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The particles in condensed matter physics are almost characterized by Brownian motion.
This phenomenon is the basis for a very important understanding of the particles motion
in condensed matter. For our previous research, there is already applied and confirmed
the complex fractal correction which includes influence of parameters from grains and
pores surface and also effects based on particles’ Brownian motion. As a chaotic struc-
ture of these motions, we have very complex research results regarding the particles’
trajectories in three-dimension (3D). In our research paper, we applied fractal interpola-
tion within the idea to reconstruct the above mentioned trajectories in two dimensions
at this stage. Because of the very complex fractional mathematics on Brownian motion,
we found and developed much simpler and effective mathematization. The starting point
is within linear interpolation. In our previous research, we presented very original line
fractalization based on tensor product. But, in this paper, we applied and successfully
confirmed that by fractal interpolation (Akimo polynomial method) that is possible to
reconstruct the chaotical trajectories lines structures by several fractalized intervals and
involved intervals. This novelty is very important because of the much more effective
procedure that we can reconstruct and in that way control the particles’ trajectories.
This is very important for further advanced research in microelectronics, especially inter-
granular micro capacitors.

Keywords: Linear interpolation; fractal interpolation; Brownian motion; particles;
microstructure.

PACS number:02.60.Ed, 05.45.Df, 05.40.Jc, 42.50.Wk, 61.72.—y

1. Introduction

Mathematical methods, like the basic linear interpolation or fractal interpolation
method, are very useful for the reconstruction of various particles’ trajectories,
such as electrons, molecules, bacteria, and viruses. All of these particles share the
same motion pattern, designated as Brownian motion, a stochastic, unpredictable
motion, which has a fractal nature. The main idea of our research is to apply fractal
interpolation on particles’ Brownian motion, to obtain their two-dimension (2D)
reconstructed trajectories, which we can use in our further examination.

By applying the recursive fractal interpolation method, we can divide and refract
a straight line until it fractally becomes a smooth line. It is represented as a series
of broken lines, within fractal nature self-similarities.

It is of great importance to determine electrons’ trajectories on the ceramic
materials’ grain boundaries because it has a great effect on dielectric properties.
Also, knowledge of bacterial and viruses’ motility behavior is one of the essential
points in disease prediction and prevention. Thus, it is evident that different particle
Brownian motion trajectories’ reconstruction is necessary for numerous fields, and
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therefore, implementation of these mathematical methods provides new possibilities
and perspectives.

The basis for this research is fractal lines’ tensor product,! and now by this
extended mathematical fractal interval approach, it is possible to define and recon-
struct bio and condensed matter systems’ particles Brownian motion.

1.1. Basic linear interpolation method

If we start our analysis, using two given points Ay (za,,y4,) and Bi(zp,,yB, ), We
can determine an equation of a line [;, through those two points,

YB, — YA
lhiiy—ya, =>"—"(@—wza,), (1)
B, — LA,
where £y = % is direction coefficient of this line.

Based on condition of orthogonality of two lines [ and n

1
llJ_n1<:>]€1-k2:—1<:>k2:—kf. (2)
1
We have direction of a line n coefficient, orthogonal to the line [ equal to
hy = O (3)
Ya, —Yp,

We can calculate middle point of this line S(zs, ys), where

Ta, +TB ya, +¥YB
Ty = %’ ys = % (4)
Now, we can obtain an equation of line n, orthogonal to the line [

B, — %A
nlzy*ys:;(xfxs)v (5)
yA1 - yBl
ie.,
— T X — X
nyy= BT TAL <y_BAx> (6)
yAl - yBl yA1 - y31

Now we can choose some arbitrary point C(z.,y.), C # S, on a line n, and we can
obtain equations of two lines p; and ¢

Ye — YA,
y—yq = Je T YA 7
P1:Y—Ya, To—xa, (fE xAl)a ( )
Ye —YBy
: — = — . 8
QY —YB, Te—TB, (z—zp,) (8)

All explained are shown in Fig. 1.
If we put As = A; and By = C, we can go into the next iteration, in order to
refract line Ay By using new point C'

YB, — YA
l2 Y —Ya, = = 2(I7IA2)3 (9)
sz - mAz
where k; = 2227Y42 g direction coefficient of this line.
TRy —TAy

2250035-3



V. V. Mitic et al.

Based on condition of orthogonality of two lines I and n

1
ng.ﬂQ@kl'kzz—l@kQ:—kf. (10)
1
We have coefficient of direction of a line n, orthogonal to the line | equal to
fy = B2 Az (11)
YA, — YB,

We can calculate middle point of this line S(xs,ys), where

v, = TA, —;sz7 e = YA, ;‘sz. (12)

Now, we can obtain an equation of line n, orthogonal to a line [

rp, —TA
na :y_ys:#(x_xs)a (13)
yAQ _sz
ie.,
mywﬁ<wz> (14)
yAz - sz yAz - y32

Now we can choose some arbitrary point C(z.,y.), C # S, on a line n, and we can
obtain equations of two lines ps and g

Ye — YA
P2y —ya, = o (r —wa,), (15)
Te _xAQ
Ye —YBs
Y — === (x— . 16
Q1Y —YB, Te— 2B, (Z‘ xBQ) ( )

This situation is shown in Fig. 2.

Fig. 1. S is in the middle of the line Ay By, i.e., A1S: SB; = 1:1.

n, P

‘Iz C Bz

lg A2
Fig. 2. S is in the middle of the line A3 Bs, i.e., A2S : SBy = 1:1.
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C
1,

-]

h A, n, B

Fig. 3. S is somewhere on the line A; By, where A1 S : SB1 = A.
In similar manner we can divide and refract new line AsC, then A3C, then A4C,

and so on. If we want to divide line in some other proportion A;5:S5B1 = A, we
can calculate appropriate point S(xs,ys), on this line

TA, + )\‘TBl _ Ya, + )\yBl

= = 17
s 1+x & 1+ (a7)
Now, we can obtain an equation of line n, orthogonal to a line [
rp, —TA
ni :y_ys:;(x_xs)v (18)
Ya, —YB,
ie.,
m:y:xBl_xAlx—F(s—xBl_IAla:s). (19)
Ya, — Y, Ya, —YB,

Now we can choose some arbitrary point C(z.,y.), C # S, on a line n, and we can
obtain equations of two lines p; and ¢

Yo — YA
pLiy —ya, = —(x —xa,), (20)
Te —TA,
Ye —YB,
cy—ypg = 2 IB . 21
qQ Y —YB wc—scgl(m Tp,) (21)

All explained are shown in Fig. 3 and so on.

1.2. Fractal interpolation method

We will now construct a fractal interpolant through the points (z;,y;), i =
1,..., N + 1 determined by the position of the point C in the iterations. We have
used the algorithm for obtaining the fractal interpolant developed in our previous
papers.2 4 Over points (2;,9;), i = 1,...,N + 1, we have defined IFS with affine

transformations
x a; O
w; =
Yy ¢ d;
and constraints
o Ti—1 TN T;
wy = and  w; = , i=1,...,N. (23)
Yo Yi—1 YN Yi
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As before, we chose parameter d; for the free parameter. When |d;| < 1,7 =
1,..., N, all affine transformations w; are contractions, and the obtained IFS attrac-
tor is a graph of a continuous function passing through interpolation points.

In the case when the ordinates z; of the interpolation points are not in ascending
order, direct application of IFS, defined by (1) and (2), does not give an interpola-
tion curve that passes through the interpolation points. In that case, it is necessary
to apply a reversible transformation

T(.’E“yz) = (ui,vi), 22177N+]., (24)
where
i
wi=xo+ Y (|25 — 25| +p) = wic1 + (2 — zia),
i=1 (25)

Vi = Yi-

In the last step, we have mapped the obtained attractor in (u, v)-plane by inverse
transformation

T'(u', ') = (2", y), (26)
where
x =x;_1 —‘r(l‘i—xi_l)u _Ui_l, = [ui_l,ui],
Ui — Ui—1 (27)

back into the (z, y)-plane.

2. Experimental Part

The above mentioned mathematical methods could be applied on various subjects,
and in our research, we implemented them on particles’ motion prediction and
reconstruction.

In our experimental work we applied the Heywang inter-granular capacity
model® in order to analyze and characterize electron motion on the grain bound-
aries and between the grains.® Particles’ collision, while crossing from one side of
the boundary to another, influences their trajectories leading to Brownian fractal
motion during sintering. By applying fractal interpolation method on random and
chaotic electrons’ paths, we are able to transform them into orderly forms.”®

The theoretical experiment'® implied predicting the particles’ motion on the
grain boundaries, which principally manifests as a possible collision, with the influ-
ence of the grain boundary fractality on the particles’ trajectories. We observed one
electron cluster that crossed the grain boundary and another electron cluster on the
other side of the grain boundary, that holds the previous one, and could participate
in a collision. Next, the experiment was reduced to two electrons, which are repre-
sentative of the mentioned clusters. Due to the infinitesimal nature of the trajectory
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Fig. 4. (Color online) Electrons Brownian motion and collisions on the grain boundary: (a) the
trajectory of one electron; (b) collisions of two electron clouds; (¢) collision of two electrons and
(d) the curve line between two collision points.

geometry between two collision points, we can create the curve line between these
two points [Fig. 4(d)], which represents the segment of the electron’s trajectory, as
the beginning of fractal interpolation.

In Fig. 4, the theoretical experiment results are presented, showing the motion
of one electron (a), collision of two electrons (c), and electron clouds with possible
collisions on the grain boundary (b), as well as the curve line between two collision
points (d).

Considering the fractal self-similarity nature of these particles’ trajectories, we
introduced previously described fractal analysis methods, and after mathemati-
cal transformations, we reconstructed electrons’ trajectories. That represents the
goal of our research, as well as the possibility to determine and predict particles
trajectories.

The porosity of ceramic material influences its microelectronic properties, thus
fractal analytical method, based on the application of fractal Cantor set and fractal
curvature tensor product, provides improved grains and pores surfaces characteri-

zation and reconstruction (Fig. 5), as we reported in our previous papers.!
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Fig. 5. Infinitesimal division of Cantor 2D dust.
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Fig. 6. (Color online) 2D bacterial trajectories.

We also performed some experiments regarding bacterial and viruses’ motion,
in the frame of Brownian motion fractal nature similarities, and applied fractal
interpolation method on the obtained results. The complex chaotic microorganisms’
motion pattern,? consisting of multiple broken lines, is presented in Fig. 6.

After applying fractal analysis on bacterial motion diagrams, we established
fractal interpolated 2D trajectories,? shown in Fig. 7.

Regarding viruses’ Brownian motion, we developed the experimental proce-
dure for determination of Coronavirus trajectories,®> which are also irregular and
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Fig. 7. (Color online) Fractal interpolation applied on bacterial motion.
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Fig. 8. (Color online) Coronavirus Brownian motion trajectories.

unpredictable. Based on the obtained viruses’ position coordinates, and by apply-
ing fractal analysis, we created 2D trajectory diagrams, presented in Fig. 8.

In this experimental part we selected and presented results related to real and
theoretical experiments based on bacteria, Coronavirus, and particles like electrons
in condensed matter, which are confirming variety of the Brownian motion charac-
ter. In all of these, we successfully introduced fractal interval mathematics methods
to reconstruct trajectories and to establish control over the different dynamic struc-
tures’ movements. The important aspect of trajectories’ control and reconstruction
is based on the idea that we have confirmed biophysical similarities and biomimet-
ics symmetries between non-alive condensed matter structures and the alive matter
in biophysical systems. These two parts correspond to each other and even slowly
approach each other, as well. This is very important for creating original novelties in
higher-level microelectronic integrations.'! Also, this is important for the next step
advancement in hybrid microelectronic solutions in alive and non-alive integrations
which opens new frontiers in the field of artificial intelligence, as well. This research
phenomenon is also very exciting in space research of alive matter investigation.
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By these experimental results, we confirmed the statement of the particles’ Brown-
ian motion within the total matter processes. The particles like electrons and sim-
ilar others behave in their different morphology structures with no differences in
phenomena within alive and non-alive matters. So, this is an important joint and
integrative parameter in total nature and Universe.

3. Results and Discussion

Now, in the next step of our research, we applied and analyzed fractal interpolation
in the process of reconstruction and prediction of the trajectories’ structures within
the Brownian motion particles’ nature. The importance of this procedure lies in
the possibility that we can, in advance, prognosticate and design the shapes when
they are reconstructed. So, this is of great importance for controlling and somehow
directing the motion of the particles. In this phase, we present results in 2D.

The fractal interpolant in Fig. 9 is obtained by the procedure explained in
Secs. 1.1 and 1.2. In each interval, we have chosen vertical scaling factor d as a
random number from the interval (—0.06,0). The interpolation points are marked
in red color.

The vertical scaling factor d in each interval is here, in Fig. 10, a random number
from the interval (—0.02,0.02).

By comparing fractal interpolant in Figs. 9 and 10. We can see that interpolant
in Fig. 10 is smoother than interpolant in Fig. 9 because vertical scaling factor d in
Fig. 10 is obtained as a random number from the narrow interval (—0.02,0.02) in
each interval, comparing with the scaling factor d, in Fig. 9, where a scaling factor
is a random number from the wider interval (—0.06,0). Further reduction of the

0‘5:
0.4

0.3}

0.1}

00+
02 0o 02z o4 Tos 08 10

Fig. 9. (Color online) Fractal interpolant obtained with d € (—0.06,0).
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Fig. 10. (Color online) Fractal interpolant obtained with d € (—0.02,0.02).

range from which the values of the vertical scaling factor d are taken would lead
to obtaining an ever smoother graph of the obtained interpolation function. In the
boundary case, if d has a value of 0 at all intervals, we would get straight lines
connecting the interpolation nodes.

We expressed the precise data of fractal interpolation application-dependent
on scaling factor size. We have got the different structures of fractal interpola-
tion approximations to any type of chaotical curvature by infinitesimal asymptotic
approach with the broken line, so we completed the important tool for particles’
motion designing.

4. Outlook

We would like to continue our research by extension on 3D Brownian motion
structures.

5. Conclusion

In a few of our research papers, we developed different ideas regarding particles’
Brownian motion and also for microorganisms. We analyzed several aspects of
Brownian motion as a joint property within a biophysical system and also as the
important characteristic of hybrid microelectronics advanced devices. As one of the
three parameters (influence of grain and pore surface and Brownian motion of par-
ticles) the Brownian motion particles’ phenomena is very important to characterize
the particles in the relation, so that is a joint parameter within the biophysical sys-
tems. In that sense, it is very important to develop the methods and tools for the
reconstruction of the Brownian trajectories. Ones what we got as reconstruction
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opens possibilities for predicting, designing, and prognosing the particles dynamic.
We open quite new perspectives for projecting the trajectories in advance and so
we can establish control over particles’ chaotic motion. The goal is not to transform
the disorder of the points and curvatures’ structures in clear order. In that case,
does not exist “potential difference” if everything becomes order. So, the interme-
diate step is to come from chaos to control the chaos with possibilities to recon-
struct and predict the trajectories of morphologies and structures. From this point
of view fractal interpolation, as quite a new application, opens the perspectives
that we can easily reconstruct and predict Brownian motion particles’ curvatures.
Our presented research in this paper demonstrates the most effective and simple
mathematical-physical method for the Brownian motion trajectories’ reconstruc-
tion and prediction, as well. The presented results are very important as a tool for
particles’ motion designing by predicting goals especially for different microelec-
tronics and hybrid microelectronics designs where alive and non-alive matter are
incorporated.
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