

1 ***This is the peer reviewed version of the following article:***

2 Winkler SL, Perry SE. The development of sex differences in play in wild white-faced
3 capuchins (*Cebus capucinus*). *Am J Primatol*. 2022 Sep 20:e23434. Epub ahead of print
4 *which has been published in final form at:* doi: 10.1002/ajp.23434.

5 ***This article may be used for non-commercial purposes in accordance with Wiley Terms***
6 ***and Conditions for Use of Self-Archived Versions. This article may not be enhanced,***
7 ***enriched or otherwise transformed into a derivative work, without express permission***
8 ***from Wiley or by statutory rights under applicable legislation. Copyright notices must***
9 ***not be removed, obscured or modified. The article must be linked to Wiley's version of***
10 ***record on Wiley Online Library and any embedding, framing or otherwise making***
11 ***available the article or pages thereof by third parties from platforms, services and***
12 ***websites other than Wiley Online Library must be prohibited.***

13

14
15 The Development of Sex Differences in Play in Wild White-Faced Capuchins (*Cebus*
16 *capucinus*)

17

18 Sasha Lutz Winkler¹, Susan Emily Perry^{1,2}

19

20 ¹Department of Anthropology, University of California, Los Angeles

21 ²Center for Behavior, Evolution and Culture, University of California, Los Angeles

22

23 Short title: Sex Differences in Capuchin Play

24

25

26 Correspondence:

27 Susan Emily Perry

28 Department of Anthropology

29 University of California, Los Angeles

30 375 Portola Plaza

31 Los Angeles, CA 90095

32 Phone: 1-310-825-2055

33 Email: sperry@anthro.ucla.edu

34 **ABSTRACT**

35 Many mammalian species display sex differences in the frequency of play behavior, yet the
36 animal literature includes few longitudinal studies of play, which are important for
37 understanding the developmental timing of sex differences and the evolutionary functions
38 of play. We analyzed social play, solitary play, and grooming using an 18-year dataset on
39 38 wild white-faced capuchin monkeys (*Cebus capucinus*) followed since infancy. Rates
40 of each behavior were measured as the proportion of point samples taken during focal
41 follows in which the individual engaged in each behavior. To determine sex differences in
42 these rates, we ran a series of generalized linear mixed models, considering both linear and
43 quadratic effects of age, and chose the optimal model for each of the three behavioral
44 outcomes based on information criteria. Rates of both social play and solitary play
45 decreased with age, with the exception of social play in males, which increased in the early
46 juvenile period before decreasing. Male and female capuchins had different developmental
47 patterns of social play, with males playing more than females during most of the juvenile
48 period, but they did not display meaningful sex differences in solitary play rates.
49 Additionally, males and females had different patterns of grooming over the lifespan:
50 males participated in grooming at low rates throughout their lives, while adult females
51 participated in grooming at much higher rates, peaking around age 11 years before
52 declining. We suggest that male and female white-faced capuchins may adopt alternative
53 social bonding strategies, including different developmental timing and different behaviors
54 (social play for males versus grooming for females). Our results were consistent with two
55 functional hypotheses of play, the practice and bonding hypotheses. This study

56 demonstrates that play behavior may be critical for the development of sex-specific social
57 strategies and emphasizes the importance of developmental perspectives on social
58 behaviors.

59

60 KEYWORDS:

61 capuchin monkey, infant development, play, sex differences, social bonding

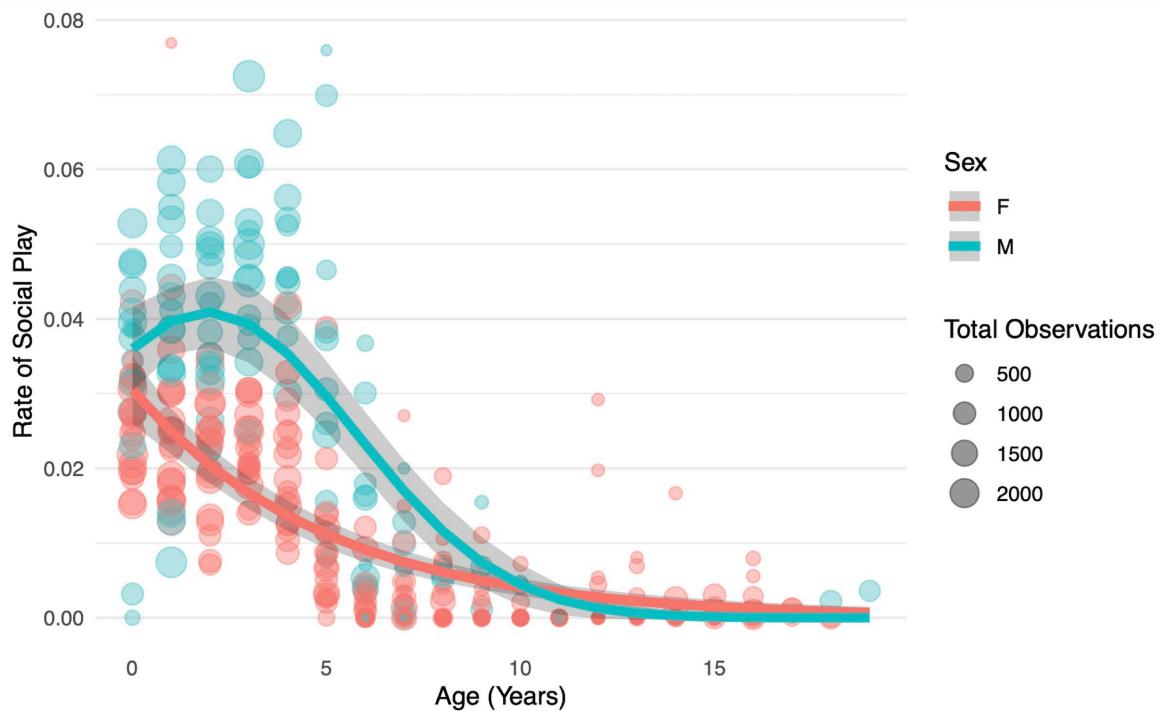
62

63 RESEARCH HIGHLIGHTS:

64 • Relative to females, immature males had higher rates of social play.

65 • There was little to no sex difference in solitary play rates.

66 • Young male capuchins seem to bond mainly via play; females bond more via
67 grooming.


68

69 Graphical abstract:

70 This graph shows the model predictions for how rates of social play change with
 71 age for males and females. Rates of social play are expressed as a proportion of
 72 the total point samples per year. The first year of life is coded as 0. Circles
 73 represent the proportion of point samples in which an individual monkey was
 74 engaging in social play in a given year, with the size of the circle representing the
 75 total number of point samples for the individual in the same year. Lines represent
 76 predictions from the best regression model chosen from AIC and BIC model
 77 comparisons. Shaded areas represent bootstrapped 95% confidence intervals of
 78 the predictions.

79

Sex difference in social play model predictions

83 **INTRODUCTION**

84 Play is both an important and enigmatic behavior in evolutionary science. Although
85 play is costly with regard to time and energy expenditure, it occurs in nearly all young
86 mammals, as well as in other taxa (Burghardt, 2005). As a potential locus of exploration
87 and learning in development, play may have an important role in influencing or predicting
88 adult behavior (Bateson & Martin, 2013; Gopnik et al., 2017). Play is also a domain where
89 sex differences in adult behavior become apparent at a young age in humans and other
90 mammalian species (Barbu et al., 2011; Meaney et al., 1985). While the developmental
91 patterns of play are fairly well studied in humans (Fromberg & Bergen, 2006; Pellegrini &
92 Smith, 1998; Power, 2000), the nonhuman animal literature largely lacks longitudinal data
93 on developmental patterns of play over the lifespan, which are important for understanding
94 the evolutionary forces driving patterns of play across age and sex.

95 In most mammals, play tends to be more frequent early in life and become less
96 frequent with age (Bateson & Martin, 2013). Play among adults is rare or even nonexistent
97 in some animal species, although some, like humans, continue to play into adulthood
98 (Byers & Walker, 1995). Generally, more precocial species tend to have lower rates of
99 play and a shorter developmental period during which play occurs (Ortega & Bekoff,
100 1987). This emphasizes the potential role of play in learning. Sexual maturity may mark an
101 important developmental milestone for play; as sexually mature animals increase the time
102 devoted to behaviors that more directly improve reproductive success, like mating and
103 parental care, play appears to decrease in frequency. Even in species that continue to play

104 as adults, rates of play are almost invariably higher in immature animals (Aldis, 1975;
105 Fagen, 1981).

106 The evolutionary function of play behavior has long puzzled biologists, as the
107 fitness benefits of play are difficult to detect and measure. An additional complexity is that
108 different types of play have likely evolved for different reasons (Burghardt, 2010;
109 Smaldino et al., 2019). Play is often split into two categories: ***social play***, such as rough-
110 and-tumble play, and ***solitary play***, which includes non-social object and locomotor play
111 (Pellegrini & Smith, 2005). In his seminal book on play in rhesus macaques (*Macaca*
112 *mulatta*), Donald Symons detailed a non-exhaustive list of eighteen different functional
113 hypotheses for the existence of play (Symons, 1978). While some of these hypotheses posit
114 immediate, primarily physical benefits of play, many propose that play in the juvenile
115 period translates to delayed fitness benefits in adulthood (Burghardt, 2010). One such
116 hypothesis is the ***practice hypothesis***. According to the practice hypothesis, play provides
117 practice for skills needed in adulthood. Object play may help animals learn about the
118 physical affordances of their environments (Bjorklund & Gardiner, 2011). Simple
119 locomotor play might confer primarily physical benefits (“motor training hypothesis;”
120 Byers & Walker, 1995), while complex social play might confer benefits in social skills,
121 aggressive tactics, or bond formation and strengthening. For example, social rough-and-
122 tumble play (i.e., “play fighting”) is seen as practice for skills needed during real fights in
123 adulthood, such as physical agility, tactical skills, and unpredictable counterattacks (Martin
124 & Caro, 1985; Špinka et al., 2001; Symons, 1978).

125 Another hypothesis for the function of play, particularly for social primates, is the
126 ***bonding hypothesis***. The bonding hypothesis argues that playing with others allows
127 animals to form, test, and learn about social bonds (Maestripieri & Ross, 2004; Poirier &
128 Smith, 1974). These hypotheses are not mutually exclusive and are difficult to disentangle
129 empirically, as acknowledged by many scholars (e.g., Bateson & Martin, 2013).

130 The proportion of time and energy devoted to different types of play varies across
131 species (Cordoni et al., 2018; Fry, 2005; Palagi, 2006). Within a given species, the
132 frequency of different types of play may vary across developmental stages and across the
133 sexes (Barbu et al., 2011). Together, these sources of variation suggest that different types
134 of play may confer subtly different evolutionary benefits for males and females, for
135 individuals of different ages, or for species with different socioecological pressures. A
136 better understanding of sex and age differences in play may therefore help to shed further
137 light on the evolutionary functions of play, especially when contextualized within the
138 species' socioecology. Where we have relevant data, we make some predictions, grounded
139 in the natural history of the study species, about sex differences that might be expected for
140 each hypothesized function of play described here.

141

142 **Sex Differences in Play**

143 The presence of sex differences in the development of play could support either or
144 both of the functional hypotheses discussed: the practice and bonding hypotheses. The
145 ***practice hypothesis*** predicts that the sex that has greater need for physical agility and
146 tactical skills in adulthood will have higher rates of social rough-and-tumble play, which

147 consists of modified aggressive behaviors like gentle biting, wrestling, and chasing.
148 Similarly, the practice hypothesis predicts that the sex with a greater need for extractive
149 foraging or other fitness-relevant object manipulation in adulthood will have higher rates
150 of solitary object play as juveniles. Predictions for the developmental timing of sex
151 differences in play are a bit more obscure. One sex might maximize lifetime play by
152 continuing to play over a longer period of development; alternatively, they might
153 maximize play (and its benefits) by playing more earlier in life in order to reach
154 proficiency at a certain skill more quickly, after which they might stop playing or play at
155 reduced rates, having already gained the needed skill.

156 In contrast, the ***bonding hypothesis*** predicts higher rates of social play in the sex
157 that gains a greater fitness advantage from having strong social bonds. Depending on
158 whether the benefits are in formation and maintenance of specific bonds, or a generalized
159 skill to form and maintain new bonds in the future, rates of social play are expected to
160 decrease over development if the social bonds (and/or bond-formation skills) become
161 solidified and further play has diminishing returns. However, play is expected to continue
162 throughout the lifespan if it is necessary to form or maintain specific fitness-relevant bonds
163 in adulthood. The bonding hypothesis provides no specific predictions for solitary play.
164 Regardless, both the practice and bonding theories suggest that sex differences in play
165 should mirror adult sex-specific behavioral strategies for reproduction and survival.

166 Sex differences in social play are common in cross-sectional research. Studies have
167 found higher rates of social play among males than females in a broad range of mammalian
168 species, from rats (*Rattus norvegicus*) to humans (Auger & Olesen, 2009; Fry, 2005; Poole

169 & Fish, 1976). This sex difference has been observed in many catarrhine monkeys and
170 apes including gorillas (*Gorilla gorilla*; Maestripieri & Ross, 2004); orangutans
171 (*Pongo abelii*: Rijksen, 1978); rhesus macaques (*Macaca mulatta*: Brown & Dixson,
172 2000); vervet monkeys (*Cercopithecus aethiops*: Raleigh et al., 1979), as well as some
173 platyrhine monkeys (e.g., spider monkeys, *Ateles geoffroyi*: Rodrigues, 2014; tufted
174 capuchins, *Sapajus apella*: Paukner and Suomi, 2008; squirrel monkeys, *Saimiri sciureus*:
175 Biben, 1998). However, this pattern of higher rates of social play in males is by no means
176 ubiquitous, even among primates. For example, studies have found no sex differences in
177 play in common marmosets (*Callithrix jacchus*; Stevenson & Poole, 1982), cotton-top
178 tamarins (*Saguinus oedipus*; Cleveland & Snowdon, 1984), coppery titi monkeys
179 (*Callicebus cupreus*; Chau et al., 2008), wolves (*Canis lupus*; Cordoni, 2009), or meerkats
180 (*Suricata suricatta*; Sharpe, 2005). The socioecology and mating system of a species likely
181 has an effect on the development of sex differences in play. For example, there is
182 preliminary evidence that monogamous mating systems are correlated with similar rates of
183 play between males and females, for both social and solitary play (Chau et al., 2008). In
184 species that are monogamous (e.g., titi monkeys) or polyandrous (e.g., marmosets and
185 cotton-top tamarins), reduced male-male competition may explain the reduced selection
186 pressure for higher rates of rough-and-tumble play in males.

187 Other studies have indicated that sex differences in play can vary over the course of
188 development. Research on spider monkeys found that males had higher rates of social play
189 than females as juveniles (Rodrigues, 2014), but another study found the opposite pattern
190 for social play in adulthood, such that females played at higher rates than males (Fedigan

191 & Baxter, 1984). Rodrigues (2014) suggested that female spider monkeys may need to
192 continue playing into adulthood because, as the dispersing sex, they have a continuing
193 need for the bonding benefits of social play compared to males. In hyenas (*Crocuta*
194 *crocuta*), a species in which females are dominant to males and display many male-typical
195 behaviors and hormonal profiles, one study found that immature females had higher rates
196 of social play than immature males, but there was no difference in rates of solitary object
197 play (Pedersen et al., 1990). However, a longitudinal study in hyenas from infancy to
198 adulthood only found sex differences in the interaction of sex and age on the rate of social
199 play, although that study analyzed rates of initiating social play, rather than rates of the
200 overall time spent in social play (Grebe et al., 2019). The authors found that play initiation
201 decreased with age for both sexes, and the rate of decrease with age was steeper for
202 females than males. Studies like these highlight the need for more research that
203 investigates sex differences in play while accounting for important differences between
204 social and solitary play, and for changes over the course of development. Longitudinal data
205 from wild white-faced capuchins (*Cebus capucinus*) in Costa Rica collected by Perry and
206 colleagues (Perry et al., 2012) provides the rare opportunity to analyze such developmental
207 patterns over decades of research.

208

209 **Socioecology and Play in White-Face Capuchins**

210 White-faced capuchins are an excellent species for research on play because they
211 have long juvenile periods, they engage in both social and solitary play, and their social
212 behavior is well-studied (Perry, 2012). Despite being so well-studied, to our knowledge, no

213 research has been published on the presence or absence of sex differences in play for this
214 species, or about patterns of play over the lifespan. There is minimal evidence of sex
215 differences in play among other capuchin species (subfamily Cebinae). In a small sample
216 of nine captive juvenile tufted capuchins (*Sapajus apella*), Paukner and Suomi (2008)
217 found that males had higher rates of social play than females, but there was no sex
218 difference in the rates of solitary play. This study was cross-sectional, with data collected
219 over a four-month period, and did not investigate any changes in the sex difference over
220 development. The current study addresses some of these limitations by analyzing rates of
221 social and solitary play in 38 subjects for up to 18 years of life. Additionally, because the
222 current study concerns wild populations, the results may provide a more ecologically valid
223 perspective on the expression and evolution of play behavior. Rates of play are typically
224 higher in captive animal populations, potentially obscuring sex differences that might
225 occur in the wild (Baldwin & Baldwin, 1974; Himmller et al., 2013).

226 Because the socioecology of a species might affect developmental patterns of play
227 across the sexes, play research in white-faced capuchins benefits from an understanding of
228 their sex-specific behaviors and reproductive strategies. White-faced capuchins live in
229 multi-male, multi-female groups of approximately 5-40 members, although adult males
230 may spend short periods of their lives in all-male bachelor groups (Perry, 2012). They have
231 unusually long juvenile periods and lifespans for small platyrhine primates, living up to
232 37 years in the wild and up to 55 years in captivity (Hakeem et al., 1996; Perry, 2012).
233 Females reach sexual maturity around age 5.5-7.5 years, with mean age of first
234 reproduction being 6.2 years, while the minimum age of first reproduction for males is

235 around 7.5 years old (Perry, 2012; Perry et al., 2012). The extended juvenile period
236 appears to be an important time for developing skills such as extractive foraging
237 techniques (Perry, 2009), some of which may be achieved through object play.

238 Female white-faced capuchins are philopatric, and males disperse from their natal
239 groups and attempt to join or take over other social groups (Perry et al., 2012). At the
240 Lomas Barbudal field site in Costa Rica, where the data for the current study were
241 collected, the average age of first male migration was 7.6 years, while the average age was
242 4.5 years among white-faced capuchins in another long-term study at Santa Rosa National
243 Park in Costa Rica (Fedigan & Jack, 2012; Perry et al., 2012). As a result of female
244 philopatry, females generally spend their entire lives with kin (related females) while
245 males do not, although males often co-disperse with their brothers or other related males
246 (Perry, 2012). Males often disperse to different social groups multiple times throughout
247 their lives (Perry, 2012). Males may thus have a greater need to develop social skills for
248 forming bonds with unrelated monkeys in new groups—skills which, according to the
249 bonding hypothesis, could be developed through social play. Play in the juvenile period
250 could be especially important for males if it allows them to form and test strong bonds with
251 other males before co-dispersing, while still in the relatively safe environment of their natal
252 groups. Despite this, Perry and colleagues (2017) found no effect of the rate of social play
253 in male white-faced capuchins on the age of natal dispersal or the time to obtaining their
254 first alpha position, suggesting that high rates of play early in development do not
255 necessarily translate to social benefits which could maximize lifetime reproductive
256 success.

257 Another factor that might influence rates of social play is white-faced capuchins'
258 high degree of male reproductive skew. Alpha males monopolize mating opportunities and
259 sire about 96% of the infants born to females that are not their daughters or granddaughters
260 (Godoy et al., 2016; Muniz, 2008). Subordinate males provide important support to the
261 alpha male and females by helping defend the group from predators and out-group males,
262 but they usually do not have access to mating opportunities themselves unless they
263 overthrow the alpha male (Perry & Manson, 2008). An adaptive strategy for some
264 subordinate males may be to increase indirect fitness by supporting related males to
265 achieve alpha status. Thus, male reproductive success is generally dependent on the ability
266 to form aggressive alliances with other males (kin or non-kin) and take over new groups of
267 unrelated females by collaboratively defeating resident males, in order to gain access to
268 mating opportunities (Perry 2012). In contrast, female reproductive success is less skewed,
269 and its variance is likely dependent on competition over access to food resources (Perry et
270 al., 2012; Silk, 1993). The high reproductive skew in males compared to females is
271 important as it puts greater selection pressure on males to (1) develop fighting skills and
272 (2) create strong social bonds with other males, to form the basis of aggressive alliances.
273 Furthermore, fighting skill is known to have a greater impact on mortality for male white-
274 faced capuchins than for females, and aggressive coalitions among females are generally
275 less physically injurious and do not have a substantial impact on their mating opportunities
276 (Gros-Louis et al., 2003; Perry, 1996; Perry, 2012). All of these factors suggest that males
277 should have a greater need for social play during the juvenile period compared to females,
278 whether the benefit is increased fighting skills (i.e., the practice hypothesis) or forming

279 bonds with other males (i.e., the bonding hypothesis). Thus, we predicted higher rates of
280 social play among males than females under both hypotheses.

281 Previous research on white-faced capuchin social relationships also informed our
282 predictions for the bonding hypothesis. Social bonds are important for both male and
283 female reproductive success; for example, bonded females may help one another through
284 alloparenting and coalitionary aid (Perry, 2012). Our consideration of the bonding
285 functions of play must account for other methods that white-faced capuchins use to form
286 and maintain bonds, such as grooming (Manson et al., 1999). Previous research found that
287 adult females tend to bond with one another by grooming and engaging in relaxed
288 affiliative interactions, while adult males tend to maintain bonds through lower levels of
289 these behaviors, as well as resting in contact, and social play; both sexes participate in
290 innovative dyadic bonding rituals at low rates (Perry, 1996, 1998; Perry et al., 2003). We
291 know that in adulthood, female-female grooming bouts are much more frequent than male-
292 female and male-male grooming (Perry, 1996, 1997, 1998). The time budgets of immature
293 white-faced capuchins (under age six years) suggest that males and females spend similar
294 amounts of time socializing (i.e., participating in social behavior of any kind; females:
295 average 11.9%, SD=2.6%; males: average 12.6%, SD=2.1%) (Lomas Barbudal Monkey
296 Project, unpublished data). Together, this suggests that males and females in this species
297 tend to establish, maintain, and strengthen social bonds through different means as adults.
298 It is unclear whether this pattern emerges early in development, with juvenile females
299 already allocating more time toward grooming and juvenile males engaging in more social
300 play.

301 In sum, close dyadic bonds are beneficial for both male and female white-faced
302 capuchins, but because males have the added challenges of integrating into new social
303 groups, forming high-stakes aggressive alliances, and overcoming the odds stacked against
304 them by a high reproductive skew, one could argue that social bonds are likely to provide
305 greater marginal fitness benefits for males than females. Alternatively, female white-faced
306 capuchins may rely more heavily on behaviors such as grooming to form bonds; by
307 replacing social play with grooming, they may continue to gain social bonding benefits but
308 not the fighting benefits associated with social play. Studying sex differences in both play
309 and grooming may thus help to elucidate sex differences in the means by which social
310 bonds are formed and maintained throughout the lifespan.

311 Finally, what socioecological factors might influence rates of solitary play? In
312 contrast to social play, solitary (e.g., object and locomotor) play is likely to fulfill the same
313 function for male and female white-faced capuchins. If it is true that different types of play
314 can serve different evolutionary functions, one would expect no sex difference in rates of
315 solitary play when males and females have similar needs for the development of foraging
316 and basic locomotor skills. This may depend on the species' diet and reproductive
317 strategies. Female reproductive success across primates is generally more dependent on
318 food availability than male reproductive success (Silk 1993), and there is some evidence
319 that adult female white-faced capuchins spend more time foraging than adult males (Rose,
320 1994). However, there is no evidence of sex differences in basic locomotion, other than
321 differences in the need for fighting skills, as discussed previously. Additionally, the
322 closely-related tufted capuchins (*Sapajus apella*), which have similar socioecologies and

323 extractive foraging niches, do not show sex differences in rates of solitary play (Paukner &
324 Suomi, 2008). Thus, we predicted that it was possible but unlikely that white-faced
325 capuchins would display sex differences in solitary play.

326 **Research Questions and Predictions**

327 The current study analyzed the patterning of play behavior in white-faced
328 capuchins over the lifespan to answer the following research questions: are there sex
329 differences in the rates of social and solitary play, and how do these sex differences change
330 over development? Additionally, we investigated whether there might be evidence for a
331 trade-off in the activity budgets of males and females between grooming and play. In other
332 words, if social play provides important bond-formation benefits, and females play less
333 often than males, might females compensate for the lack of bonding opportunities by
334 increasing rates of other bond-formation behavior like grooming? Finally, we were
335 interested in whether the observational evidence provides support for any of the functional
336 hypotheses about play—what, if anything, can sex differences in play tell us about play's
337 ultimate evolutionary functions?

338 Based on the patterns of development, dispersal, and play in other primate species
339 and the socioecology of white-faced capuchins, we predicted (1) that rates of both social
340 and solitary play would decrease with age, (2) that males would have higher rates of social
341 play when compared to females throughout the lifespan, and (3) that there would be no sex
342 difference in rates of solitary play. See Supporting Information Table 1 for a schematic
343 representation of our hypotheses and predictions.

344 While most research on play in animals is cross-sectional, (comparing static age
345 groups or sex differences), it is critical to conduct longitudinal studies to understand the
346 timing and emergence of sex- and age-specific patterns. We analyzed the behaviors of a
347 cohort of wild white-faced capuchins that were observed over 18 years (Perry et al., 2012),
348 to see when sex differences emerged and whether sex differences in play were consistent
349 with known sex-specific reproductive strategies.

350

351 **METHODS**

352 This research was approved by the Animal Research Committee at the University
353 of California, Los Angeles (ARC 1996-122, 2005-084, 2016-022, and associated renewals)
354 and was conducted in accordance with all federal and international laws of the United
355 States and Costa Rica. Researchers adhered to the American Society of Primatologists'
356 Principles for the Ethical Treatment of Non-Human Primates and Code for Best Practices
357 in Field Primatology. Research followed the US National Research Council's Guide for the
358 Care and Use of Laboratory Animals, the US Public Health Service's Policy on Humane
359 Care and Use of Laboratory Animals, and Guide for the Care and Use of Laboratory
360 Animals as applicable.

361

362 **Field Site and Subjects**

363 The data for this study were collected from 2002 to 2020, as part of the Lomas
364 Barbulal Monkey Project, a longitudinal study of wild white-faced capuchin monkeys led
365 by Dr. Susan Perry that began in 1990. The field site includes the Reserva Biológica

366 Lomas Barbudal in the Guanacaste province of Costa Rica and surrounding private areas.
367 Subjects (N=38) included 18 males and 20 females. Subjects were born between August
368 2000 and April 2005, and were regularly monitored with ongoing behavioral observations
369 beginning in 2002 (or at birth for those born after 2002).

370 The 38 subjects were born into one of four habituated social groups (group names
371 AA, FF, RR, and FL, which was a fission product of AA). Over the course of the longterm
372 study, the three original groups (AA, RR, FF) fissioned, producing seven additional multi-
373 male, multi-female social groups (FL, MK, CU, CE, DI, RF, SP), and one long-term all-
374 male group (LB; see Supporting Information for more details). Some of the males in this
375 study migrated from their natal group to groups that were observed as part of the Lomas
376 Barbudal Monkey Project, while others migrated to unmonitored groups and were thus lost
377 to the research team, aside from rare glimpses when unhabituated groups were
378 encountered. Thus, throughout the course of this study, subjects were in a total of 11
379 monitored social groups (those named above), the unmonitored group BD, several small
380 male-only groups, and other unmonitored, unhabituated social groups. We computed, for
381 each subject and year of life, the average group size across all point samples for which we
382 had census data. The average group size across those annual averages for each individual
383 was 23.4 (SD = 7.9, range = 2 to 38.7; more details about group size and composition are
384 available in the Supporting Information Table 13).

385 Twenty out of 38 subjects were lost to observation before the end of the study. Of
386 the 20 original females, 10 were presumed to have died, with mean age of death 10.7 years
387 (SD = 5.2 years). Of the 18 original males, only one was observed throughout the entire

388 study period, four were known to have emigrated from the study groups, two likely
389 emigrated from the study groups, nine likely died, and two disappeared for unknown
390 reasons. The average age of disappearance or death for males was 5.9 years (SD = 3.5). If
391 males disappeared when they were young and were the only group member to disappear at
392 that time, they were presumed to be dead. If older males disappeared simultaneously with
393 another male from their group, they were presumed to have emigrated outside the study
394 area. In interpreting our data, the age of six years was chosen as the cutoff between
395 juveniles and adults as it roughly corresponds to the age of dispersal for males and sexual
396 maturity for females, as described earlier.

397

398 **Data Collection**

399 Rates of social play, solitary play, and grooming were calculated using data from
400 point samples taken during focal follows of each subject. During the focal follows,
401 instantaneous point samples were taken every 2.5 minutes, recording the individual's state
402 activity and proximity to other monkeys. For example, if the focal individual was engaged
403 in social play at the 2.5 minute mark, "social play" would be recorded for that point sample
404 (although the name of the play partner was not recorded). Only one subject was followed at
405 a time, ensuring that each play instance was only recorded once. Data were collected by
406 one observer who watched and narrated the behaviors, while a second observer input data
407 on a handheld Psion or Android device and assisted observations when necessary (e.g., to
408 confirm the identity of non-focal individuals for the proximity data; Perry et al., 2012).

409 Focal follows were at least 10 minutes in duration, though in 2019-2020, the protocol
410 called for all-day follows (i.e. for the focal animal to be followed as long as possible).

411 While the length of the focal follows varied, the protocol for data collection was
412 otherwise uniform throughout the study period. Consistency between observers was
413 ensured by interobserver reliability tests. Before contributing data, all observers had to
414 pass tests requiring 100% accuracy on monkey identifications, 100% accuracy in the
415 coding scheme, 97% accuracy in speed typing, and 97% accuracy in matching their
416 recorded observations to those of other trained observers in the field during focal follows.

417 Interobserver reliability tests were repeated monthly to ensure lack of drift, and in very rare
418 occurrences in which the observer team (typist and spotter) disagreed regarding monkey
419 identifications or behaviors, the follows were discarded.

420 Observers rotated between the different habituated groups in teams of two or more
421 such that one to three groups were followed simultaneously on a given day, depending on
422 the size of the observation team at the time. The number of days that each group was
423 followed also depended on the size of the observation team, although effort was made to
424 observe each habituated group at least once a month. There was high variability in the
425 number of point samples for each subject per year, ranging from three to 2,456 point
426 samples for years in which data could be collected on each subject (mean = 876.0 samples
427 per monkey per year, SD = 641.5). Every attempt was made to keep focal sampling even
428 across individuals during the developmental study, though there were of course inevitable
429 slight deviations due to weather and occasional bad luck in finding particular wild monkey
430 groups during particular months. Also, fluctuations in staff size over time meant lower

431 sampling rates during some periods than others. However, there is no reason to expect this
432 variability introduced any bias based on dominance rank or personality of the subjects.

433 For the purposes of this study, observers recorded an individual's behavior as
434 ***social play*** if, at the time of the point sample, the individual was engaged in any playful
435 behavior with at least one social partner (e.g., play bite, play chase, play flee, play hit, play
436 invite/play face, play bounce/jump, play pull, play overlord, play push, play lunge, play
437 threat, play pounce on, play wrestle, or play wrestle while hanging from tails; see
438 Supporting Information Table 2 for descriptions of behaviors). These behaviors were
439 identified as playful, rather than aggressive, by the presence of play-specific signals (e.g.,
440 play face), absence of loud or aggressive vocalizations, modified forms (e.g., slow,
441 exaggerated movement, bouncy gait, or gentle versions of aggressive behaviors), or by
442 their co-occurrence with other behaviors that clearly fit those criteria. ***Solitary play*** was
443 recorded if the individual was engaging in object manipulations for no obvious foraging
444 purpose, or engaging in extraneous, sometimes exaggerated body movements that seem to
445 serve no obvious purpose for locomotion, foraging, care of the body (comfort or hygiene),
446 or social interaction. ***Grooming*** was defined as “one monkey picks through the hair of
447 another monkey with the hands and/or mouth; the recipient of this behavior is generally in
448 a reclining posture.” Grooming direction and the identities of partners were not indicated;
449 rather, individuals were recorded as grooming if they were either giving or receiving
450 grooming at the time of the point sample. Similarly, the identities of social play partners
451 were not recorded. However, it is fairly likely that a monkey who was marked as being in
452 bodily contact with a grooming or playing subject was engaged in grooming (or playing)

453 with that subject. We do not consider these contact data to be reliable enough to be used
454 for a nuanced analysis of social partners (for example, monkeys are often in contact with
455 their infants or multiple others while grooming, and playful chasing does not involve any
456 contact), but we do refer to these data in the discussion section, to provide a very rough
457 indicator of whether monkeys are likely to engage in these behaviors more often with
458 same-sex partners.

459

460 **Statistical Analysis**

461 To determine sex differences in the rates of each behavior and how they change
462 over the lifespan, we ran a series of generalized linear mixed models, with social play,
463 solitary play, and grooming as the outcome variables. Each model included sex, age, and
464 the interaction between sex and age as predictor variables, with a random effect for
465 individual to account for repeated sampling for each individual over time. This random
466 effect allowed the intercepts to vary by individual but not the regression coefficients (i.e.,
467 the main effects of sex, age, or sex*age were not allowed to vary by individual).

468 For each model (social play, solitary play, and grooming), the outcome variable
469 was the count of the total point samples per year in which the given behavior occurred. To
470 achieve this, the point sample data were aggregated for each individual by each year of age
471 (i.e., year zero being the time from birth until the first birthday) rather than by calendar
472 year. Thus, for each year, an individual had a count of total point samples, and a count of
473 point samples for each behavior (i.e., the count of point samples for social play was the
474 number of point samples in which that individual was observed in social play during the

475 entire year). The total number of point samples per year was included as the exposure
476 variable in the regression models in order to model the outcome variable as a rate and to
477 control for variation in the number of times each individual was observed.

478 We considered several regression models for each of the three behaviors (social
479 play, solitary play, and grooming) and picked the best models for each behavior based on
480 both AIC and BIC. We report the details of all models considered in the Supporting
481 Information. We first ran all models using a Poisson distribution, which is commonly used
482 to model count variables but which has a strong assumption (that the variance equals the
483 mean). We then compared these original Poisson models to models which estimate the
484 same parameters but assume other negative binomial distributions (Type 1, i.e., nb1
485 parameterization, with variance = $\phi\mu$ and Type 2, i.e., nb2 parameterization, with variance
486 = $\mu(1 + \mu/k)$; Bolker, 2016). The negative binomial models have more relaxed assumptions
487 than Poisson models (by allowing the variance to be greater than the mean). For all three
488 behavioral outcomes, it appeared that the assumptions of the Poisson distribution were
489 violated because the negative binomial distributions provided better model fit (according to
490 AIC and BIC comparisons; see Supporting Information Tables 3, 6, and 9). Type 1
491 negative binomial provided the best fit for social play, while Type 2 negative binomial
492 provided the best fit for solitary play and grooming.

493 In order to allow the effect of age on all three behaviors to vary over developmental
494 time, we additionally considered models with a quadratic age predictor variable. Thus, we
495 included both the linear predictor variable, *age*, and a quadratic variable, *age*² in each
496 model (social play, solitary play, and grooming), and also included the interactions of both

497 of these age terms with *sex* to allow flexibility in the sex effect over time. Then, the models
498 for each behavior were compared using AIC and BIC to assess whether the addition of the
499 quadratic variable improved model fit. The quadratic age variable improved model fit for
500 grooming and social play, but did not improve model fit for solitary play. Thus, we
501 concluded that the age pattern was better modeled with the quadratic predictor variable
502 only for the social play and grooming models. See the Supporting Information for a list of
503 all the models and their comparison using AIC and BIC.

504 We were initially concerned that the behavioral outcome variables for our models
505 could be affected by the social group, because different groups could have different
506 numbers of available partners for social interaction, or different play styles. To control for
507 this, we also ran all models with an additional random effect of social group (in this case,
508 the natal group). We found no between-group differences in social play and grooming rates
509 by natal group (variance estimates < 0.0001 in both models), and only a small between-
510 group difference in solitary play rates (variance estimate = 0.129) which did not
511 substantially change the fixed effect estimates on our main variables of interest (sex, age,
512 and the interaction of sex and age) for our best model. This effect may have been partially
513 explained by an association of group size and solitary play rates: larger groups were
514 associated with a slightly lower rate of solitary play, such that for each additional monkey
515 in the group, the rate of solitary play was estimated to be lower by approximately 3 out of
516 100 point samples per year. Additionally, adding the natal group random effect to the best
517 models for all three behaviors increased AIC and BIC, suggesting that the addition of this
518 parameter did not improve model fit (see SI tables 3, 6, and 9). Because these group effects

519 on the rates of our behaviors of interest were inconsequential and tangential to the main
520 research questions, and model fit was worse when the random effect of natal group was
521 added to the models, we concluded that it was not necessary to add these as control
522 variables to the final models.

523 All statistical analyses were conducted in the R programming environment (R Core
524 Team, 2019). Regression models were fit using the *glmmTMB* function within the
525 *glmmTMB* package (we originally used *glmer* within the *lme4* package for the Poisson
526 models but found *glmmTMB* was preferable for the negative binomial models; Bates et al.,
527 2015; Brooks et al., 2017). 95% confidence intervals for the predicted values in all figures
528 were calculated using the *bootMer* function in the *lme4* package. To additionally aid our
529 inferences on the sex differences in behavior at different ages, and because we interacted
530 the sex and age variables, we calculated simple effects for the rate ratios between males
531 and females at different ages and their corresponding p-values (see Supporting Information
532 Tables 5, 8, and 11). Full details of the best models are presented in the Supporting
533 Information (Tables 4, 7, and 10), along with the data set itself and the code required to
534 replicate the results. The information needed to replicate our analyses are housed on the
535 Open Science Foundation (OSF) website (<https://osf.io/nsxd8/>); code is accessed via
536 <https://osf.io/ybvfg/> and the raw data at <https://osf.io/jy3w5/>.

537

538 RESULTS

539 Do rates of social play vary by sex and age?

540 The best social play model used a type 1 negative binomial distribution and
541 included a quadratic age predictor variable. The model included the fixed effect variables
542 *sex*, *age*, *sex*age*, *age*², and *age*²**sex*, the random effect *subject*, and the offset variable
543 $\log(totalobs)$, where *sex* is the subject's sex (with female as the reference group), *age* is the
544 subject's age in years (such that zero is the first year of life), *subject* is the unique ID for
545 the subject, and *totalobs* is the total count of point samples for the subject-year (all point
546 sample observations for the subject for each year of age; i.e., the denominator of the rate).
547 The outcome variable, *socialplay*, was the count of point samples engaged in social play
548 for each subject-year. See Supporting Information Tables 3 and 4 for the complete model
549 formula in R syntax, a summary of the best model, and the full list of models considered.
550 Figure 1 and Supporting Information Table 5 show the predictions from the best model for
551 rates of social play for males (blue) versus females (red) as they change with age. Female
552 rates of social play start out a bit lower than males' rates and decline steadily with age;
553 males' rates increase up until their third year of life (when they played at twice the rate of
554 females), and then decline, becoming statistically indistinguishable from female play rates
555 around the tenth year of life, after which the rates for both sexes continue to decline and
556 approach zero. This peak in male play rates roughly corresponds to the juvenile period
557 when males are starting to explore options for co-dispersal from the natal group.

558
559 < INSERT FIGURE 1 AROUND HERE >

560

561 **Do rates of solitary play vary by sex and age?**

562 The best solitary play model used a type 2 negative binomial distribution and only
563 included the linear age predictor. The model included the fixed effect variables *sex*, *age*,
564 and *sex*age*, the random effect *subject*, and the offset variable $\log(totalobs)$. The outcome
565 variable, *solo play*, was the count of point samples engaged in solitary play for each
566 subject-year. See Supporting Information Tables 6 and 7 for the R model formula, a
567 summary of the best model and the full list of models considered. Figure 2 and Supporting
568 Information Table 8 show the predictions from the best model for solitary play rates for
569 males (blue) versus females (red) as they change with age. Although there was a
570 statistically significant interaction of sex and age, at no age do male and female solitary
571 play rates show biologically meaningful differences from one another. The rate of solitary
572 play declines throughout the juvenile phase, reaching values very close to zero for both
573 sexes by the time they reach adulthood at age 7-10.

574 The solitary play data had one extreme outlier, a six-year-old male (RU) who was
575 observed to have an unusually high rate of solitary play (annual rate of solitary play = 0.2,
576 Z-score among all six-year-olds = 5.1, see Supporting Information Figure 1). However,
577 this extreme value was likely an artifact of the small number of observations for that
578 individual in his sixth year: there were only five point samples for him that year, one of
579 which was solitary play. Because the solitary play regression model accounted for the total
580 number of point samples as the exposure variable, this outlier is not likely to have had an
581 outsized effect on the model overall. In fact, rerunning the model with the outlier removed
582 had no substantive effect on any of the coefficient estimates or inferences ($\beta_{sex} = -0.148$, $P =$

583 0.532, $\beta_{age} = -0.495$, $P < 0.001$, $\beta_{sex*age} = 0.128$, $P = 0.030$). Thus, the outlier was kept in the
584 dataset when fitting the model but removed from Figure 2 for visualization purposes.

585 < INSERT FIGURE 2 AROUND HERE >

586
587 **Do rates of grooming vary by sex and age?**

588 The best grooming model used a type 2 negative binomial distribution and included
589 a quadratic age predictor variable. The model included the fixed effect variables *sex*, *age*,
590 *sex*age*, *age*², and *age*²**sex*, the random effect *subject*, and the offset variable
591 $\log(totalobs)$. The outcome variable, *grooming*, was the count of point samples engaged in
592 grooming (including both giving and receiving grooming) for each subject-year. See
593 Supporting Information Tables 9 and 10 for the R model formula, a summary of the best
594 model and the full list of models considered. Figure 3 and Supporting Information Table
595 11 show the model predictions for grooming rates for males (blue) versus females (red) as
596 they change with age. Males are very rarely involved in grooming at any point in their
597 lives. Males start life having grooming rates that are indistinguishable from those of
598 females. By the third year of life, females already show higher rates of grooming than
599 males, and they continue to increase the proportion of time they spend grooming until
600 around the eleventh year of life, at which point their grooming rates start declining again,
601 although it remains higher than the male rate.

602 < INSERT FIGURE 3 AROUND HERE >

603

604

605 **DISCUSSION**

606 Consistent with the general mammalian trend, rates of play in white-faced
607 capuchins were greatest early in life and declined with age, for both social and solitary play
608 and for both males and females. There was a sex difference in the rates of social play in
609 this species, such that the average rate was higher for juvenile males than females,
610 although the sex difference disappears in adulthood. Additionally, while females had
611 declining rates of social play as age increased, rates of social play in males actually
612 increased from ages zero to two, before declining with age. However, our analysis of
613 solitary play found that the predicted rates of solitary play did not differ meaningfully
614 between males and females. We found only a negligible (albeit statistically significant)
615 interaction effect between sex and age, such that females had a slightly steeper decline of
616 solitary play with age, compared to males. Finally, we analyzed trends in grooming
617 behavior to investigate the possibility of time budget tradeoffs between social play and
618 grooming, a known bond-formation behavior. Male capuchins participated in grooming at
619 very low rates throughout life, while females participated in grooming at higher rates, with
620 a peak in grooming rates around eleven years old. These patterns of grooming were
621 consistent with previous findings on grooming in white-faced capuchins which suggest that
622 adult females participate in grooming much more often than adult males (Manson et al.,
623 1999; Perry, 1996, 1998).

624 Together, these results suggest that white-faced capuchin males allocate more time
625 toward social play than females, especially during the juvenile period. Interestingly, the
626 interaction of sex and age on social play rate appears in Figure 1 to be at least partially
627 driven by males (but not females) increasing rates of social play over time during the early

628 juvenile period, with male social play expected to peak around ages one to three.
629 Therefore, males maximize social play at a time just before the average age of dispersal out
630 of the natal group. This suggests that social play may have particular benefits for male
631 survival or reproductive success during the risky dispersal period.

632 Under the practice hypothesis, playing provides benefits for the development of
633 sex-specific behaviors. The finding of higher rates of social play, but not solitary play, in
634 juvenile male white-faced capuchins, compared to females, could reflect important
635 differences in the types of social behaviors that are most crucial for each sex's reproductive
636 success in adulthood. Fighting skills are important for male reproductive success as they
637 allow males to enter and take over groups of females. Males that are unable to achieve
638 alpha status in new social groups might never gain access to reproductive opportunities.
639 Fighting requires not just physical agility, as might be developed through solitary play, but
640 also tactical maneuvers and social skills, which likely require practice with partners. Social
641 play may also help to develop a greater understanding of the social affordances of physical
642 maneuvers—for example, assessing one's own physical power relative to others,
643 predicting the loyalty of allies, or learning how to avoid conflict escalation. In contrast,
644 physical fighting skills are not as critical for female reproductive success. If social play
645 allows white-faced capuchins to explore and hone specific skills that are needed in
646 adulthood, our finding that males partake in higher rates of social (primarily rough-and
647 tumble) play are consistent with the practice hypothesis.
648 The results are also consistent with the bonding hypothesis for the function of play,
649 which is not necessarily mutually exclusive from the practice hypothesis. We propose that

650 females may compensate for lower opportunities to form social bonds via play through
651 increases in their rates of grooming. This sex difference in development may simply reflect
652 that females and males allocate social effort in different ways, or it may reflect that males
653 and females have different needs for developing the particular kinds of tactical skills that
654 can be practiced in rough-and-tumble social play. If social play and grooming both
655 function to form social bonds, our results could be consistent with females preferentially
656 forming social bonds through grooming rather than play, compared to males. However,
657 because we did not directly analyze the relationship between social play and grooming,
658 more research would be needed to substantiate this exploratory association. Additionally,
659 future research might explore the role of socioecological factors in explaining why
660 grooming rates are highest in adulthood for females, rather than during the juvenile period
661 as is the case for male social play.

662 This interpretation of our results with respect to the bonding hypothesis assumes
663 that both sexes are preferentially grooming and playing with same-sex partners. However,
664 the point samples analyzed for this study did not contain information on the partners or
665 direction of social behaviors. For example, whether grooming was given or received at the
666 time of the point sample was not specified, so we are left to conjecture the probable biases
667 in directions based on previous studies of patterning of grooming in adults. Previous
668 studies have shown that adult female white-faced capuchins are most likely to groom with
669 other females or the alpha male (Perry 1996). Adult males at Lomas Barbudal rarely groom
670 one another, and when they do participate in grooming interactions, it is often when they
671 receive grooming from females (Perry 1997, 1998). In fact, it is likely that a large portion

672 of the grooming time attributed to adult males in this study was due to males (particularly
673 alpha males) receiving grooming from females. Previous research also suggests that
674 preferences for social play partners may depend on sex in some primate species, including
675 preferences for same sex partners in *Gorilla gorilla* (Maestripieri & Ross, 2004), *Papio*
676 *ursinus* (Cheney, 1978), and *Propithecus diadema* (Lutz et al., 2019), but opposite sex
677 partners in *Sapajus apella* (Lutz et al., 2019).

678 Although we did not have partner data to analyze this in our current dataset, an
679 exploratory look at the proximity data (which lists all the monkeys who were in bodily
680 contact with the subject at the time of the point sample, providing an imperfect proxy for
681 their current social partner) somewhat supported our assumptions: males were in contact
682 with same sex partners 23% of the time during grooming and 80% of the time during
683 social play; females were in contact with same sex partners 73% of the time during
684 grooming and 58% of the time during social play (see Supporting Information Table 12 for
685 raw data). Taken together, these observations are consistent with the idea that females are
686 primarily using grooming to bond with other females (their most important future and
687 current allies), whereas males are primarily using play to bond with other males (who are
688 likely to become their co-dispersal and coalition partners throughout life).

689 An additional limitation of our dataset for this study is that although there was a
690 distinction between social and solitary play, there were no distinctions between subtypes of
691 these categories. For example, the social play category included all rough-and-tumble play
692 behaviors, and distinctions were not made between specific behaviors within that category
693 (e.g., play bouncing versus play biting; see ethogram in Supporting Information Table 2).

694 The solitary play category included both object and locomotor play. An additional
695 challenge with recording solitary, object play was that a conservative definition was used
696 during data collection that excluded handling of leaves, sticks, or other food items in the
697 absence of any obvious repetition, modification, or exaggeration from functional food
698 handling. Thus, handling of food items was generally categorized as foraging in the
699 dataset, even though theoretically a monkey could play with those items. Most definitions
700 of play in the animal literature exclude behaviors that could be interpreted as foraging, so
701 the exclusion of these behaviors is not unique to the current study (Burghardt, 2005).
702 However, it is important to recognize that studies of play in wild animals probably
703 underestimate the rate of object play by disregarding play that occurs with food items,
704 particularly for omnivorous animals like capuchins (in which case even inedible objects
705 like sticks or rocks are commonly handled to eat insects off of them).

706 This study raises several questions that should be explored in future work using
707 continuous, rather than instantaneous, sampling of play behavior. Similarly to how sex-
708 specific partner preferences may influence rates of social play and grooming, the rate of
709 social play might also depend on the number of siblings or the total number of juveniles in
710 each group that are available as playmates at any given time. The relationship of play to
711 social bonding should also be investigated further. For example, if male white-faced
712 capuchins that play together as juveniles are more likely to co-disperse together, that could
713 indicate that play provides important opportunities for young males to strengthen and test
714 these fitness-relevant relationships, while in the protected space of their natal group. While
715 Perry and colleagues (2017) found no relationship between rates of social play and time to

716 emigration or time to first alpha male status, that paper used a broader sample of
717 individuals with lower sampling rates, and did not consider the identity of play or co-
718 emigration partners. The bonding hypothesis might also be supported if females that play
719 together as juveniles are more likely to support each other in aggressive coalitions, or to be
720 grooming partners in adulthood. Future comparisons between species may also give us
721 clues into the bonding functions of play. For example, social bonds may be particularly
722 important for capuchins, resulting in both physical and bonding benefits of play, whereas
723 in species where there is less reproductive skew or where reproductive success is less
724 dependent on bonds and alliances, play (even social play) may primarily confer physical
725 benefits. Finally, longitudinal datasets such as the one used in this study provide excellent
726 opportunities to investigate whether play in early life is associated with any concrete
727 fitness benefits in adulthood. With longitudinal data, it may be possible to assess delayed
728 fitness benefits in variables like rank acquisition, number of offspring, or outcomes linked
729 to fighting skills such as fighting success or wounding frequency.

730 While the current study findings are consistent with several functional hypotheses
731 regarding play, it is important to remember that sex differences in play are not *necessarily*
732 meaningful in terms of adult behavior. For example, a study in meerkats found no
733 correlation between the frequency of play-fighting in early life and subsequent fighting
734 success in adulthood, for either sex (Sharpe, 2005). Cords and colleagues (2010) have
735 argued that sex differences in juvenile behavior can anticipate adult behavior in some
736 cases, but researchers should not overlook the immediate consequences of a behavior in
737 favor of delayed ones. Additionally, Pellegrini and Smith (2005) argued that although it is

738 possible that males and females in many species evolved different play styles to develop
739 different skills needed in adulthood, it is also possible that sex differences in juvenile play
740 could simply be due to size dimorphisms or to sex-specific nutritional or energetic
741 demands at different points in development.

742 This longitudinal study of the development of play behavior in wild capuchins
743 provides support for both the practice and bonding hypotheses for the evolution of play
744 behavior. These results demonstrate that males engage in more social play than females do,
745 especially as juveniles, but that there is essentially no sex difference in the rates of solitary
746 play (which is hypothesized to prepare individuals for foraging and locomotor skills
747 equally critical to both sexes). Rates of both social and solitary play generally decrease as
748 capuchins age into adulthood. The trajectories of age-related change in social play and
749 grooming can perhaps tell us something about the development of sex-specific social
750 strategies. Males' rates of social play decline less rapidly than females' and even show a
751 slight increase shortly before the age at which males typically disperse to new social
752 groups. Females' grooming rates increase over the course of early development, whereas
753 males' grooming rates decrease. These patterns seem to reflect preparation for distinct
754 male and female strategies for increasing reproductive success, in which females use
755 grooming as a way to service their social relationships, and males use rough-and-tumble
756 play to practice fighting and forge alliances with other males, whose coalitionary aid is
757 essential for them to obtain breeding positions.

758

759 **ACKNOWLEDGEMENTS**

760 Thank you to A. Lin, D. Cohen, K. Kajokaite, and S. Jalal for their invaluable
761 assistance with the statistical analyses. Thanks also to E. Cartmill, H. C. Barrett, and M.
762 Cooper-White for helpful comments on the manuscript drafts. The following field
763 assistants assisted S. Perry in data collection by contributing a year or more of data to the
764 Lomas Barbudal Monkey Project dataset: C. Angyal, A. Autor, B. Barrett, L. Beaudrot, M.
765 Bergstrom, R. Berl, A. Bjorkman, L. Blankenship, T. Borcuch, J. Broesch, D. Bush, J.
766 Butler, F. Campos, C. Carlson, M. Corrales, J. Damm, C. de Rango, C. Dillis, N. Donati,
767 G. Dower, R. Dower, A. Duchesneau, K. Feilen, S. Fiello, K. Fisher, A. Fuentes J., M.
768 Fuentes A., C. Gault, H. Gilkenson, I. Godoy, I. Gottlieb, J. Griciute, J. Gros-Louis, L.M.
769 Guevara, L. Hack, R. Hammond, S. Herbert, C. Hirsch, M. Hoffman, A. Hofner, C.
770 Holman, S. Hyde, O. Jacobson, W. Lammers, L. Johnson, S. Lee, S. Leinwand, S. Lopez,
771 T. Lord, S. MacCarter, M. Kay, E. Kennedy, D. Kerhoas-Essens, E. Johnson, S. Kessler, J.
772 Mackenzie, J. Manson, F. McKibben, W. Meno, A. Mensing, C. Mitchell, Y. Namba, A.
773 Neyer, C. O'Connell, J.C.Ordoñez J., N. Parker, B. Pav, R. Popa, K. Potter, K. Ratliff , N.
774 Roberts Buceta, H. Ruffler, S. Sanford, M. Saul, I. Schamberg, N. Schleissmann, C.
775 Schmitt, A. Scott, J. Shih, K. van Atta, L. van Zuidam, J. Verge, A. Walker-Bolton, E.
776 Wikberg, E. Williams, L.E. Wolf, and D. Wood. Particular thanks are owed to H.
777 Gilkenson and W. Lammers for long-term management of the site during 2002-2013. D.
778 Cohen assisted in development of the database and writing of queries.

779 Funding for this project was provided by the UCLA Graduate Summer Research
780 Mentorship program and the UCLA Anthropology department. Funding for data collection
781 was provided by MPI-EVAN, UCLA and several grants to S. Perry: NSF (BCS-1638428,

782 BCS-0613226, BCS-848360, BCS-1919649), National Geographic Society (7968-06,
783 8671-09, 20113909, 9795- 15, 45176R-18), Templeton World Charity Foundation (0208),
784 and five Leakey Foundation grants. S. Winkler was supported by the NSF Graduate
785 Research Fellowship Program (Grant DGE-1650604 and DGE-2034835). Research
786 permission was granted to S. Perry by SINAC and MINAE (the Costa Rican Park Service)
787 and the landowners of Brin d'Amor, Hacienda Pelon de la Bajura, and San Ramon de
788 Bagaces.

789

790 **DATA AVAILABILITY STATEMENT:**

791 The information needed to replicate our analyses are housed on the Open Science
792 Foundation (OSF) website (<https://osf.io/nsxd8/>); code is accessed via <https://osf.io/ybvfg/>
793 and the raw data at <https://osf.io/jy3w5/>.

794

795 REFERENCES

796 Aldis, O. (1975). *Play-fighting*. Academic Press.

797 Auger, A. P., & Olesen, K. M. (2009). Brain sex differences and the organisation of
798 juvenile social play behaviour. *Journal of Neuroendocrinology*, 21(6), 519–525.

799 <https://doi.org/10.1111/j.1365-2826.2009.01871.x>

800 Baldwin, J. D., & Baldwin, J. I. (1974). Exploration and social play in squirrel monkeys
801 (*Saimiri*). *American Zoologist*, 14(1), 303–315.

802 <https://doi.org/10.1093/icb/14.1.303>

803 Barbu, S., Cabanes, G., & Maner-Idrissi, G. L. (2011). Boys and girls on the playground:
804 Sex differences in social development are not stable across early childhood. *PLOS
805 ONE*, 6(1), e16407. <https://doi.org/10.1371/journal.pone.0016407>

806 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
807 models using lme4. *Journal of Statistical Software*, 67(1), 1–48.

808 <https://doi.org/10.18637/jss.v067.i01>

809 Bateson, P., & Martin, P. (2013). *Play, Playfulness, Creativity, and Innovation*. Cambridge
810 University Press.

811 Biben, M. (1998). Squirrel monkey play-fighting: making the case for a cognitive training
812 function for play. In Bekoff, M. & Byers, J. A. (Eds.). *Animal Play: Evolutionary,
813 Comparative, and Ecological Perspectives* (pp. 161–182). Cambridge Univ. Press,
814 New York.

815 Bjorklund, D. F., & Gardiner, A. K. (2011). Object Play and Tool Use: Developmental and
816 Evolutionary Perspectives. In A. D. Pellegrini (Ed.), *The Oxford handbook of the*
817 *development of play* (pp. 153-171). Oxford University Press.

818 Bolker B. (2016). Getting started with the glmmTMB package. Vienna, Austria: R
819 Foundation for Statistical Computing.

820 Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A.,
821 Skaug H.J., Maechler M., Bolker B.M. (2017). glmmTMB Balances Speed and
822 Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling.
823 *The R Journal*, 9(2), 378–400. <https://journal.r-project.org/archive/2017/RJ-2017-066/index.html>.

824

825 Brown, G. R., & Dixson, A. F. (2000). The development of behavioural sex differences in
826 infant rhesus macaques (*Macaca mulatta*). *Primates*, 41(1), 63–77.
827 <https://doi.org/10.1007/BF02557462>

828 Burghardt, G. M. (2005). *The Genesis of Animal Play*. Massachusetts Institute of
829 Technology.

830 Burghardt, G. M. (2010). The comparative reach of play and brain: Perspective, evidence,
831 and implications. *American Journal of Play*, 2(3), 338–356.

832 Byers, J. A., & Walker, C. (1995). Refining the motor training hypothesis for the evolution
833 of play. *The American Naturalist*, 146(1), 25–40. <https://doi.org/10.1086/285785>

834 Chau, M. J., Stone, A. I., Mendoza, S. P., & Bales, K. L. (2008). Is play behavior sexually
835 dimorphic in monogamous species? *Ethology*, 114(10), 989–998.
836 <https://doi.org/10.1111/j.1439-0310.2008.01543.x>

837 Cheney D. L. (1978). The play partners of immature baboons. *Animal Behavior*, 26, 389–
838 408.

839 Cleveland, J. & Snowdon, C. T. (1984). Social development during the first twenty weeks
840 in the cotton-top tamarin (*Saguinus o. oedipus*). *Animal Behavior*, 32, 432–444.

841 Cordini, G. (2009). Social play in captive wolves (*Canis lupus*): Not only an immature
842 affair. *Behaviour*, 146(10), 1363–1385.
843 <https://doi.org/10.1163/156853909X427722>

844 Cordini, G., Norscia, I., Bobbio, M., & Palagi, E. (2018). Differences in play can
845 illuminate differences in affiliation: A comparative study on chimpanzees and
846 gorillas. *PLOS ONE*, 13(3), e0193096.
847 <https://doi.org/10.1371/journal.pone.0193096>

848 Cords, M., Sheehan, M. J., & Ekernas, L. S. (2010). Sex and age differences in juvenile
849 social priorities in female philopatric, nondespotic blue monkeys. *American
850 Journal of Primatology*, 72(3), 193–205. <https://doi.org/10.1002/ajp.20768>

851 Fagen, R. (1981). *Animal play behavior*. Oxford University Press.

852 Fedigan, L. M., & Baxter, M. J. (1984). Sex differences and social organization in free-
853 ranging spider monkeys (*Ateles geoffroyi*). *Primates*, 25(3), 279–294.
854 <https://doi.org/10.1007/BF02382267>

855 Fedigan, L. M., & Jack, K. M. (2012). Tracking neotropical monkeys in Santa Rosa:
856 Lessons from a regenerating Costa Rican dry forest. In P. M. Kappeler & D. P.
857 Watts (Eds.), *Long-Term Field Studies of Primates* (pp. 165–184). Springer Berlin
858 Heidelberg. https://doi.org/10.1007/978-3-642-22514-7_8

859 Fromberg, D. P., & Bergen, D. (Eds.). (2006). *Play from birth to twelve: Contexts,
860 perspectives, and meanings* (2nd ed). Routledge.

861 Fry, D. P. (2005). Rough-and-tumble social play in humans. In A. D. Pellegrini & P. K.
862 Smith (Eds.), *Play in Great Apes and Humans* (pp. 54–88). The Guilford Press.

863 Godoy, I., Vigilant, L., & Perry, S. E. (2016). Inbreeding risk, avoidance and costs in a
864 group-living primate, *Cebus capucinus*. *Behavioral Ecology and Sociobiology*,
865 70(9), 1601–1611. <https://doi.org/10.1007/s00265-016-2168-1>

866 Gopnik, A., O'Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., Aboody,
867 R., Fung, H., & Dahl, R. E. (2017). Changes in cognitive flexibility and hypothesis
868 search across human life history from childhood to adolescence to adulthood.
869 *Proceedings of the National Academy of Sciences*, 114(30), 7892–7899.
870 <https://doi.org/10.1073/pnas.1700811114>

871 Grebe, N. M., Fitzpatrick, C., Sharrock, K., Starling, A., & Drea, C. M. (2019).
872 Organizational and activational androgens, lemur social play, and the ontogeny of
873 female dominance. *Hormones and Behavior*, 115, 104554.
874 <https://doi.org/10.1016/j.yhbeh.2019.07.002>

875 Gros-Louis, J., Perry, S., & Manson, J. H. (2003). Violent coalitionary attacks and
876 intraspecific killing in wild white-faced capuchin monkeys (*Cebus capucinus*).
877 *Primates*, 44(4), 341–346. <https://doi.org/10.1007/s10329-003-0050-z>

878 Hakeem, A., Sandoval, G. R., Jones, M., & Allman, J. (1996). Brain and life span in
879 primates. In J. E. Birren, K. W. Schaie, R. P. Abeles, M. Gatz, & T. A. Salthouse

880 (Eds.), *Handbook of the Psychology of Aging* (4th ed., pp. 78–104). Academic
881 Press, Inc.

882 Himmler, B. T., Stryjek, R., Modlinska, K., Derksen, S. M., Pisula, W., & Pellis, S. M.
883 (2013). How domestication modulates play behavior: A comparative analysis
884 between wild rats and a laboratory strain of *Rattus norvegicus*. *Journal of*
885 *Comparative Psychology* (Washington, D.C.: 1983), 127(4), 453–464.
886 <https://doi.org/10.1037/a0032187>

887 Lutz, M. C., Ratsimbazafy, J., & Judge, P. G. (2019). Use of social network models to
888 understand play partner choice strategies in three primate species. *Primates*, 60(3),
889 247–260. <https://doi.org/10.1007/s10329-018-00708-7>

890 Maestripieri, D., & Ross, S. R. (2004). Sex differences in play among western lowland
891 gorilla (*Gorilla gorilla gorilla*) infants: Implications for adult behavior and social
892 structure. *American Journal of Physical Anthropology*, 123(1), 52–61.
893 <https://doi.org/10.1002/ajpa.10295>

894 Manson, J. H., Rose, L. M., Perry, S., & Gros-Louis, J. (1999). Dynamics of female–
895 female relationships in wild *Cebus capucinus*: Data from two Costa Rican sites.
896 *International Journal of Primatology*, 20(5), 679–706.
897 <https://doi.org/10.1023/A:1020700718458>

898 Martin, P., & Caro, T. M. (1985). On the functions of play and its role in behavioral
899 development. In J. S. Rosenblatt, C. Beer, M.-C. Busnel, & P. J. B. Slater (Eds.),
900 *Advances in the Study of Behavior* (Vol. 15, pp. 59–103). Academic Press.
901 [https://doi.org/10.1016/S0065-3454\(08\)60487-8](https://doi.org/10.1016/S0065-3454(08)60487-8)

902 Meaney, M. J., Stewart, J., & Beatty, W. W. (1985). Sex differences in social play: The
903 socialization of sex roles. In J. S. Rosenblatt, C. Beer, M.-C. Busnel, & P. J. B.
904 Slater (Eds.), *Advances in the Study of Behavior* (Vol. 15, pp. 1–58). Academic
905 Press. [https://doi.org/10.1016/S0065-3454\(08\)60486-6](https://doi.org/10.1016/S0065-3454(08)60486-6)

906 Muniz, L. (2008). *Genetic Analyses of Wild White-Faced Capuchins (Cebus capucinus)*
907 [Ph.D. Thesis]. Universität Leipzig.

908 Ortega, J. C., & Bekoff, M. (1987). Avian play: Comparative evolutionary and
909 developmental trends. *The Auk*, 104(2), 338–341. JSTOR.

910 Palagi, E. (2006). Social play in bonobos (*Pan paniscus*) and chimpanzees (*Pan*
911 *troglodytes*): Implications for natural social systems and interindividual
912 relationships. *American Journal of Physical Anthropology*, 129(3), 418–426.
913 <https://doi.org/10.1002/ajpa.20289>

914 Paukner, A., & Suomi, S. J. (2008). Sex differences in play behavior in juvenile tufted
915 capuchin monkeys (*Cebus apella*). *Primates; Journal of Primatology*, 49(4), 288–
916 291. <https://doi.org/10.1007/s10329-008-0095-0>

917 Pedersen, J. M., Glickman, S. E., Frank, L. G., & Beach, F. A. (1990). Sex differences in
918 the play behavior of immature spotted hyenas, *Crocuta crocuta*. *Hormones and*
919 *Behavior*, 24(3), 403–420. [https://doi.org/10.1016/0018-506X\(90\)90018-S](https://doi.org/10.1016/0018-506X(90)90018-S)

920 Pellegrini, A. D., & Smith, P. K. (1998). The development of play during childhood:
921 Forms and possible functions. *Child Psychology and Psychiatry Review*, 3(2), 51–
922 57. <https://doi.org/10.1111/1475-3588.00212>

923 Pellegrini, A. D., & Smith, P. K. (2005). Play in great apes and humans. In *The Nature of*
924 *Play: Great Apes and Humans* (pp. 285–298). The Guilford Press.

925 Perry, S. (1996). Female-female social relationships in wild white-faced capuchin
926 monkeys, *Cebus capucinus*. *American Journal of Primatology*, 40(2), 167–182.

927 Perry, S. (1997). Male-female social relationships in wild white-faced capuchins, *Cebus*
928 *capucinus*. *Behaviour*, 134(7/8), 477-510. JSTOR.

929 Perry, S. (1998). Male-male social relationships in wild white-faced capuchins, *Cebus*
930 *capucinus*. *Behaviour*, 135(2), 139–172. JSTOR.

931 Perry, S. (2009). Conformism in the food processing techniques of white-faced capuchin
932 monkeys (*Cebus capucinus*). *Animal Cognition*, 12(5), 705–716.
933 <https://doi.org/10.1007/s10071-009-0230-3>

934 Perry, S. (2012). The behavior of wild white-faced capuchins: Demography, life history,
935 social relationships, and communication. In H. J. Brockmann, T. J. Roper, M.
936 Naguib, J. C. Mitani, & L. W. Simmons (Eds.), *Advances in the Study of Behavior*
937 (Vol. 44, pp. 135–181). Academic Press. <https://doi.org/10.1016/B978-0-12-394288-3.00004-6>

939 Perry, S., Baker, M., Fedigan, L., Gros-Louis, J., Jack, K., MacKinnon, K. C., Manson, J.
940 H., Panger, M., Pyle, K., & Rose, L. (2003). Social conventions in wild white-faced
941 capuchin monkeys: Evidence for traditions in a neotropical primate. *Current*
942 *Anthropology*, 44(2), 241–268. <https://doi.org/10.1086/345825>

943 Perry, S., Godoy, I., & Lammers, W. (2012). The Lomas Barbudal Monkey Project: Two
944 decades of research on *Cebus capucinus*. In P. M. Kappeler & D. P. Watts (Eds.),

945 *Long-Term Field Studies of Primates* (pp. 141–163). Springer Berlin Heidelberg.

946 https://doi.org/10.1007/978-3-642-22514-7_7

947 Perry, S., Godoy, I., Lammers, W., & Lin, A. (2017). Impact of personality traits and early

948 life experience on timing of emigration and rise to alpha male status for wild male

949 white-faced capuchin monkeys (*Cebus capucinus*) at Lomas Barbudal Biological

950 Reserve, Costa Rica. *Behaviour*, 154(2), 195–226.

951 <https://doi.org/10.1163/1568539X-00003418>

952 Perry, S., & Manson, J. H. (2008). *Manipulative Monkeys: The Capuchins of Lomas*

953 *Barbudal*. Harvard University Press.

954 Perry, S., & Winkler, S. (2022, July 23). Data Set. Retrieved from osf.io/jy3w5

955 Poirier, F. E., & Smith, E. O. (1974). Socializing functions of primate play. *American*

956 *Zoologist*, 14(1), 275–287. <https://doi.org/10.1093/icb/14.1.275>

957 Poole, T. B., & Fish, J. (1976). An investigation of individual, age and sexual differences

958 in the play of *Rattus norvegicus* (Mammalia: Rodentia). *Journal of Zoology*,

959 179(2), 249–259. <https://doi.org/10.1111/j.1469-7998.1976.tb02294.x>

960 Power, T. G. (2000). *Play and Exploration in Children and Animals*. Lawrence Erlbaum

961 Associates.

962 R Core Team. (2019). *R: A Language and Environment for Statistical Computing*. R

963 Foundation for Statistical Computing. <https://www.R-project.org/>

964 Raleigh, M. J., Flannery, J. W., & Ervin, F. R. (1979). Sex differences in behavior among

965 juvenile vervet monkeys (*Cercopithecus aethiops sabaeus*). *Behavioral and Neural*

966 *Biology*, 26(4), 455–465. [https://doi.org/10.1016/S0163-1047\(79\)91482-1](https://doi.org/10.1016/S0163-1047(79)91482-1)

967 Rijksen, H. D. (1978). *A field study on Sumatran Orang utans (Pongo pygmaeus abelii*
968 *Lesson 1827): Ecology, Behaviour and Conservation* [PhD]. Veenman.

969 Rodrigues, M. A. (2014). Emergence of sex-segregated behavior and association patterns
970 in juvenile spider monkeys. *Neotropical Primates*, 21(2), 183–188.
971 <https://doi.org/10.1896/044.021.0204>

972 Rose, L. M. (1994). Sex differences in diet and foraging behavior in white-faced capuchins
973 (Cebus capucinus). *International Journal of Primatology*, 15(1), 95–114.
974 <https://doi.org/10.1007/BF02735236>

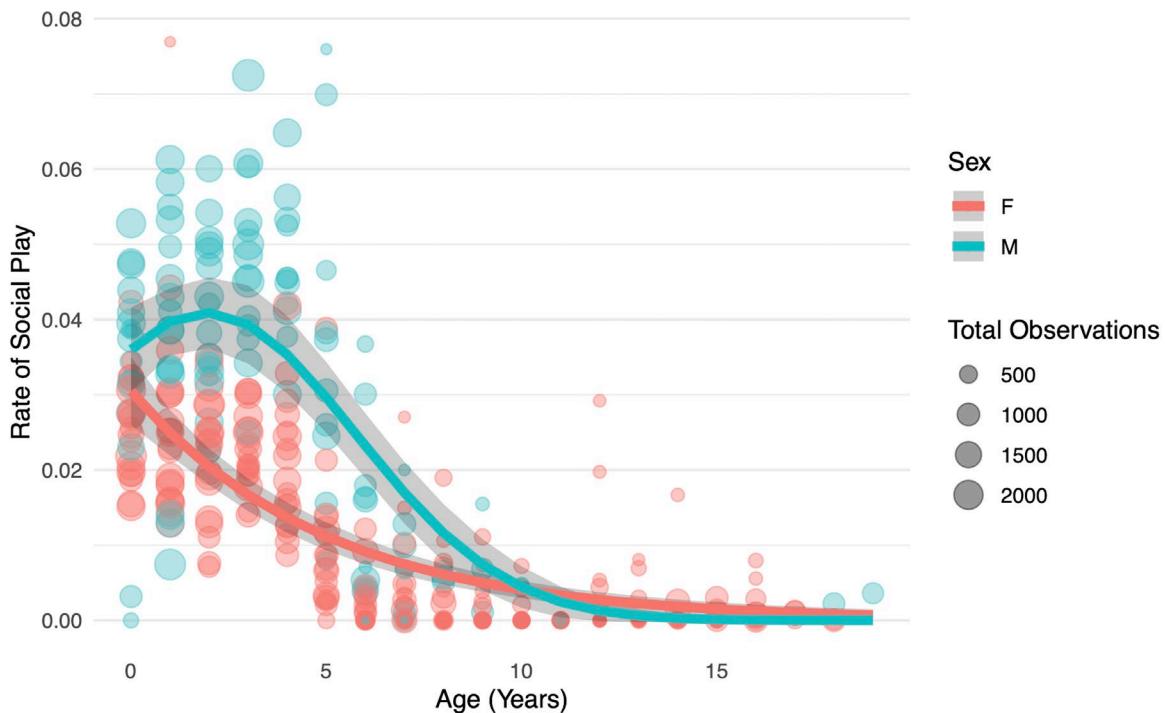
975 Sharpe, L. L. (2005). Play fighting does not affect subsequent fighting success in wild
976 meerkats. *Animal Behaviour*, 69(5), 1023–1029.
977 <https://doi.org/10.1016/j.anbehav.2004.07.013>

978 Silk, J. B. (1993). The evolution of social conflict among female primates. In W. A. Mason
979 & S. P. Mendoza (Eds.), *Primate Social Conflict* (pp. 49–83). State University of
980 New York Press.

981 Smaldino, P. E., Palagi, E., Burghardt, G. M., & Pellis, S. M. (2019). The evolution of two
982 types of play. *Behavioral Ecology*, 30(5), 1388–1397.
983 <https://doi.org/10.1093/beheco/azz090>

984 Špinka, M., Newberry, R. C., & Bekoff, M. (2001). Mammalian play: Training for the
985 unexpected. *The Quarterly Review of Biology*, 76(2), 141–168.
986 <https://doi.org/10.1086/393866>

987 Stevenson, M. F., & Poole, T. B. (1982). Playful interactions in family groups of the
988 common marmoset (*Callithrix jacchus jacchus*). *Animal Behaviour*, 30(3), 886–
989 900. [https://doi.org/10.1016/S0003-3472\(82\)80163-2](https://doi.org/10.1016/S0003-3472(82)80163-2)

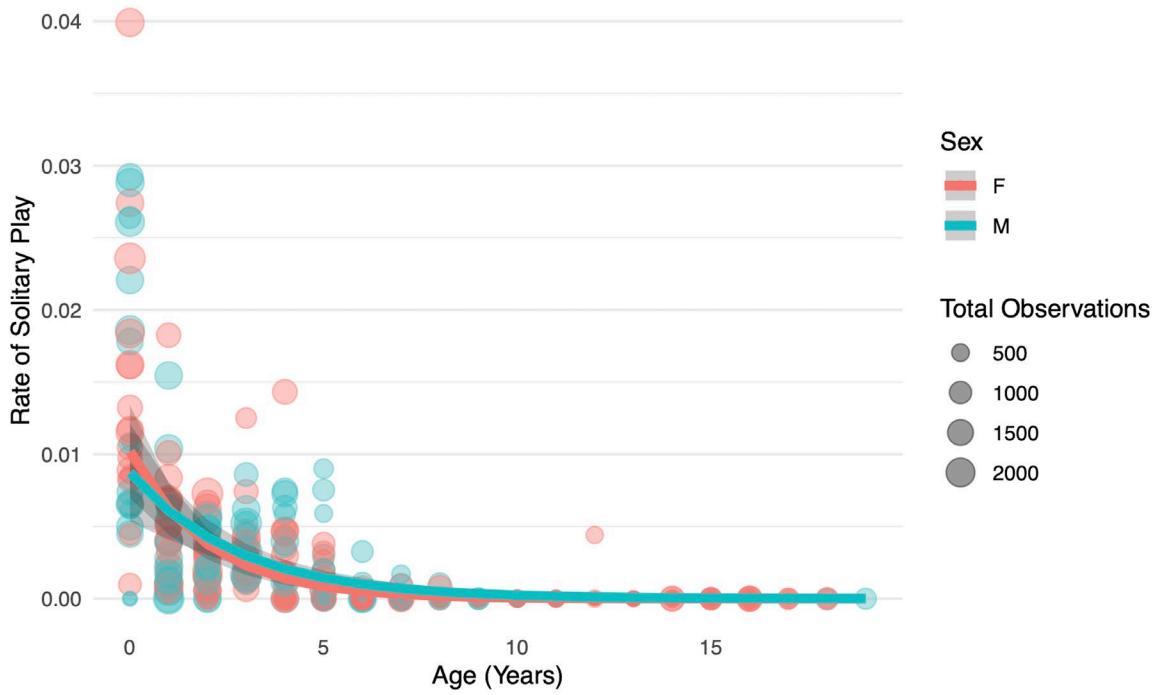

990 Symons, D. (1978). *Play and aggression: A study of rhesus monkeys*. Columbia University
991 Press.

992 Winkler, S., & Perry, S. (2022, July 23). Code for Analysis. Retrieved from osf.io/ybvfg
993

994

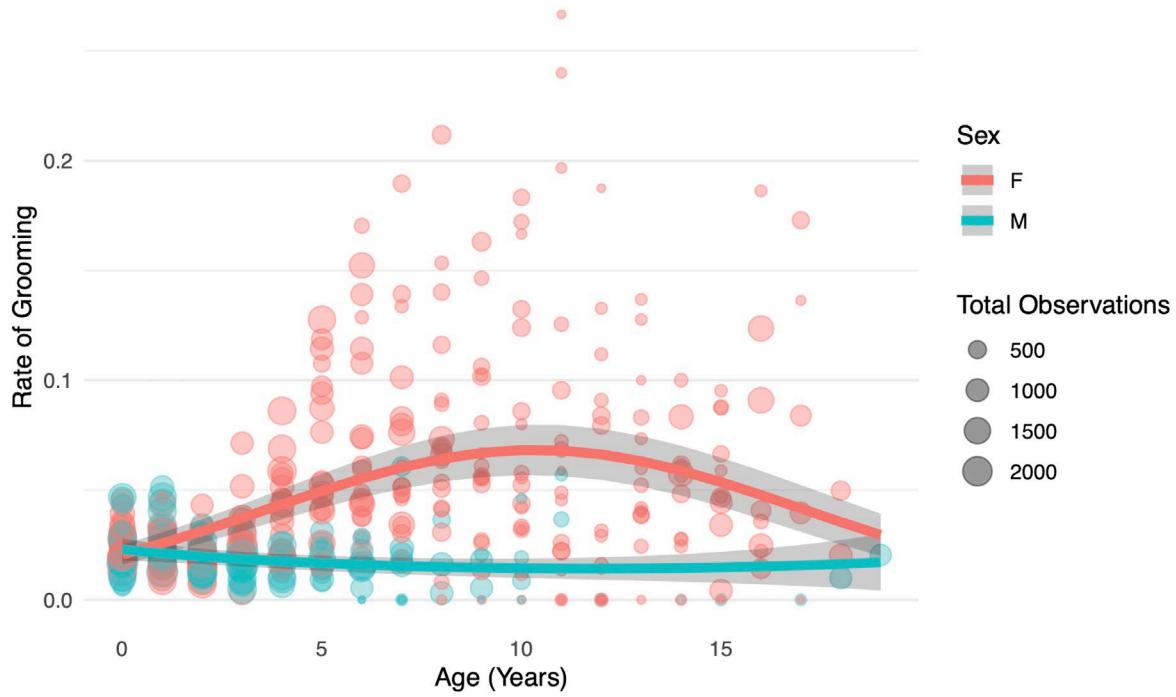
995 FIGURES AND LEGENDS

996 **Figure 1: Social Play Model Predictions.** Rates of social play (as a proportion of the total
 997 point samples per year) are plotted against age in years. The first year of life is coded as 0.
 998 Circles represent the proportion of point samples in which an individual monkey was
 999 engaging in social play in a given year, with the size of the circle representing the total
 1000 number of point samples for the individual in the same year. Lines represent predictions
 1001 from the best regression model chosen from AIC and BIC model comparisons. Shaded
 1002 areas represent bootstrapped 95% confidence intervals of the predictions.



1003

1004


1005 **Figure 2: Solitary Play Model Predictions.** Rates of solitary play (as a proportion of the
 1006 total point samples per year) are plotted against age in years. The first year of life is coded
 1007 as 0. Circles represent the proportion of point samples in which an individual monkey was
 1008 engaging in solitary play in a given year, with the size of the circle representing the total
 1009 number of point samples for the individual in the same year. Lines represent predictions
 1010 from the best regression model chosen from AIC and BIC model comparisons. Shaded
 1011 areas represent bootstrapped 95% confidence intervals of the predictions. Note that the
 1012 outlier from Supporting Information Figure 1 is not displayed in this figure.

1013

1014

1015 **Figure 3: Grooming Model Predictions.** Rates of grooming (as a proportion of the total
 1016 point samples per year) are plotted against age in years. The first year of life is coded as 0.
 1017 Circles represent the proportion of point samples in which an individual monkey was
 1018 engaging in grooming in a given year, with the size of the circle representing the total
 1019 number of point samples for the individual in the same year. Lines represent predictions
 1020 from the best regression model chosen from AIC and BIC model comparisons. Shaded
 1021 areas represent bootstrapped 95% confidence intervals of the predictions.

1022

1023 Supporting information for “The development of sex differences in play in wild
1024 white-faced capuchins (*Cebus capucinus*)”

1025 Sasha Lutz Winkler¹, Susan Emily Perry^{1,2}

1026 ¹Department of Anthropology, University of California, Los Angeles

1027 ²Center for Behavior, Evolution and Culture, University of California, Los Angeles

1028

1029 Information about social groups:

1030 All subjects were born into groups AA, FF, RR, and FL. Over the course of the
1031 study, AA fissioned into AA, FL (in 2003), and CE (in 2012). FF fissioned into FF and RF
1032 (in 2007). RR fissioned into RR, MK (in 2004), DI (in 2012), SP in (1999-2000), and LB (in
1033 2010). MK later fissioned into MK and CU (in 2007). The original name was kept by the
1034 larger group after each fission event.

1035 For detailed demographic information about the groups for each subject-year,
1036 please see the Supporting Information Table 13 at the end of this document.

1037
1038
1039**Supporting Information Table 1: Relationship between general hypotheses and specific predictions grounded in *Cebus capucinus* natural history.**

Hypothesis	Proposed benefit of play	Sex difference prediction: Social play	Sex difference prediction: solitary locomotor play	Sex difference prediction: solitary object play	Results support?
Practice – motor training	By practicing “serious” behaviors in a safe setting, play is a low-cost way to develop physical skills necessary to engage in future behavior	Males should play at higher rates than females because fighting is more important for their RS.	No sex difference expected	No sex difference expected	Social play results support this; solitary play results are consistent
Bonding – formation and maintenance of bonds with particular individuals for particular purposes, using fitness-relevant behaviors	Social play allows animals to form bonds with individuals who might be critical cooperation partners in future fitness-enhancement endeavors	Young males are predicted to play more with other young males, who will become their future co-migrants and allies in coalitionary takeovers. Females are predicted to groom more, particularly with other females and alpha males, who will become their long-term allies.	Not relevant	Not relevant	Social play results do not strongly support but are consistent with interpretations of this hypothesis.
Bonding – learning social skills to form bonds in the future	Social play and grooming allow animals to learn generalizable social skills such that they are more socially savvy and can more easily form new social bonds as adults	Males should have higher rates of social play than females (particularly with males), as they are the dispersing sex who needs to integrate into new groups and form new cooperative alliances.	Not relevant	Not relevant	Social play and grooming results consistent with expectations.

1040

1041 **Supporting Information Table 2: Ethogram of Behaviors.**

Behavior	Specific examples	Ethogram Definition
Social Play	Play Bite	One monkey gently mouths another monkey, generally in the context of play wrestling.
	Play Chase	One monkey gallops in pursuit of another monkey, generally with a bouncy gait, and with no accompanying vocalizations. Play chases are often invited by running away and looking over the shoulder at the other monkey.
	Play Flee	In the context of other play behaviors, one monkey runs away from another monkey, who is typically chasing him/her.
	Play Hit	A monkey slaps another monkey with a slow, exaggerated motion, generally in the context of play wrestling.
	Play Invite/Play Face	The monkey's mouth is open, and the teeth do not show, with the exception of the tips of the canines.
	Play Bounce/Jump	In the context of other play behaviors, the monkey bounces up and down, either on a branch or on the ground.
	Play Pull	In the context of other play behaviors, one monkey grabs some body part (usually a limb) of another monkey and pulls on it.
	Play Overlord	In the context of other play behaviors, one monkey gets on the back of another monkey and clasps his/her hands around the bottom monkey's chest so that their heads are stacked on top of one another.
	Play Push	In the context of other play behaviors, one monkey shoves another monkey.
	Play Lunge	A play lunge is identical to an aggressive lunge, except that it is always performed in silence and in the context of other play behaviors.
	Play Threat	In the context of other play behaviors, the monkey opens the mouth so that the teeth are visible, lays the ears back, and stares at another monkey.

	Play Pounce On	Leap on top of another monkey in a play bout.
	Play Wrestle	Two or more monkeys grapple in slow motion with their arms, legs, and sometimes tail, in silence.
	Play Wrestle While Hanging from Tails	Two monkeys hang by their tails, swatting at and grappling with one another (a.k.a. "chicken fight").
<i>Solitary Play</i>		A monkey engages in object manipulations for no obvious foraging purpose, or engages in extraneous, sometimes exaggerated body movements that seem to serve no obvious purpose for locomotion, foraging, care of the body (comfort or hygiene), or social interaction (a.k.a. "solo play").
<i>Grooming</i>		One monkey picks through the hair of another monkey with the hands and/or mouth; the recipient of this behavior is generally in a reclining posture.

1042
1043

1044

Supporting Information Table 3: All Models for Social Play, with Best Model in Bold.

Model object name	Model formula	df	AIC	BIC
mod_sp_poisson	glmmTMB(socialplay ~ sex + age + sex*age + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	5	3164.439	3184.434
mod_sp_nbinom1	glmmTMB(socialplay ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	6	2213.815	2237.809
mod_sp_nbinom2	glmmTMB(socialplay ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	6	2253.180	2277.173
mod_sp_quad_poisson	glmmTMB(socialplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	7	2822.432	2850.425
mod_sp_quadandnbinom1	glmmTMB(socialplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	8	2190.446	2222.437
mod_sp_quadandnbinom2	glmmTMB(socialplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	8	2249.053	2281.045
mod_sp_quadandnbinom1_group	glmmTMB(socialplay ~ sex + age + sex*age + age2 + age2*sex + (1 Natal_group / subject), data=all_data, family="nbinom1", offset=log(totalobs))	9	2192.446	2228.436

1045

1046 **Supporting Information Table 4: Social Play Best Model Results**

<i>Dependent variable:</i> Social Play Observations				
	Estimate	Std. Error	Z Value	P Value
Sex (Male)	0.166	0.108	1.54	0.122
Age (Years)	-0.201	0.032	-6.27	<0.001
Age ²	<0.001	0.003	0.00	0.997
Sex*Age	0.334	0.060	5.53	<0.001
Sex*Age ²	-0.034	0.008	-4.53	<0.001
Constant	-3.491	0.074	-47.48	<0.001
Random effect (Subject)	Variance 0.024	Std. Dev 0.154		
Observations (# subject-years)	403			
Groups (# subject animals)	38			
Log Likelihood	-1087.2			
Akaike Inf. Crit.	2190.4			
Bayesian Inf. Crit	2222.4			

1047 **Model formula:** mod_sp_quadandnb1 = glmmTMB(socialplay ~ sex + age +
1048 sex*age + age2 + age2*sex + (1 | subject), data=all_data, family="nb1",
1049 offset=log(totalobs))
1050 **Dispersion parameter for nb1 family:** 5.27
1051
1052

1053 Supporting Information Table 5: Predicted Values and Simple Effects from Best

1054 **Social Play Model.** The maximum predicted values for each column are in bold.

Age	Predicted rate for females	Predicted rate for males	Sex difference in rate prediction (M-F)	Rate ratio (M/F)	P-value for the rate ratio
0	0.031	0.036	0.006	1.18	0.123
1	0.025	0.040	0.015	1.59	<0.001
2	0.020	0.041	0.021	2.01	<0.001
3	0.017	0.039	0.023	2.36	<0.001
4	0.014	0.035	0.022	2.59	<0.001
5	0.011	0.030	0.019	2.66	<0.001
6	0.009	0.023	0.014	2.54	<0.001
7	0.007	0.017	0.010	2.27	<0.001
8	0.006	0.012	0.005	1.90	0.001
9	0.005	0.007	0.002	1.48	0.119
10	0.004	0.004	<0.001	1.08	0.821
11	0.003	0.002	-0.001	0.733	0.471
12	0.003	0.001	-0.001	0.465	0.161
13	0.002	0.001	-0.002	0.276	0.057
14	0.002	<0.001	-0.002	0.153	0.023
15	0.002	<0.001	-0.001	0.079	0.010
16	0.001	<0.001	-0.001	0.038	0.005
17	0.001	<0.001	-0.001	0.017	0.003
18	0.001	<0.001	-0.001	0.007	0.002
19	0.001	<0.001	-0.001	0.003	0.001

1055

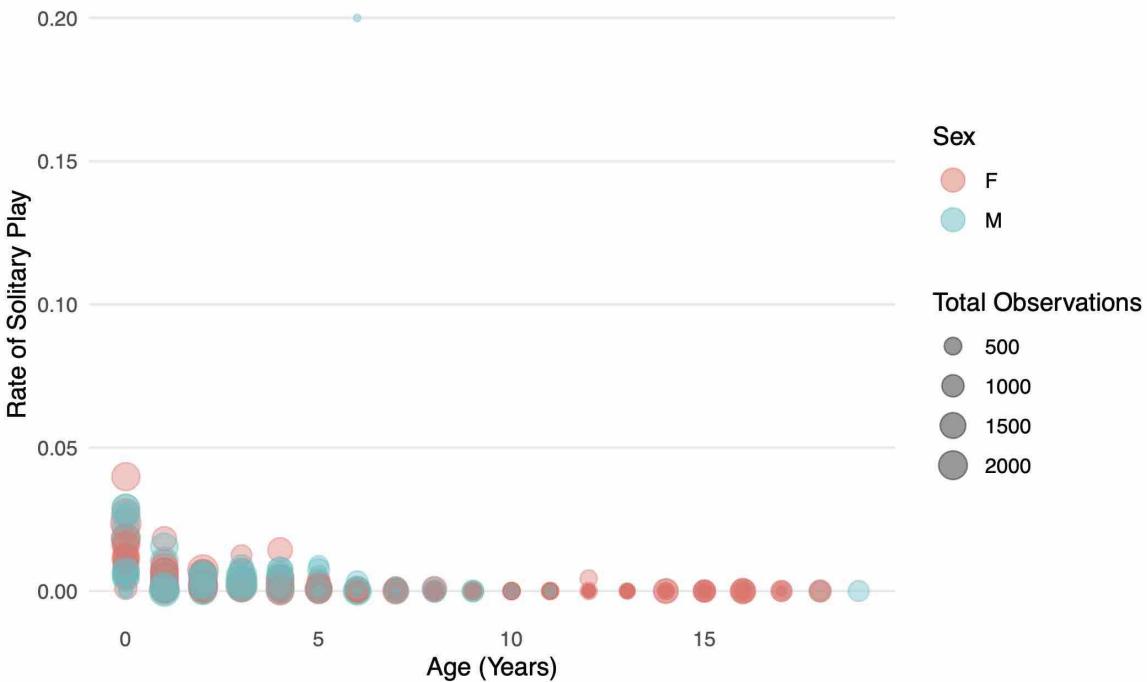
1056 **Supporting Information Table 6: All Models for Solitary Play, with Best Model in**
 1057 **Bold.**
 1058

Model object name	Model formula	df	AIC	BIC
mod_wp_poisson	glmmTMB(soloplay ~ sex + age + sex*age + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	5	1321.402	1341.396
mod_wp_nbinom1	glmmTMB(soloplay ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	6	1167.629	1191.622
mod_wp_nbinom2	glmmTMB(soloplay ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	6	1152.304	1176.298
mod_wp_quad_poisson	glmmTMB(soloplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	7	1316.548	1344.540
mod_wp_quadandnbinom1	glmmTMB(soloplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	8	1169.274	1201.265
mod_wp_quadandnbinom2	glmmTMB(soloplay ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	8	1156.274	1188.265
mod_wp_nbinom2_group	glmmTMB(soloplay ~ sex + age + sex*age + (1 Natal_group / subject), data=all_data, family="nbinom2", offset=log(totalobs))	7	1153.217	1181.210

1059

1060 **Supporting Information Table 7: Solitary Play Best Model Results.**

<i>Dependent variable:</i> Social Play Observations				
	Estimate	Std. Error	Z Value	P Value
Sex (Male)	-0.155	0.237	-0.653	0.513
Age (Years)	-0.495	0.038	-12.866	<0.001
Sex*Age	0.134	0.059	2.290	0.022
Constant	-4.585	0.162	-28.273	<0.001
Random effect (Subject)	Variance 0.241	Std. Dev 0.491		
Observations (# subject-years)	403			
Groups (# subject animals)	38			
Log Likelihood	-570.2			
Akaike Inf. Crit.	1152.3			
Bayesian Inf. Crit	1176.3			


1061 **Model formula:** mod_wp_nbinom2 = glmmTMB(soloplay ~ sex + age + sex*age + (1 |
 1062 subject), data=all_data, family="nbinom2", offset=log(totalobs))
 1063 **Dispersion parameter for nbinom2 family:** 2.41

1064
1065
1066**Supporting Information Table 8: Predicted Values and Simple Effects from Best Solitary Play Model.** The maximum predicted values for each column are in bold.

Age	Predicted rate for females	Predicted rate for males	Sex difference in rate prediction (M-F)	Rate ratio (M/F)	P-value for the rate ratio
0	0.010	0.009	-0.001	0.856	0.513
1	0.006	0.006	<0.001	0.979	0.922
2	0.004	0.004	<0.001	1.12	0.573
3	0.002	0.003	<0.001	1.28	0.232
4	0.001	0.002	<0.001	1.47	0.095
5	0.001	0.001	<0.001	1.68	0.049
6	0.001	0.001	<0.001	1.92	0.032
7	<0.001	0.001	<0.001	2.19	0.024
8	<0.001	<0.001	<0.001	2.51	0.021
9	<0.001	<0.001	<0.001	2.87	0.019
10	<0.001	<0.001	<0.001	3.28	0.018
11	<0.001	<0.001	<0.001	3.76	0.018
12	<0.001	<0.001	<0.001	4.30	0.017
13	<0.001	<0.001	<0.001	4.91	0.017
14	<0.001	<0.001	<0.001	5.62	0.017
15	<0.001	<0.001	<0.001	6.43	0.017
16	<0.001	<0.001	<0.001	7.36	0.017
17	<0.001	<0.001	<0.001	8.41	0.017
18	<0.001	<0.001	<0.001	9.62	0.017
19	<0.001	<0.001	<0.001	11.00	0.018

1067

1068

1069

1070 **Supporting Information Figure 1: Solitary Play Rates with Outlier.** Rates of solitary
 1071 play (as a proportion of the total point samples per year) are plotted against age in years.
 1072 The first year of life is coded as 0. Circles represent the proportion of point samples in
 1073 which an individual monkey was engaging in solitary play in a given year, with the size of
 1074 the circle representing the total number of point samples for the individual in the same
 1075 year. In this figure, the outlier (male with solitary play in 1 of 5 point samples taken at age
 1076 6) can be clearly seen. The outlier was included in all analyses but removed from Figure 2
 1077 in order to better visualize the model predictions.

1078

1079 **Supporting Information Table 9: All Models for Grooming, with Best Model in Bold.**

Model object name	Model formula	df	AIC	BIC
mod_sm_poisson	glmmTMB(grooming ~ sex + age + sex*age + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	5	5312.341	5332.335
mod_sm_nbinom1	glmmTMB(grooming ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	6	3197.045	3221.038
mod_sm_nbinom2	glmmTMB(grooming ~ sex + age + sex*age + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	6	3108.442	3132.436
mod_sm_quad_poisson	glmmTMB(grooming ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="poisson", offset=log(totalobs))	7	4396.149	4424.141
mod_sm_quadandnbinom1	glmmTMB(grooming ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom1", offset=log(totalobs))	8	3079.303	3111.294
mod_sm_quadandnbinom2	glmmTMB(grooming ~ sex + age + sex*age + age2 + age2*sex + (1 subject), data=all_data, family="nbinom2", offset=log(totalobs))	8	3048.858	3080.849
mod_sm_quadandnbinom2_group	glmmTMB(grooming ~ sex + age + sex*age + age2 + age2*sex + (1 Natal_group / subject), data=all_data, family="nbinom2", offset=log(totalobs))	9	3050.858	3086.848

1080 **Supporting Information Table 10: Grooming Best Model Results.**

<i>Dependent variable:</i> Social Play Observations				
	Estimate	Std. Error	Z Value	P Value
Sex (Male)	0.105	0.153	0.69	0.492
Age (Years)	0.232	0.022	10.77	<0.001
Age ²	-0.011	0.001	-8.56	<0.001
Sex*Age	-0.313	0.041	-7.65	<0.001
Sex*Age ²	0.015	0.003	5.59	<0.001
Constant	-3.883	0.101	-38.26	<0.001
Random effect (Subject)	Variance 0.097	Std. Dev 0.312		
Observations (# subject-years)	403			
Groups (# subject animals)	38			
Log Likelihood	-1516.4			
Akaike Inf. Crit.	3048.9			
Bayesian Inf. Crit	3080.8			

1081 **Model formula:** mod_sm_quadandnbnom2 = glmmTMB(grooming ~ sex + age +
 1082 sex*age + age2 + age2*sex + (1 | subject), data=all_data, family="nbnom2",
 1083 offset=log(totalobs))

1084 **Dispersion parameter for nbnom2 family:** 4.91

1085

1086

1087
 1088 **Supporting Information Table 11: Predicted Values and Simple Effects from Best**
 1089 **Grooming Model.** The maximum predicted values (before rounding) for each column are
 1090 in bold.

Age	Predicted rate for females	Predicted rate for males	Sex difference in rate prediction (M-F)	Rate ratio (M/F)	P-value for the rate ratio
0	0.021	0.023	0.002	1.11	0.492
1	0.026	0.021	-0.005	0.825	0.153
2	0.031	0.020	-0.012	0.63	<0.001
3	0.037	0.019	-0.019	0.496	<0.001
4	0.044	0.018	-0.026	0.402	<0.001
5	0.050	0.017	-0.033	0.336	<0.001
6	0.055	0.016	-0.039	0.288	<0.001
7	0.060	0.015	-0.045	0.255	<0.001
8	0.064	0.015	-0.049	0.233	<0.001
9	0.067	0.015	-0.052	0.218	<0.001
10	0.068	0.014	-0.054	0.211	<0.001
11	0.068	0.014	-0.054	0.21	<0.001
12	0.066	0.014	-0.052	0.215	<0.001
13	0.063	0.014	-0.050	0.227	<0.001
14	0.059	0.015	-0.044	0.246	<0.001
15	0.054	0.015	-0.039	0.275	<0.001
16	0.048	0.015	-0.033	0.317	<0.001
17	0.042	0.016	-0.026	0.376	0.003
18	0.035	0.016	-0.019	0.459	0.041
19	0.030	0.017	-0.013	0.578	0.205

1091

1092
1093
1094**Supporting Information Table 12:** Percentage of point samples having same-sex partners for each focal animal

subject	sex	n female social play partners	n male social play partners	% social play partners of same sex	n female grooming partners	n male grooming partners	% grooming partners of same sex
CD	f	92	46	66.67	909	344	72.55
CH	f	116	71	62.03	259	120	68.34
CS	f	76	48	61.29	695	343	66.96
DA	f	112	85	56.85	573	217	72.53
DR	f	84	38	68.85	235	74	76.05
DT	f	69	61	53.08	484	163	74.81
DW	f	98	140	41.18	535	485	52.45
EI	f	37	58	38.95	209	168	55.44
KT	f	93	46	66.91	423	171	71.21
KY	f	108	86	55.67	315	102	75.54
MB	f	95	99	48.97	551	322	63.12
MW	f	98	37	72.59	484	198	70.97
RH	f	103	72	58.86	274	104	72.49
SP	f	24	22	52.17	63	3	95.45
SY	f	99	40	71.22	211	92	69.64
TD	f	82	38	68.33	342	83	80.47
TH	f	77	51	60.16	234	88	72.67
UZ	f	26	20	56.52	52	2	96.3
VD	f	62	64	49.21	331	100	76.8
VU	f	110	76	59.14	315	49	86.54
AH	m	33	116	77.85	62	17	21.52
CA	m	46	241	83.97	193	95	32.99
DK	m	36	261	87.88	191	97	33.68
JA	m	61	226	78.75	156	35	18.32
LT	m	69	204	74.73	127	103	44.78
MN	m	54	205	79.15	159	28	14.97
MZ	m	70	153	68.61	172	29	14.43
NB	m	21	65	75.58	91	18	16.51
OB	m	0	0	0	4	0	0
OW	m	96	156	61.9	165	17	9.34

RU	m	84	281	76.99	81	39	32.5
SR	m	58	210	78.36	128	95	42.6
TU	m	84	252	75	84	22	20.75
UG	m	44	186	80.87	63	34	35.05
WI	m	25	106	80.92	65	29	30.85
WM	m	36	258	87.76	157	51	24.52
WT	m	0	4	100	9	0	0
YA	m	66	369	84.83	277	54	16.31

1095

1096 **Supporting Information Table 13: Information about demographic variation for each**
 1097 **focal monkey as it ages.**

1098 The table below reports the number of individuals in each demographic category
 1099 for each focal animal during each year of life. Focal age is reported in years of life (0 being
 1100 the first year of life from birth to age 1 year, and so on, with focal age 5 being the 6th year
 1101 of life). Immatures are defined as <6 years of age and adults are defined as 6 years and
 1102 older.

1103 To summarize the contents of the raw data table:

	average	SD
Ratio of adult females: adult males for male subjects	1.16	0.42
Ratio of adult females: adult males for female subjects	1.94	1.10
Ratio of immature females: immature males for male subjects*	0.85	0.42
Ratio of immature females: immature males for female subjects	1.17	0.98

1104 *This omits 8 cases in which the denominator (# males) was zero.

1105

Subject	Sex	Age	Mean # immature males	Mean # immature females	Mean # adult males	Mean # adult females
CD	f	0	7	6	7	9
CD	f	1	7	9	7	10
CD	f	2	5	9	9	11
CD	f	3	6	10	10	11
CD	f	4	6	11	9	10
CD	f	5	3	4	4	7
CD	f	6	4	4	3	7
CD	f	7	6	3	3	9
CD	f	8	5	5	3	9
CD	f	9	7	5	3	9
CD	f	10	6	4	2	6
CD	f	11	6	3	3	6
CD	f	12	5	1	2	6
CD	f	13	3	1	2	6
CD	f	14	3	3	2	7
CD	f	15	3	3	2	7
CD	f	16	5	3	2	7
CD	f	17	6	3	3	7
CH	f	0	9	9	10	9
CH	f	1	9	7	6	9
CH	f	2	1	6	2	5
CH	f	3	2	7	3	5
CH	f	4	2	6	3	5

CH	f	5	1	1	1	2
CH	f	6	1	0	1	3
CH	f	7	2	0	1	3
CH	f	8	3	1	2	3
CH	f	9	4	1	2	2
CH	f	10	3	2	2	2
CH	f	11	4	3	2	4
CH	f	12	3	3	4	5
CS	f	1	9	8	10	8
CS	f	2	9	9	10	9
CS	f	3	8	7	6	9
CS	f	4	1	6	3	5
CS	f	5	2	7	3	5
CS	f	6	1	6	3	5
CS	f	7	1	1	1	2
CS	f	8	1	0	1	3
CS	f	9	3	1	1	3
CS	f	10	3	1	2	3
CS	f	11	4	1	2	3
DA	f	0	11	7	7	9
DA	f	1	9	7	9	9
DA	f	2	4	5	4	5
DA	f	3	4	6	3	5
DA	f	4	4	7	3	7
DA	f	5	4	8	4	6
DA	f	6	6	7	3	8
DA	f	7	6	8	2	8
DA	f	8	7	9	2	7
DA	f	9	8	8	2	10
DA	f	10	10	8	2	11
DA	f	11	12	7	2	9
DA	f	12	10	5	7	9
DA	f	13	6	4	7	7
DA	f	14	3	3	4	7
DA	f	15	5	4	4	8
DA	f	16	4	4	5	8
DA	f	17	4	3	6	8
DR	f	0	7	9	7	9
DR	f	1	6	9	8	11
DR	f	2	6	9	10	11
DR	f	3	6	11	9	11
DR	f	4	3	5	5	7
DR	f	5	4	5	3	7
DR	f	6	6	3	3	9
DR	f	7	5	5	3	9
DR	f	8	7	5	3	9
DT	f	0	5	6	3	6
DT	f	1	4	8	3	7

DT	f	2	4	7	4	7
DT	f	3	6	7	2	8
DT	f	4	7	8	2	8
DT	f	5	7	9	2	8
DT	f	6	8	8	3	10
DT	f	7	11	8	2	10
DT	f	8	11	6	5	8
DT	f	9	9	5	8	9
DT	f	10	5	3	6	7
DT	f	11	4	4	4	7
DT	f	12	5	4	4	8
DT	f	13	4	4	5	8
DT	f	14	3	4	4	7
DW	f	0	9	8	10	8
DW	f	1	9	9	10	9
DW	f	2	11	6	6	8
DW	f	3	9	5	5	5
DW	f	4	8	5	8	6
DW	f	5	9	5	8	6
DW	f	6	9	4	7	8
DW	f	7	10	5	9	8
DW	f	8	7	6	7	7
DW	f	9	5	7	6	8
DW	f	10	7	8	6	9
DW	f	11	3	4	4	4
DW	f	12	2	3	2	3
DW	f	13	3	2	2	3
DW	f	15	2	2	1	4
DW	f	16	1	3	2	4
DW	f	17	3	4	3	4
DW	f	18	4	4	3	4
EI	f	0	4	3	4	3
EI	f	1	5	2	4	5
EI	f	2	6	4	4	5
EI	f	3	5	3	5	4
EI	f	4	6	3	4	3
EI	f	5	7	3	3	3
EI	f	6	5	5	5	4
EI	f	7	5	5	5	3
EI	f	8	5	6	6	4
EI	f	9	4	7	7	4
EI	f	10	5	7	6	5
EI	f	11	6	7	6	5
EI	f	12	8	6	6	6
EI	f	13	10	5	5	8
EI	f	14	12	5	3	10
EI	f	15	14	5	3	10
KT	f	0	6	9	8	10

KT	f	1	5	9	9	11
KT	f	2	6	11	10	11
KT	f	3	4	10	7	8
KT	f	4	1	8	4	3
KT	f	5	3	7	4	6
KT	f	6	5	6	4	7
KT	f	7	7	7	3	7
KT	f	8	8	5	2	10
KT	f	9	8	6	4	10
KT	f	10	8	6	3	10
KT	f	11	4	3	6	11
KT	f	12	4	3	5	9
KT	f	13	6	3	5	9
KT	f	14	8	2	6	9
KT	f	15	11	0	6	10
KY	f	0	4	6	3	5
KY	f	1	4	6	3	7
KY	f	2	4	9	3	7
KY	f	3	5	6	3	7
KY	f	4	6	7	2	8
KY	f	5	7	9	2	7
KY	f	6	8	8	2	9
KY	f	7	9	9	3	11
KY	f	8	5	5	1	7
KY	f	9	4	3	3	4
KY	f	10	4	4	3	4
KY	f	11	3	3	4	5
KY	f	12	4	2	5	5
KY	f	13	7	2	5	5
KY	f	14	5	2	6	5
KY	f	15	4	3	4	4
MB	f	0	9	8	10	8
MB	f	1	9	9	10	9
MB	f	2	11	6	6	8
MB	f	3	9	5	6	5
MB	f	4	8	5	8	6
MB	f	5	9	5	8	6
MB	f	6	9	4	7	8
MB	f	7	10	5	9	8
MB	f	8	7	6	7	7
MB	f	9	5	7	6	8
MB	f	10	7	8	6	9
MB	f	11	7	4	7	5
MB	f	12	5	4	8	6
MB	f	13	9	4	3	6
MB	f	14	2	2	2	4
MB	f	15	6	0	2	6
MB	f	16	5	1	4	6

MB	f	17	3	3	5	4
MB	f	18	3	3	4	4
MW	f	0	7	8	7	9
MW	f	1	6	9	8	10
MW	f	2	5	9	9	11
MW	f	3	6	11	10	11
MW	f	4	4	10	7	8
MW	f	5	1	8	4	3
MW	f	6	2	7	4	5
MW	f	7	5	6	4	7
MW	f	8	7	7	3	7
MW	f	9	9	5	2	10
MW	f	10	8	6	3	9
MW	f	11	8	6	3	10
MW	f	12	5	4	7	11
MW	f	13	4	3	5	9
MW	f	14	6	3	5	9
MW	f	15	8	2	6	9
MW	f	16	10	1	6	9
MW	f	17	9	2	3	7
RH	f	0	7	9	7	9
RH	f	1	6	9	8	11
RH	f	2	6	9	10	11
RH	f	3	6	11	10	11
RH	f	4	2	8	4	4
RH	f	5	2	8	4	4
RH	f	6	3	7	4	6
RH	f	7	5	6	4	7
RH	f	8	7	6	3	8
RH	f	9	9	5	2	10
RH	f	10	8	6	3	10
RH	f	11	7	5	4	11
RH	f	12	3	3	6	10
RH	f	13	5	3	5	9
RH	f	14	7	3	6	9
RH	f	15	10	1	6	10
RH	f	16	10	2	5	8
SP	f	0	9	9	10	9
SP	f	1	10	9	10	9
SY	f	0	7	7	7	9
SY	f	1	7	9	7	10
SY	f	2	5	9	9	11
SY	f	3	6	10	10	11
SY	f	4	6	11	9	10
SY	f	5	1	7	3	3
SY	f	6	2	7	4	5
SY	f	7	4	7	4	6
SY	f	8	6	7	4	7

SY	f	9	8	6	2	8
SY	f	10	9	5	2	10
SY	f	11	8	6	4	10
SY	f	12	6	5	4	10
SY	f	13	3	2	5	10
TD	f	0	10	7	7	10
TD	f	1	1	5	2	5
TD	f	2	2	6	3	5
TD	f	3	2	7	3	5
TD	f	4	2	5	3	4
TD	f	5	3	6	3	4
TD	f	6	3	6	3	5
TD	f	7	3	5	3	4
TD	f	8	7	5	4	5
TD	f	9	6	6	5	6
TD	f	10	7	4	5	6
TD	f	11	7	2	5	6
TD	f	12	6	2	7	5
TD	f	13	6	3	4	5
TD	f	14	3	4	4	5
TD	f	15	2	4	3	5
TD	f	16	3	3	3	5
TH	f	0	7	9	7	9
TH	f	1	6	9	8	11
TH	f	2	6	9	10	11
TH	f	3	6	11	9	11
TH	f	4	3	5	4	7
TH	f	5	4	4	3	7
TH	f	6	6	3	3	9
TH	f	7	5	5	3	9
TH	f	8	7	5	3	9
TH	f	9	7	5	3	7
TH	f	10	6	3	3	6
TH	f	11	6	2	2	6
TH	f	12	3	1	2	6
TH	f	13	3	2	2	7
TH	f	14	3	3	2	7
TH	f	15	6	3	2	7
TH	f	16	5	4	3	7
UZ	f	1	9	8	10	8
UZ	f	2	9	9	10	9
VD	f	0	4	6	3	5
VD	f	1	4	6	3	7
VD	f	2	4	8	4	6
VD	f	3	5	7	3	8
VD	f	4	6	8	2	8
VD	f	5	7	9	2	7
VD	f	6	8	8	2	9

VD	f	7	9	8	3	11
VD	f	8	12	7	2	9
VD	f	9	10	5	7	9
VD	f	10	7	4	8	8
VD	f	11	5	3	6	8
VU	f	0	12	7	7	10
VU	f	1	10	7	10	9
VU	f	2	5	5	5	6
VU	f	3	4	6	3	5
VU	f	4	4	6	3	7
VU	f	5	4	9	3	7
VU	f	6	5	6	3	8
VU	f	7	6	7	2	8
VU	f	8	7	9	2	7
VU	f	9	8	9	2	9
VU	f	10	9	9	3	11
VU	f	11	11	7	1	10
AH	m	0	6	9	8	11
AH	m	1	6	9	10	11
AH	m	2	7	11	10	11
CA	m	1	11	7	8	9
CA	m	2	9	7	9	8
CA	m	3	4	5	4	5
CA	m	4	4	6	3	5
CA	m	5	4	7	3	7
CA	m	6	4	8	4	6
CA	m	7	8	5	7	8
CA	m	8	10	5	9	8
CA	m	9	7	6	7	7
CA	m	10	6	7	5	7
CA	m	11	7	8	6	8
CA	m	12	5	7	6	6
CA	m	13	6	6	7	7
CA	m	14	5	5	8	7
CA	m	15	6	2	8	8
CA	m	16	6	3	7	8
CA	m	17	7	3	8	9
CA	m	18	3	3	5	4
CA	m	19	3	3	4	4
DK	m	0	11	7	7	9
DK	m	1	10	5	5	5
DK	m	2	8	5	7	6
DK	m	3	8	5	8	6
DK	m	4	9	4	7	8
DK	m	5	10	5	8	8
DK	m	6	6	3	8	4
DK	m	7	2	0	4	0
JA	m	0	11	7	7	9

JA	m	1	9	7	9	9
JA	m	2	4	3	4	5
JA	m	3	3	3	4	3
JA	m	4	5	2	4	5
JA	m	5	6	3	4	5
JA	m	6	5	4	5	4
JA	m	7	5	3	6	3
LT	m	0	4	3	3	3
LT	m	1	5	3	4	4
LT	m	2	6	3	4	5
LT	m	3	6	4	5	4
LT	m	4	5	3	4	3
LT	m	5	7	3	4	3
LT	m	6	6	3	4	3
LT	m	7	5	5	5	3
LT	m	8	5	6	6	4
LT	m	9	4	7	7	4
LT	m	10	6	7	7	4
MN	m	0	12	7	6	10
MN	m	1	10	7	9	9
MN	m	2	6	5	5	6
MN	m	3	4	6	3	5
MN	m	4	5	6	3	6
MZ	m	0	4	6	3	7
MZ	m	1	4	9	3	7
MZ	m	2	5	6	3	8
MZ	m	3	6	7	2	8
MZ	m	4	7	9	2	7
MZ	m	5	8	8	2	9
MZ	m	6	8	9	3	10
NB	m	0	11	7	8	9
NB	m	1	9	7	9	8
NB	m	2	4	4	4	5
OB	m	0	7	4	6	6
OW	m	0	4	6	3	5
OW	m	1	4	6	3	7
OW	m	2	4	9	4	7
OW	m	3	5	6	3	8
RU	m	0	9	9	10	8
RU	m	1	10	8	10	9
RU	m	2	11	6	6	7
RU	m	3	9	5	6	5
RU	m	4	8	5	8	6
RU	m	5	9	5	7	6
RU	m	6	1	0	3	0
RU	m	7	0	0	4	0
RU	m	9	0	0	2	0
RU	m	10	0	0	3	0

SR	m	0	11	7	7	9
SR	m	1	10	5	5	5
SR	m	2	8	5	8	6
SR	m	3	8	5	8	6
SR	m	4	9	4	7	8
SR	m	5	10	5	8	8
SR	m	6	6	3	8	4
SR	m	7	2	0	4	0
TU	m	0	11	7	8	9
TU	m	1	8	6	8	8
TU	m	2	3	2	2	3
TU	m	3	4	3	4	4
TU	m	4	5	2	4	5
TU	m	5	6	4	4	5
TU	m	6	5	4	6	4
UG	m	0	9	9	10	9
UG	m	1	11	7	7	9
UG	m	2	10	5	5	5
UG	m	3	8	5	8	6
WI	m	0	9	8	9	8
WI	m	1	9	9	10	9
WI	m	2	11	7	8	10
WI	m	3	11	5	5	6
WM	m	0	9	9	10	9
WM	m	1	11	7	6	9
WM	m	2	10	5	5	5
WM	m	3	8	5	8	6
WM	m	4	9	5	8	6
WM	m	5	9	4	7	6
WM	m	6	0	0	4	0
WM	m	7	0	0	4	0
WT	m	0	4	2	2	3
YA	m	0	12	7	6	10
YA	m	1	10	7	9	9
YA	m	2	7	5	7	7
YA	m	3	4	6	3	5
YA	m	4	4	6	3	6
YA	m	5	4	8	3	7
YA	m	6	5	6	4	7
YA	m	7	10	5	8	8
YA	m	8	8	5	8	7
YA	m	9	6	6	5	7
YA	m	10	7	8	6	8
YA	m	11	8	8	6	7

1106

1107

1108