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Abstract The combinatorial Mandelbrot set is a continuum in the plane, whose boundary is defined as the

quotient space of the unit circle by an explicit equivalence relation. This equivalence relation was described by

Douady (1984) and, separately, by Thurston (1985) who used quadratic invariant geolaminations as a major

tool. We showed earlier that the combinatorial Mandelbrot set can be interpreted as a quotient of the space

of all limit quadratic invariant geolaminations with the Hausdorff distance topology. In this paper, we describe

two similar quotients. In the first case, the identifications are the same but the space is smaller than that used

for the Mandelbrot set. The resulting quotient space is obtained from the Mandelbrot set by “unpinching” the

transitions between adjacent hyperbolic components. In the second case we identify renormalizable geolami-

nations that can be “unrenormalized” to the same hyperbolic geolamination while no two non-renormalizable

geolaminations are identified.
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1 Introduction

To study families of complex polynomials one may construct models for them. A famous case here is

the quadratic family of polynomials Pc(z) = z2 + c, where c belongs to the complex plane C. The

set M2 of all parameters c such that Pc has a connected Julia set is called the filled Mandelbrot set ;

we call its boundary the Mandelbrot set (notice that our terminology is not entirely standard). In his

seminal preprint [12], Thurston constructed a combinatorial geometric model Mc
2 of M2. There exists

a monotone map from M2 onto Mc
2. The MLC (Mandelbrot set is locally connected ) conjecture states

that this map is a homeomorphism.

The set Mc
2 contains a countable and dense family of homeomorphic copies of itself. Thus, Mc

2 is

an example of a so-called fractal set. According to Douady, the process of constructing Mc
2 can be

described as “pinching the closed unit disk D”, which is why Mc
2 is often called the “pinched disk model”

of M2. “Pinching” refers to collapsing a chord of D (or a polygon with vertices in S); each additional

act of pinching creates an increasingly complicated new quotient space of D. One can understand the
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Figure 1 The geolamination QML

“pinched disk model” by doing only some of the pinchings and ignoring other ones. The resulting partial

quotient spaces of D are steps towards understanding Mc
2. This motivates our work. Also, producing

similar models in the higher degree cases is a difficult problem that has not yet been solved. Partial

quotients of D constructed in this paper admit cubic analogs that may be viewed as simplified models of

the cubic connectedness locus. This serves as our second motivation.

The main results of the paper use concepts related to laminational equivalence relations, geolamina-

tions (geodesic laminations), etc. They require intimate knowledge of the structure of the combinatorial

Mandelbrot set Mc
2. All these notions and precise statement of our main results can be found in Sec-

tion 2. Here, we only describe our main results assuming the knowledge of the above mentioned concepts.

Notice that when talking about σ2-invariant objects (e.g., geolaminations) we often call them quadratic.

The combinatorial Mandelbrot set Mc
2 is defined by Thurston [12] (see also [11]) as the quotient space

of the unit circle S under the laminational equivalence relation ∼QML generated by the quadratic minor

geolamination (QML, see Figure 1). In [3] we interpret this as follows. First, we define the space Lq
2 of all

quadratic laminational equivalence relations ∼ on the unit circle S by defining, for each such equivalence

relation ∼, the geodesic lamination L∼ generated by ∼ which is the union of S and all the edges of

convex hulls of all classes of ∼ (in what follows we often call geodesic laminations geolaminations); then

we identify ∼ with L∼. We define a metric on Lq
2 by using the Hausdorff distance function on the set

of geolaminations L∼. Since the space in question in non-compact, we take its closure Lq
2. The space

Lq
2 consists of Hausdorff limits of geolaminations L∼ where ∼ belongs to Lq

2. The main result of [3]

is that Mc
2 is a quotient of the space Lq

2. More precisely, two geolaminations from Lq
2 are identified if

their minors (see [12]) are non-disjoint (we call it minor equivalence). We prove in [3] that each class

of equivalence in Lq
2 contains a unique geolamination L∼. Hence the corresponding quotient of Lq

2 can

be identified with Lq
2 set-theoretically. Each laminational equivalence relation in Lq

2 is identified with

a point of Mc
2, and we show in [3] that the resulting one-to-one identification between classes of minor

equivalence in Lq
2 and points of Mc

2 is a homeomorphism.

In this paper we describe a similar quotient Ml
2 of the space Ll

2 ⊂ Lq
2 consisting of all geolaminations

which are non-isolated in Lq
2; the space Ml

2 is obtained from Mc
2 by “unpinching” all points of Mc

2 at

which two hyperbolic components of Mc
2 meet. It is generated by the parametric geolamination QMLl

(see Figure 2) obtained from QML by replacing all isolated leaves of QML by their endpoints. We also

consider another modification Mnr
2 of Mc

2 obtained by replacing all maximal “baby-Mandelbrot” sets

by the corresponding gaps of D and thus defining yet another parametric geolamination QMLnr (see

Figures 3 and 4 for zoom-ins of this lamination).

2 Preliminaries

We write D for the open unit disk, and S = Bd(D) for its boundary, the unit circle. Let a, b ∈ S. By

[a, b], (a, b), etc., we mean the closed, open, etc., positively oriented circle arcs from a to b, and by |I| the
normalized length of an arc I in S (a normalization is made so that the length of S is 1).
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Figure 2 The geolamination QMLl Figure 3 A zoom-in of QMLl

Figure 4 Another zoom-in of QMLl

2.1 Laminational equivalence relations

Denote by Ĉ the Riemann sphere. For a compactum X ⊂ C, let U∞(X) be the component of Ĉ \ X
containing infinity. If X is connected, there exists a Riemann mapping ΨX : Ĉ \D → U∞(X); we always

normalize it so that ΨX(∞) = ∞, and Ψ′
X(z) tends to a positive real limit as z → ∞.

Consider a monic polynomial P of degree d > 2, i.e., a polynomial of the form P (z) = zd+ lower order

terms. Consider the Julia set JP of P and the filled-in Julia set KP of P . Extend the map z 7→ zd to a

map θd on Ĉ. If JP is connected, then ΨJP
= Ψ : Ĉ \ D → U∞(KP ) is such that Ψ ◦ θd = P ◦Ψ on the

complement of the closed unit disk, and Ψ is asymptotic to the identity at infinity [6, 10].

If JP is locally connected, then Ψ extends to a continuous function Ψ : Ĉ \ D → Ĉ \KP , and Ψ ◦ θd =

P ◦Ψ on the complement of the open unit disk. Thus, we obtain a continuous surjection Ψ: Bd(D) → JP
(the Carathéodory loop). Identify S = Bd(D) with R/Z. Set ψ = Ψ |S. We will write σd for the restriction

of θd to S.
Define an equivalence relation ∼P on S by x ∼P y if and only if ψ(x) = ψ(y), and call it the (σd-

invariant) laminational equivalence relation of P ; since Ψ defined above semiconjugates θd and P , the

map ψ semiconjugates σd and P |J(P ), which implies that ∼P is invariant. Equivalence classes of ∼P

have pairwise disjoint convex hulls. The topological Julia set S/ ∼P= J∼P is homeomorphic to JP , and

the topological polynomial f∼P : J∼P → J∼P , induced by σd, is topologically conjugate to P |JP .

An equivalence relation ∼ on the unit circle, with similar properties to those of ∼P above, can be

introduced with no references to polynomials.

Definition 2.1 (Laminational equivalence relations). An equivalence relation ∼ on the unit circle S is

said to be laminational if

(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;

(E3) each equivalence class of ∼ is finite.
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Figure 5 The Julia set of f(z) = z2−1 (so-called “basilica”)

Figure 6 The geolamination for the Julia set of z2 − 1

For a closed set A ⊂ S, let CH(A) be its convex hull. An edge of CH(A) is a closed straight segment I

connecting two points of S such that I ⊂ Bd(CH(A)). By an edge of a ∼-class we mean an edge of its

convex hull.

Definition 2.2 (Laminational equivalences and dynamics). A laminational equivalence relation ∼ is

(σd-)invariant if

(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;

(D2) for any ∼-class g, the map τ = σd |g extends to S as an orientation preserving covering map τ̂

such that g is the full preimage of τ(g) under the covering map τ̂ .

Definition 2.2(D2) has an equivalent version. Given a closed set Q ⊂ S, a (positively oriented) hole (a, b)

of Q (or of CH(Q)) is a component of S\Q. Then (D2) is equivalent to the fact that for a ∼-class g either

σd(g) is a point or for each positively oriented hole (a, b) of g the positively oriented arc (σd(a), σd(b)) is

a hole of σd(g). From now on, we assume that, unless stated otherwise, ∼ is a σd-invariant laminational

equivalence relation.

Given ∼, consider the topological Julia set S/ ∼= J∼ and the topological polynomial f∼ : J∼ → J∼
induced by σd. Since S ⊂ C, we can use Moore’s theorem to embed J∼ into C and then to extend the

quotient map ψ∼ : S → J∼ to a map ψ∼ : C → C with the only non-singleton fibers being the convex

hulls of non-degenerate ∼-classes. A Fatou domain of J∼ (or of f∼) is a bounded component of C \ J∼.
If U is a periodic Fatou domain of f∼ of period n, then fn∼ |Bd(U) is either conjugate to an irrational

rotation of S or to σk for some 1 < k (see [1]). In the case of irrational rotation, U is called a Siegel

domain. The complement of the unbounded component of C \ J∼ is called the filled-in topological Julia

set and is denoted by K∼. Equivalently, K∼ is the union of J∼ and its bounded Fatou domains. If the

laminational equivalence relation ∼ is fixed, we may omit ∼ from the notation. By default, we consider

f∼ as a self-mapping of J∼. For a collection R of sets, denote the union of all sets from R by R+.

Definition 2.3 (Leaves). If A is a ∼-class, call an edge ab of CH(A) a leaf of ∼. All points of S are

also called (degenerate) leaves of ∼.
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Figure 7 An example of a geolamination which is not a q-lamination

The family of all leaves of ∼ is closed (the limit of a converging sequence of leaves of ∼ is a leaf of ∼);

the union of all leaves of ∼ is a continuum. Figure 5 shows the Julia set of the polynomial z2 − 1, and

Figure 6 displays all leaves of the corresponding laminational equivalence ∼. For any subset X ⊂ D with

the property X = CH(X ∩ S), we set σd(X) = CH(σd(X ∩ S)). In particular, for any leaf ℓ of ∼, the set

σd(ℓ) is a (possibly degenerate) leaf.

2.2 Geolaminations

Assume that ∼ is a σd-invariant laminational equivalence relation.

Definition 2.4. The set L∼ of all leaves of ∼ is called the geolamination generated by ∼.

Geolaminations “visualize” laminational equivalence relations.

Definition 2.5 (Geolaminations, see [12]). Distinct chords in D are unlinked if they meet at most

in a common endpoint; otherwise they are linked, or cross each other. A geodesic pre-lamination L
is a set of (possibly degenerate) chords in D such that any two distinct chords from L are unlinked.

A geodesic pre-lamination L is a geolamination if all points of S are elements of L, and L+ is closed.

Elements of L are leaves of L. A degenerate leaf (chord) is a singleton in S. The continuum L+ ⊂ D
is the solid of L. Let L be a geolamination. The closure in C of a non-empty component of D \ L+ is

a gap of L. If a leaf (a gap) satisfies all the properties of leaves (gaps) of geolaminations but is not a

part of any geolamination, we will call them stand alone leaves/gaps. If G is a gap or a leaf, call the

set G′ = S ∩ G the basis of G. A gap is finite (infinite, countable, uncountable) if its basis is finite

(infinite, countable, uncountable). Uncountable gaps are also called Fatou gaps. Points of G′ are called

vertices of G. Geolaminations of the form L∼, where ∼ is a laminational equivalence relation, are called

q-laminations (“q” from “equivalence”). A chord is (σd-)critical if its endpoints have the same image

under σd (we often omit σd from notation).

The notion of sibling invariant geolaminations introduced below is slightly different from the original

notion of invariant geolaminations in the sense of Thurston [12]. However, sibling invariant geolamina-

tions form a closed set and include all q-laminations. Thus, for all our purposes, it will suffice to consider

sibling invariant geolaminations only. Some advantage of working with sibling σd-invariant geolamina-

tions is that they are defined through properties of their leaves; gaps are not involved in the definition. It

was shown in [2] that all sibling invariant geolaminations are also invariant in the sense of Thurston [12].

In particular for any gap G of a sibling invariant L the set σd(G) is a point, or a leaf of L, or a gap of L.
Moreover, if σd(G) = H is a gap then σd |Bd(G) : Bd(G) → Bd(H) is a composition of a monotone map
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and a positively oriented covering map. In that case we call the degree of σd |Bd(G) the degree of σd |G.
Definition 2.6. A geolamination L is sibling σd-invariant provided that

(1) for each ℓ ∈ L, we have σd(ℓ) ∈ L;
(2) for each ℓ ∈ L there exists ℓ1 ∈ L so that σd(ℓ1) = ℓ;

(3) for each ℓ ∈ L so that σd(ℓ) is a non-degenerate leaf, there exist d disjoint leaves ℓ1, . . . , ℓd in L
so that ℓ = ℓ1 and σd(ℓi) = σd(ℓ) for all i = 1, . . . , d.

Let us list a few properties of sibling σd-invariant geolaminations.

Theorem 2.7 (See [2]). The space of all sibling σd-invariant geolaminations is compact. All geolami-

nations generated by σd-invariant laminational equivalence relations are sibling σd-invariant.

In what follows instead of “sibling σd-invariant geolaminations” we say “σd-invariant geolaminations”.

Also, we talk interchangeably about leaves (gaps) of ∼ or of L∼. Let us now discuss gaps in the context

of σd-invariant laminational equivalence relations and geolaminations.

Definition 2.8 (Critical gaps). A gap G of a geolamination is called (σd-)critical if for each y ∈ σd(G
′)

the set σ−1
d (y) ∩ G′ consists of at least 2 points. If it does not cause ambiguity, we talk about critical

gaps.

Definition 2.9 (Periodic and (pre)periodic gaps). Let G be a gap of an invariant geolamination L. A
gap/leaf U of L∼ is said to be (pre)periodic if σm+k

d (U ′) = σm
d (U ′) for some m > 0, k > 0. Choose m

and k to be minimal. Then U is said to be preperiodic if m > 0 or periodic (of period k) if m = 0. If

the period of G is 1, then G is said to be invariant. Define precritical and (pre)critical objects similar to

(pre)periodic and preperiodic objects defined above.

Consider infinite periodic gaps of σd-invariant geolaminations. Observe that, by [7], infinite gaps are

eventually mapped onto periodic infinite gaps. First, we state (without a proof) a well-known folklore

lemma about the edges of preperiodic (in particular, infinite) gaps (see, e.g., [5, Lemma 2.28]).

Lemma 2.10. Any edge of a (pre)periodic gap is either (pre)periodic or (pre)critical.

Let us now classify infinite gaps. It is known that there are three types of such gaps: caterpillar gaps,

Siegel gaps, and Fatou gaps of degree greater than one.

Definition 2.11. An infinite gap G is said to be a caterpillar gap if its basis G′ is countable.

An example of a caterpillar gap is shown in Figure 7. A general description of σ3-invariant caterpillar

gaps is given in [4]. The fact that the basis G′ of a caterpillar gap G is countable implies that there are

lots of concatenated edges of G. Other properties of caterpillar gaps can be found in Lemma 2.12.

Lemma 2.12 (See [3, Lemma 1.15]). Let G be a caterpillar gap of period k. Then the degree of

σk
d |Bd(G) is one, and G′ contains some periodic points of period k.

Definition 2.13. A periodic Fatou gap G of period n is said to be a periodic Siegel gap if the degree

of σn
d |G is 1, and the basis G′ of G is uncountable.

The next lemma is well-known (see, e.g., [3, Lemma 2.12]).

Lemma 2.14. Let G be a Siegel gap of period n. Then σn
d |Bd(G) is monotonically semiconjugate to an

irrational circle rotation, contains no periodic points, and one of its iterated images has a critical edge.

A period n Fatou gap is said to have degree k > 1 if the degree of σn
d |Bd(G) is k > 1; if k = 2, then G

is said to be quadratic. The next lemma is well-known.

Lemma 2.15. Let G be a Fatou gap of period n and of degree k > 1. Then the map σn
d |Bd(G) is

monotonically semiconjugate to σk.

3 Limit geolaminations and their properties

Take the space E of all chords (including degenerate ones) in the unit disk with the Hausdorff distance.

Every geolamination L can be viewed as a closed subset of E (each leaf of L is a point of E). Define the
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Hausdorff distance between two geolaminations L1 and L2 using the Hausdorff distance between the two

closed subsets L1 and L2 of E. This defines a metric on the set of geolaminations. We speak of limits of

geolaminations only in this sense.

Fix a degree d and consider limits of σd-invariant q-laminations. In the lemmas below, we assume that

a sequence of σd-invariant q-laminations Li converges to a σd-invariant geolamination L∞. By a strip we

mean an (open) part of the unit disk contained between two disjoint chords. By a strip around a chord ℓ

we mean a strip containing ℓ. In what follows, when talking about convergence of leaves/gaps, closeness

of leaves/gaps, and closures of families of geolaminations, we always use the Hausdorff metric on E.

Definition 3.1. Let Lq
d be the family of all σd-invariant geodesic q-laminations. We will write Lq

d for

the closure of Lq
d.

Even though we state below a few general results, we mostly concentrate on periodic objects of limit

geolaminations.

Lemma 3.2 (See [3, Lemma 2.2]). Let ℓ be a periodic leaf of L ∈ Lq
d. If L̂ ∈ Lq

d is sufficiently close

to L, then any leaf of L̂ sufficiently close to ℓ is either equal to ℓ or disjoint from ℓ.

Definition 3.3 introduces the concept of rigidity.

Definition 3.3. A leaf/gap G of L is rigid if any q-lamination close to L has G as its leaf/gap.

Some lemmas proved in [3] study rigidity of periodic leaves/gaps of geolaminations from Lq
d. These are

combinatorial counterparts of the fact that repelling periodic points survive under small deformations of

complex polynomials. By a (σd-)collapsing polygon we mean a polygon Q, whose edges map under σd to

the same non-degenerate chord ℓ; if a point moves around Q, its σd-image moves back and forth along ℓ.

If it does not cause ambiguity, we omit σd from notation. We say that Q is a collapsing polygon of a

geolamination L if all edges of Q are leaves of L; we also say that L contains a collapsing polygon Q.

However, this does not imply that Q is a gap of L as Q might be further subdivided by leaves of L
inside Q.

Lemma 3.4 (See [3, Lemmas 2.5–2.10]). Let L ∈ Lq
d. If ℓ̂ ∈ L is a non-degenerate rigid leaf, a leaf

ℓ ∈ L is such that σk
d(ℓ) = ℓ̂ for some k > 0, and no leaf ℓ, σd(ℓ), . . . , σ

k−1(ℓ) is contained in a collapsing

polygon of L, then ℓ is rigid. Also, the following objects are rigid:

(1) periodic leaves that are not edges of collapsing polygons;

(2) finite periodic gaps;

(3) (pre)periodic leaves of a gap eventually mapped to a periodic gap;

(4) finite gaps that eventually map onto periodic gaps;

(5) periodic Fatou gaps whose images have no critical edges.

Using these results and other tools, we characterize all σ2-invariant limit geolaminations. Each such

geolamination L can be described as a specific modification of an appropriate geolamination Lq from Lq
2.

Definition 3.5. Geolaminations coexist if their union is a geolamination.

This notion was used in [4]. If two geolaminations coexist, then a leaf of one geolamination is either

also a leaf of the other geolamination or is located in a gap of the other geolamination.

For a σ2-invariant geolamination L, Thurston [12] defined its major M(L) as a longest leaf of L;
either L has a unique major (a diameter of D), or L has two distinct majors with equal σ2-images.

Thurston defined the minor of L as m(L) = σ2(M(L)) and showed that the family of the minors of all

σ2-invariant geolaminations is a geolamination itself, called the quadratic minor lamination QML and

generated by an equivalence relation ∼QML. Each class of ∼QML is associated with a unique σ2-invariant

laminational equivalence relation and its topological polynomial. The quotient S/ ∼QML= Mc
2 is called

the combinatorial Mandelbrot set.

Definition 3.6. A σ2-invariant geolamination is called hyperbolic if it has a periodic Fatou gap of

degree two.

Clearly, if a σ2-invariant geolamination L has a periodic Fatou gap U of period n and of degree greater

than one, then the degree of σn
2 |Bd(U) is two. By [12], there is a unique edgeM(L) of U with σn

2 (M(L)) =
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M(L). Either all leaves M(L), . . . , σn−1
2 (M(L)) are pairwise disjoint, or their union can be broken down

into several gaps permuted by σ2, in each of which edges are “rotated” by the appropriate power of σ2,

or n = 2k and σk
2 flips M(L) on top of itself while all leaves M(L), . . . , σk−1

2 (M(L)) are pairwise disjoint.
In fact, M(L) and its sibling M∗(L) are the two majors of L while σ2(M(L)) = σ2(M

∗(L)) = m(L) is

the minor of L (see [12]). Any σ2-invariant hyperbolic geolamination L is actually a geolamination L∼
generated by the appropriate hyperbolic σ2-invariant laminational equivalence relation ∼.

Definition 3.7. A critical set Cr(L) of a σ2-invariant geolamination L is either a critical leaf, or a

collapsing quadrilateral which is a gap of L, or a gap G with σ2 |G of degree two. A gap is said to be

critical if it is a critical set.

A σ2-invariant q-lamination has a finite critical set (a critical leaf, or a finite critical gap) or is hyper-

bolic. In both cases, the critical set is unique.

Definition 3.8. A generalized critical quadrilateral Q is either a collapsing quadrilateral or a

critical leaf.

If Cr(L) is a generalized critical quadrilateral of a geolamination L, then σ2(Cr(L)) = m(L). Theo-

rem 3.9 describes geolaminations from Lq
2. A periodic leaf z is called a fixed return periodic leaf if the

period of its endpoints is k and all leaves z, σ2(z), . . . , σ
k−1
2 (z) are pairwise disjoint.

Theorem 3.9 (See [3, Theorem 3.8]). A geolamination L belongs to Lq
2 if and only if there exists a

unique maximal q-lamination Lq coexisting with L and such that either L = Lq or Cr(L) ⊂ Cr(Lq) is a

generalized critical quadrilateral, and exactly one of the following holds:

(1) The critical set Cr(Lq) is finite, and Cr(L) is the convex hull of two edges or vertices of Cr(Lq)

with the same σ2-image.

(2) The geolamination Lq is hyperbolic with a critical Fatou gap Cr(L) of period n, and exactly one of

the following holds:

(a) the set Cr(L) = ab is a critical leaf with a periodic endpoint of period n, and L contains exactly

two σn
2 -pullbacks of ab that touch ab at the endpoints (one at a and one at b);

(b) the critical set Cr(L) is a collapsing quadrilateral, and m(L) is a fixed return periodic leaf.

Thus, any σ2-invariant q-lamination corresponds to finitely many geolaminations from Lq
2, and the union

of all of their minors is connected.

Given a geolamination L ∈ Lq
2, let Lq be the σ2-invariant q-lamination associated with L as in

Theorem 3.9.

Definition 3.10 (See [3]). Geolaminations L0, Lk ∈ Lq
2 are said to be minor equivalent if there exists

a finite collection of geolaminations L1, L2, . . . ,Lk−1 from Lq
2 such that for each i with 0 6 i 6 k − 1,

the minors m(Li) and m(Li+1) of the geolaminations Li and Li+1 are non-disjoint.

Theorem 3.11 interprets the Mandelbrot set as a quotient of Lq
2. Let ψ : Lq

2 → S/ ∼QML be the map

which associates to each geolamination L ∈ Lq
2 the ∼QML-class of the endpoints of the minor m(L) of L.

Theorem 3.11 (See [3, Theorem 3.10]). The map ψ : Lq
2 → S/ ∼QML induces a homeomorphism

between the quotient space of Lq
2 with respect to the minor equivalence and S/ ∼QML.

For every geolamination L let its minor set be the image of its critical set unless L is hyperbolic in

which case we call m(L) the minor set of L. Then ψ associates to each class A of minor equivalence in Lq
2

the minor set of the geolamination Lq, the only q-lamination in A. The minor set of Lq is the convex

hull of the union of minors of all geolaminations in A.

We modify this by considering the subset of Lq
2 consisting of all non-isolated geolaminations. In

other words, we consider geolaminations which are limits of sequences of pairwise distinct σ2-invariant

q-laminations.

Corollary 3.12. A geolamination L ∈ Lq
2 is non-isolated in Lq

2 if and only if Case (1) or Case (2) of

Theorem 3.9 holds.

In order to prove Corollary 3.12, we need the following lemma.
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Lemma 3.13. Suppose that L is a σ2-invariant q-lamination whose critical set is a generalized critical

quadrilateral. Then L is the only σ2-invariant geolamination with critical set Cr(L).
Proof. Indeed, properties of σ2-invariant geolaminations imply that pullbacks of Cr(L) are well-defined
on each finite step; moreover, these pullbacks are all sets from L. Furthermore, the closure L̂ of their

entire family is a σ2-invariant geolamination itself, and since L is closed it follows that L̂ ⊂ L. We claim

that L̂ = L. Indeed, suppose otherwise. Then L̂ must contain a gap, say, U that itself is the union

of s > 1 gaps of L and, therefore, U contains leaves of L inside. If U is finite, it follows that there

are non-disjoint finite gaps of L. The latter is impossible as L is a q-lamination. Thus, U is infinite.

Mapping U forward several times, we may assume without loss of generality that U is periodic of period k

(indeed, by [7], all infinite gaps of geolaminations are (pre)periodic).

Consider several cases. First, suppose that U is a caterpillar gap. Then the critical leaf of U (or of a

gap in the forward orbit of U) must coincide with the critical set of L. Therefore, L has a critical leaf

with a periodic endpoint, which is impossible for a q-lamination.

Now, suppose that U is a Siegel gap. It is well known (e.g., it follows from Lemma 2.10) that all edges

of U are (pre)critical and that, therefore, some image σt
2(U) of U has a critical edge ℓ; it then follows

that Cr(L) = ℓ, that all edges of U are pullbacks of ℓ, and that under the map ψ collapsing edges of U to

points any chord ℓ̂ connecting vertices of U projects to a non-trivial chord ψ(ℓ̂) of the unit circle. Since ψ

semiconjugates σk
2 |Bd(U) to an irrational rotation ρ : S → S, the chord ψ(ℓ̂) in the unit disk will intersect

its eventual image under ρ, which implies a similar statement for the chord ℓ̂ ⊂ U . We see that ℓ̂ cannot

be a leaf of any geolamination, which leads to a contradiction with the above.

Finally, suppose that σk
2 |Bd(U) is of degree 2. Then some iterated image of U is an infinite gap V such

that σ2 |Bd(V ) has degree two. On the other hand, Cr(L̂) = Cr(L) is a generalized critical quadrilateral,

which leads to a contradiction with the existence of V . Hence this case is impossible either, and so

L = L̂ = Lq is the unique geolamination with critical set Cr(L).

Proof of Corollary 3.12. By Theorem 3.9, if L satisfies the conditions of the corollary, then L ∈ Lq
2.

Since geolaminations in Case (2) do not belong to Lq
2, they must be limits of sequences of pairwise distinct

σ2-invariant q-laminations.

Consider Case (1). Then Cr(Lq) is finite, and Cr(L) is the convex hull of two edges or vertices of

Cr(Lq) with the same σ2-image. Suppose that Cr(Lq) is a polygon with more than four vertices. Then

L ̸= Lq (in fact, L % Lq). Hence L /∈ Lq
2, and, as above, L is a limit point of Lq

2.

Consider now the case when Lq has a generalized quadrilateral as its critical set Cr(Lq). It may happen

that L has a critical leaf that is a diagonal of the quadrilateral Cr(Lq) so that L ̸= Lq; as before, then L
is the limit of a sequence of pairwise distinct σ2-invariant geolaminations.

It remains to consider the case when L = Lq is generated by an equivalence relation ∼ and has a

critical set Cr(L) that is either a critical quadrilateral or a critical leaf. Let us show that then L is the

limit of a non-constant sequence of q-laminations. By Lemma 3.13, the geolamination L is the unique

σ2-invariant geolamination with the critical set Cr(L). Now, the fact that L is the limit of a sequence of

pairwise distinct q-laminations follows from the uniqueness of L and the fact that, due to the well-known

properties of the combinatorial Mandelbrot set, there is a sequence of q-laminations Li with critical sets

Cr(Li) → Cr(L) (recall that we are considering the case when Cr(L) is a generalized quadrilateral). This

completes the proof.

Thus, isolated geolaminations in Lq
2 are (a) dendritic geolaminations with critical sets that have more

than four vertices, and (b) hyperbolic geolaminations. In Case (a) the laminations are called dendritic

because the corresponding topological Julia set is a dendrite; by Kiwi [8] any polynomial with connected

Julia set and only repelling cycles is monotonically conjugate to a topological polynomial on its topological

Julia set. Removing them from Lq
2, we obtain the closed space Ll

2 ⊂ Lq
2 of all σ2-invariant geolaminations

that are non-isolated in Lq
2. The minor equivalence on Ll

2 is defined as before: two geolaminations are

minor equivalent if their minors can be connected by a chain of non-disjoint minors. Since we only

consider minors of geolaminations from Ll
2, the minor equivalence on Ll

2 is not a restriction of the minor

equivalence on Lq
2, and some classes of minor equivalence on Ll

2 are slightly different from the restrictions
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of the corresponding classes of minor equivalence on Lq
2. Let us list all the cases.

(1) Take a dendritic geolamination L generated by a laminational equivalence relation ∼ such that

Cr(L) has more than four vertices. Several geolaminations in Ll
2 with critical sets being generalized

critical quadrilaterals in Cr(L) form one class A of the minor equivalence in Ll
2. Unlike for Lq

2, the

geolamination L does not belong to Ll
2 and is not included into A. Still, the convex hull of the union of

all minors of geolaminations in A is the same for Ll
2 and for Lq

2.

(2) Let L be a dendritic geolamination such that Cr(L) is either a quadrilateral or a critical leaf. By

Corollary 3.12, we have L ∈ Ll
2. The corresponding class of minor equivalence in Ll

2 consists of L itself

and two geolaminations obtained by inserting a critical diagonal in Cr(L) and pulling it back. This class

coincides with the corresponding class in Lq
2. The convex hull of the union of minors remains the same

as for Lq
2.

(3) A Siegel geolamination L belongs to both Ll
2 and Lq

2. The corresponding class of the minor

equivalence consists of L only.

(4) Let L be a hyperbolic geolamination with a critical gap U of period n whose unique edge M of

period n is a fixed return leaf. Then L does not belong to Ll
2, but three closely related geolaminations

form a class of minor equivalence. Two of them have critical leaves with endpoints at endpoints of M .

The third one has a collapsing quadrilateral based on M . This yields the same convex hull of the union

of minors as before in case of Lq
2.

(5) Finally, let L be a hyperbolic geolamination with a critical gap U of period n whose unique edge

M = ab of U of period n is not a fixed return leaf. Then neither L nor the geolamination with a collapsing

quadrilateral based onM belong to Ll
2. Thus, there are two non-equivalent geolaminations with critical

leaves ℓa and ℓb with endpoints a and b, respectively that can be associated with L, and so there are two

classes of minor equivalence, generated by ℓa and ℓb, respectively, that can be associated with L.
Let A be a class of minor equivalence in Ll

2. Define m(A) as the convex hull of the union of the

corresponding minors. The association A 7→ m(A) is similar to that made in [3] for Lq
2. Let A′ be the

minor equivalence class in Lq
2 containing A. The above analysis implies that, in Cases (1)–(4), we have

m(A) = m(A′). In Cases (2) and (3), we have A = A′. In Cases (1) and (4), the class A′ consists of A

and the geolamination Lq generated by the corresponding laminational equivalence.

In Case (5) the situation is different. The two distinct classes of minor equivalence in Ll
2 correspond

to critical leaves ℓa and ℓb and give rise to singletons {σ2(a)} and {σ2(b)} replacing the minor m(L) =
σ2(a)σ2(b) that corresponds to L in QML. Thus, the leaf m(L) is erased from QML and replaced by

its two endpoints. This “unpinching” of the circle yields a new parametric geolamination QMLl, the

laminational equivalence ∼QMLl , and the quotient space Ml
2. Let ψl : Ll

2 → S/ ∼QMLl be the quotient

map. Then Theorem 3.11 implies Theorem 3.14.

Theorem 3.14. The map ψl induces a homeomorphism between the quotient space of Ll
2 by the minor

equivalence and the space S/ ∼QMLl .

To visualize our results we describe the gap CAl of Ml
2 containing the main cardioid CA. First

though we need to define the main cardioid. We do so by defining the filled main cardioid as the set

of all parameters c such that the polynomial Pc(z) = z2 + c has an attracting fixed point. The main

cardioid then is defined as the boundary of the filled main cardioid (equivalently, this is the set of all

parameters c such that the polynomial Pc(z) = z2 + c has a neutral fixed point, i.e., a fixed point with

multiplier of modulus one). Notice that our terminology is a little unusual, but intuitive and completely

consistent with the classic notions of the Julia set and filled Julia set. It is well known that the main

cardioid is homeomorphic to its laminational model, constructed in [12] as a part of the construction of

the combinatorial Mandelbrot set Mc
2. Therefore in what follows we do not make a distinction between

the main cardioid and its combinatorial counterpart, a subset of Mc
2.

Now we define the growing tree of f∼ (see [1, 9]) (in [1] this is done for topological polynomials of

any degree, yet for the sake of simplicity here we consider only the quadratic case). Given θ ∈ S and

laminational equivalence relation ∼, let ψ∼(θ) be the point of J∼ associated with the ∼-class containing θ.

In the dendritic topological Julia set J∼, connect the points ψ∼(0) and ψ∼(1/2) by an arc I∼. Clearly,
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I∼ consists of ∼-classes that separate angles 0 and 1/2, and if c∼ is the critical point of f∼ then c∼ ∈ I∼
because f∼(ψ(0)) = f∼(ψ(1/2)) = ψ(0). Denote the union of all images of I∼ under f∼ by T∞

∼ and call

it the growing tree of f∼; clearly, T
∞
∼ is an invariant connected set. In what follows we may omit ∼ from

the notation if it does not cause ambiguity. Slightly abusing the language, in what follows by an interval

we will mean any set homeomorphic to [0, 1]. If all images of a set B are pairwise disjoint, then the set

is called wandering. Some useful for us results of [1] are collected in the next lemma.

Lemma 3.15 (See [1]). Suppose that f∼ is a topological polynomial of any degree. Then it has finitely

many periodic Fatou domains. All other Fatou domains are their eventual preimages. Any continuum in

J∼ is non-wandering. If J∼ is dendritic, and the images of all critical ∼-classes are non-degenerate, then

there exists a finite invariant tree containing all critical points of f∼. In particular, if f∼ is quadratic, J∼
is dendritic, and the critical ∼-class consists of more than two points, then T∞

∼ is a finite invariant tree.

In what follows, for a dendrite D and points x, y ∈ D we denote by [x, y]D the unique arc in D

connecting x and y. If it is clear what D is, we will omit it from our notation.

Lemma 3.16. If J∼ is a dendrite, the following claims are equivalent:

(1) The minor m(L∼) is vertical.

(2) The growing tree T∞
∼ is an interval.

(3) The critical point of f∼ |J∼ belongs to an invariant interval.

Moreover, if these claims hold then every branchpoint of J that belongs to T∞
∼ must be (pre)critical.

Proof. To simplify notation, assume that ∼ is given and omit it from our notation (thus, we set

f = f∼,L = L∼, etc.). Observe that some of the notation was introduced above when we discussed

growing trees.

To prove (1) ⇒ (2), observe that the majors of L are vertical. Indeed, only a vertical or a horizonal

leaf can map to a vertical leaf. Horizonal majors are impossible since they would cross their minors.

Therefore, there is a finite critical gap G of L such that the two vertical majors of L are edges of G. It

follows that I contains both the critical point c of f and its image f(c) (the ∼-classes of points from I are

exactly the ∼-classes whose convex hulls separate 0 from 1/2). This in turn implies that I is invariant

(indeed, [ψ(0), c]J is mapped to [ψ(0), f(c)]J ⊂ I, and similarly for [c, ψ(1/2)]J), and so the growing

tree T∞ is an interval.

Clearly, (2) ⇒ (3).

Finally, assume that (3) holds. Let I0 ⊂ J be an invariant interval. First, we will show that then

the last claim of the lemma holds, i.e., that any branchpoint b ∈ I0 of J must be (pre)critical. Indeed,

otherwise an eventual image b′ of b is a periodic branchpoint of J still belonging to I0. Then the orbit of b′

cannot contain c, and the power of f that fixes b′, must rotate small one-sided interval neighborhoods

of b′ in J (which follows from [7]). Since at least one of these neighborhoods is contained in I0 and I0
is invariant, it follows that all of them are contained in I0, which leads to a contradiction with the fact

that I0 is an interval.

Let us now prove that (3) ⇒ (1). Clearly, c ∈ I0. Observe that c ∈ I0 ∩ I, and hence I ∩ I0 ̸= ∅. If

I0 ⊂ I, then all points of I0 separate ψ(0) from ψ(1/2). Thus, all iterated images σn
2 (m∼) of m∼ cross

the horizonal diameter of S. This property, in turn, implies that m∼ is vertical as desired. Now, suppose

that I0 ̸⊂ I and set Z = I ∪ I0. It follows that Z is invariant. Indeed, if z ∈ I0 then f(z) ∈ I0 ⊂ Z.

Suppose now that z ∈ I. Then f(z) ∈ [ψ(0), f(c)] ⊂ Z. Hence Z is invariant. Denote by C∼ = C the

critical ∼-class.

The mutual location of some ∼-classes and the way they separate other ∼-classes is well-known.

Indeed, if Q is the invariant ∼-class such that 0 /∈ Q then Q separates 1/2 from C, the class C separates

Q from 0, and Q separates 0 from σ2(C). If we set q = ψ(Q) then we see that ψ(0) < c < q < ψ(1/2),

where “<” is the natural order on I from ψ(0) to ψ(1/2). Clearly, Z = I0 ∪X ∪ Y where X is the arc

in J connecting ψ(0) with I0, and Y is the arc in J connecting ψ(1/2) with I0. We may assume that

X = [ψ(0), x] and Y = [ψ(1/2), y]. On the other hand, q ∈ I0 (by the Brouwer fixed point theorem),

c ∈ I0, and hence [q, c] ⊂ I0 ∩ I. The mutual location of points ψ(0) < c < q < ψ(1/2) now implies that

y ̸= c.
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On the other hand, the fact that I0 ̸⊂ I implies that Z is not an interval, by construction Z has one

or two branchpoints, and any branchpoint of Z is either x or y. Let b ∈ Z be a branchpoint of Z. By

the above, b is not periodic (in fact, no branchpoint of J in I0 is periodic). Now, if b is not critical,

then f(b) is also a branchpoint of Z. Repeating it and relying upon the fact that no branchpoint of Z

is periodic, we see that all branchpoints of Z are (pre)critical, and c is a branchpoint of Z. Since by the

above y ̸= c, it follows that x = c. Consider now three pairwise disjoint (except for the common point c)

intervals: K0 = [c, ψ(0)] and K1, K2 ⊂ I0 connecting c with two endpoints of I0. Since f |I0 is not a

homeomorphism, c is a critical point of f |I0 . Hence f(K1) ∩ f(K2) contains a small interval starting

at f(c) and pointing towards q. On the other hand, the fact that Q separates 0 from σ2(C) implies that

f(K0) ⊃ [c, q]. Clearly, this is impossible as f is two-to-one.

If L∼ is hyperbolic (equivalently, if m∼ is periodic) then it is well known that m∼ coincides with a

∼QML-class. Otherwise J∼ is a dendrite and the critical ∼-class is finite. Suppose, in addition, that m∼
is vertical. Let us show that then m∼ again coincides with a ∼QML-class. For, if this is not the case,

thenm∼ is an edge of the convex hull G of a larger ∼QML-class and, moreover, G is a non-periodic ∼-class.

Hence g = ψ∼(G) is a non-periodic branchpoint of J belonging (by Lemma 3.16) to an invariant interval

I0 ⊂ J∼. By the last claim of Lemma 3.16, the point g must be (pre)critical which makes g periodic, which

leads to a contradiction. We conclude that vertical minors are always full ∼QML-classes. If a minor m∼
is vertical, then the corresponding ∼QML-class is also said to be vertical. The corresponding topological

polynomials and Julia sets will be called real (they correspond to complex polynomials z2+c with c ∈ R).
For any laminational equivalence relation ∼ denote by x∼ the point of Mc

2 corresponding to ∼ (x∼ is

the image of the minor class of ∼ under the quotient map). The set of all points x∼ corresponding to

the images of vertical ∼QML-classes under the quotient map is called a real line.

In the next several paragraphs we consider q-laminations of arbitrary degree d and study their infinitely

renormalizable sets. This is justified as the results concerning infinitely renormalizable sets are obtained

almost literally in the same way in the quadratic case and in the general case.

Definition 3.17 (Infinitely-renormalizable laminations). A σd-invariant q-lamination L∼ is said to be

infinitely renormalizable if there is an infinite sequence of q-laminations L1 ⊂ L2 ⊂ · · · with L∼ =
∪

i Li

and a nested sequence of critical Fatou gaps Ui of Li of period mi such that m1 < m2 < · · · . If L∼ is

infinitely renormalizable, then the corresponding topological polynomial f∼ is also said to be infinitely

renormalizable. Let ψ∼ be the projection of S onto J∼ = S/ ∼. Set Zi = ψ∼(Bd(Ui)). The nested

sequence Z1 ⊃ Z2 ⊃ · · · is called a generating sequence of continua. Moreover, the set Z =
∩∞

i=1 orbZi is

said to be an infinitely renormalizable set.

The notation introduced in Definition 3.17 will be used in what follows. The next lemma establishes

a useful property of infinitely renormalizable topological polynomials.

Lemma 3.18. Let f∼ be an infinitely renormalizable topological polynomial, and Z1 ⊃ Z2 ⊃ · · · be a

generating sequence of continua. Then, for all sufficiently large i, the sets Zi are dendrites. Moreover,

the infinitely renormalizable set Z contains no periodic points.

Proof. Indeed, otherwise the fact that there are finitely many periodic Fatou domains, and all Fatou

domains eventually map to periodic ones, implies that there must exist a periodic Fatou domain V of f∼
of period, say, k such that Bd(V ) ⊂ Zi for any i. Since pairwise intersections of distinct Fatou domains

are finite, this implies that mi 6 k for all i, which leads to a contradiction. Now, suppose that a periodic

point y belongs to Z. Denote by Y the convex hull of the ∼-class associated to y. Consider several cases.

First assume that Y is a singleton (a degenerate ∼-class) of period N . Then Y is a degenerate ≈i-

class in every i (here, ≈i is the laminational equivalence relation associated with q-lamination Li from

Definition 3.17). Hence, if mi > N , then in the σd-orbit of Ui two distinct Fatou gaps have a common

point that is a degenerate class of Li which is clearly impossible. Now assume that Y is a periodic leaf

of period N . Then, if mi > 2N , then there will be two distinct Fatou gaps in the σd-orbit of Ui that

are located on the same side of Y , which leads to a contradiction. Finally, if Y is a periodic gap and its

edges are of period N , then, if mi > N , then there will be two distinct Fatou gaps in the σd-orbit of Ui
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that are “attached” to Y at the same edge of Y , which leads to a contradiction.

In what follows, by a continuum we mean a connected compact set consisting of more than one point.

By an (f -)periodic continuum we mean a continuum A such that for somem > 0 the pairwise intersections

of A, f(A), . . . , fm−1(A) are at most finite while fm(A) ⊂ A. The integer m is called the period of A.

Since a continuum is infinite, the period is well-defined. Given a periodic continuum A of period m we

set orbA =
∪m−1

j=0 f j(A) and call orbA a cycle of continua. Evidently, continua Zi from a generating

sequence of continua of an infinitely renormalizable set are periodic (because closures of distinct Fatou

domains in a cycle of Fatou domains intersect over sets that are at most finite and, in fact, consist of

periodic points).

Lemma 3.19. Let f = f∼ be an infinitely renormalizable topological polynomial, and Z1 ⊃ Z2 ⊃ · · ·
be a corresponding generating sequence of continua. Then Z =

∩
i orbZi is a Cantor set.

Proof. Obviously, Z is compact. Let Y be a component of Z. We claim that Y is wandering. Indeed,

suppose otherwise. We may assume that fn(Y ) ∩ Y ̸= ∅ for some n. Fix a number i and assume that

Y ⊂ fk(Zi). It follows that fk(Zi) ∩ fk+n(Zi) is non-empty. On the other hand, fk(Zi) ∩ fk+n(Zi)

is finite and consists of periodic points (see the remark right before the lemma). Since fn(Y ) ∩ Y ⊂
fk(Zi) ∩ fk+n(Zi), it follows that Y ⊂ Z contains periodic points, which leads to a contradiction with

Lemma 3.18. Thus any component of Z is wandering, and hence, any component of Z is a point (recall

that by Lemma 3.15 there are no wandering continua in J∼). There are no isolated points in Z since

every f j(Zi) contains infinitely many points of Z. Therefore, Z is a Cantor set.

It follows that the topological polynomial on an infinitely renormalizable set is conjugate to a so-called

adding machine and is minimal (every point in it has a dense orbit in the set). In particular two distinct

infinitely renormalizable sets are either disjoint or coincide, and infinitely renormalizable sets are Cantor

sets that do not contain periodic points.

The next proposition relies on [1] (see Lemma 3.15). A gap is said to be all-critical if all its edges are

critical.

Proposition 3.20. Let f = f∼ be an infinitely renormalizable topological polynomial, and Z1 ⊃ Z2 ⊃
· · · be a corresponding generating sequence of continua. Suppose that, for any critical point c of f in

Z =
∩

i orbZi, the point f(c) separates J = J∼. Then there exists a finite periodic tree T ⊂ J of period m

such that Z ⊂ orbT . In particular, one may find a periodic interval I such that all sets in the cycle of I

are intervals, and Z ⊂ orbI.

Proof. Let d be the degree of f . Consider a sequence of q-laminations L1 ⊂ L2 ⊂ · · · and a nested

sequence of critical Fatou gaps Ui of Li with ψ∼(Bd(Ui)) = Zi. Choose i so large that the critical points

of f that belong to orbZi are exactly the critical points of f that belong to Z. In particular, by the

assumption on critical points of f belonging to Z it follows then that no Fatou gap σk
d(Ui) intersects an

all-critical gap. Let c ∈ Zi be a critical point while C is the convex hull of the corresponding ∼-class.

Then in general C is either a leaf or a gap, yet in our case C cannot be a leaf since σd(C) is non-degenerate.

Thus, C is a gap.

Let us show that σk
d(C) crosses the interior of σ

k
d(Ui), for every k. By the previous paragraph E = σk

d(C)

is not an all-critical gap. It follows that σk
d(C) is always a non-degenerate leaf or gap of L∼. Assume that

σk
d(C) does not cross the interior of σk

d(Ui). Then σ
k
d(C) is an edge of σk

d(Ui) or a finite gap “attached”

to an edge of σk
d(Ui). The edge σk

d(C)∩ σk
d(Ui) is (pre)periodic or (pre)critical. In the latter case, σk

d(C)

is eventually mapped to an all-critical gap, again a contradiction. Since c ∈ Z and by Lemma 3.18, the

critical point c cannot be (pre)periodic. Hence no edge of C can be (pre)periodic. We again arrive at a

contradiction, which shows that σk
d(C) crosses the interior of σk

d(Ui), for every k.

Consider the map ϕUi : Bd(Ui) → S collapsing all edges of Ui. The restriction of ∼ to Ui is mapped

under ϕUi to some σdi-invariant laminational equivalence ∼i. We will write gi for the corresponding

topological polynomial, and Ji for the corresponding topological Julia set. Recall that gi is conjugate to

the map induced by σmi

d on S/ ∼i. By the above, for any critical point c ∈ Ji and the corresponding gap C,

the gap σmi

d (C) crosses the interior of Ui, and hence gi(c) separates Ji. If we now apply Lemma 3.15 to gi,
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we see that the image of Z under the homeomorphism between Zi and Ji is contained in a gi-invariant

finite tree. The corresponding finite tree T ⊂ Zi must then contain Z; it is easy to see that T has all the

required properties.

To complete the proof, choose a large N so that each set f j(ZN ) contains at most one critical point

of f . This is possible by Lemma 3.19. Observe that any critical point c ∈ orbT has a small neighborhood

Wc in orbT (here, Wc is an interval if c is not a branchpoint of the corresponding component of orbT

or a k-od for some k otherwise) such that if Q ⊂ Wc is an interval then f(Q) is an interval too. Call

such neighborhoods Wc interval preserving. Of course if a subinterval of T contains no critical points

then its image is again an interval. Now, since the periods of sets Zi grow to infinity, the tree T has only

finitely many vertices, and by definition of a periodic continuum, it follows that if N is sufficiently large

then some sets f j(ZN ∩ T ) are intervals and all sets of the form f i(ZN ∩ T ) containing a critical point

are contained in this critical point’s interval preserving neighborhood. Hence, all sets f i(ZN ∩ T ) are

intervals (as in our setting at no moment can a non-interval be the image of an interval). This completes

the proof.

Let us now go back to the quadratic case. The above stated general facts can be restated in the

quadratic case as follows. Suppose that a quadratic topological polynomial f∼ is infinitely renormalizable.

Then every such topological polynomial is dendritic, and there is a nested sequence of periodic continua

Z0 ⊃ Z1 ⊃ · · · of periods m0 < m1 < · · · such that the critical point c of f∼ belongs to Z =
∩

i orbZi.

Also, for each i, there exists a topological conjugacy between fmi : Zi → Zi and the restriction of some

quadratic topological polynomial gi = f∼i
to its Julia set Ji. Moreover, it is well known that in this

case x∼ (recall that this is the point in Mc
2 associated with f∼ and ∼) belongs to baby Mandelbrot sets

M̃c
2(i) ⊂ Mc

2, and its location in M̃c
2(i) corresponds to the location of x∼i in Mc

2. To describe locations

relative to M̃c
2(i) we speak of “baby main cardioid”, “baby real line”, etc. The topological polynomials gi

are called renormalizations of f∼. Proposition 3.20 and Lemma 3.16 imply the following corollary.

Corollary 3.21. If a quadratic topological polynomial f∼ is infinitely renormalizable and Z =
∩

i orbZi,

where Zi are as above, then Z = ω(c), and there are only two possibilities.

(1) The critical class C of ∼ consists of two points.

(2) The critical class C of ∼ is a quadrilateral, there exists N such that, for i > N , all sets fk(Zi),

k = 0, 1, . . . can be assumed to be intervals, and the corresponding topological Julia sets Ji are real. In

particular, x∼i belongs to a baby real line in the corresponding baby Mandelbrot set.

We are ready to visualize the gap CAl of Ml
2 containing the main cardioid CA. A topological poly-

nomial f∼ is said to be Feigenbaum if it is infinitely renormalizable and the above defined sequence of

periods can be chosen to be m0 = 1 < m1 = 2 < · · · < mi = 2i < · · · . It is known that there is a

unique topological Feigenbaum polynomial, so from now on we will talk about the Feigenbaum topo-

logical polynomial. The corresponding laminational equivalence relation will be denoted ∼F . It is well

known that the minor set m∼F
is a leaf of QML approximated from one side by uncountably many leaves

(minors) of QML. If a topological polynomial has a renormalization which is the Feigenbaum topological

polynomial, we say that it has a Feigenbaum renormalization ; by the above, all minors associated to

topological polynomials with Feigenbaum renormalizations are limits of uncountable families of minors

from QML from one side. A baby main cardioid Y is finitely attached to CA if there are finitely many

baby main cardioids between Y and CA.

Proposition 3.22. The boundary of CAl consists of vertices and leaves of QML. The vertices of CAl

are vertices of baby main cardioids finitely attached to CA, or endpoints of edges of baby main cardioids

finitely attached to CA, or minors associated to some infinitely renormalizable quadratic topological poly-

nomials that do not have a Feigenbaum renormalization. The edges of CAl are all associated to infinitely

renormalizable topological polynomials that have Feigenbaum renormalizations.

Proof. The process of creation of CAl can be viewed as follows. First, we erase all non-degenerate

edges of CA; then we erase non-degenerate edges in the copies of CA that used to be attached to the

main cardioid, etc. On each step we obtain bigger and bigger gaps containing CA. Observe that by
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construction any q-lamination (or topological polynomial) associated with the minors of QML erased

after finitely many steps in the process of creating CAl must have only finitely many periodic leaves. In

the end of this process we get CAl. Hence the degenerate edges of CAl obtained after finitely many steps

are endpoints of edges erased after a finite number of steps or Siegel points on the boundary of a baby

main cardioid finitely attached to CA. The remaining edges of CAl are infinitely renormalizable limits

of sequences of non-degenerate edges of deeper and deeper baby main cardioids. These edges may be

degenerate or non-degenerate.

By Corollary 3.21 if ℓ is a non-degenerate edge of CAl then it is associated with an infinitely renor-

malizable topological polynomial f∼, and an m-periodic copy J ′ of a real quadratic dendritic topological

Julia set J≈ of a topological polynomial f≈ is contained in J∼, where f
m
∼ |J ′ is topologically conjugate to

f≈ |J≈ (f≈ is generated by a laminational equivalence relation ≈). If f≈ is not the Feigenbaum topological

polynomial then the Sharkovsky theorem implies that for some N and all i > 0 the geolamination L≈
has periodic leaves of periods 2N (2i + 1). If we now choose a minor ℓ′ ∈ QML which is very close to ℓ

and was erased when we constructed CAl then it would follow that periodic leaves of periods 2N (2i+ 1)

with i > t are still leaves of the q-lamination associated with ℓ′. However this contradicts the fact that

this q-lamination can only have finitely many periodic leaves.

When we construct QMLl we remove countable concatenations of copies of CA finitely attached to

CA itself and replace their union by CAl. We have to do similar actions inside each baby Mandelbrot

set, Thus, the only infinite gaps of QMLl associated to the bounded complementary domains of Ml
2 are

copies of CAl from various baby Mandelbrot sets.

Proposition 3.23. The geolamination QMLl is perfect.

Proof. We need to show that QMLl has no isolated leaves. Suppose that ℓ is an isolated leaf of QMLl.

Since it is a leaf of QMLl, it is not isolated in QML. Hence we may assume that there exists a one-

sided semi-neighborhood U of ℓ that contains no leaves of QMLl but contains leaves ℓi ∈ QML \ QMLl

converging to ℓ. We may think of U as the Jordan disk with the boundary formed by ℓ itself, two circular

arcs T and R whose endpoints are endpoints of ℓ, and the remaining chord connecting the other two

endpoints of T and R and disjoint from ℓ. Then leaves ℓi connect T and R.

Fix a number i. Since ℓi is isolated in QML, ℓi is an edge of a baby main cardioid contained in a

baby Mandelbrot set M c
2,i. Hence ℓi is contained in a copy Ai ⊂ M c

2,i of CAl. Therefore, either there

exists an edge of Ai with endpoints in T and R, or ℓ itself is an edge of Ai. The former is impossible

by the assumption on U . Thus, ℓ is an edge of Ai. However then it follows from the last claim of

Proposition 3.22 and the remark right before this proposition that ℓ is approximated by leaves of QMLl

from the side opposite to U .

The geolamination QMLl is the visual counterpart of a laminational equivalence relation ∼QMLl that

can be defined as follows: two angles α ad β are ∼QMLl -equivalent if there exists a finite chain of leaves

of QMLl connecting them. By the above, ∼QMLl is a well-defined laminational equivalence relation (so

that all its classes are finite). Almost all ∼QMLl -classes are in fact ∼QML-classes and correspond to the

appropriate non-hyperbolic quadratic topological polynomials. The minors m = ab of QML that used

to be associated to quadratic hyperbolic topological polynomials are erased from QML and replaced by

pairs of their endpoints a and b. Moreover, the geolamination associated, say, with a, is obtained from

the corresponding to m hyperbolic q-lamination ∼m by inserting a critical leaf ℓa in the critical Fatou

gap U of ∼m such that σ2(ℓa) = a and then pulling it back inside various gaps of ∼m that are pullbacks

of U .

Let us suggest an interpretation of interiors of various filled copies of CAl. Recall that the perfect part of

a geolamination L is obtained by taking the maximal perfect subset of L. In particular, all isolated leaves

of L must be erased as we extract the perfect part of L. Now, say that two geolaminations are countably

equivalent if they have the same perfect parts (equivalently, if the symmetric difference between them

is countable). For example, all q-laminations from the main cardioid are countably equivalent. Their

common perfect part is the unit circle. Other q-laminations with countably many non-degenerate leaves

also have S as their perfect part and, hence, are countably equivalent. We can associate the interior of
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the filled CAl to the corresponding class of countable equivalence among q-laminations. In fact, interiors

of all baby versions of CAl can be associated to corresponding classes of countable equivalence among all

q-laminations.

4 Non-renormalizable geolaminations

In Section 4, we consider another way to modify Mc
2. The aim, again, is to uncover the structure of Mc

2 by

replacing more complicated parts of Mc
2 with their simplified “unpinched” versions in which some leaves

of Thurston’s quadratic minor lamination QML are deleted (i.e., replaced by pairs of their endpoints). In

other words, some q-laminations are still considered, but some are not. We explain our selection below.

Suppose that there exist q-laminations L̂ ⊂ L and L̂ is non-empty. By definition this means that some

leaves of L are contained in gaps of L̂. Since both are q-laminations, no leaves of L are in finite gaps

of L̂. Moreover, if a leaf ℓ is inserted in a periodic Siegel gap then the semiconjugacy with an irrational

rotation that collapses all edges of this gap will transport this leaf into a chord inside a unit disk on

whose boundary the corresponding irrational rotation acts; this shows that ℓ crosses its eventual image,

which leads to a contradiction. Hence there must exist an n-periodic critical Fatou gap U of L̂ and all

the leaves of L \ L̂ are contained in gaps of L̂ from the grand orbit of U ; evidently, σ2 |Bd(U) is of degree

two. Restricting L onto U and collapsing all edges of U to points one semiconjugates σn
2 |Bd(U) and σ2

(intuitively, this “magnifies” U to the unit circle) and transforms L |U to a q-lamination L1. Then L is

said to be a tuning of L̂ (one can also say that L tunes L̂), and L1 is called a renormalization of L. In

particular, L is renormalizable; it follows that if a q-lamination is non-renormalizable, then it cannot be

a tuning of a non-empty q-lamination. Observe that L̂ here is a hyperbolic q-lamination.

We work with tunings of q-laminations rather than with their renormalizations. If a q-lamination L1

is a tuning of a q-lamination L2, then L2 is said to be an ancestor of L1. We say that L2 ⊂ L1 is the

oldest ancestor (of L1) if every q-lamination L3 ⊂ L2 is either empty (has no non-degenerate leaves) or

coincides with L2. We want to parameterize the family of all oldest ancestors similarly to QML. By

the previous paragraph, a non-renormalizable q-lamination is an oldest ancestor. Observe that all Siegel

q-laminations from the main cardioid are non-renormalizable, and hence they are oldest ancestors (of

themselves). On the other hand, hyperbolic oldest ancestors are renormalizable but in a unique way, and

their unique renormalizations are empty. Evidently, any oldest hyperbolic ancestor has a critical Fatou

gap U . We may say that an oldest ancestor L replaces all q-laminations that are tunings of L. The entire
family of oldest ancestors is denoted by Lnr. We will characterize (“tag”) all q-laminations from Lnr

with their postcritical (i.e., minor) sets. In particular, an oldest ancestor with a critical Fatou gap U is

tagged with its post-critical Fatou gap V = σ2(U).

Thus, postcritical gaps V = σ2(U) of hyperbolic oldest ancestors, pinched under the equivalence

relation ∼QML in the process of creation of Mc
2, are now “unpinched”. It is well known that pinched

gaps V are in fact baby Mandelbrot sets maximal by inclusion among all non-trivial (i.e., not coinciding

withMc
2) baby Mandelbrot sets. Thus, in QMLnr baby Mandelbrot sets are replaced by the corresponding

infinite gaps.

As before, let us first concentrate upon gaps of QMLnr closely related to the main cardioid CA. Let

x ∈ CA be a vertex of CA which is not an endpoint of an edge of CA. Then the q-lamination Lx

corresponding to x has an invariant Siegel gap G and is the oldest ancestor of itself. Hence Lx ∈ Lnr.

Now, let ℓ be an edge of CA. Then the q-lamination Lℓ associated to ℓ has an invariant finite gap Gℓ

with ℓ as its shortest edge, and the periodic forward orbit of a postcritical Fatou gap V attached to Gℓ;

the grand orbits of Gℓ and V form the family of all gaps of Lℓ. It follows that the empty q-lamination

is the only ancestor of Lℓ, and so Lℓ belongs to Lnr. By construction its tag is the post-critical gap V .

Thus, in the center of the geolamination QMLnr we have a “countable flower” with CA in the center and

countably many postcritical gaps V growing out of CA at its edges. The edges of CA are thus isolated

in QMLnr. A natural choice is to associate the interior of CA with the empty q-lamination. The gaps V

described above are associated with hyperbolic q-laminations from the main cardioid; vertices of the main
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cardioid remain vertices of the “countable flower” and are, as before, associated with q-laminations with

an invariant Siegel disk.

Let V be a postcritical gap of a hyperbolic oldest ancestor L∼. Then V is periodic of some period n,

and it is well known that V has a unique edge m of period n, and all other edges of V are pullbacks of ℓ

that are not edges of other gaps of QML. We call m the root edge of V . It is also well known that such m

is the root edge of only one postcritical gap V , and the unique q-lamination associated to m is L∼.

Lemma 4.1. The space QMLnr is compact. All leaves of QMLnr not on the boundary of CA are

non-isolated. Thus QMLnr is “almost ” perfect.

Proof. Let us use the notation and terminology introduced right before Lemma 4.1. Then it is easy to

see that the leaves we remove are exactly leaves of QML that intersect the interior of V . Hence the set

of all leaves we removed is an open set and its complement is closed. Thus, QMLnr is compact.

Suppose that ℓ is a leaf of QMLnr that is not on the boundary of CA. Let us prove that ℓ cannot be a

common edge of two gaps of QMLnr. Indeed, suppose that ℓ is a common edge of a gap G and a gap H.

By construction, finite gaps of QMLnr are finite gaps of QML. Thus the fact that QML is generated by

a laminational equivalence relation ∼QML implies that at least one of the gaps G, H is infinite. Suppose

that G is infinite. Then by construction G is a postcritical n-periodic gap of some oldest ancestor L∼.

By the remark right before the statement of the lemma, ℓ is either the only edge of G of period n, or a

pullback of the only edge m of G of period n. If H is also infinite, we can apply a high iteration of σ2
to ℓ and obtain that the root edge of H and the root edge of G coincide, which leads to a contradiction.

If H is finite, then the situation will contradict the remark right before the claim of the lemma. Thus,

all possibilities lead to a contradiction. This proves that QMLnr is perfect.

By construction, we associate infinite post-critical gaps of QMLnr to renormalizable oldest ancestors;

otherwise QMLnr consists of finite gaps and leaves that are not edges of any gaps of QMLnr. All above

listed sets are pairwise disjoint. Moreover, properties of QML (in particular the fact that QML is gener-

ated by a laminational equivalence relation ∼QML) imply that this family of sets is upper-semicontinuous.

Hence QMLnr is in fact generated by an equivalence relation ∼nr that has the properties (E1) and (E2)

of laminational equivalence relations. Although we may choose ∼nr to also satisfy the property (E3)

(stating that all classes are finite), it would be more natural to admit infinite classes of ∼nr. Namely,

we assume that infinite post-critical gaps V of QMLnr corresponding to hyperbolic oldest ancestors give

rise to infinite classes V ∩ S. Call an equivalence relation ∼ on the circle a laminational equivalence

relation with possibly infinite classes if it has the properties (E1) and (E2) of Definition 2.1. Then it

follows that QMLnr is generated by a laminational equivalence relation with possibly infinite classes ∼nr.

Moreover, by Lemma 4.1, all infinite gaps of QMLnr are convex hulls of ∼nr-classes. It follows that the

corresponding quotient space S/ ∼nr= Mnr
2 is a dendrite.

Finally, similar to how we reinterpreted the q-lamination QMLl and the corresponding quotient s-

pace Ml
2 using the notion of countable equivalence, we can reinterpret Mnr

2 as follows. Call two q-

laminations common ancestor equivalent if they have the same oldest ancestor. Then the space Mnr
2 can

be viewed as the quotient space of the combinatorial Mandelbrot set Mc
2 under the common ancestor

equivalence; the corresponding quotient map from Mc
2 to Mnr

2 simply collapses to points all maximal by

inclusion baby Mandelbrot sets.
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