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ABSTRACT

Real-time access to overhead Low-Earth Orbit (LEO) satellite im-

agery from a handheld device can have transformative applications:

tracking wild-fire, natural disasters and weather events. Today, real-

time access to images from LEO satellites overhead is challenging

to obtain. LEO satellite ground receivers are bulky, expensive and

sparsely deployed in the world. Despite the exponential increase in

LEO small satellites orbiting the planet today – there is a significant

time gap between an image capture on such a satellite and users

who need it the most in remote and ecologically-sensitive regions.

This paper presents SelfieStick, a novel satellite receiver system

that explores reducing this barrier of access to real-time satellite im-

agery data using a single low cost (< $ 30) tiny receiver. SelfieStick’s

core approach takes advantage of the multiplicity of overhead Low-

Earth Orbit satellites due to their exponential rise in recent years.

While signals from such satellites may be individually weak, espe-

cially at a low-cost receiver, SelfieStick stitches together noisy RF

captures containing underlying images of the same part of the Earth

across many such satellites to generate clean Earth images. This is

made possible by combining weak signals in the RF domain (rather

than the traditional image domain) after appropriately transform-

ing and aligning the RF signals accounting for different satellite

perspectives, their orbits and wireless channels. A detailed experi-

mental evaluation on the RTL-SDR platform on satellite captures

from the NOAA constellation demonstrates a PSNR improvement

of 5 dB through combining of images across 10 satellites.

1 INTRODUCTION

“Our selfie stick, if you will, is 150 million miles long”

– Elsa Jensen (on the NASA Perseverance rover)

This paper explores building a low-cost (under $30) ground mod-

ule that listens to overhead Low-Earth Orbit (LEO) satellites to

build a real-time image of the Earth. Today, there are over 200 Earth

observation satellites in orbit [7] equipped with varied sensors that

measure the properties of the Earth and its atmosphere on a daily

basis. This number is growing exponentially and very soon, nearly

every point on the Earth’s surface may have tens of LEO satellites

passing overhead [11] at any given time. Yet ground stations for

such LEO satellites has simply not kept up with this pace [46] –

they are expensive, bulky and relatively sparse – very few ground

receivers exist in remote regions or the developing world. In other

words, collecting a real-time image of the Earth from overhead LEO

satellites, especially in remote or ecologically-sensitive regions –

whether for tracking real-time weather events, natural disasters, or

simply for research – is a challenging proposition.

While private players like Planet Labs, DigitalGlobe and IKONOS [1,

4] operate a constellation of LEO satellites, providing fine grained

Figure 1:Approach: SelfieStick captures RF signals containing

images of the same region of Earth from many satellites at

a low-cost receiver. While these signals are individually too

noisy to decode, SelfieStick transforms and combines them

to obtain a cleaner image.

earth images on demand, they do so at significant cost. A more

hands-on approach is for users to either rent and schedule ground

stations for reception[2, 6] or deploy their own ground station in-

frastructure [49, 50] and decode the receptions from these satellites.

However, this approach too requires significant investment from

the users in terms of cost and/or space for deployment. More recent

efforts have strived to bring down the cost of ground infrastruc-

ture [40, 44, 46], yet still requires multiple distributed receivers.

This paper presents SelfieStick, a system that explores the feasi-

bility of designing a single tiny receiver which costs a few tens of

dollars and is small enough to be deployed anywhere (including in-

doors) to obtain recently captured satellite images sent by overhead

LEO satellites. Naturally, receptions from individual satellites at a

low-cost receiver are likely extremely weak – nearly undecodable.

SelfieStick’s key idea exploits the ever-increasing multiplicity of

overhead LEO satellites. It uses weak receptions across many satel-

lites, each containing images of the same region of the Earth taken

from many perspectives to generate clean(er) images of that region

(see Fig. 1). We implement and evaluate SelfieStick on extensive

LEO satellite traces collected from an RTL-SDR receiver listening

to the NOAA constellation. Our results reveal a PSNR improvement

of 5 dB through combining signal captures from 10 satellites.

A naïve approach to build SelfieStick would simply map each

satellite’s signal to corresponding (potentially noisy) images. Of

course, these Earth images are taken from different perspectives

(often called “multi-view”) due to different satellite orbits and ori-

entations. One can then use the rich literature on multi-view image

fusion [22, 53] to combine these images across diverse perspec-

tives, despite some noise (e.g. with advanced image denoising [43]).

220

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00025

20
22

 2
1s

t A
CM

/I
EE

E 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 In
fo

rm
at

io
n 

Pr
oc

es
sin

g 
in

 S
en

so
r N

et
w

or
ks

 (I
PS

N
) |

 9
78

-1
-6

65
4-

96
24

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IP

SN
54

33
8.

20
22

.0
00

25

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 23,2022 at 18:53:38 UTC from IEEE Xplore.  Restrictions apply. 



Unfortunately, this approach fails in SelfieStick’s context due to

an important challenge – extremely high noise. To see why, note

that most satellite modulations encode per-pixel information in the

phase of received signals [30, 32, 39]. Such modulations face funda-

mental decoding limits from phase alone when signal power is well

below noise power [8] – an exceedingly common situation for low-

cost radios receiving satellite signals. In other words, if SelfieStick

attempts to map highly noisy RF signal receptions to individual

images – these images would simply look like uniformly-at-random

noise, with negligible useful information or features.

To address this challenge, SelfieStick does not even attempt to

decode images captured by individual satellites from their RF re-

ceptions in the first place. Instead, it makes corrections to images

indirectly through processing the received RF captures, transform-

ing and correcting the RF captures for underlying image distortions,

differences in perspectives due satellite orbit, etc. In other words,

SelfieStick proceeds in three key steps, once potentially noisy RF

samples from different LEO satellites have been gathered: (1) Satel-

lite Perspective Estimation: First, it estimates differences in perspec-

tives between the diverse points-of-view from which each satellite

captures the region of interest on the Earth. (2) Image Alignment

in RF: Second, it processes the RF captures to indirectly eliminate

these perspective differences in the underlying images. (3) Coherent

Multi-View Combination: Finally, SelfieStick coherently combines

the transformed RF signals to obtain a cleaner RF capture that map

to a cleaner image. We expand on these steps below:

Satellite Perspective Estimation: In an ideal world where all

overhead satellites capture an identical image of the Earth, one

could perhaps simply hope to add up the corresponding RF samples

from these satellites coherently. Unfortunately, satellites view the

same region of Earth from different perspectives. The traditional

computer vision approach to deal with this problem (e.g. in multi-

view fusion [22, 53]) is to look for feature points in the underlying

images to reverse engineer the perspective transform between them.

As stated previously though, SelfieStick does not simply have direct

access to the individual satellite images due to noise.

An alternate approach that SelfieStick takes is to use the known

location of satellites to infer these transforms. Specifically, for most

LEO satellites, their orbital parameters (i.e. 3-D location of the

satellite over Earth) at any point in time is known to a sufficiently

high degree of precision. Yet, one key attribute is often missing and

unknown to users on the ground – the orientation of the satellite,

given that satellites often experience location dependent attitude

control as well as tumbling (in some cases) during its orbit [25, 36].

To address this challenge, SelfieStick leverages the fact that these

orientation changes due to satellite location/tumble are reasonably

predictable over time-scales of several days, mostly since satellites

experience very little air resistance. SelfieStick can therefore make

reasonable estimates of satellite orientation from its previous values

at different times, estimated, say from clean captures obtained at an

earlier time and/or location from a high-quality RF ground station.

SelfieStick achieves this by tracking prominent landmarks found

in most regions on Earth across multiple images. Sec. 4 describes

our data-driven approach that estimates the appropriate image

perspective transforms using previously captured satellite images

and orbital parameters.

Image Alignment in the RF Domain: Having computed the

image transforms, SelfieStick must apply these indirectly on the

RF receptions. Doing so requires a satellite modulation-specific

approach, since eachmodulationmaps captured pixels into different

RF samples. Given that SelfieStick is primarily evaluated on NOAA

satellites (mainly due to public data availability), we detail this

approach for the popular Automatic Picture Transmission (APT)

modulation (we describe extensions to other modulations in Sec. 9).

At a high level, our approach must deal with many challenges in

how pixels are mapped to samples. First, we must uncover the RF

samples along two different captures that correspond to the same

pixel. This becomes challenging for modulations such as APTwhere

the same pixel is often “smeared” across multiple RF samples. Sec-

ond, given that most modulations encode data in phase, SelfieStick

must apply image transforms that are often matrix multiplications

of pixels indirectly on RF samples to appropriately manipulate their

phase in a consistent manner. Intuitively, SelfieStick achieves this

by relying on useful properties of RF signal captures that are es-

sentially complex numbers – for example multiplication of two RF

samples is akin to the addition of their phases. Sec. 5 describes how

each of these challenges are addressed to transform RF captures so

that their underlying images are aligned to a common perspective.

Coherent Multi-View Combination: Next, we need to coher-

ently combine the perspective-corrected RF captures to obtain a

clean image. Prior to doing so, SelfieStick must estimate and ac-

count for time, frequency and phase offsets that result from the

fact that each signal capture was obtained at different times from

different satellites at the receiver as well as wireless channels and

Doppler shifts. Sec. 6 describes how we address these challenges.

Limitations: A few key limitations of our system are: (1) Our

system relies on multiple overhead satellites. At present, the scale

of global satellite deployments allow for only 0-3 at a given time

and 5-6 over a 3 hour period [23]. We expect this limitation to be

temporary though as LEO satellite deployments rapidly scale [11].

(2) We assume the modulation of the satellites and their orbital

parameters are known and satellite image data is not encrypted,

as is the case for many public satellites. Our system’s performance

can be modulation-specific though and we address this in Sec. 9.

Evaluation: We implement and evaluate SelfieStick on an RTL-

SDR (costing 25 USD) that can be connected to a Raspberry PI or the

user’s laptop. These are connected to EXS136SMI Laird technologies

antennas [15] allowing for a form factor of 9.95 by 1.20 centime-

ters and not requiring specialized installation. We combine signal

captures from up to 10 NOAA LEO satellites. Our results reveal the

following improvements relative to a one-satellite baseline:

• An average improvement in received SNR of 8.4 dB.

• An increase in average SSIM from 0.53 with one satellite to

0.83 with 10 satellites

• An average improvement in PSNR of 5 dB.

Contributions: This paper contributes: (1) A novel system to ob-

tain real-time overhead LEO satellite Earth-images from a low-cost

ground receiver; (2) An approach to coherently combine individu-

ally weak satellite receptions in the RF domain, despite containing

images taken from different perspectives; (3) A detailed system

evaluation demonstrating significant image quality improvements.
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Figure 2: LEO satellites (a) operate in low altitudes and hence

offer only a small angular view of the Earth, and (b) operate

in non-overlapping sequential polar orbits and complete one

rotation in just 100 min.

2 PRIMER

In this section, we describe some of the characteristics of LEO

satellites: what makes them suitable for Earth observation and why

their ground stations are expensive.

LEOs are fast and fleeting: LEO satellites orbit the earth between

160-2000 km in altitude, with most Earth observation satellites

following a sun-synchronous polar orbit (Fig.2). The proximity

of the satellites to the earth surface results in a small footprint

subtended by them at any time. Due to their low altitude, small

footprint and high speed, LEO satellites are visible at any point on

earth only for a small duration of time. They complete one orbit

in about 60-120 minutes depending on their altitude, and do not

frequent the same geographic location on earth more than ∼ 4-5

times a day (for non-polar regions).

LEO ground stations are expensive: Although LEO satellites

are closer to the Earth than MEO satellites, the lower path loss they

enjoy relative to these satellites are somewhat offset by the fact

that most LEO satellites are small or cubesats. The small size of

these satellites imposes strict constraints on the power that can be

emitted from the their transmitter. Thus, to receive signals from

these satellites, one must deploy an expensive ground station with

an unobstructed view of the sky, comprising of a large antenna and

a bulky rotator setup to keep track of the satellite’s trajectory.

LEOs are growing in popularity: While Geo-synchronous (GEO)

orbits were traditionally preferred for weather monitoring, there

has been a progressive transition to low earth orbits for Earth

observation [4, 7]. This trend can be seen across the board with

government Earth observation constellations like NOAA, LAND-

SAT, SENTINEL as well commercially owned constellations like

WorldView, Flock, SkySat. There are three factors driving this tran-

sition: (1) Proximity to the earth allows fine grained imagery with

advertised resolutions as good as 4𝑚2 per pixel; (2) LEO satellites

allow fine grained coverage of different regions of the earth in sin-

gle orbit; and (3) Applications like Synthetic Aperture Radar (SAR)

require relative motion between the satellite and the imaging scene.

Latency from LEO imaging to down-linking: The transition to

low earth orbits also necessitates ground stations to be extensively

available. Most LEO satellites store data on board and downlink

data when within communication range of a specific ground station

(mostly deployed around the poles). This entails a high latency (∼

90 minutes) between capture and down-linking [46]. Deploying

more base stations to reduce this latency is an option, but comes at

increasing cost. Thus, there is a need for cheap and easily deployable

ground station infrastructure to take full advantage of the potential

that these Earth observation satellites offer.

3 SELFIESTICK DESIGN AND CHALLENGES

In this section, we motivate our choice of design that combines

RF signals across multiple satellites received using a low cost tiny

receiver. We also describe the challenges in designing such a system

and outline the techniques used to overcome those.

3.1 Design – Why RF Combination?

SelfieStick’s approach to lower the cost and delay in accessing satel-

lite images uses a tiny receiver module that receives signals from

many Earth observation satellites. Although each received signal

may have a slightly different underlying image, we preprocess the

signals to transform and extract the common regions across the

images. Post the transformations, we coherently combine the RF

signals to recover the underlying image from noise that would

otherwise have not been recoverable from a single weak reception.

Why not use traditional or deep learning based denoising?

Denoising in image processing and computer vision filters noise in

the image domain, either by assuming a particular distribution of

noise or learning the distribution using a lot of data. However, our

approach is driven by the fact the noise gets added in the RF domain

due to weak signals received by our low-cost tiny receiver. The best

way to filter the noise is by processing it in the RF domain. Instead,

if one decodes the signal to image, the noise will get translated to

the image domain through a non-linear digitization step. Further,

it is well known that estimating phase measurements of highly

noisy signals results in significant information loss [26] that makes

signal recovery extremely challenging. This is mainly due to the

“modulo 2𝜋” aspect of signal phase that amplifies noise instead

of useful signal at negative signal-to-noise ratio [26]. Learning a

filter to de-noise such phase will require extensive training data for

which there is no public RF dataset repository available, whereas

RF processing requires only a few receptions.

Why not design cheaper or distributed ground stations? The

cost of installation and operation of ground stations [42, 49] make it

impractical to scale existing ground station infrastructure to cover

the entire globe. An oft-ignored fact is that one needs to install the

bulky ground stations at appropriate locations, away from struc-

tures that might occlude the signal from satellites. This is why

ground stations are generally deployed on hills or rooftops. There-

fore, the amount one would have to spend on installationmight turn

out to be more than that of the ground station’s physical hardware.

In contrast, we envision SelfieStick ground stations to be portable

hand-held platforms. While using distributed receivers might seem

a viable option, we seek to reduce the burden of cost and infras-

tructure on an individual further by transferring the diversity from

the receiver to the transmitter. Distributed receivers require collab-

oration and technical know-how to deploy and generate an image,

whereas our design could work standalone and cost a fraction of

the multi-receiver approach. This could pave the way for satellite

enthusiasts (researchers, amateur radio operators, etc.) as well as

individuals in remote areas to access data from satellites that have

already been launched by other large government organizations

and private companies without incurring huge costs.
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Figure 3: SelfieStick’s Architecture: SelfieStick transforms re-

ceived satellite images indirectly in the RF domain, prior to

coherently combining these signals.

3.2 Challenges and System Outline

The rest of this paper discusses three key challenges in SelfieStick’s

design. We illustrate how each of these challenges interplay to

contribute to SelfieStick’s architecture in Fig. 3.

Image Transformation: Since the satellites take pictures of the

same scene from different locations and orientations, one cannot

directly combine the received RF signals because the underlying

images would appear to be taken from different perspectives. We

must bring all the images to a common perspective if we are to suc-

cessfully combine the RF signals. Sec. 4 discusses our approach to

correct for these multiple perspective effects by learning a transfor-

mation matrix using a data driven approach based on the satellite’s

trajectory and camera sensor parameters.

Image Alignment in the RF Domain: Once the transformation

is learnt, we cannot directly apply it to the image, since that would

require decoding the RF samples to image in the first place. We

instead use the reverse mapping from image pixels to RF samples

to indirectly apply the transformation in the RF domain to mimic

image transformation. Sec. 5 describes these two steps in detail.

Coherent Combination: Once the RF signals are appropriately

transformed and aligned, we need to coherently combine them. To

do so, we must first synchronize all the RF signals to get rid of any

hardware dependent time, frequency and phase offset as well as

trajectory dependent Doppler shifts. Sec. 6 describes our approach

to overcome this challenge using the Sync markers present in the

signal along with Doppler estimation using orbital parameters.

4 SATELLITE PERSPECTIVE ESTIMATION

In this section, we describe the problem of perspective distortion

for LEO satellite images taken from different camera locations.

We describe our solution to overcome this distortion in order to

combine images correctly in the RF domain.

4.1 Perspective and Homography

Multi-view imaging is the concept of stitching together images

taken from different perspectives to create a common combined

view – an approach vital to the panorama mode of most smart-

phones [53]. The problem of multi-view is also very relevant to

Figure 4: Difference in image captured due to rotation of

camera in counterclockwise direction from left to right

satellite imaging, especially for the case of LEO satellites which keep

moving in their orbit with respect to the scene they image. A famil-

iar example of this is Google Earth [53], where their consolidated

continuous Earth images have been compiled by stitching together

many small images after correcting for different perspectives.

Perspective in SelfieStick: In the context of SelfieStick, where

the goal is to combine images from different satellites imaging the

same broad region, we face the very same problem of different

perspectives with a nuanced difference. In our case, the multiple

perspectives are taken from different satellites and can therefore be

fairly different, sometimes appearing rotated by almost 35 degrees

with respect to one another. This perspective difference is actually

more complex that just a rotation, often captured by effects like

translation, rotation, skew, etc. In order to be able to combine images

consistently from satellites at different locations and orientations,

one needs to ensure that all the images appear to be taken from the

same location and orientation. This is the problem of homography

(see Fig. 4), which essentially tries to find a transformation (rotation,

translation, shear, skew etc.) that converts one image to look similar

to another image, given both the images are taken from vastly

different perspectives. This is done through a reordering of the

pixels in the image coordinate plane.

A Brief Primer on Homography: More formally, given a pixel

at coordinates (𝑥,𝑦) in an image (see Fig. 4) and the corresponding

same pixel at coordinates (𝑥 ′, 𝑦′) in a second image, the homogra-

phy matrix𝑇 is a 3x3 transformation matrix which when multiplied

by coordinates (𝑥 ′, 𝑦′) results in coordinates (𝑥,𝑦) =𝑇 .(𝑥 ′, 𝑦′). Note
that both coordinate vectors (𝑥,𝑦) , (𝑥 ′, 𝑦′) are appended by one to
conform with matrix multiplication dimensions. The homography

matrix 𝑇 comprises of the combined effects of translation, rotation,

scale, shear and perspective projections, which results in transfor-

mation of one coordinate to another. Given two satellite images, one

can transform the second to look like the first image by estimating

the transformation matrix. A straightforward way to estimate the

transformation matrix is to find four corresponding points (𝑥𝑖 , 𝑦𝑖 )
and (𝑥𝑖

′, 𝑦𝑖
′), 𝑖 = 1, 2, 3, 4 (no three of which are collinear) in the

two images and solve for the eight unknowns elements of 𝑇 using

the eight equations (one of the elements is set to one, which only

has a scaling effect).
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4.2 Homography in SelfieStick Despite Noise

While the above formulation of homography works well if the

corresponding points are known with high accuracy, this assump-

tion fails in SelfieStick. Recall that signals received in our tiny RF

receivers are weak, which will result in noisy images if decoded

directly. Without a clean image, it is not possible to accurately

find the four corresponding points needed for homography. Hence,

we need to either find a way to accurately find the corresponding

points without decoding the RF signals to images or find a different

way to estimate the transformation matrix. Given this challenge,

we go back to first principles to estimate the transformation matrix

given the location of the camera (which depends on the trajectory of

the satellite). To understand this, let us briefly recall how a camera

generates a 2-D image of a 3-D scene [34] in the first place.

Satellite Imaging Viewed as Projections: The process of image

generation is essentially a projection operation where the 3-D real

world scene is projected onto a 2-D camera plane. Given a point

(𝑋,𝑌, 𝑍 ) in 3-D space (see Fig. 5), its 2-D coordinates x = (𝑥,𝑦, 1) in
the camera image plane can be found by multiplying the augmented

3-D point X = (𝑋,𝑌, 𝑍, 1) with a 3x4 camera matrix 𝐾 such that

x = 𝐾.X. Here, the pointsX and x are in the camera reference frame,

with the camera placed at the origin. The camera matrix K captures

camera intrinsic properties like focal length, skew, principal points

and resolution scale factors in the x and y direction.

In our case, we operate in the Earth-Centered, Earth-Fixed (ECEF)

reference frame where the 3-D coordinates of any point-of-interest

relative to the Earth’s center, assuming the Earth is fixed (i.e., no

rotation) can be denoted as X. Thus, the above camera projection

equation gets modified to x = 𝐾𝑅 [𝐼 | − 𝐶]X. Here K is still the

old intrinsic camera matrix, C is the camera location and R is a

3x3 matrix representing the orientation of the camera in the ECEF

reference frame, I is a 3x3 identity matrix and [𝐼 | −𝐶] stands for
column vector -C concatenated to the identity matrix I. From the

above formulation, it is clear that if one knows the Camera matrix

K, camera location C and Rotation matrix R, we can find the coor-

dinates (𝑥,𝑦) in the camera image plane for any input 3-D point X.

In other words, should all these matrices be known, we can directly

perform homography from first-principles.

The Problem of Satellite Orientation: The challenge however is,

although K is fixed for a camera, and C can be found directly using

the known trajectory of the satellite (available from satellite radar

data or reverse-engineered from clean images previously collected),

the matrix R can change. Recall that the R matrix characterizes the

orientation (tumble) of the camera frame with respect to the ECEF

reference frame as the satellite moves in space, and can be defined

by three degrees of freedom: roll, pitch and yaw angles. Large

Satellites have gyroscope and reaction wheels/thrusters for attitude

control to appropriately align them to face the camera sensors

towards the surface of the earth, which means the orientation

angles in the ECEF frame vary based on the satellite’s location [25].

These angles also depend on the trajectory of the satellite, initial

deployment/calibration stage and factors like gravitational forces.

4.3 Data Driven Orientation Resolution

Our approach to estimate the orientation (tumble) of the satellite

relies on prior clean images and the known satellite orbit to infer

Figure 5: Imaging is essentially a projection defined by the

camera matrix, which depends on the focal length and pixel

position in the simplest form.

the evolution of its future orientation using a data-driven approach.

This decision is driven by the fact that while onboard gyroscope data

along with the satellite location would be sufficient to determine

the orientation, it is hardly the case that data from gyroscope are

sent downstream in decode-able format. It is directly used onboard

for attitude correction. Even if this data was to be downlinked along

the Tracking, Telemetry and Control (TTC) channel of the satellites

in the future, there are two barriers to its adoption for SelfieStick:

(1) The TTC channel is encrypted to ensure access only to the

specific ground mission control, (2) TTC channel is transmitted on

a different frequency band from the data downlink channel in all

satellite missions. Thus, the receiver would need to be capable of

tuning to multiple channels simultaneously using an addition RF

chain (antenna, SDR), which would result in increased costs.

Why is orientation evolution predictable? To understand why

this data driven approach works, recall that while the initial value

of a satellite tumble is unpredictable when it is launched, it can be

inferred once a clean image from the satellite is available at any

point in its orbit, say when it is passing a major city. Should the

orientation be known at a few initial points, its evolution in the

future can be predicted with reasonable accuracy over long time

scales (days). This is because air resistance and drag are negligible at

LEO orbits and rotational velocity along any 3-D axis remains fairly

consistent. Over longer time scales however, these assumptions

may break down. Fortunately, most public satellites have large

repositories of historical images and satellite orbital parameters [23,

31] allowing for a data-driven approach to make a regression-based

estimate of future orientation.

Choice of Data-Driven Model: Thus, SelfieStick assumes that

given the time series trajectory of the satellite and its corresponding

orientation values at historical instances, we can learn a regression

function for any future time instance. We train a multi-output deep

learning regression model that uses five dense layers with ReLu

activation units (see Fig. 6). The output layer returns the three

parameters for roll, pitch and yaw although the last two parameters

are mostly constant. The input features are the time series of the

satellite locations at image capture and the corresponding camera

intrinsic matrix. The training data is extracted from [31] which has

a database of NOAA satellite images of different regions of the earth

along with satellite locations at image capture. The output values
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Figure 6: DNN Architecture

for the training data are generated by finding the rotation matrix

(and hence the orientation parameters) from the clean images with

respect to a reference image from the dataset. This is done by

solving for the rotation matrix given the camera matrix for the

reference image and the homography matrix between the reference

image and the new candidate image as follows:

x = 𝐾𝑅𝑟𝑒 𝑓 [𝐼 | −𝐶𝑟𝑒 𝑓 ]X

x′ = 𝐾𝑅𝑛𝑒𝑤 [𝐼 | −𝐶𝑛𝑒𝑤]X

x = 𝑇x′

𝐾𝑅𝑟𝑒 𝑓 [𝐼 | −𝐶𝑟𝑒 𝑓 ] = 𝑇𝐾𝑅𝑛𝑒𝑤 [𝐼 | −𝐶𝑛𝑒𝑤]

(1)

Note that, here we can find the homography matrix 𝑇 since both

the reference image and new candidate image are clean. The loss

function used for training the model is mean absolute error. Once

the rotation parameters are estimated from the regression function,

we can calculate the homography 𝑇 matrix from the last equation

in Eqn. 1 when the reference camera matrix and the new camera

matrices along with the rotation matrices and satellite locations are

known. It should be noted this method transforms all the images

to the reference image’s perspective.

Leveraging geographic information: With a data driven esti-

mate of the homography matrix𝑇 in hand, one can further improve

the estimate of the homography matrix by leveraging the local

knowledge of prominent landforms in the region. Certain land-

forms can be used as distinguishing markers for a particular region,

for example, the great lakes in North America. We create an RF sig-

nature of these landforms based on the specific modulation scheme

used by the satellite. This is possible since past images of these

prominent landmarks are readily available, and one just needs to

modulate image pixels to RF samples. With an initial estimate of the

homography matrix from the previous paragraph, we do gradient

based search for the homography parameters that maximize the

correlation with the RF signature of the landmark. Whenever these

prominent landforms or their information is not available, we just

use the data driven estimate learnt in the previous paragraph. In

the next section, we use the homography matrix𝑇 to appropriately

align the RF samples to mimic image transformation.

5 IMAGE ALIGNMENT IN THE RF DOMAIN

In this section, we seek to align received image pixels so that equiv-

alent data across satellites are accurately combined. Specifically,

given the transformation matrix 𝑇 estimated in Sec. 4, the next

logical step is to multiply each of the image matrix pixel indices

with 𝑇 to find the corresponding pixel indices in the transformed

perspective-corrected reference frame. Once all the images are per-

spective corrected, one can add them coherently to boost the weak

signal buried under noise. However, this would mean decoding

the weak RF signals into image pixels in the first place. Should

we attempt to decode weak RF samples to image pixels and then

combine the image pixels, the resulting image would appear to be

just noise, as explained previously in Sec. 3.1. Instead, SelfieStick

seeks to indirectly apply the image transformation to the RF signals

themselves, in a process we describe below.

5.1 Transformation in RF domain with BPSK

To find the appropriate pre-processing step in the RF domain that

mimics the application of the transformation in the image domain,

we need to formulate the following: (Q-1) What is the precise trans-

formation applied in the image domain?; and (Q-2) What is the best

mechanism to replicate this in the RF domain?

Defining the Transform in the Image Domain: To answer (Q-1)

above, we draw from Sec. 4, where the application of the transform

is essentially multiplication of the image pixel coordinates with

the transformation matrix to generate the new pixel coordinate

in the transformed reference frame. If 𝑃1𝑥,𝑦 = 𝑝 is the value of

the pixel at coordinates (𝑥,𝑦) in the reference frame #1 and (𝑥 ′, 𝑦′)
= 𝑇 .(𝑥,𝑦) are the transformed coordinates in reference frame #2

after multiplication with the transformation matrix1, then the pixel

value at coordinates (𝑥 ′, 𝑦′) in the transformed reference frame #2

would be the same as that in frame #1, i.e, 𝑃2𝑥 ′,𝑦′ = 𝑝 . Hence, we are

translating the pixel from coordinates (𝑥,𝑦) in reference frame #1

to coordinates (𝑥 ′, 𝑦′) in reference frame #2.

Replicating the Transform in the RF Domain: The answer

to (Q-2) is more complex and depends on the modulation scheme

employed to encode pixel values to RF samples during transmission.

To understand this better, let us take a simple example (see Fig. 7) of

a transmitter which employs the BPSK modulation scheme without

coding. The camera sensor takes a photo of the scene and stores the

2-bit pixel values in an𝑀 ×𝑁 image matrix. While transmitting the

signal, it encodes the bit value of the pixels to BPSK symbols, shapes

it onto a baseband pulse and modulates to a carrier frequency. The

important point to note here is that the pixels are encoded into

BPSK symbols in a line-by-line fashion, i.e., pixels in a row are

first transmitted from left to right and then the pixels in the next

row are transmitted. As a result, there is a direct correspondence

between the pixel coordinates in the image domain and the RF

sample number in the RF domain. In other words, any pixel at (𝑥,𝑦)
in image #1 has a direct corresponding pixel (𝑥 ′, 𝑦′) in image #2 at a

deterministic RF time-series sample that can be directly computed.

Fig. 7 shows an example of one such transformation. Note that it

is quite often the case that (𝑥 ′, 𝑦′) and (𝑥,𝑦) reside in completely

different rows due to rotations or shear.

Since pairs of pixels in this representation have direct and de-

terministic correspondences, we can trivially find a deterministic

permutation of RF samples that transforms the signal containing

image #2 to image #1. The direct consequence of this is that in

the transformed reference frame, the RF samples when properly

aligned to mimic application of transformation, may comprise of

non-contiguous time samples corresponding to different rows, since

modulated pixel samples are transmitted in line-by-line fashion.

We call this process RF sample alignment, where the goal is to

1In practice, (𝑥 ′, 𝑦′) may not be integer coordinates. We deal with this in Sec. 5.3
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Figure 7: Pixels with the same color correspond to the same

points in the 2 images. The corresponding RF samples are

shown below for both BPSK and APT modulation. We can

see that while the modulated pixel value is transmitted in

BPSK, in APT modulation, each RF sample is equal to the

cumulative sum of all previous samples

appropriately align the received time series RF samples along the

transformed pixel coordinate time axis in non-contiguous time

chunks to mimic image transformation.

Should the image pixel to RF modulation be as simple as the

BPSK scheme above, our task is complete. However, satellite image

modulations even from public satellites are much more complex.

As a case study, we consider the popular NOAA satellites whose

signals are modulated in APT format [30] in the next section. We

discuss extending our approach to other modulations in Sec. 9.

5.2 SelfieStick with APT Modulation

In this section, we study NOAA satellites, mainly given that their

modulation and decoding processes are openly available compared

to other satellites where this information is proprietary or not

publicly disclosed. We first briefly describe this modulation and

how SelfieStick can be extended to apply to it.

FM Modulation in APT signals:Many of the small satellites in

the LEO orbit employ Frequency based modulation schemes like

FM, FSK and AFSK [47]. This is mainly due to their narrowband

nature and robustness to noise in high attenuation scenarios usu-

ally encountered in satellite communication. As described in [30],

NOAA APT signals employ a similar strategy of encoding their

pixel values using AM modulation on a sinusoidal baseband carrier

𝑓𝑚 which is then FM modulated. Recall that in FM modulation, the

instantaneous frequency of the signal is modulated using the input

baseband signal. The signal model is described in Eqn. 2 below

𝑥𝑏 (𝑡) = 𝐴(𝑡) cos(2𝜋 𝑓𝑚𝑡)

𝑥 (𝑡) = 𝐴𝑐𝑒
( 𝑗2𝜋 𝑓𝑐𝑡+𝑗2𝜋 𝑓Δ

∫ 𝑡

0
𝑥𝑏 (𝜏)𝑑𝜏)

(2)

where the pixel value 𝐴(𝑡) is modulated on a sinusoid carrier 𝑓𝑚
to generate a baseband signal 𝑥𝑏 (𝑡). This baseband signal is then

FM modulated onto an FM carrier 𝑓𝑐 with frequency deviation

𝑓Δ, which represents the maximum shift away from the carrier

frequency 𝑓𝑐 experienced by the FM modulated signal. It can be

seen from the integral in the above formulation that the RF signal

at any time is dependent on all of the previous samples. In our case,

this can be rephrased as, the RF sample for a pixel value at any time

is dependent on all the preceding pixel values in that line.

The Challenge with APT Signals: The dependence of each sam-

ple on all previous pixel values makes the RF sample alignment

problem difficult compared to the BPSK example described above. It

is especially challenging when the transformation requires aligning

RF samples corresponding to pixel lying in different rows. This

is because in the BPSK case, one could just pick RF samples cor-

responding to a particular pixel across different images and add

them in a phase coherent manner to recover the signal from noise.

The inherent assumption that makes this work is the fact that the

underlying RF signal for any particular pixel value across images

is the same, modulo noise. However, in case of FM modulation,

this assumption breaks down since the underlying RF signal cor-

responding to the same pixel value across different images is no

longer the same, it is dependent on the previous pixel values. Cru-

cially, these can be different, especially in the case when the images

are transformed versions of each other (see Fig. 7 for an example).

Thus, we need a way to remove this dependence on the previous

pixel values if we were to carry out the alignment process correctly.

RF Alignment for APT signals: To remove the dependence of

previous pixel values on the current pixel RF samples, we leverage

the fact that this dependence can be characterized as a linear func-

tion of previous pixel values. Specifically, from Eqn. 2 it follows

that the instantaneous frequency of an APT modulated signal after

removing the carrier 𝑓𝑐 post passband demodulation, is the inte-

gral of the AM modulated pixel values from previous time stamps.

This can be understood as the current pixel RF sample value being

equal to the exponential of the sum of all the previous pixel values

up to (and including) the current pixel value. In other words, the

phase of an RF sample is directly proportional to the phase of the

previous RF sample plus the contribution from the current pixel.

Hence, to extract a single desired pixel value, one can simply sub-

tract the phases of adjacent RF samples. In the complex domain of

RF samples, subtraction can be performed using multiplication by

the conjugate, which we describe below:

𝑥𝑖𝑛𝑑 (𝑡) = 𝑥 (𝑡) ∗ 𝑥∗(𝑡𝑖 )/|𝑥 (𝑡𝑖−1) |
2

= 𝑒
( 𝑗2𝜋 𝑓Δ

∫ 𝑡𝑖
𝑡𝑖−1

𝑥𝑏 (𝜏)𝑑𝜏)
(3)

where 𝑡𝑖 is the time index corresponding the 𝑖𝑡ℎ pixel’s RF sample.

This correction is done for the RF samples corresponding to all

the pixels across the different images at the time of reception to

generate a RF sequence independent of past samples. Note that

this step is necessary to ensure correct RF alignment. Upon this

correction, each RF sample is solely dependent on one pixel. After

this step, one could carry out the alignment exactly as described

in the BPSK example above from Sec. 5.1. Once all the samples of

𝑖𝑡ℎ receiver is aligned to a common reference frame, it is ready for

coherent combination. Notationally, we say that RF samples from

satellite 𝑖: 𝑥𝑖,𝑖𝑛𝑑 (𝑡) have been aligned to become 𝑥
𝑎𝑙𝑖𝑔𝑛𝑒𝑑
𝑖,𝑖𝑛𝑑

(𝑡)

5.3 Handling Alignment Non-Idealities

Next, we describe a few sources of non-idealities in our alignment

approach thus far: fractional pixel locations and signal noise.
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Fractional Pixel Coordinates: Naïve application of transforma-

tion described earlier might result in pixel coordinates that are

fractional in the transformed reference frame. This is because, ap-

plication of transform is essentially multiplication of the transfor-

mation matrix with pixel coordinates: (𝑥 ′, 𝑦′) =𝑇 .(𝑥,𝑦). This would
mean that either 𝑥 ′ or𝑦′ or both could compute to a fractional value.

One straightforward way to handle this is to round the fractional

values to the closest whole number and assign the pixel value 𝑝
to the rounded pixel coordinates round(𝑥 ′, 𝑦′). However, this can
result in multiple pixel values as candidates for a particular coordi-

nate since there might be two coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) that
will result in the same transformed pixel coordinate (𝑥 ′, 𝑦′).

To overcome this problem of fractional pixel coordinates, we use

the inverse transformation matrix to go from the transformed ref-

erence frame to the original reference frame: (𝑥,𝑦) = 𝑇−1 .(𝑥 ′, 𝑦′).
This ensures that the pixels in the transformed reference frame

are always whole numbers, but the pixels in the original reference

frame can now be fractional. The advantage of this approach is that

since we have the RF samples corresponding to the pixel values in

the original frame at any integer coordinates, we can interpolate

these values to estimate what would have been the RF sample cor-

responding to fractional coordinates. We use bilinear interpolation

to estimate the pixel value at any fractional coordinate in the origi-

nal reference frame. Bilinear interpolation is a classical technique

that takes an appropriate weighted average of neighboring integer

coordinate pixels to estimate pixel value at a fractional coordinate.

Given that pixel values are encoded in the phase of RF samples,

we apply this interpolation – a weighted sum of pixels – in the RF

domain as an exponentiated product of samples.

Mathematically, suppose (𝑥,𝑦) computed from the inverse trans-

formation matrix is a fractional value. Then we find the bilinear

weights 𝑘1,𝑘2,𝑘3 and 𝑘4 corresponding to the pixels 𝑝1,𝑝2,𝑝3 and
𝑝4 at coordinates (�𝑥� , �𝑦�), (�𝑥� , �𝑦�), (�𝑥� , �𝑦�) and (�𝑥� , �𝑦�)
respectively. To find the RF samples corresponding to (𝑥 ′, 𝑦′), we
apply the bilinear transformation in the RF domain as:

𝑥𝑖𝑛𝑑 (𝑡𝑥 ′,𝑦′ ) = 𝑥𝑖𝑛𝑑 (𝑡 �𝑥 �, �𝑦� )
𝑘1𝑥𝑖𝑛𝑑 (𝑡 �𝑥 �, �𝑦� )

𝑘2

× 𝑥𝑖𝑛𝑑 (𝑡 �𝑥 �, �𝑦� )
𝑘3𝑥𝑖𝑛𝑑 (𝑡 �𝑥 �, �𝑦� )

𝑘4
(4)

where: 𝑥𝑖𝑛𝑑 (𝑡𝑥,𝑦) = 𝑒
( 𝑗2𝜋 𝑓Δ

∫ 𝑡𝑥,𝑦
𝑡𝑥,𝑦−1

𝑝1𝑐𝑜𝑠 (2𝜋 𝑓𝑚𝜏)𝑑𝜏)
(5)

which is the RF sample corresponding to the pixel at coordinates

(𝑥,𝑦). The process in Eqn. 4 is equivalent to finding the bilinearly in-
terpolated pixel value at fractional coordinates (𝑥,𝑦) and assigning
it to the coordinate (𝑥 ′, 𝑦′) in the transformed domain.

Effect of Noise: The operations in Eqn. 3 and 4 can be designed

to be robust to noise. For the operation in Eqn. 3 to work in the

presence of noise, we average the oversampled RF samples across

the vicinity of the current pixels. This helps to reduce the effect of

noise, since adjacent pixels in a satellite image are almost similar in

values, unless it is a boundary pixel. The application of exponent

𝑘𝑖 in equation 4 also does not accentuate noise, since the values of

the 𝑘𝑖 weights are always less than 1.

6 COHERENT MULTI-VIEW COMBINATION

In this section, we describe the key synchronization steps that need

to be performed, as well as the steps to actively combine signal

receptions across satellites.

6.1 Channel Model and Non-Idealities

Prior to combining RF signals from across many diverse satellites,

it is necessary that all the signals are synchronized in time, fre-

quency and phase. Synchronization is essential in the context of

our multi-transmitter coherent combination system because: (1) It

is not possible for the satellites transmitters and our tiny receiver to

share the a common clock (GPS clock sharing is one of the popular

solutions, but it increases the cost and doesn’t work well in indoor

deployments), (2) Signals from LEO satellites are much adversely

affected by a time varying frequency offset called Doppler shift due

to their high orbital speeds and (3) there is no way for the users to

communicate with the satellite (except for users belonging to the

organization operating the satellites), and hence, synchronization

of our tiny receiver to the satellite through two-way communica-

tion is not an option. Since we are receiving signals from many

different satellites, it is essential to remove offsets between each

satellite and the receiver before combining the multiple signals.

Characterizing Hardware and Doppler offsets: We consider a

narrowband signal model to characterize the signal received by our

tiny receiver from satellite 𝑖 . The signal is affected by 3 types of

offsets: (1) Carrier Frequency Offsets: when the receiver’s carrier

frequency (𝑓 ) is different from that of the satellite (𝑓𝑖 ), (2) Sam-

pling Frequency Offsets: when the receiver’s sampling time (𝑡 ) is
different from that of the satellite (𝑡𝑖 ) and (3) Phase Offsets: when

the locking of the receiver’s phase locked loop locks at a phase (𝜙)
that is different from the satellite (𝜙𝑖 ). Doppler shift (𝑓𝑑𝑖 ) is another
frequency offset specific to LEO satellites caused due their high

orbital speeds, and must be corrected for, since it can reach values

of over 1 KHz across a one minute reception period. More formally,

our signal model is:

𝑦𝑖 (𝑡) = ℎ𝑖𝑒
𝑗 (2𝜋 𝑓 (𝑡−𝑡𝑖 )+2𝜋 (𝑓 −𝑓𝑑𝑖 −𝑓𝑖 )𝑡+(𝜙−𝜙𝑖 ))𝑥𝑖 (𝑡) (6)

Where𝑦𝑖 is the received signal from satellite i,ℎ𝑖 is the true offset
free channel between the satellite and the receiver, the exponential

term is the cumulative effect of the hardware and trajectory induced

offsets. Next, we describe how we nullify these offsets in order to

synchronize the receivers to each of the satellites.

6.2 Correction and Coherent Combination

Doppler Correction:We first correct for Doppler offsets experi-

enced by our receiver from different satellites in orbit. The Doppler

shift is based on the geographical position of the receiver and the

satellite’s trajectory, which make it different for different satellites,

since the satellite’s trajectory is determined by its Keplerian orbital

parameters. The Simplified Perturbations Model (SGP4) [33] propa-

gates the satellite’s trajectory based on the input orbital parameters

through Two Line Elements (TLE) and generates its location and

velocity at any given point in time. Another parameter that can be

computed from the SGP4 model is the Doppler shift with respect

to any point on Earth based on the transceivers center frequency

and the range rate. We can remove the Doppler offset from our

received signal due to the 𝑖𝑡ℎ satellite by multiplying 𝑒 𝑗2𝜋 𝑓𝑑𝑖 𝑡 with

the measured channel, where 𝑓𝑑𝑖 is the Doppler shift predicted by

the SGP4 model.
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Hardware Offset Correction: Although the signal received is

buried under noise, we can leverage NOAA’s SynchronizationMark-

ers A and B [30] to estimate and nullify the effect of the remaining

hardware offsets in the signal. This is because the sync markers,

like preambles used in many communication systems are long and

structured sequences that can be detected at lower SNRs with cor-

relation even if the data payload is buried under noise. Once the

preamble is detected in the received signal, its phase variation over

time and frequency can be used to estimate the first two hardware

offsets. In particular, the carrier frequency offset term (𝑓 − 𝑓𝑖 ) ap-
pears a linear variation of phase over time. Hence, by measuring

the slope of the averaged phase over time of the sync marker in

the received signal, the carrier frequency offset can be estimated.

Similarly, the sampling offset term (𝑡 − 𝑡𝑖 ) manifests as a linear

variation of phase over frequency when the signal is viewed in the

frequency domain. We measure the slope in the frequency domain

to estimate the sampling frequency offset. The phase offset (𝜙 − 𝜙𝑖 )
term remains constant over time as well as frequency, and hence,

can be estimated using a simple one tap equalizer.

Coherent combination: The next step after synchronization is the

channel equalization step, where we remove the effect of channel

ℎ𝑖 by multiplying with its conjugate ℎ∗𝑖 . This has two benefits: (1)

We do not need to track the evolution of the channel term as the RF

sample goes through the different steps of alignment, and (2) We

already have the contribution of the sample 𝑥𝑖,𝑖𝑛𝑑 (𝑡) for coherent

combination where 𝑥
𝑎𝑙𝑖𝑔𝑛𝑒𝑑
𝑖,𝑖𝑛𝑑

(𝑡) is the corresponding aligned RF

sample from satellite 𝑖 (see Sec. 5). Thus, if N such aligned samples

are available from N satellites, we can combine them as:

𝑥combined =
𝑁∑

𝑖=1

𝑥
𝑎𝑙𝑖𝑔𝑛𝑒𝑑
𝑖,𝑖𝑛𝑑

(𝑡𝑥 ′,𝑦′ ) (7)

With this process, each satellite’s aligned RF sample adds up co-

herently while the noise being random, adds up incoherently. This

provides a gain in SNR compared to a single satellite case, which is

known as the diversity gain.

Putting it all together, SelfieStick proceeds in three steps: (1)

First synchronization to eliminate hardware offsets and doppler

shifts are performed (Sec. 6.1 above); (2) Second, image alignment

is performed as described in Sec. 5 based on the transforms from

Sec. 4. (3) Finally, the coherent combination step described above.

7 IMPLEMENTATION

Hardware: SelfieStick’s receiver setup comprises of an antenna,

a software defined radio (SDR) and a computer. At the antenna

front, we use the Laird Technologies EXS136SMI Tuf Duck antenna,

which offers unity gain with toroidal radiation pattern and vertical

polarization. It is rated to operate between 136 MHz and 150 MHz

while connected to handheld VHF radio receivers like ICOM F50,

etc. Its operating frequency overlaps with the US NOAA satellites

APT transmission at 137 MHz, which made it a perfect candidate

for our low-cost tiny receiver. On the SDR front, we use the popular

low-cost RTL-SDR dongle R820T2 RTL2832U. Its low cost along

with the ease of use made it a natural choice for our design. The

total cost of our RF-frontend (including the SDR) is $38 with a

form-factor as small as 20 by 3 centimeters. A Raspberry Pi system

with a USB port or a laptop can be used to plug in the RTL-SDR.

Software and Testbed: The reception parameters like sampling

rate and center frequency are set up using RTL-SDR software in-

stalled on the computer. To predict when to collect the data, we use

the SGP4 propagator with the orbital elements TLE file for the satel-

lites to predict the time of satellite’s pass overhead. These TLE files

are made publicly available by NORAD on a periodic basis. Once

sufficient satellite data is collected, it can be preprocessed locally to

correct for perspective differences before coherent combination to

generate the underlying image. We use Python and MATLAB for all

the Machine Learning and Digital Signal processing tasks described

in Sec. 4, 5 and 6 as well as for generating the satellite image. We

evaluate our system both indoors (inside buildings) and outdoors

(on rooftops of buildings) in a university campus. To compare the

performance of our system against clean images, we install the

UC-1374-531R quadrifilar helix weather antenna [3] (see Fig. 8A)

on a campus building rooftop, connected to the LNAU-0137-648

low noise amplifier and the USRP N210 SDR to collect the clean

reference images used in Sec. 8.3. This bulky antenna provides a

gain of 10-12 dB compared to our unity gain low form-factor Tuf-

Duck antenna, which results in received SNR difference of 10-15

dB, depending on the location of deployment.

8 RESULTS

We evaluate the performance of SelfieStick for different microbench-

marks and performance metrics. As mentioned earlier, we design

our system with the NOAA case study, and hence in all our ex-

periments we receive 4 km per pixel low resolution image signals

from NOAA 15, NOAA 18 and NOAA 19 satellites operating in the

137 MHz VHF band. These satellites orbit the Earth at an altitude

of 850 km, with one of their transmitters continuously emitting

APT [30] modulated signals with real-time images of Earth under

them. This choice of NOAA satellites was driven by the availability

of hardware as well as public information about the transmission

scheme and packet structure. Since, today there are not enough

NOAA satellites that appear over a particular region of Earth simul-

taneously, we emulate multi-satellite case, by combining signals

received from these at different points in time. The key insight

that makes this model work is that regions of Earth (features) from

space appear the same over long periods of day modulo cloud cover

and perspective distortion. Hence, with each NOAA LEO satellite

passing almost 3-5 times over any non-polar region of the Earth,

we have 5-6 opportunities to receive signals each during the day

and night passes. We also combine signals across 2-3 days in cases

with clear sky to emulate the larger transmitter diversity scenarios.

8.1 Microbenchmarks

Satellite Camera Orientation: As described in Sec. 4, we need

to bring all received images to a common perspective in order to

combine them effectively. To estimate the transformation needed

on each of the images indirectly, we calculate the satellite internal

camera parameters and combine it with the estimate of satellites lo-

cation (SGP4 model) and camera orientation (deep learning model).

Here, we characterize the accuracy of satellite camera roll angle pre-

diction of our deep learning models trained for the three different

satellites mentioned above (model details and dataset information
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Figure 8: Hardware used in SelfieStick

(A) Weather Antenna, (B) RTL SDR

with Laird Antenna
Figure 9: CDF of Roll Angle Absolute

error
Figure 10: SNR gain at different

maximum elevation angles

detailed in Sec.4). Fig. 9 shows the CDF of the absolute error in

prediction of the camera roll angle from the true roll angle. It can be

seen that our model achieves median absolute error of 2.3 degrees,

2.5 degrees and 3.1 degrees for NOAA 15, NOAA 18 and NOAA 19

respectively. The effect of this error is negligible because of two

reasons: (1) the elements of the roll rotation matrix essentially com-

prise of the sine and the cosine of the angle, which changes slowly;

and (2) the distance between the satellite camera and the scene

imaged is huge, which make the image captured less affected by

these minute differences in rotation angle.

Latency: As mentioned earlier, our evaluation is based on tempo-

rally separated data collected from three NOAA satellites which

requires almost 11 hours to collect 10 distinct data samples. This

is due to the coupled effect of Earth’s rotation and the polar orbit

of the NOAA LEO satellites which makes them appear over any

non-polar region only 2-3 times during the day and then again after

a gap of 11-12 hours. However, this latency can be greatly reduced

by increasing the constellation size. To motivate this, we use the

trajectory of all satellites from 2 Earth observation constellations

currently in orbit: Planet Labs (189 satellites), and Spire constel-

lations (120 satellites). We find that Planet Labs entails a median

latency of 23 minutes compared to 36 minutes for the Spire constel-

lation in receiving signals from 10 satellites. With the exponential

trend [11] in the number of LEO satellites being launched today,

this latency will inevitably drop to seconds in the near future.

8.2 RF metrics

Transmit Diversity gain: To characterize the average SNR gain in

SelfieStick, we collect satellite signals from ten temporally separated

satellite passes from receivers placed both indoors and outdoors.

We then coherently combine them after perspective correction and

synchronization. The SNR gain is calculated each time after adding

additional satellite reception with respect to the average SNR over

the 10 receptions as the baseline single satellite reception case. The

average SNR gain increases logarithmically with the number of

satellite receptions used for coherent combination for both indoor

and outdoor settings. Fig. 11 shows that SelfieStick achieves an

average SNR gain of 8.4 dB using 10 satellite receptions.

Satellite Elevation Angle: The elevation angle of a satellite with

respect to a ground station on Earth is the angle at which one must

point a directional antenna to receive signals from the satellites.

Large propagation loss and obstruction from nearby ground infras-

tructure cause the received signal strength to drop significantly at

low elevation angles. In the context of SelfieStick low elevation

angles have the added disadvantage of increased amount of per-

spective distortion in the captures image. We analyze the effect that

elevation angle has on SelfieStick with the following experiment:

Instead of combining signals across all elevation angles, we only

combine signals received from passes whose maximum elevation

angles fall within the following three categories: (1) maximum ele-

vation angle below 45 degrees, (2) maximum elevation angle from

45 to 70 degrees and (3) maximum elevation over 70 degrees. We

then plot the average SNR gain achieved in the 3 categories for 6

satellite passes in Fig. 10. We can see that low elevation angle passes

indeed suffer from lower gains. The gap in SNR gain achieved be-

tween indoor and outdoor settings is also larger for low elevation

angles due to higher attenuation of indoor signals from building

walls.

8.3 Image metrics

Since we are dealing with satellite images, one must check if the

SNR gain achieved in the previous subsection suffices for image

decoding. We use 2 popular metrics used to quantify goodness of

SelfieStick’s recovered image with respect to a reference image:

Structural Similarity Index Measure (SSIM) [48] and Peak Signal

to Noise Ratio (PSNR) [20]. The reference image used for this com-

parison is captured by the Weather antenna (see Fig. 8A) placed

on the roof of a university campus building as described in Sec. 7.

For both these metrics, we run the same experiment as that from

Sec. 8.3, except now we also generate the image after adding every

additional satellite reception. We then compute the SSIM and PSNR

metrics of the generated image with the reference image.

SSIM Variation: The Structural Similarity index compares two

images based on the following parameters: structure, contrast and

luminance. The SSIM value lies between 0 and 1, with values close

to 1 indicating a good match between the 2 images. We can see

from Fig. 12 that as we move from one satellite reception to 10

satellite receptions, the average SSIM improves from 0.53 to 0.83 for

outdoor settings. Average SSIM also improves for indoor settings,

however its absolute value is less than that achieved outdoor, which

is expected given higher signal attenuation experienced indoors.

PSNR Variation: The PSNR metric compares 2 images by measur-

ing the mean squared error of corresponding pixel values across the
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Figure 11: SNR gain with increasing

number of satellites

Figure 12: SSIM variation with

increasing number of satellites

Figure 13: PSNR improvement with

increasing number of satellitesg

Figure 14: Image produced by (a) SelfieStick1 Satellite, (b) SelfieStick10 Satellites, (c) Bulky Weather Antenna, (d) DNN based

Denoiser, (e) BM3D based Denoiser

image and returns its inverse. We can see that SelfieStick achieves

an average 5 dB improvement in PSNR as one moves from a single

satellite reception to 10 satellites reception from Fig. 13.

Comparison with Image Denoising: We compare our system

with Block Matching and 3-D filtering (BM3D)[13] and MATLAB’s

DNN based denoiser. Fig. 14(c) plots the zoomed in image of the

Great Lakes received from the bulkyWeather antenna in Fig. 8A.We

compare it with that generated by BM3D filtering (Fig. 14(e)), DNN

Denoiser (Fig. 14(d)), SelfieStick with single reception (Fig. 14(a))

and SelfieStick with 10 receptions coherently combined (Fig. 14(b)).

We see that although the recovered image in SelfieStick doesn’t

achieve the exact match with the weather antenna image, it still

does much better than single reception, DNN and BM3D.

9 DISCUSSION AND LIMITATIONS

Generalizing to other Modulations: Our discussion in this paper

so far is based on APT modulation, however the techniques are

applicable to any modulation scheme that modulates pixel values di-

rectly into RF samples (either in its phase, frequency or amplitude).

Another common modulation scheme used by weather satellites

like NOAA, METEOR and METOP where our techniques are ap-

plicable are Low Resolution Picture Transmission (LRPT) [39] and

High Resolution Picture Transmission (HRPT) [32] where QPSK

based phase modulation is used to encode pixels values and trans-

mitted at a much higher rate. Note that in LRPT and HRPT, the

problem is quite similar to the BPSK case described in Sec. 5.1 due

to an intuitive mapping between pixels and I/Q samples. For more

complicated encoding schemes like JPEG 2000 used in satellites like

Sentinel constellation, our techniques will not directly apply due

to the wavelet transform based step followed by Huffmann coding.

To overcome this hurdle, one could build a more complex learning

model that maps pixels to RF samples, however that is beyond the

scope of this paper. The information about the modulation and

encoding scheme used by private satellites is proprietary which

reduces our focus to only government owned satellites.

Currently, our techniques depend on the RF samples being modu-

lated with the same scheme. However, in case a different modulation

scheme is used, one would have to demodulate to the pixel level RF

samples to combine in the RF domain. However, having the same

modulation scheme across many satellites is a realistic assumption

since many of the earth observation satellites being launched today

are parts of large constellations like PlanetLabs, NOAA POES, SEN-

TINEL. Ideally, one would want a consistent modulation format

standardized like DVB for satellite TV that could be used for mul-

tiple satellites for earth observation. This is indeed true for some

cases like the HRPT modulation format used across different space

agencies like NASA (for NOAA satellites) and ESA (for METEOR

satellites). One of the main advantages of using a standardized mod-

ulation format is that one does not have to deal with resampling,

resizing, and initial demodulation at vastly separated frequencies

before SelfieStick’s techniques can be applied.

Effect of cloud cover: A key assumption behind our system is

that the underlying scene remains the same across time. However,

this might not be true, especially with heavy cloud cover. Since, our

receptions are now distributed across time, the underlying cloud

cover might change over that period of time, impeding SelfieStick.

However, many satellites transmit multi-spectral images of the

scene (including some of the newer NOAA satellites), which may

capture images bereft of cloud occlusions that SelfieStick can lever-

age. Note that the techniques would still be applicable in cloudy

scenarios once there are a sufficient number of satellites over a

region transmitting simultaneously to ensure image recovery, how-

ever, the image decoded would still contain the clouds.
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Applicability to Large Images: As long as the images captured

are of the same scene (from different perspectives) as well as the

modulation scheme is known, we can apply SelfieStick to recover

the image. Large-scale high-resolution images like those produced

byWide AreaMotion Imagery (WAMI) [19], are generated by stitch-

ing together multiple high-resolution images of smaller scenes to

create a composite larger scene, either on board the aircraft or by

downlinking the individual smaller images to a ground station. Self-

ieStick’s techniques can be applied on the raw RF samples all at

once on the composite image or on the individual smaller chunks

depending on the onboard processing. However, due to the massive

size of high resolution images, SelfieStick would need to deal with

a much larger number of RF samples (corresponding to individual

pixels), something that could perhaps be offloaded to cloud. One

degrading factor could be the motion of individual objects like ve-

hicles, if the images are taken far apart in time. This could cause

blurring in the final image produced. However, WAMI being motion

imagery is robust to this since the frames are captured extremely

quickly to generate a motion image.

Bootstrapping, Scalability and Long-term Evolution: To be

successful, SelfieStick does require periodic orbital parameters and

historical image datasets from the satellite. Ground stations must

have Internet connectivity to pull satellite orbital parameters. Self-

ieStick’s PSNR gains are dependent on the number of overhead

satellites at any time, which can vary with geography and depend-

ing on frequency of operation – we refer the reader to Sec. 8.3 for a

PSNR vs. scale analysis. We believe SelfieStick’s techniques and per-

formance would scale as the LEO technology improves and matures

in the future leading to more and more satellites being launched.

As LEO satellites are miniaturized, their power budgets become

smaller and smaller, which directly influences the transmit power.

As a result, one would require more bulkier antennas to receive

even weaker signals. Our techniques become even more valuable in

this case since we leverage the diversity of the increasing number

of satellites to receive weak signals using a low-cost module.

10 RELATEDWORK

Multiview and Image Denoising: There exists a huge body of

work on multiview geometry [18, 34, 45, 51, 53], with applications

ranging from photography to Satellite imaging with the broader

goal of enhancing the scene captured by stitching together multi-

ple images after rectification. While we use the basic principles of

multiview geometry and camera projections to build our system,

we differentiate ourselves from these in terms of the way we apply

the multiview transformations on the RF samples to mimic image

transformation. Application of classical image perspective correc-

tion techniques like SIFT and SURF on our noisy images, result in

large mismatch in the top 50 corresponding points returned, due

to the presence of multiple similar intensity regions in grayscale

images further degraded by significant noise. Similarly, satellite

imagery is one of the major applications for image denoising in the

computer vision community, employing a combination of wavelet

as well as deep learning based techniques [10, 17, 21, 43] to estimate

the underlying distribution of noise and attempt to filter it. What

differentiates us is that we are trying to denoise the images by

dealing with it in the RF domain, while requiring significantly less

data. This is essential for our case since signals received by our tiny

receivers are buried under noise which makes it difficult to filter it

once decoded into images; and lack of access to large amounts of

satellite RF dataset that could be used for ML based denoising. We

do train a Deep learning model that learns the orientation parame-

ters of the satellite, however this done using clean images from past

receptions and is limited to this purpose only - not denoising. We

compared our system with both wavelet and deep learning based

filters in Sec. 8.3, showing the efficacy of our techniques.

Satellite Imagery and RF based techniques: There has been a

lot of interest in recent years in accessing satellite data with low

latency, mainly driven by the exponential increase in the number of

satellites being launched. Recent efforts towards this goal involves

either increasing the number and geographic distribution of ground

stations [28, 46], either by using community based ground station

networks [37, 44] or commercial entities renting out their ground

stations[2, 6]. While these have potential to improve the access to

satellite data, there is still a gap in acceptance of these approaches

especially in remote regions and developing nations.

Using RF signals to enhance imaging applications has been

widely used in both medical and space domains, with ultrasonic

imaging and Synthetic Aperture Radar techniques [9, 12, 38, 41].

However, we differentiate ourselves from these in the sense that we

use the very weak RF signals to recover the images, whereas most

of the SAR based techniques require directional and high-power

signals to generate the image.

Coherent combination: Coherent combination has been widely

used in wireless systems to improve communication [14, 16, 40] and

sensing applications[24, 29, 35]. Transmit diversity techniques have

also been studied for MIMO and multi antennas systems, but we

focus on its application in satellite context. There have been some

proposals to use transmit diversity for satellite systems especially in

broadcast applications [5, 27, 52].We differ from these in attempting

to combine satellite signals containing differing views of the Earth.

11 CONCLUSION AND FUTUREWORK

We present SelfieStick, a new satellite ground station system that

can provide real-time access to satellite images using a tiny low-cost

receiver module that can be deployed both indoors and outdoors.

We do so by coherently combining weak signals received from

multiple LEO satellites, each transmitting slightly different views

of the underlying scene. We develop techniques to convert these

views to a common view in the RF domain, a necessary step before

coherent combination that boosts the signal to noise ratio. We

believe this work will be useful in overcoming the cost and latency

barrier associated with satellite data access faced by users in remote

areas. As next steps, we hope to extend SelfieStick to a wide range

of frequencies of operation. We will also explore rich applications

atop low-cost satellite imagery.
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