/ ~qumL= M3 is called
the combinatorial Mandelbrot set.

Definition 3.6. A os-invariant geolamination is called hyperbolic if it has a periodic Fatou gap of
degree two.

Clearly, if a oo-invariant geolamination £ has a periodic Fatou gap U of period n and of degree greater
than one, then the degree of 0 [gq() is two. By [12], there is a unique edge M (L) of U with o3 (M (L)) =



2128 Blokh A et al. Sci China Math  December 2018 Vol. 61 No.12

M (L). Either all leaves M (L), ...,o5 ' (M (L)) are pairwise disjoint, or their union can be broken down
into several gaps permuted by o9, in each of which edges are “rotated” by the appropriate power of oo,
or n = 2k and o§ flips M (L) on top of itself while all leaves M (L),...,o8 Y(M(L)) are pairwise disjoint.
In fact, M (L) and its sibling M*(L) are the two majors of £ while oo(M (L)) = oo(M*(L)) = m(L) is
the minor of L (see [12]). Any os-invariant hyperbolic geolamination £ is actually a geolamination £~
generated by the appropriate hyperbolic os-invariant laminational equivalence relation ~.

Definition 3.7. A critical set Cr(L) of a oy-invariant geolamination L is either a critical leaf, or a
collapsing quadrilateral which is a gap of £, or a gap G with o2 |¢ of degree two. A gap is said to be
critical if it is a critical set.

A og-invariant g-lamination has a finite critical set (a critical leaf, or a finite critical gap) or is hyper-
bolic. In both cases, the critical set is unique.

Definition 3.8. A generalized critical quadrilateral @ is either a collapsing quadrilateral or a
critical leaf.

If Cr(£) is a generalized critical quadrilateral of a geolamination £, then o2(Cr(£)) = m(L). Theo-
rem 3.9 describes geolaminations from L. A periodic leaf Z is called a fized return periodic leaf if the
period of its endpoints is k and all leaves Z, 02(2), ..., 012“71(2) are pairwise disjoint.

Theorem 3.9 (See [3, Theorem 3.8]). A geolamination £ belongs to LY if and only if there exists a
unique maximal g-lamination L9 coexisting with £ and such that either L = L9 or Cr(L) C Cr(L7) is a
generalized critical quadrilateral, and exactly one of the following holds:

(1) The critical set Cr(L9) is finite, and Cr(L) is the convex hull of two edges or vertices of Cr(L?)
with the same oy-image.

(2) The geolamination L% is hyperbolic with a critical Fatou gap Cr(L) of period n, and exactly one of
the following holds:

(a) the set Cr(L) = ab is a critical leaf with a periodic endpoint of period n, and L contains exactly
two o -pullbacks of ab that touch ab at the endpoints (one at a and one at b);

(b) the critical set Cr(L) is a collapsing quadrilateral, and m(L) is a fized return periodic leaf.
Thus, any os-invariant q-lamination corresponds to finitely many geolaminations from ]IT%, and the union
of all of their minors is connected.

Given a geolamination £ € ]IT%, let £ be the oo-invariant g-lamination associated with £ as in
Theorem 3.9.

Definition 3.10 (See [3]).  Geolaminations Lo, £ € L are said to be minor equivalent if there exists
a finite collection of geolaminations Ly, Ls, ..., L;_1 from LI such that for each ¢ with 0 < < k — 1,
the minors m(£L;) and m(L;4+1) of the geolaminations £; and £;y; are non-disjoint.

Theorem 3.11 interprets the Mandelbrot set as a quotient of I[Tg. Let ¢ : I[Tg — S/ ~qumL be the map
which associates to each geolamination £ € L2 the ~qumr-class of the endpoints of the minor m(L) of L.

Theorem 3.11 (See [3, Theorem 3.10]).  The map ¥ : LI — S/ ~quL induces a homeomorphism
between the quotient space of LY with respect to the minor equivalence and S/ ~qwmr-

For every geolamination L let its minor set be the image of its critical set unless £ is hyperbolic in
which case we call m(£) the minor set of £. Then v associates to each class A of minor equivalence in L.
the minor set of the geolamination £9, the only g-lamination in A. The minor set of £9 is the convex
hull of the union of minors of all geolaminations in A.

We modify this by considering the subset of HT% consisting of all non-isolated geolaminations. In
other words, we consider geolaminations which are limits of sequences of pairwise distinct os-invariant
g-laminations.

Corollary 3.12. A geolamination L € HT% is non-isolated in fg if and only if Case (1) or Case (2) of
Theorem 3.9 holds.

In order to prove Corollary 3.12, we need the following lemma.
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Lemma 3.13.  Suppose that L is a og-invariant g-lamination whose critical set is a generalized critical
quadrilateral. Then L is the only oy-invariant geolamination with critical set Cr(L).

Proof.  Indeed, properties of og-invariant geolaminations imply that pullbacks of Cr(£) are well-defined
on each finite step; moreover, these pullbacks are all sets from £. Furthermore, the closure L of their
entire famlly is a og-invariant geolamination itself, and since L is closed it follows that L C £. We claim
that £ = L. Indeed, suppose otherwise. Then L must contain a gap, say, U that itself is the union
of s > 1 gaps of L and, therefore, U contains leaves of L inside. If U is finite, it follows that there
are non-disjoint finite gaps of £. The latter is impossible as £ is a g-lamination. Thus, U is infinite.
Mapping U forward several times, we may assume without loss of generality that U is periodic of period k
(indeed, by [7], all infinite gaps of geolaminations are (pre)periodic).

Consider several cases. First, suppose that U is a caterpillar gap. Then the critical leaf of U (or of a
gap in the forward orbit of U) must coincide with the critical set of £. Therefore, £ has a critical leaf
with a periodic endpoint, which is impossible for a g-lamination.

Now, suppose that U is a Siegel gap. It is well known (e.g., it follows from Lemma 2.10) that all edges
of U are (pre)critical and that, therefore, some image c4(U) of U has a critical edge ¢; it then follows
that Cr(£) = ¢, that all edges of U are pullbacks of ¢, and that under the map v collapsing edges of U to
points any chord i connecting vertices of U projects to a non-trivial chord 7,[1( A) of the unit circle. Since ¢
semiconjugates o |Ba(uy to an irrational rotation p : S — S, the chord (¢ ) in the unit disk will intersect
its eventual image under p, which implies a similar statement for the chord ¢ C U. We see that ¢ cannot
be a leaf of any geolamination, which leads to a contradiction with the above.

Finally, suppose that & |Ba(uy is of degree 2. Then some iterated image of U is an infinite gap V' such
that o3 [pa(v) has degree two. On the other hand, Cr(E) = Cr(L) is a generalized critical quadrilateral,
which leads to a contradiction with the existence of V. Hence this case is impossible either, and so
£ =L = L9 is the unique geolamination with critical set Cr(L). O

Proof of Corollary 3.12. By Theorem 3.9, if £ satisfies the conditions of the corollary, then £ € ]]Tg.
Since geolaminations in Case (2) do not belong to L2, they must be limits of sequences of pairwise distinct
oo-invariant g-laminations.

Consider Case (1). Then Cr(L£?) is finite, and Cr(L) is the convex hull of two edges or vertices of
Cr(L£?) with the same oz-image. Suppose that Cr(L£?) is a polygon with more than four vertices. Then
L # L9 (in fact, £ 2 £9). Hence £ ¢ L3, and, as above, £ is a limit point of L.

Consider now the case when £? has a generalized quadrilateral as its critical set Cr(£%). It may happen
that £ has a critical leaf that is a diagonal of the quadrilateral Cr(L£?) so that £ # L£%; as before, then £
is the limit of a sequence of pairwise distinct os-invariant geolaminations.

It remains to consider the case when £ = L7 is generated by an equivalence relation ~ and has a
critical set Cr(L£) that is either a critical quadrilateral or a critical leaf. Let us show that then £ is the
limit of a non-constant sequence of g-laminations. By Lemma 3.13, the geolamination £ is the unique
oo-invariant geolamination with the critical set Cr(L). Now, the fact that £ is the limit of a sequence of
pairwise distinct g-laminations follows from the uniqueness of £ and the fact that, due to the well-known
properties of the combinatorial Mandelbrot set, there is a sequence of g-laminations £; with critical sets
Cr(L;) — Cr(L) (recall that we are considering the case when Cr(L) is a generalized quadrilateral). This
completes the proof. O

Thus, isolated geolaminations in HT% are (a) dendritic geolaminations with critical sets that have more
than four vertices, and (b) hyperbolic geolaminations. In Case (a) the laminations are called dendritic
because the corresponding topological Julia set is a dendrite; by Kiwi [8] any polynomial with connected
Julia set and only repelling cycles is monotonically conjugate to a topological polynomial on its topological
Julia set. Removing them from L, we obtain the closed space ]Ll C L2 of all o9-invariant geolaminations
that are non-isolated in LI. The minor equivalence on L} is defined as before: two geolaminations are
minor equivalent if their minors can be connected by a chain of non-disjoint minors. Since we only
consider minors of geolaminations from L}, the minor equivalence on L} is not a restriction of the minor
equivalence on I[Tg, and some classes of minor equivalence on I}, are slightly different from the restrictions
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of the corresponding classes of minor equivalence on I[Tg. Let us list all the cases.

(1) Take a dendritic geolamination £ generated by a laminational equivalence relation ~ such that
Cr(L£) has more than four vertices. Several geolaminations in L. with critical sets being generalized
critical quadrilaterals in Cr(£) form one class A of the minor equivalence in Lb. Unlike for L, the
geolamination £ does not belong to L}, and is not included into A. Still, the convex hull of the union of
all minors of geolaminations in A is the same for L}, and for ]IT%.

(2) Let £ be a dendritic geolamination such that Cr(L) is either a quadrilateral or a critical leaf. By
Corollary 3.12, we have £ € L. The corresponding class of minor equivalence in L} consists of £ itself
and two geolaminations obtained by inserting a critical diagonal in Cr(£) and pulling it back. This class
coincides with the corresponding class in LY. The convex hull of the union of minors remains the same
as for LI,

(3) A Siegel geolamination £ belongs to both L. and ]IT%. The corresponding class of the minor
equivalence consists of £ only.

(4) Let L be a hyperbolic geolamination with a critical gap U of period n whose unique edge M of
period n is a fixed return leaf. Then £ does not belong to LL, but three closely related geolaminations
form a class of minor equivalence. Two of them have critical leaves with endpoints at endpoints of M.
The third one has a collapsing quadrilateral based on M. This yields the same convex hull of the union
of minors as before in case of LY.

(5) Finally, let £ be a hyperbolic geolamination with a critical gap U of period n whose unique edge
M = ab of U of period n is not a fixed return leaf. Then neither £ nor the geolamination with a collapsing
quadrilateral based on M belong to 5. Thus, there are two non-equivalent geolaminations with critical
leaves £, and ly with endpoints a and b, respectively that can be associated with £, and so there are two
classes of minor equivalence, generated by £, and £y, respectively, that can be associated with L.

Let A be a class of minor equivalence in 5. Define m(A) as the convex hull of the union of the
corresponding minors. The association A — m(A) is similar to that made in [3] for LI. Let A’ be the
minor equivalence class in LY containing A. The above analysis implies that, in Cases (1)-(4), we have
m(A) = m(A"). In Cases (2) and (3), we have A = A’. In Cases (1) and (4), the class A’ consists of A
and the geolamination £9 generated by the corresponding laminational equivalence.

In Case (5) the situation is different. The two distinct classes of minor equivalence in L} correspond
to critical leaves ¢, and ¢, and give rise to singletons {o2(a)} and {o2(b)} replacing the minor m(L) =
o2(a)oz(b) that corresponds to £ in QML. Thus, the leaf m(L) is erased from QML and replaced by
its two endpoints. This “unpinching” of the circle yields a new parametric geolamination QMLZ, the
laminational equivalence ~qy,, and the quotient space M. Let 9! Ly — S/ ~qmr be the quotient
map. Then Theorem 3.11 implies Theorem 3.14.

Theorem 3.14.  The map ' induces a homeomorphism between the quotient space of L by the minor
equivalence and the space S/ ~qp: -

To visualize our results we describe the gap CA' of M), containing the main cardioid CA. First
though we need to define the main cardioid. We do so by defining the filled main cardioid as the set
of all parameters ¢ such that the polynomial P.(z) = 22 + ¢ has an attracting fixed point. The main
cardioid then is defined as the boundary of the filled main cardioid (equivalently, this is the set of all
parameters ¢ such that the polynomial P.(z) = 2% + ¢ has a neutral fixed point, i.e., a fixed point with
multiplier of modulus one). Notice that our terminology is a little unusual, but intuitive and completely
consistent with the classic notions of the Julia set and filled Julia set. It is well known that the main
cardioid is homeomorphic to its laminational model, constructed in [12] as a part of the construction of
the combinatorial Mandelbrot set M$. Therefore in what follows we do not make a distinction between
the main cardioid and its combinatorial counterpart, a subset of M§.

Now we define the growing tree of f.. (see [1,9]) (in [1] this is done for topological polynomials of
any degree, yet for the sake of simplicity here we consider only the quadratic case). Given 6 € S and
laminational equivalence relation ~, let ¥..(0) be the point of J. associated with the ~-class containing 6.
In the dendritic topological Julia set J., connect the points 1 (0) and ¢~ (1/2) by an arc I... Clearly,
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I consists of ~-classes that separate angles 0 and 1/2, and if ¢, is the critical point of f. then c. € I
because f.(1(0)) = f(¢(1/2)) = ¢(0). Denote the union of all images of I, under f. by T>° and call
it the growing tree of f~; clearly, T2° is an invariant connected set. In what follows we may omit ~ from
the notation if it does not cause ambiguity. Slightly abusing the language, in what follows by an interval
we will mean any set homeomorphic to [0,1]. If all images of a set B are pairwise disjoint, then the set
is called wandering. Some useful for us results of [1] are collected in the next lemma.

Lemma 3.15 (See [1]).  Suppose that f is a topological polynomial of any degree. Then it has finitely
many periodic Fatou domains. All other Fatou domains are their eventual preimages. Any continuum in
J~ is non-wandering. If J. is dendritic, and the images of all critical ~-classes are non-degenerate, then
there exists a finite invariant tree containing all critical points of f~.. In particular, if f« is quadratic, J-
is dendritic, and the critical ~-class consists of more than two points, then T2° is a finite invariant tree.

In what follows, for a dendrite D and points z,y € D we denote by [z,y]p the unique arc in D
connecting x and y. If it is clear what D is, we will omit it from our notation.

Lemma 3.16. If J. is a dendrite, the following claims are equivalent:
(1) The minor m(L.) is vertical.
(2) The growing tree T>° is an interval.
(3) The critical point of f~ |;. belongs to an invariant interval.
Moreover, if these claims hold then every branchpoint of J that belongs to T° must be (pre)critical.

Proof.  To simplify notation, assume that ~ is given and omit it from our notation (thus, we set
f = fu,L = L., etc.). Observe that some of the notation was introduced above when we discussed
growing trees.

To prove (1) = (2), observe that the majors of £ are vertical. Indeed, only a vertical or a horizonal
leaf can map to a vertical leaf. Horizonal majors are impossible since they would cross their minors.
Therefore, there is a finite critical gap G of £ such that the two vertical majors of £ are edges of G. It
follows that I contains both the critical point ¢ of f and its image f(c) (the ~-classes of points from I are
exactly the ~-classes whose convex hulls separate 0 from 1/2). This in turn implies that I is invariant
(indeed, [¢(0),c]s is mapped to [0(0), f(c)]; C I, and similarly for [¢,4(1/2)];), and so the growing
tree T°° is an interval.

Clearly, (2) = (3).

Finally, assume that (3) holds. Let Iy C J be an invariant interval. First, we will show that then
the last claim of the lemma holds, i.e., that any branchpoint b € Iy of J must be (pre)critical. Indeed,
otherwise an eventual image b’ of b is a periodic branchpoint of .J still belonging to Iy. Then the orbit of o’
cannot contain ¢, and the power of f that fixes b’, must rotate small one-sided interval neighborhoods
of b in J (which follows from [7]). Since at least one of these neighborhoods is contained in Iy and I
is invariant, it follows that all of them are contained in Iy, which leads to a contradiction with the fact
that Iy is an interval.

Let us now prove that (3) = (1). Clearly, ¢ € I. Observe that ¢ € Iy N I, and hence I NIy # 0. If
Iy C I, then all points of I separate ¢ (0) from t(1/2). Thus, all iterated images o3 (m..) of m., cross
the horizonal diameter of S. This property, in turn, implies that m., is vertical as desired. Now, suppose
that Iy ¢ I and set Z = I U Iy. It follows that Z is invariant. Indeed, if z € Iy then f(z) € Iy C Z.
Suppose now that z € I. Then f(z) € [¢(0), f(c)] C Z. Hence Z is invariant. Denote by C.. = C the
critical ~-class.

The mutual location of some ~-classes and the way they separate other ~-classes is well-known.
Indeed, if @ is the invariant ~-class such that 0 ¢ @Q then @ separates 1/2 from C, the class C separates
Q from 0, and @ separates 0 from o2(C). If we set ¢ = ¥(Q) then we see that ¥(0) < ¢ < ¢ < ¥(1/2),
where “<” is the natural order on I from (0) to ¥(1/2). Clearly, Z = Iy U X UY where X is the arc
in J connecting 9 (0) with Iy, and Y is the arc in J connecting ¢ (1/2) with I,. We may assume that
X = [¢(0),z] and Y = [¢(1/2),y]. On the other hand, ¢ € Iy (by the Brouwer fixed point theorem),
¢ € Iy, and hence [g, ] C Iy N I. The mutual location of points ¥(0) < ¢ < g < ¥(1/2) now implies that

y #c.
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On the other hand, the fact that Iy ¢ I implies that Z is not an interval, by construction Z has one
or two branchpoints, and any branchpoint of Z is either x or y. Let b € Z be a branchpoint of Z. By
the above, b is not periodic (in fact, no branchpoint of J in Iy is periodic). Now, if b is not critical,
then f(b) is also a branchpoint of Z. Repeating it and relying upon the fact that no branchpoint of Z
is periodic, we see that all branchpoints of Z are (pre)critical, and ¢ is a branchpoint of Z. Since by the
above y # ¢, it follows that = ¢. Consider now three pairwise disjoint (except for the common point c)
intervals: Ky = [¢,¥(0)] and K3, Ko C Iy connecting ¢ with two endpoints of Iy. Since f|z, is not a
homeomorphism, ¢ is a critical point of f|;,. Hence f(Kj) N f(K2) contains a small interval starting
at f(c) and pointing towards ¢. On the other hand, the fact that @ separates 0 from oo(C) implies that
f(Kp) D e, q]. Clearly, this is impossible as f is two-to-one. O

If £ is hyperbolic (equivalently, if m., is periodic) then it is well known that m. coincides with a
~qur-class. Otherwise J. is a dendrite and the critical ~-class is finite. Suppose, in addition, that m.
is vertical. Let us show that then m. again coincides with a ~qwmr-class. For, if this is not the case,
then m.. is an edge of the convex hull G of a larger ~qur.-class and, moreover, G is a non-periodic ~-class.
Hence g = ¥ (G) is a non-periodic branchpoint of J belonging (by Lemma 3.16) to an invariant interval
Iy C J.. By the last claim of Lemma 3.16, the point g must be (pre)critical which makes g periodic, which
leads to a contradiction. We conclude that vertical minors are always full ~qur.-classes. If a minor m..
is vertical, then the corresponding ~qur.-class is also said to be vertical. The corresponding topological
polynomials and Julia sets will be called real (they correspond to complex polynomials 22 + ¢ with ¢ € R).
For any laminational equivalence relation ~ denote by z. the point of M$§ corresponding to ~ (z. is
the image of the minor class of ~ under the quotient map). The set of all points z. corresponding to
the images of vertical ~qur.-classes under the quotient map is called a real line.

In the next several paragraphs we consider g-laminations of arbitrary degree d and study their infinitely
renormalizable sets. This is justified as the results concerning infinitely renormalizable sets are obtained
almost literally in the same way in the quadratic case and in the general case.

Definition 3.17 (Infinitely-renormalizable laminations). A og4-invariant g-lamination £ is said to be
infinitely renormalizable if there is an infinite sequence of g-laminations £; C Lo C --- with L. =], £;
and a nested sequence of critical Fatou gaps U; of L£; of period m; such that m; < mo < --- . If L is
infinitely renormalizable, then the corresponding topological polynomial f., is also said to be infinitely
renormalizable. Let 1. be the projection of S onto J. = S/ ~. Set Z; = 1 (Bd(U;)). The nested
sequence Z, D Zy D --- is called a generating sequence of continua. Moreover, the set Z = ﬂ;’il orbZ; is
said to be an infinitely renormalizable set.

The notation introduced in Definition 3.17 will be used in what follows. The next lemma establishes
a useful property of infinitely renormalizable topological polynomials.

Lemma 3.18. Let f. be an infinitely renormalizable topological polynomial, and Zy D Zs D --- be a
generating sequence of continua. Then, for all sufficiently large i, the sets Z; are dendrites. Moreover,
the infinitely renormalizable set Z contains no periodic points.

Proof.  Indeed, otherwise the fact that there are finitely many periodic Fatou domains, and all Fatou
domains eventually map to periodic ones, implies that there must exist a periodic Fatou domain V of f.
of period, say, k such that Bd(V) C Z; for any i. Since pairwise intersections of distinct Fatou domains
are finite, this implies that m; < k for all 7, which leads to a contradiction. Now, suppose that a periodic
point y belongs to Z. Denote by Y the convex hull of the ~-class associated to y. Consider several cases.

First assume that Y is a singleton (a degenerate ~-class) of period N. Then Y is a degenerate ~z;-
class in every ¢ (here, ~; is the laminational equivalence relation associated with g-lamination £; from
Definition 3.17). Hence, if m; > N, then in the o4-orbit of U; two distinct Fatou gaps have a common
point that is a degenerate class of £; which is clearly impossible. Now assume that Y is a periodic leaf
of period N. Then, if m; > 2N, then there will be two distinct Fatou gaps in the o4-orbit of U; that
are located on the same side of Y, which leads to a contradiction. Finally, if Y is a periodic gap and its
edges are of period N, then, if m; > N, then there will be two distinct Fatou gaps in the og4-orbit of U;
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that are “attached” to Y at the same edge of Y, which leads to a contradiction. O

In what follows, by a continuum we mean a connected compact set consisting of more than one point.
By an (f-)periodic continuum we mean a continuum A such that for some m > 0 the pairwise intersections
of A, f(A),...,f" 1(A) are at most finite while f™(A) C A. The integer m is called the period of A.
Since a continuum is infinite, the period is well-defined. Given a periodic continuum A of period m we
set orbA = U;n:_ol f7(A) and call orbA a cycle of continua. Evidently, continua Z; from a generating
sequence of continua of an infinitely renormalizable set are periodic (because closures of distinct Fatou
domains in a cycle of Fatou domains intersect over sets that are at most finite and, in fact, consist of
periodic points).

Lemma 3.19. Let f = f. be an infinitely renormalizable topological polynomial, and Z1 D Zs DO -+
be a corresponding generating sequence of continua. Then Z = (), orbZ; is a Cantor set.

Proof.  Obviously, Z is compact. Let Y be a component of Z. We claim that Y is wandering. Indeed,
suppose otherwise. We may assume that f*(Y)NY # () for some n. Fix a number ¢ and assume that
Y C f%(Z;). Tt follows that f*(Z;) N f¥*"(Z;) is non-empty. On the other hand, f*(Z;) N f*+"(Z;)
is finite and consists of periodic points (see the remark right before the lemma). Since f*(Y)NY C
F(Z;) N fF4n(Z,), it follows that Y C Z contains periodic points, which leads to a contradiction with
Lemma 3.18. Thus any component of Z is wandering, and hence, any component of Z is a point (recall
that by Lemma 3.15 there are no wandering continua in J.). There are no isolated points in Z since
every f7(Z;) contains infinitely many points of Z. Therefore, Z is a Cantor set. O

It follows that the topological polynomial on an infinitely renormalizable set is conjugate to a so-called
adding machine and is minimal (every point in it has a dense orbit in the set). In particular two distinct
infinitely renormalizable sets are either disjoint or coincide, and infinitely renormalizable sets are Cantor
sets that do not contain periodic points.

The next proposition relies on [1] (see Lemma 3.15). A gap is said to be all-critical if all its edges are
critical.

Proposition 3.20. Let f = f be an infinitely renormalizable topological polynomial, and Z1 D Zy D

- be a corresponding generating sequence of continua. Suppose that, for any critical point ¢ of f in
Z =, orbZ;, the point f(c) separates J = J~.. Then there exists a finite periodic tree T C J of period m
such that Z C orbT'. In particular, one may find a periodic interval I such that all sets in the cycle of 1
are intervals, and Z C orbl.

Proof.  Let d be the degree of f. Consider a sequence of g-laminations £; C Lo C --- and a nested
sequence of critical Fatou gaps U; of £; with ¢ (Bd(U;)) = Z;. Choose i so large that the critical points
of f that belong to orbZ; are exactly the critical points of f that belong to Z. In particular, by the
assumption on critical points of f belonging to Z it follows then that no Fatou gap ofj(Ui) intersects an
all-critical gap. Let ¢ € Z; be a critical point while C is the convex hull of the corresponding ~-class.
Then in general C is either a leaf or a gap, yet in our case C cannot be a leaf since 04(C) is non-degenerate.
Thus, C is a gap.

Let us show that 0% (C) crosses the interior of o% (U;), for every k. By the previous paragraph E = o%(C)
is not an all-critical gap. It follows that o%(C) is always a non-degenerate leaf or gap of £... Assume that
o%(C) does not cross the interior of o%(U;). Then o%(C) is an edge of o%(U;) or a finite gap “attached”
to an edge of 0% (U;). The edge o%(C) Nk (U;) is (pre)periodic or (pre)critical. In the latter case, o%(C)
is eventually mapped to an all-critical gap, again a contradiction. Since ¢ € Z and by Lemma 3.18, the
critical point ¢ cannot be (pre)periodic. Hence no edge of C' can be (pre)periodic. We again arrive at a
contradiction, which shows that o%(C) crosses the interior of o%(U;), for every k.

Consider the map ¢y, : Bd(U;) — S collapsing all edges of U;. The restriction of ~ to U; is mapped
under ¢y, to some og,-invariant laminational equivalence ~;. We will write g; for the corresponding
topological polynomial, and .J; for the corresponding topological Julia set. Recall that g; is conjugate to
the map induced by )" on S/ ~;. By the above, for any critical point ¢ € J; and the corresponding gap C,
the gap o))" (C') crosses the interior of U;, and hence g;(c) separates J;. If we now apply Lemma 3.15 to g;,
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we see that the image of Z under the homeomorphism between Z; and J; is contained in a g;-invariant
finite tree. The corresponding finite tree 7' C Z; must then contain Z; it is easy to see that T has all the
required properties.

To complete the proof, choose a large N so that each set f(Zy) contains at most one critical point
of f. This is possible by Lemma 3.19. Observe that any critical point ¢ € orb7" has a small neighborhood
W, in orbT (here, W, is an interval if ¢ is not a branchpoint of the corresponding component of orbT'
or a k-od for some k otherwise) such that if ) C W, is an interval then f(Q) is an interval too. Call
such neighborhoods W, interval preserving. Of course if a subinterval of T' contains no critical points
then its image is again an interval. Now, since the periods of sets Z; grow to infinity, the tree 7" has only
finitely many vertices, and by definition of a periodic continuum, it follows that if N is sufficiently large
then some sets f/(Zx NT) are intervals and all sets of the form f*(Zy NT) containing a critical point
are contained in this critical point’s interval preserving neighborhood. Hence, all sets fi(Zx NT) are
intervals (as in our setting at no moment can a non-interval be the image of an interval). This completes
the proof. O

Let us now go back to the quadratic case. The above stated general facts can be restated in the
quadratic case as follows. Suppose that a quadratic topological polynomial f. is infinitely renormalizable.
Then every such topological polynomial is dendritic, and there is a nested sequence of periodic continua
Zo D Zy1 D --- of periods mg < my < --- such that the critical point ¢ of f. belongs to Z = (), orbZ;.
Also, for each i, there exists a topological conjugacy between f™ : Z; — Z; and the restriction of some
quadratic topological polynomial g; = f., to its Julia set J;. Moreover, it is well known that in this
case x., (recall that this is the point in M$ associated with f. and ~) belongs to baby Mandelbrot sets
/\75 (i) C M$, and its location in Mg () corresponds to the location of x.,, in M$. To describe locations
relative to Mﬁ (1) we speak of “baby main cardioid”, “baby real line”, etc. The topological polynomials g;
are called renormalizations of f.. Proposition 3.20 and Lemma 3.16 imply the following corollary.
Corollary 3.21.  If a quadratic topological polynomial f. is infinitely renormalizable and Z = (), orbZ;,
where Z; are as above, then Z = w(c), and there are only two possibilities.

(1) The critical class C of ~ consists of two points.

(2) The critical class C of ~ is a quadrilateral, there exists N such that, for i > N, all sets f*(Z;),
k=0,1,... can be assumed to be intervals, and the corresponding topological Julia sets J; are real. In
particular, x.., belongs to a baby real line in the corresponding baby Mandelbrot set.

We are ready to visualize the gap CA! of Ml containing the main cardioid CA. A topological poly-
nomial f. is said to be Feigenbaum if it is infinitely renormalizable and the above defined sequence of
periods can be chosen to be mg =1 < m; =2 < --- < m; = 2° < ---. It is known that there is a
unique topological Feigenbaum polynomial, so from now on we will talk about the Feigenbaum topo-
logical polynomial. The corresponding laminational equivalence relation will be denoted ~p. It is well
known that the minor set m..,. is a leaf of QML approximated from one side by uncountably many leaves
(minors) of QML. If a topological polynomial has a renormalization which is the Feigenbaum topological
polynomial, we say that it has a Feigenbaum renormalization; by the above, all minors associated to
topological polynomials with Feigenbaum renormalizations are limits of uncountable families of minors
from QML from one side. A baby main cardioid Y is finitely attached to CA if there are finitely many
baby main cardioids between Y and CA.

Proposition 3.22.  The boundary of CA' consists of vertices and leaves of QML. The vertices of CA
are vertices of baby main cardioids finitely attached to CA, or endpoints of edges of baby main cardioids
finitely attached to CA, or minors associated to some infinitely renormalizable quadratic topological poly-
nomials that do not have a Feigenbaum renormalization. The edges of CA' are all associated to infinitely
renormalizable topological polynomials that have Feigenbaum renormalizations.

Proof.  The process of creation of CA! can be viewed as follows. First, we erase all non-degenerate
edges of CA; then we erase non-degenerate edges in the copies of CA that used to be attached to the
main cardioid, etc. On each step we obtain bigger and bigger gaps containing CA. Observe that by
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construction any g-lamination (or topological polynomial) associated with the minors of QML erased
after finitely many steps in the process of creating CA' must have only finitely many periodic leaves. In
the end of this process we get CA'. Hence the degenerate edges of CA! obtained after finitely many steps
are endpoints of edges erased after a finite number of steps or Siegel points on the boundary of a baby
main cardioid finitely attached to CA. The remaining edges of CA! are infinitely renormalizable limits
of sequences of non-degenerate edges of deeper and deeper baby main cardioids. These edges may be
degenerate or non-degenerate.

By Corollary 3.21 if ¢ is a non-degenerate edge of CA' then it is associated with an infinitely renor-
malizable topological polynomial f., and an m-periodic copy J’ of a real quadratic dendritic topological
Julia set Jx of a topological polynomial f~ is contained in J., where f |; is topologically conjugate to
Sl (f~ is generated by a laminational equivalence relation ). If fx is not the Feigenbaum topological
polynomial then the Sharkovsky theorem implies that for some N and all i > 0 the geolamination L
has periodic leaves of periods 2V (2i + 1). If we now choose a minor ¢/ € QML which is very close to ¢
and was erased when we constructed CA' then it would follow that periodic leaves of periods 2V (2i + 1)
with ¢ > t are still leaves of the g-lamination associated with ¢/. However this contradicts the fact that
this g-lamination can only have finitely many periodic leaves. O

When we construct QML! we remove countable concatenations of copies of CA finitely attached to
CA itself and replace their union by CA'. We have to do similar actions inside each baby Mandelbrot
set, Thus, the only infinite gaps of QML! associated to the bounded complementary domains of M) are
copies of CA! from various baby Mandelbrot sets.

Proposition 3.23.  The geolamination QML! is perfect.

Proof. ~ We need to show that QML has no isolated leaves. Suppose that £ is an isolated leaf of QMLL.
Since it is a leaf of QML!, it is not isolated in QML. Hence we may assume that there exists a one-
sided semi-neighborhood U of ¢ that contains no leaves of QML but contains leaves ¢; € QML \ QML
converging to £. We may think of U as the Jordan disk with the boundary formed by ¢ itself, two circular
arcs T and R whose endpoints are endpoints of ¢, and the remaining chord connecting the other two
endpoints of T and R and disjoint from ¢. Then leaves ¢; connect T and R.

Fix a number . Since ¢; is isolated in QML, ¢; is an edge of a baby main cardioid contained in a
baby Mandelbrot set Ms,;. Hence /; is contained in a copy A; C Mg, of CA!. Therefore, either there
exists an edge of A; with endpoints in 7" and R, or ¢ itself is an edge of A;. The former is impossible
by the assumption on U. Thus, ¢ is an edge of A;. However then it follows from the last claim of
Proposition 3.22 and the remark right before this proposition that ¢ is approximated by leaves of QML
from the side opposite to U. O

The geolamination QMLl is the visual counterpart of a laminational equivalence relation ~qy,: that
can be defined as follows: two angles a ad 3 are ~q\:-equivalent if there exists a finite chain of leaves
of QML! connecting them. By the above, ~qurt is a well-defined laminational equivalence relation (so
that all its classes are finite). Almost all ~qyi-classes are in fact ~qur-classes and correspond to the
appropriate non-hyperbolic quadratic topological polynomials. The minors m = ab of QML that used
to be associated to quadratic hyperbolic topological polynomials are erased from QML and replaced by
pairs of their endpoints a and b. Moreover, the geolamination associated, say, with a, is obtained from
the corresponding to m hyperbolic g-lamination ~,, by inserting a critical leaf ¢, in the critical Fatou
gap U of ~,, such that o2(¢,) = a and then pulling it back inside various gaps of ~,, that are pullbacks
of U.

Let us suggest an interpretation of interiors of various filled copies of CA!. Recall that the perfect part of
a geolamination L is obtained by taking the maximal perfect subset of £. In particular, all isolated leaves
of £ must be erased as we extract the perfect part of £. Now, say that two geolaminations are countably
equivalent if they have the same perfect parts (equivalently, if the symmetric difference between them
is countable). For example, all g-laminations from the main cardioid are countably equivalent. Their
common perfect part is the unit circle. Other g-laminations with countably many non-degenerate leaves
also have S as their perfect part and, hence, are countably equivalent. We can associate the interior of
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the filled CA' to the corresponding class of countable equivalence among g-laminations. In fact, interiors
of all baby versions of CA’ can be associated to corresponding classes of countable equivalence among all
g-laminations.

4 Non-renormalizable geolaminations

In Section 4, we consider another way to modify M$. The aim, again, is to uncover the structure of M$ by
replacing more complicated parts of M§ with their simplified “unpinched” versions in which some leaves
of Thurston’s quadratic minor lamination QML are deleted (i.e., replaced by pairs of their endpoints). In
other words, some g-laminations are still considered, but some are not. We explain our selection below.

Suppose that there exist g-laminations L C Land L is non-empty. By definition this means that some
leaves of L are contained in gaps of L. Since both are g-laminations, no leaves of £ are in finite gaps
of L. Moreover, if a leaf ¢ is inserted in a periodic Siegel gap then the semiconjugacy with an irrational
rotation that collapses all edges of this gap will transport this leaf into a chord inside a unit disk on
whose boundary the corresponding irrational rotation acts; this shows that ¢ crosses its eventual image,
which leads to a contradiction. Hence there must exist an n-periodic critical Fatou gap U of L and all
the leaves of L\ L are contained in gaps of L from the grand orbit of U; evidently, o2 |gq(r) is of degree
two. Restricting £ onto U and collapsing all edges of U to points one semiconjugates o3 |pq(r) and o2
(intuitively, this “magnifies” U to the unit circle) and transforms £ |y to a g-lamination £q. Then L is
said to be a tuning of L (one can also say that L tunes E), and £ is called a renormalization of L. In
particular, £ is renormalizable; it follows that if a g-lamination is non-renormalizable, then it cannot be
a tuning of a non-empty g-lamination. Observe that L here is a hyperbolic g-lamination.

We work with tunings of g-laminations rather than with their renormalizations. If a g-lamination £
is a tuning of a g-lamination Lo, then L5 is said to be an ancestor of £1. We say that Lo C L4 is the
oldest ancestor (of L1) if every g-lamination £3 C L5 is either empty (has no non-degenerate leaves) or
coincides with £o. We want to parameterize the family of all oldest ancestors similarly to QML. By
the previous paragraph, a non-renormalizable g-lamination is an oldest ancestor. Observe that all Siegel
g-laminations from the main cardioid are non-renormalizable, and hence they are oldest ancestors (of
themselves). On the other hand, hyperbolic oldest ancestors are renormalizable but in a unique way, and
their unique renormalizations are empty. Evidently, any oldest hyperbolic ancestor has a critical Fatou
gap U. We may say that an oldest ancestor £ replaces all g-laminations that are tunings of £. The entire
family of oldest ancestors is denoted by L™". We will characterize (“tag”) all g-laminations from L™"
with their postcritical (i.e., minor) sets. In particular, an oldest ancestor with a critical Fatou gap U is
tagged with its post-critical Fatou gap V = og2(U).

Thus, posteritical gaps V' = o09(U) of hyperbolic oldest ancestors, pinched under the equivalence
relation ~qumr, in the process of creation of M$, are now “unpinched”. It is well known that pinched
gaps V are in fact baby Mandelbrot sets maximal by inclusion among all non-trivial (i.e., not coinciding
with M$) baby Mandelbrot sets. Thus, in QML"" baby Mandelbrot sets are replaced by the corresponding
infinite gaps.

As before, let us first concentrate upon gaps of QML™ closely related to the main cardioid CA. Let
x € CA be a vertex of CA which is not an endpoint of an edge of CA. Then the g-lamination L,
corresponding to x has an invariant Siegel gap G and is the oldest ancestor of itself. Hence L, € L"".
Now, let ¢ be an edge of CA. Then the g-lamination £, associated to £ has an invariant finite gap Gy
with ¢ as its shortest edge, and the periodic forward orbit of a postcritical Fatou gap V attached to Gy;
the grand orbits of Gy and V form the family of all gaps of £y. It follows that the empty g-lamination
is the only ancestor of L;, and so £, belongs to L.™". By construction its tag is the post-critical gap V.
Thus, in the center of the geolamination QML"" we have a “countable flower” with CA in the center and
countably many postcritical gaps V' growing out of CA at its edges. The edges of CA are thus isolated
in QML"™. A natural choice is to associate the interior of CA with the empty g-lamination. The gaps V
described above are associated with hyperbolic g-laminations from the main cardioid; vertices of the main
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cardioid remain vertices of the “countable flower” and are, as before, associated with g-laminations with
an invariant Siegel disk.

Let V be a postcritical gap of a hyperbolic oldest ancestor £.. Then V is periodic of some period n,
and it is well known that V' has a unique edge m of period n, and all other edges of V' are pullbacks of ¢
that are not edges of other gaps of QML. We call m the root edge of V. It is also well known that such m
is the root edge of only one postcritical gap V', and the unique g-lamination associated to m is L.

Lemma 4.1.  The space QML"" is compact. All leaves of QML"™" mnot on the boundary of CA are
non-isolated. Thus QML"" is “almost” perfect.

Proof.  Let us use the notation and terminology introduced right before Lemma 4.1. Then it is easy to
see that the leaves we remove are exactly leaves of QML that intersect the interior of V. Hence the set
of all leaves we removed is an open set and its complement is closed. Thus, QML"" is compact.
Suppose that £ is a leaf of QML"™" that is not on the boundary of CA. Let us prove that £ cannot be a
common edge of two gaps of QML"™". Indeed, suppose that £ is a common edge of a gap G and a gap H.
By construction, finite gaps of QML"™" are finite gaps of QML. Thus the fact that QML is generated by
a laminational equivalence relation ~qur, implies that at least one of the gaps G, H is infinite. Suppose
that G is infinite. Then by construction G is a postcritical n-periodic gap of some oldest ancestor L. .
By the remark right before the statement of the lemma, ¢ is either the only edge of G of period n, or a
pullback of the only edge m of G of period n. If H is also infinite, we can apply a high iteration of o5
to £ and obtain that the root edge of H and the root edge of G coincide, which leads to a contradiction.
If H is finite, then the situation will contradict the remark right before the claim of the lemma. Thus,
all possibilities lead to a contradiction. This proves that QML™" is perfect. O

By construction, we associate infinite post-critical gaps of QML"™" to renormalizable oldest ancestors;
otherwise QML"™" consists of finite gaps and leaves that are not edges of any gaps of QML"". All above
listed sets are pairwise disjoint. Moreover, properties of QML (in particular the fact that QML is gener-
ated by a laminational equivalence relation ~qur,) imply that this family of sets is upper-semicontinuous.
Hence QML"™" is in fact generated by an equivalence relation ~™" that has the properties (E1) and (E2)
of laminational equivalence relations. Although we may choose ~™" to also satisfy the property (E3)
(stating that all classes are finite), it would be more natural to admit infinite classes of ~
we assume that infinite post-critical gaps V' of QML"" corresponding to hyperbolic oldest ancestors give
rise to infinite classes V N'S. Call an equivalence relation ~ on the circle a laminational equivalence
relation with possibly infinite classes if it has the properties (E1) and (E2) of Definition 2.1. Then it
follows that QML"™" is generated by a laminational equivalence relation with possibly infinite classes ~™".
Moreover, by Lemma, 4.1, all infinite gaps of QML"" are convex hulls of ~™"-classes. It follows that the
corresponding quotient space S/ ~""= M%" is a dendrite.

nr

. Namely,

Finally, similar to how we reinterpreted the g-lamination QMLl and the corresponding quotient s-
pace M), using the notion of countable equivalence, we can reinterpret M3" as follows. Call two q-
laminations common ancestor equivalent if they have the same oldest ancestor. Then the space M3" can
be viewed as the quotient space of the combinatorial Mandelbrot set M$§ under the common ancestor
equivalence; the corresponding quotient map from M$§ to M5" simply collapses to points all maximal by
inclusion baby Mandelbrot sets.
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