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The particles in condensed matter physics are almost characterized by Brownian motion.

This phenomenon is the basis for a very important understanding of the particles motion
in condensed matter. For our previous research, there is already applied and confirmed

the complex fractal correction which includes influence of parameters from grains and

pores surface and also effects based on particles’ Brownian motion. As a chaotic struc-
ture of these motions, we have very complex research results regarding the particles’

trajectories in three-dimension (3D). In our research paper, we applied fractal interpola-

tion within the idea to reconstruct the above mentioned trajectories in two dimensions
at this stage. Because of the very complex fractional mathematics on Brownian motion,

we found and developed much simpler and effective mathematization. The starting point

is within linear interpolation. In our previous research, we presented very original line
fractalization based on tensor product. But, in this paper, we applied and successfully

confirmed that by fractal interpolation (Akimo polynomial method) that is possible to
reconstruct the chaotical trajectories lines structures by several fractalized intervals and

involved intervals. This novelty is very important because of the much more effective

procedure that we can reconstruct and in that way control the particles’ trajectories.
This is very important for further advanced research in microelectronics, especially inter-

granular micro capacitors.

Keywords: Linear interpolation; fractal interpolation; Brownian motion; particles;
microstructure.

PACS number:02.60.Ed, 05.45.Df, 05.40.Jc, 42.50.Wk, 61.72.−y

1. Introduction

Mathematical methods, like the basic linear interpolation or fractal interpolation

method, are very useful for the reconstruction of various particles’ trajectories,

such as electrons, molecules, bacteria, and viruses. All of these particles share the

same motion pattern, designated as Brownian motion, a stochastic, unpredictable

motion, which has a fractal nature. The main idea of our research is to apply fractal

interpolation on particles’ Brownian motion, to obtain their two-dimension (2D)

reconstructed trajectories, which we can use in our further examination.

By applying the recursive fractal interpolation method, we can divide and refract

a straight line until it fractally becomes a smooth line. It is represented as a series

of broken lines, within fractal nature self-similarities.

It is of great importance to determine electrons’ trajectories on the ceramic

materials’ grain boundaries because it has a great effect on dielectric properties.

Also, knowledge of bacterial and viruses’ motility behavior is one of the essential

points in disease prediction and prevention. Thus, it is evident that different particle

Brownian motion trajectories’ reconstruction is necessary for numerous fields, and
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therefore, implementation of these mathematical methods provides new possibilities

and perspectives.

The basis for this research is fractal lines’ tensor product,1 and now by this

extended mathematical fractal interval approach, it is possible to define and recon-

struct bio and condensed matter systems’ particles Brownian motion.

1.1. Basic linear interpolation method

If we start our analysis, using two given points A1(xA1 , yA1) and B1(xB1 , yB1), we

can determine an equation of a line l1, through those two points,

l1 : y − yA1
=
yB1 − yA1

xB1
− xA1

(x− xA1
), (1)

where k1 =
yB1
−yA1

xB1
−xA1

is direction coefficient of this line.

Based on condition of orthogonality of two lines l and n

l1⊥n1 ⇔ k1 · k2 = −1⇔ k2 = − 1

k1
. (2)

We have direction of a line n coefficient, orthogonal to the line l equal to

k2 =
xB1 − xA1

yA1
− yB1

. (3)

We can calculate middle point of this line S(xs, ys), where

xs =
xA1

+ xB1

2
, ys =

yA1
+ yB1

2
. (4)

Now, we can obtain an equation of line n, orthogonal to the line l

n1 : y − ys =
xB1 − xA1

yA1
− yB1

(x− xs), (5)

i.e.,

n1 : y =
xB1
− xA1

yA1 − yB1

x+

(
ys −

xB1
− xA1

yA1 − yB1

xs

)
. (6)

Now we can choose some arbitrary point C(xc, yc), C 6= S, on a line n, and we can

obtain equations of two lines p1 and q1

p1 : y − yA1
=
yc − yA1

xc − xA1

(x− xA1
), (7)

q1 : y − yB1
=
yc − yB1

xc − xB1

(x− xB1
). (8)

All explained are shown in Fig. 1.

If we put A2 = A1 and B2 = C, we can go into the next iteration, in order to

refract line A2B2 using new point C

l2 : y − yA2
=
yB2 − yA2

xB2
− xA2

(x− xA2
), (9)

where k1 =
yB2
−yA2

xB2
−xA2

is direction coefficient of this line.
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Based on condition of orthogonality of two lines l and n

l2⊥n2 ⇔ k1 · k2 = −1⇔ k2 = − 1

k1
. (10)

We have coefficient of direction of a line n, orthogonal to the line l equal to

k2 =
xB2 − xA2

yA2
− yB2

. (11)

We can calculate middle point of this line S(xs, ys), where

xs =
xA2

+ xB2

2
, ys =

yA2
+ yB2

2
. (12)

Now, we can obtain an equation of line n, orthogonal to a line l

n2 : y − ys =
xB2
− xA2

yA2
− yB2

(x− xs), (13)

i.e.,

n2 : y =
xB2
− xA2

yA2
− yB2

x+

(
ys −

xB2
− xA2

yA2
− yB2

xs

)
. (14)

Now we can choose some arbitrary point C(xc, yc), C 6= S, on a line n, and we can

obtain equations of two lines p2 and q2

p2 : y − yA2
=
yc − yA2

xc − xA2

(x− xA2
), (15)

q1 : y − yB2
=
yc − yB2

xc − xB2

(x− xB2
). (16)

This situation is shown in Fig. 2.

Fig. 1. S is in the middle of the line A1B1, i.e., A1S : SB1 = 1:1.

Fig. 2. S is in the middle of the line A2B2, i.e., A2S : SB2 = 1:1.
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Fig. 3. S is somewhere on the line A1B1, where A1S : SB1 = λ.

In similar manner we can divide and refract new line A2C, then A3C, then A4C,

and so on. If we want to divide line in some other proportion A1S :SB1 = λ, we

can calculate appropriate point S(xs, ys), on this line

xs =
xA1

+ λxB1

1 + λ
, ys =

yA1
+ λyB1

1 + λ
. (17)

Now, we can obtain an equation of line n, orthogonal to a line l

n1 : y − ys =
xB1 − xA1

yA1
− yB1

(x− xs), (18)

i.e.,

n1 : y =
xB1
− xA1

yA1
− yB1

x+

(
ys −

xB1
− xA1

yA1
− yB1

xs

)
. (19)

Now we can choose some arbitrary point C(xc, yc), C 6= S, on a line n, and we can

obtain equations of two lines p1 and q1

p1 : y − yA1
=
yc − yA1

xc − xA1

(x− xA1
), (20)

q1 : y − yB1
=
yc − yB1

xc − xB1

(x− xB1
). (21)

All explained are shown in Fig. 3 and so on.

1.2. Fractal interpolation method

We will now construct a fractal interpolant through the points (xi, yi), i =

1, . . . , N + 1 determined by the position of the point C in the iterations. We have

used the algorithm for obtaining the fractal interpolant developed in our previous

papers.2–4 Over points (xi, yi), i = 1, . . . , N + 1, we have defined IFS with affine

transformations

wi

[
x

y

]
=

[
ai 0

ci di

][
x

y

]
+

[
ei

fi

]
, i = 1, . . . , N, (22)

and constraints

wi

[
x0

y0

]
=

[
xi−1

yi−1

]
and wi

[
xN

yN

]
=

[
xi

yi

]
, i = 1, . . . , N. (23)
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As before, we chose parameter di for the free parameter. When |di| ≤ 1, i =

1, . . . , N , all affine transformations wi are contractions, and the obtained IFS attrac-

tor is a graph of a continuous function passing through interpolation points.

In the case when the ordinates xi of the interpolation points are not in ascending

order, direct application of IFS, defined by (1) and (2), does not give an interpola-

tion curve that passes through the interpolation points. In that case, it is necessary

to apply a reversible transformation

T (xi, yi) = (ui, vi), i = 1, . . . , N + 1, (24)

where

ui = x0 +
i∑

j=1

(|xj − xj−1|+ p) = ui−1 + (|xi − xi−1|),

vi = yi.

(25)

In the last step, we have mapped the obtained attractor in (u, v)-plane by inverse

transformation

T ′(u′, v′) = (x′, y′), (26)

where

x′ = xi−1 + (xi − xi−1)
u′ − ui−1
ui − ui−1

, u′ ∈ [ui−1, ui],

y′ = v′,

(27)

back into the (x, y)-plane.

2. Experimental Part

The above mentioned mathematical methods could be applied on various subjects,

and in our research, we implemented them on particles’ motion prediction and

reconstruction.

In our experimental work we applied the Heywang inter-granular capacity

model5 in order to analyze and characterize electron motion on the grain bound-

aries and between the grains.6 Particles’ collision, while crossing from one side of

the boundary to another, influences their trajectories leading to Brownian fractal

motion during sintering. By applying fractal interpolation method on random and

chaotic electrons’ paths, we are able to transform them into orderly forms.7–9

The theoretical experiment10 implied predicting the particles’ motion on the

grain boundaries, which principally manifests as a possible collision, with the influ-

ence of the grain boundary fractality on the particles’ trajectories. We observed one

electron cluster that crossed the grain boundary and another electron cluster on the

other side of the grain boundary, that holds the previous one, and could participate

in a collision. Next, the experiment was reduced to two electrons, which are repre-

sentative of the mentioned clusters. Due to the infinitesimal nature of the trajectory
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Fig. 4. (Color online) Electrons Brownian motion and collisions on the grain boundary: (a) the

trajectory of one electron; (b) collisions of two electron clouds; (c) collision of two electrons and

(d) the curve line between two collision points.

geometry between two collision points, we can create the curve line between these

two points [Fig. 4(d)], which represents the segment of the electron’s trajectory, as

the beginning of fractal interpolation.

In Fig. 4, the theoretical experiment results are presented, showing the motion

of one electron (a), collision of two electrons (c), and electron clouds with possible

collisions on the grain boundary (b), as well as the curve line between two collision

points (d).

Considering the fractal self-similarity nature of these particles’ trajectories, we

introduced previously described fractal analysis methods, and after mathemati-

cal transformations, we reconstructed electrons’ trajectories. That represents the

goal of our research, as well as the possibility to determine and predict particles

trajectories.

The porosity of ceramic material influences its microelectronic properties, thus

fractal analytical method, based on the application of fractal Cantor set and fractal

curvature tensor product, provides improved grains and pores surfaces characteri-

zation and reconstruction (Fig. 5), as we reported in our previous papers.1
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Fig. 5. Infinitesimal division of Cantor 2D dust.

Fig. 6. (Color online) 2D bacterial trajectories.

We also performed some experiments regarding bacterial and viruses’ motion,

in the frame of Brownian motion fractal nature similarities, and applied fractal

interpolation method on the obtained results. The complex chaotic microorganisms’

motion pattern,2 consisting of multiple broken lines, is presented in Fig. 6.

After applying fractal analysis on bacterial motion diagrams, we established

fractal interpolated 2D trajectories,2 shown in Fig. 7.

Regarding viruses’ Brownian motion, we developed the experimental proce-

dure for determination of Coronavirus trajectories,3 which are also irregular and
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Fig. 7. (Color online) Fractal interpolation applied on bacterial motion.

Fig. 8. (Color online) Coronavirus Brownian motion trajectories.

unpredictable. Based on the obtained viruses’ position coordinates, and by apply-

ing fractal analysis, we created 2D trajectory diagrams, presented in Fig. 8.

In this experimental part we selected and presented results related to real and

theoretical experiments based on bacteria, Coronavirus, and particles like electrons

in condensed matter, which are confirming variety of the Brownian motion charac-

ter. In all of these, we successfully introduced fractal interval mathematics methods

to reconstruct trajectories and to establish control over the different dynamic struc-

tures’ movements. The important aspect of trajectories’ control and reconstruction

is based on the idea that we have confirmed biophysical similarities and biomimet-

ics symmetries between non-alive condensed matter structures and the alive matter

in biophysical systems. These two parts correspond to each other and even slowly

approach each other, as well. This is very important for creating original novelties in

higher-level microelectronic integrations.11 Also, this is important for the next step

advancement in hybrid microelectronic solutions in alive and non-alive integrations

which opens new frontiers in the field of artificial intelligence, as well. This research

phenomenon is also very exciting in space research of alive matter investigation.
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By these experimental results, we confirmed the statement of the particles’ Brown-

ian motion within the total matter processes. The particles like electrons and sim-

ilar others behave in their different morphology structures with no differences in

phenomena within alive and non-alive matters. So, this is an important joint and

integrative parameter in total nature and Universe.

3. Results and Discussion

Now, in the next step of our research, we applied and analyzed fractal interpolation

in the process of reconstruction and prediction of the trajectories’ structures within

the Brownian motion particles’ nature. The importance of this procedure lies in

the possibility that we can, in advance, prognosticate and design the shapes when

they are reconstructed. So, this is of great importance for controlling and somehow

directing the motion of the particles. In this phase, we present results in 2D.

The fractal interpolant in Fig. 9 is obtained by the procedure explained in

Secs. 1.1 and 1.2. In each interval, we have chosen vertical scaling factor d as a

random number from the interval (−0.06, 0). The interpolation points are marked

in red color.

The vertical scaling factor d in each interval is here, in Fig. 10, a random number

from the interval (−0.02, 0.02).

By comparing fractal interpolant in Figs. 9 and 10. We can see that interpolant

in Fig. 10 is smoother than interpolant in Fig. 9 because vertical scaling factor d in

Fig. 10 is obtained as a random number from the narrow interval (−0.02, 0.02) in

each interval, comparing with the scaling factor d, in Fig. 9, where a scaling factor

is a random number from the wider interval (−0.06, 0). Further reduction of the

Fig. 9. (Color online) Fractal interpolant obtained with d ∈ (−0.06, 0).
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Fig. 10. (Color online) Fractal interpolant obtained with d ∈ (−0.02, 0.02).

range from which the values of the vertical scaling factor d are taken would lead

to obtaining an ever smoother graph of the obtained interpolation function. In the

boundary case, if d has a value of 0 at all intervals, we would get straight lines

connecting the interpolation nodes.

We expressed the precise data of fractal interpolation application-dependent

on scaling factor size. We have got the different structures of fractal interpola-

tion approximations to any type of chaotical curvature by infinitesimal asymptotic

approach with the broken line, so we completed the important tool for particles’

motion designing.

4. Outlook

We would like to continue our research by extension on 3D Brownian motion

structures.

5. Conclusion

In a few of our research papers, we developed different ideas regarding particles’

Brownian motion and also for microorganisms. We analyzed several aspects of

Brownian motion as a joint property within a biophysical system and also as the

important characteristic of hybrid microelectronics advanced devices. As one of the

three parameters (influence of grain and pore surface and Brownian motion of par-

ticles) the Brownian motion particles’ phenomena is very important to characterize

the particles in the relation, so that is a joint parameter within the biophysical sys-

tems. In that sense, it is very important to develop the methods and tools for the

reconstruction of the Brownian trajectories. Ones what we got as reconstruction
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opens possibilities for predicting, designing, and prognosing the particles dynamic.

We open quite new perspectives for projecting the trajectories in advance and so

we can establish control over particles’ chaotic motion. The goal is not to transform

the disorder of the points and curvatures’ structures in clear order. In that case,

does not exist “potential difference” if everything becomes order. So, the interme-

diate step is to come from chaos to control the chaos with possibilities to recon-

struct and predict the trajectories of morphologies and structures. From this point

of view fractal interpolation, as quite a new application, opens the perspectives

that we can easily reconstruct and predict Brownian motion particles’ curvatures.

Our presented research in this paper demonstrates the most effective and simple

mathematical-physical method for the Brownian motion trajectories’ reconstruc-

tion and prediction, as well. The presented results are very important as a tool for

particles’ motion designing by predicting goals especially for different microelec-

tronics and hybrid microelectronics designs where alive and non-alive matter are

incorporated.

References
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