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ABSTRACT

This paper asks: “Can we detect whether a fragile product, made of

porcelain or glass is damaged as it travels along the supply chain,

without opening its packaging?” We ask this question in the context

of the multi-billion dollar global supply chain industry of fragile

products that experience large overheads due to product returns.

This paper presents MiLTOn, a novel acoustic and mm-wave

based solution for through-box non-invasive product integrity sens-

ing that is sensitive to even minute sub-mm cracks in the object.

MiLTOn is inspired by acoustic vibrometry used for instance to

monitor cracks in railroads. Unlike traditional vibrometry, MiL-

TOn is unique in its ability to sense products non-invasively using

an external transducer and microphone, neither of which are in

direct physical contact of the object within the box. MiLTOn pro-

cesses measurements from the microphone to design a robust and

environment-independent product signature that can be used to

sense presence of product defects. Our extensive evaluation on a

large number of fragile products of diverse materials demonstrates

97% accuracy in identifying product damage.

1 INTRODUCTION

Quality means doing it right when no one is looking

– Henry Ford

Recent growth in the supply chain industry has seen a rapid rise

in the number of packages shipped across the world. Just last year,

11.9 billion packages were shipped world wide with a significant

increase expected this year. While this increase in supply chain

has enabled sellers to cater to a global customer base, it comes

with the major problem of returns. A significant number of these

packageswere returned due to damage to the product such as cracks,

breakages, etc. This damage often occurs across the supply chain

as the product changes several hands in its journey from seller to

consumer. Yet it is currently challenging to pinpoint the entity along

the supply chain who must (fairly) bear the cost of the return. This

problem is particularly acute for products that are inherently fragile

and therefore prone to breakage such as porcelain or glass products

(cups, bowls, plates, etc.) – a $40 billion industry globally [4]. This

paper is a university-industry collaboration that seeks to address

Figure 1: MiLTOn’s design principle is to simulate the act of

“tapping” a porcelain/glass object and retrieving its acoustic

response to test for damage, but non-invasively through its

packaging without opening the box.

the challenging practical problem of product integrity sensing for

this important segment of the global supply chain.

Specifically, this paper asks: "How do we cost-effectively detect if

a porcelain or glass product (say a cup) has been damaged (cracked,

broken, etc.) inside a package — without opening it?" Note that

unlike manufacturing processes, where quality control solutions

intend to identify variations compared to an ideal model object, we

only seek to identify defects that get introduced in the supply chain

to each object individually. Thus, we seek an automated approach

to doing so, as manually opening and inspecting a large number of

packages at various checkpoints would prove cumbersome, costly,

and might in fact add to the risk of damage. Thus, it is imperative for

a technological through-box product sensing solution to be cheap,

automated and accurate, where system cost justifies the savings

from avoided product returns. While there has been rich prior work

on through-wall sensing in varied contexts using RF signals such

as X-rays[21, 44], mm-wave [24], Wi-Fi [7], ultra-wide band [41],
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none of these solutions can cheaply measure internal shears or

cracks that are common forms of damage in fragile products.

Our approach to sense product integrity (Fig. 1) is inspired by a

common experience: Imagine holding a wine glass and tapping it, –

you would hear a distinctive sound. However, this sound changes if

the glass was damaged in even subtle ways, such as cracks or bro-

ken parts. In fact, even repairing the broken glass does not restore

the original distinctive tone. Technically, tapping introduces a me-

chanical impulse that traverses and reverberates across the object,

resulting in a frequency-dependent resonant response unique to its

shape, topology, and materials. This approach of studying object

properties via mechanical frequency response is called Acoustic

Vibrometry. Indeed, acoustic vibrometry has been used to identify

rotten fruit [22, 39] and cracked objects [1] to broken railroads [12].

However, these approaches require expensive, carefully-

calibrated equipment and the ability to attach isolated physical

objects to contact probes. Our use case is very different. We imagine

a future where boxes transiting on a conveyor belt in a warehouse

are sensed via a cheap, self-calibrating setup made of commodity

components that could be deployed at scale. We make the observa-

tion that in our application, it suffices to detect only the presence

of a defect, rather than its exact nature or extent. In other words,

we seek to accurately flag boxes that contain potentially damaged

products for manual review by an executive. Our focus is therefore

to reduce both false positives and negatives of such damage alerts,

despite variations in sensor placement and individual transducer

properties along the supply chain.

This paper presents MiLTOn1, an acoustic sensing system that

can robustly detect breakage for a variety of objects. Our system

consists of two key co-designed components.

Sensing platform:Our acoustic sensing setup uses a contact trans-

ducer that conducts an audible chirp to the object by turning the

entire box into a sound source. The aggregate sound from the com-

posite box-object system is picked up by a nearby microphone. Un-

fortunately, this acoustic response of the box-object system is tightly

coupled. Thus, our design makes physically-motivated choices in

constructing a robust sensing setup to efficiently retrieve the ob-

ject response that does not require rigorous transducer-dependent

calibration every time the system is used (see Sec. 4). Our design is

assisted by a mmWave radar and camera based system to rapidly

identify where the product is located within the box, to inform the

acoustic transducer when it is to be activated.

Damage detection: We leverage the above carefully constructed

sensing setup to retrieve the isolated acoustic response of the object,

which we call an acoustic product signature, shortly after quality

control processes when the product has freshly been manufac-

tured. We deem these responses as “good" responses representing

no damage. However, designing a data-driven classifier typically

also requires representative “bad" samples. This is fundamentally

impossible in a realistic supply chain, as we want the classifier to

detect damaged object without knowing what a damaged object’s

response looks like – a classic chicken and egg conundrum. We

solve this problem by first designing a distance metric for the sig-

natures that is robust to ambient noise. With this metric, we show

1It is rumoured Schröedinger owned a cat with this name

that a straightforward clustering algorithm already yields a sample-

efficient anomaly detector. We find it sufficient to train on just a

few (5-10) instances of the object during packaging to achieve high

accuracy in identifying anomalies. Further, the system may be boot-

strapped: when we mis-classify an object as broken, the box gets

opened and the new observation can be used to update clustering

for that object based on its shipping label. Sample-efficiency and

boot-strapping together make the technique quite attractive for an

industrial setting: pre-training is not required, and the system learns

quickly. Finally, we guide our users based on industry-driven cost-

benefit analysis to determine the threshold in our unary classifier

to maximize the profitability of MiLTOn.

Limitations: We highlight a few important limitations of MiLTOn:

(1) First, our system works mainly for objects which have distinct

resonant behavior (porcelain, metallic, wooden, glass). (2) Second,

our system will fail if the object does not vibrate due to a highly

absorbant enclosure or undetected movement of the object inside

the package. (3) We acknowledge that no quality control system or

its evaluation is fool-proof, there will always remain some forms

of damage that are unforeseen. We elaborate in Sec. 11, how these

limitations do not forestall MiLTOn’s utility for the supply chain.

Evaluation: We evaluate our system using the Adafruit Large

Surface 5W transducer for 50 porcelain and glass products encased

in typical closed cardboard boxes that they were shipped in. We

simulate the breakage by emulating the various levels of breakages

that a supply chain company is concerned with (a) minor breakages

(e.g. handles of a cup) (b) repairable breakages (breakages that can

be repaired at a low cost) (c) non-repairable breakages (crushed or

other damage). Our evaluation demonstrates:

• 96.2% accuracy in detecting damaged porcelain cups based on

an extensive case study. Optimizing for cost-savings provides

a true positive accuracy of 97.3%.

• 97.92% accuracy in identifying anomalies in objects of differ-

ent materials, shapes, sizes and across packaging materials.

• An overall reduction in loss due to returns by 56.7% for a

typical supply chain company.

Contributions: Our main contributions include:

• A mechanism to make non-invasive acoustic vibrometry

practical for identifying product integrity using a commod-

ity contact transducer and a multi-modal setup to generate

robust acoustic signature.

• Extensive evaluation with levels of product breakages that

occur in different fragile materials.

• A holistic cost-benefit analysis of our system in production

considering real supply chain company priorities.

Video demo : https://youtu.be/Iawpd2ujZ2E

2 RELATEDWORK

2.1 Acoustic Imperfection Sensing

There has been much work done on leveraging the acoustic be-

haviour of objects to verify their integrity. Prior work [13, 19] have

leveraged it to identify whether metallic objects or building materi-

als are cracked or have cavities while others [8, 15] have leveraged

them to identify the firmness of fruit or vegetables. Some prior

work has also used acoustics in seismology [34], for sensing gear
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tooth breakage [40] and tool breakage [23]. Yet, much of this work

relies on a carefully calibrated transmitter in direct contact or close

proximity with the object within a tightly controlled setting.

There has also been a lot of work done on identifying defects

in large scale systems such as railroad [16], conveyor belts [27],

industrial equipment [28] using acoustic vibrometry [37]. While

all of these solutions identify unique challenges pertaining to each

system, they are able to connect their receivers to the object directly

or leverage intrinsic vibration in systems such as conveyor belts.

In contrast, MiLTOn enables us to inspect the integrity of static

products within a box passively without requiring special probes

which may in turn affect the packaging or the object.

2.2 Acoustic Imaging Systems

There is rich prior work on using ultrasound or audible acoustic

signals for imaging objects [29, 30], localization [26], gesture sens-

ing [17, 25] as well as novel communication systems [11, 43] that

enable them. Acoustics is also used in body-sensing applications

such as ultra-sound [38, 46, 47] or various health monitoring appli-

cations such as breath [10, 35, 48] and heart rate [10, 45] sensing.

Such systems benefit from sounds emitted by the body or rely on

special gels or liquids to conduct acoustic energy into the body [20].

Unlike this rich prior work, MiLTOn targets the unique problem

of non-invasively sensing the integrity of products within a box,

without an existing audio source inside.

2.3 Product Testing and Quality Control

Awide-range of solutions are available for product testing and qual-

ity control of manufactured goods. Prior work has explored X-ray

imaging [21, 44], mm-wave [36, 49], terahertz imaging [50] and

varied RF sensing systems [7, 18] for sensing through-obstructions,

including in the product sensing context. However, X-ray imag-

ing poses safety concerns and traditional camera imaging [33] for

sensing product integrity requires a line-of-sight view of the object.

Further, even mm-wave frequencies natively struggle to resolve

sub-mm cracks or shears of ceramic or glass [36] due to lack of

spatial resolution. Further, internal movement of padding material

and varying electromagnetic reflectivity of outside padding (tape

and paper stickers reflect mmWave more than cardboard) makes it

difficult to isolate the behavior of the object from the packaging and

surroundings. MiLTOn addresses this challenge by leveraging the

acoustic resonance of products to isolate objects behavior, operates

through-box and identifies fine cracks or damage.

3 MILTON - OVERVIEW

Fig. 2 depicts the journey of MiLTOn, when a package arrives at a

warehouse or processing hub for either delivery to the customer or

on its way to anotherwarehouse.MiLTOn uses ammWave + camera

multimodal sensing system to scan the box barcode and detect it’s

orientation on the conveyor belt. Since cardboard is also relatively

transparent to mmWave frequencies (77-81GHz), we also leverage

the mmWave response to get the rough position of the object inside

the box. Upon detecting the location of the object inside the box,

an acoustic transducer is placed against the box at a point that is

closest relative to the product. A nearby microphone then captures

the acoustic response and computes a product signature, which is

Figure 2:MiLTOn enables real-time integrity check for pack-

ages and boxes.

then compared to the prior signature of the same product when it

was undamaged. Based on this signature check, the box is either

sent to an executive for further inspection or passed on to the next

conventional stage in the supply chain. MiLTOn is applied at both

the ingress and egress to identify if and where product damage

took place in the supply chain cheaply.

In the rest of this paper, we describe the challenges and opportu-

nities in making the above system practical:

(1) Non-invasive through-box acoustic sensing platform: A

key challenge in MiLTOn’s design is retrieving significant repre-

sentative acoustic responses through a non-invasive system – i.e.,

without physical contact with the object in consideration. First, we

design a acoustic-transducer based platform that maximizes energy

transfer to the object preserving the ability to retrieve its response

in the box-object composite response. We further address how our

platform can be extended to support multiple transducers simulta-

neously. We process the received acoustic box-object response at

the microphone in the frequency domain to characterize the object

of interest. Sec. 4 presents our approach.

(2) Damage Detection: We build an object-specific acoustic sig-

nature that is robust and repeatable, regardless of object location

within the box or ambient noise. We describe how this signature

can be validated against a prior signature (e.g. collected during

packaging) based on a signature validation threshold. We further

show how our system can learn from failures and adapt this sig-

nature if validation reports incorrect results reducing operational

costs and improving accuracy. Sec. 5 details our approach.

(3) Cost-Benefit Analysis: An important aspect of any practi-

cal quality-control system is whether the benefits of the system

outweigh its cost. To this end, we leverage our close industry collab-

orators to present a case-study for cost-benefit analysis that informs

how our system’s signature validation threshold that dictates the

anticipated false positives vs. false negatives can be tuned. (Sec. 6)

4 ACOUSTIC SENSING PLATFORM

In this section, we describe how to design a platform that induces

mechanical wave propagation through the object within a package

and receive its acoustic response over-the-air. We also detail how to

guide this system using mm-wave and camera imaging to maximize
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the transfer of energy from outside of the package to the object

within the package to enhance its internal resonance.

4.1 Vibrating the object through-box

To retrieve an acoustic response from the object, we must first

ensure that mechanical vibrations from the transducer reach the

object. Unlike our anecdotal example of tapping a wine glass, phys-

ical contact with the object is not possible given the object is sealed

within packaging. We therefore need a mechanism to induce me-

chanical vibrations in the object through the box.

The need for a contact transducer: From a practical standpoint,

an over-the-air setup with a speaker and microphone would be

easier to deploy. However, using a speaker to excite the object and

box over the air does not work well in practice. The physical reason

is that solid objects have an acoustic impedance thousands of times

larger than air, and the transmission coefficient is proportional to

the air-to-solid impedance ratio. Thus, most of the acoustic energy

from the speaker is scattered back by the box. As a result, the direct

speaker-to-microphone path can be 1000× stronger than the object

response severely reducing the signal-to-noise ratio (SNR) of the

received signal, even in low noise conditions.

To overcome this limitation, we draw inspiration from acoustic

vibrometry to sense cracks in railroad tracks[12]. A transducer and

a time-synchronized acoustic probe are both directly attached to

the railroad tracks to vibrate the tracks and extract the resulting

acoustic response. We similarly employ a contact transducer at-

tached to the side of the box. However, the received response is

complex combination of the responses of the box and the object.

Hence, we must treat the box-and-object in combination as a com-

posite system. Our results show that this difficulty does not obviate

our goal of breakage detection.

Unlike vibrometry, using a (non-contact) microphone suffices

for sensing in our scenario, for the same physical reason as above:

the solid-to-air impedance ratio is quite favorable. In effect, the

transducer-object-box system is an efficient radiator and a closely

placed microphone readily obtains usable signal-to-noise ratio.

However, compared to traditional vibrometry outlined above, we

obtain a much less “cleaner” signal: there is attenuation from the

box, interference from the box response, and additive ambient noise

that the microphone picks up. As we will discuss in later sections, it

is possible to extract usable breakage information from this compos-

ite signal. However, success there depends crucially on the sensor

placement and physical setup, which we discuss next.

4.2 Acoustic model

Our sensing setup is carefully designed so that its physics is well-

modeled by a feed-forward chain of linear filters as follows:

𝑝 (𝑡) = 𝑠 (𝑡) ∗ 𝑠𝑒𝑞 (𝑡) ∗ ℎ(𝑡) ∗ 𝑟 (𝑡) ∗ 𝑟𝑒𝑞 (𝑡), (1)

where 𝑝 (𝑡) is the signal received at the microphone, 𝑠 is a wideband
chirp signal input to the transducer, 𝑠𝑒𝑞 is the unknown transducer

response, ℎ is the response of interest, 𝑟 the through-the-air re-

sponse from object (or box) to the microphone and finally, 𝑟𝑒𝑞 is

the microphone’s unknown response. Because of the feed-forward

structure, one may still estimate the response, ℎ, despite unknown
transducer responses by doing a reference measurement without

the box: 𝑝𝑟𝑒 𝑓 (𝑡) = 𝑠 (𝑡) ∗ 𝑠𝑒𝑞 (𝑡) ∗ 𝑟 (𝑡) ∗ 𝑟𝑒𝑞 (𝑡), (2)

Figure 3: Comparing two systems: (1) A naïve acoustic

SONAR and (2) MiLTOn that effectively transforms the box

into a speaker.

followed by a deconvolution in frequency domain (where we use

capitals to denote Fourier-transformed quantities):

𝐻 (𝑓 ) = 𝑃 (𝑓 )/𝑃𝑟𝑒 𝑓 (𝑓 ) (3)

Thus, our sensing system becomes self-calibrating: (1) 𝑃𝑟𝑒 𝑓 can
be periodically updated when no boxes are present on the conveyor

belt, and (2) we can use commodity transducers that often deviate

from a flat frequency response (i.e. 𝑆𝑒𝑞 (𝑓 ) ≠ 1, 𝑅𝑒𝑞 (𝑓 ) ≠ 1) since

these are deconvolved away. One could employ Weiner deconvolu-

tion with prior ambient noise estimates for increased robustness;

in our experiments, direct deconvolution sufficed.

We made two key observations that ensure that our system may

be well-approximated as linear by Eq. 1. First, the transducer cannot

have the object’s weight transferred to it, so its safest to attach it

horizontally. We observed that loading the transducer even slightly

with the object’s weight will result in strong feedback breaking the

feed-forward model. In such a situation, one would need to do a

fully coupled characterization of the composite transducer-object

system. This is clearly infeasible. Second, the transducer has a flat

plate that attaches and drives the object - this should ideally be small

in comparison to the size of the box. A large plate acts as a strong

acoustic radiator, and direct over-the-air paths to the microphone

introduce a significant additive term in Eqs. 1 and 2. This once more

introduces significant complexity in robustly solving for the object

response 𝐻 (𝑓 ). These fundamental considerations also motivate

our transducer placement, described next.

4.3 Positioning the Transducer

For the moment, assume that we have the precise location of the

box as well as the location of the object within it at high accuracy

(we describe our approach to achieve this in Sec. 4.4). We would

then be required to identify the exact location along the known box

location for maximizing the energy transfer. Fortunately, as long

as the approximate orientation of the object and placement within

the package is known while being packed, the optimal location

to attach the transducer can be manually inferred through an ex-

haustive search beforehand. Given that during mass manufacturing,

all objects are traditionally packed in the exact same manner, this

location could be pre-modeled and pre-defined. In our evaluation

case-study focused on coffee mugs, we identify that the optimal

location to attach the transducer is always horizontal and as near

to the top of the cup as possible.
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Figure 4: MiLTOn uses springs to hold the box in place while

the transducer is attached to the box’s side.

Ensuring contact: Unfortunately, attaching a transducer horizon-

tally to the box leads to another challenge. Given that the transducer

is simply a vibrating plate, it will push the box outwards at first

but will not be able to pull the box when returning back inwards.

In other words, rather than vibrating the box horizontally, a trans-

ducer would merely push it away. Fig. 4 demonstrates this problem.

Further, the obvious remedy to use a rigid grabber to hold the ob-

ject in place against the transducer will hinder box’s vibrations

and introduce non-linearities in Eq. 1. Thus, we need a solution

that keeps the object in place but remains elastic enough to enable

vibration of the box to the maximum possible amplitude.

We hence leverage multiple helical springs to push the object

back against the transducer (see Fig. 4). In a warehouse setting,

an automated arm can be used to attach springs that push the

box against the transducer to achieve the same behavior. One may

however be concerned about how this would impact the resonance

of the box (as helical springs with attached mass are known to

have resonance frequencies). However, since the amount of energy

transferred from the box to the spring setup is minuscule (and

can be distributed across multiple springs), this does not affect the

acoustic vibration of the box. In fact, a careful analysis of springs of

this nature [31] have shown even in cases where these resonance

frequencies exist, they are outside the acoustic frequencies that we

operate in (>100 Hz and <20 kHz).

Extending to multiple transducers for multiple objects:

When there is a single object inside a box, it is indeed possible

to identify the ideal location of the transducer using the below

mentioned camera-mmWave hybrid setup. However, in many cases,

there may be multiple objects inside the box out of which a single or

a few of the objects may be damaged. Our initial results in Sec.10.4

shows that when the damaged cup is far from the transducer, the

accuracy of MiLTOn does reduce. While it does improve as the

number of damaged objects increase, it is necessary for a solution

when the damaged cup location may not be known independently.

In such a situation, we take multiple measurements across loca-

tions along the edge of the package as the package travels across

the conveyor belt. We then assume each of these measurements as

independent signatures and flag a damaged product if any of the

signature changes beyond a certain threshold.

Our evaluation verified the ability of our platform to detect the

resonant peaks of the object against the reference of tapping the

object and analyzing its sound. (See Fig. 8)

(a)

(b)

Figure 5: mmWave radar beamforming enables MiLTOn to

identify the approximate location of the product – here a

porcelain coffeemug. (Note: box is closed during evaluation)

4.4 mmWave+Camera for Box Tracking

Two important issues remain in positioning the transducer cor-

rectly relative to the object-in-box system. First, how do we know

precisely where on the conveyor belt the box is located? Second,

how do we know if, and by how much, the product has moved

within the box itself relative to its location at the time of manu-

facture? Answering both of these questions is critical to place the

transducer in its optimal location for energy transfer.

Camera-based Box Positioning: MiLTOn addresses the first chal-

lenge by using a commodity camera to sense the box’s location

at cm-accuracy. We use a state-of-the-art SIFT-based object recog-

nition and image segmentation algorithm [6] that identifies the

spatial coordinates and bounds of the box along the conveyor belt.

The camera sensing system is placed ahead of the mm-wave radar

platform along the conveyor belt so that the latter can be deployed

next to scan the contents of the box.

mmWave-based Object Positioning: We next activate our

mmWave radar platform to collect I/Q samples relative as the box

passes by to compute an RF through-box image. Note that card-

board is known to be transparent to mmWave signals [32]. For

mmWave processing, we use the standard Bartlett algorithm [36]

across the 4 RX antenna on the mmWave radar that results hotspots

that match the spatial bounds of the product within the box. We

use the phase and amplitude of each distance bin response in the

mmWave radar antenna to create a heatmap of responses across

locations and angle-of-arrivals (see Fig. 5 for a few representative

examples and Sec. 8.2 for detailed results). We then compute the

optimal location to place the transducer by matching the mm-wave

RF image observed for the box with a template RF image.

5 DAMAGE DETECTION

In this section, we show how to design a robust signature from

the received acoustic signals, that characterizes the state of the
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object. We capture an initial product signature during the packaging

process (Sec. 5.1). We then validate the measured signatures across

the supply chain to the initial product signature (Sec. 5.2). Finally,

we only open the box for inspection when the validation process

flags a potentially broken product. MiLTOn is also designed to

adapt to incorrectly flagged packages (Sec. 5.3) by reinforcing the

product signature to avoid the same error from recurring.

5.1 Computing the Signature

Our process for computing the signature relies on one or more

receptions of signals from the acoustic transducer. We design our

system to allow for multiple receptions to compute the initial sig-

nature shortly after initial packaging, while subsequent signatures

could be computed with a single reception.

What should the transducer transmit? A näive solution would

be to use the mechanical transducer to send an acoustic impulse

to directly measure the impulse response. Unfortunately, it is im-

possible to transmit an instantaneous impulse from a band limited

transducer. Further, the transducer is an acoustically unequalized

object, i.e. it has different gains across frequencies. Thus, we need

to design a waveform to emulate the behavior of our mechanical

impulse within the capabilities of the transducer.

MiLTOn uses a wide-band chirp which sweeps all frequencies

between 100 Hz and 20 kHz over a time duration of 5 s. Our rationale

for using chirps is two-fold: (1) First, it naturally spans the range of

frequencies desired to allow for rich signatures for package-sized

objects; (2) It circumvents the band-limited nature of the transducer

since the instantaneous bandwidth of a chirp is extremely low.

Designing the Signature: At a high level, our signature is a pro-

cessed acoustic channel that captures the mean and variance of

the acoustic response of the composite box-object system in the

frequency-domain. Rather than storing all frequencies exhaustively,

we only select those whose measurements are robust and repeat-

able across measurements and are likely to represent the frequency

response of the product’s material. We compute the response of

the box-plus-object system rather than isolating the object itself

for two reasons: (1) First, it is rather challenging to isolate the ob-

ject’s sole response, given that the acoustic wave propagates in

complex ways across both the box and the object; (2) Second, re-

gardless, any change in the product will feature in the response of

the box-plus-product system – which is our objective in any case.

Mathematically, we compute the acoustic signature as follows: (1)

First, we use Eq. 3 to compute the acoustic response in the frequency

domain, 𝐻𝑖 (𝑓 ), where 𝑖 = 1, . . . , 𝑛 for each of 𝑛 receptions collected

from 𝑛 chirps; (2) Second, we compute the mean and standard

deviation 𝜇 (𝑓 ) and 𝜎 (𝑓 ) of each measurement; (3) Finally, we drop

any measurements in the (𝜇 (𝑓 ), 𝜎 (𝑓 )) tuple over 20 kHz or below
100 Hz to filter out frequencies that are either too large or too

small to have the acoustic response featured. In practice, we may

filter this bandwidth further, based on any prior information of the

frequency response for a product.

Making the Signature Noise-resilient: To make our signature

robust to noise, we perform a few additional pre-processing steps.

We are particularly interested in two sources of error: (1) Ambient

noise or narrowband interferers that perturb specific measurements

of the frequency response; (2) Frequencies that are inherently poor

Figure 6: MiLTOn computes the threshold for the distance

of the signature observed on the field with the initial prod-

uct signature to assess damage, using all collected individual

measurements during initial packaging.

in informativeness owing to high variance across signature mea-

surements, often due to transducer imperfections.

Mathematically, wemodel these by performing the following two

steps: (1) First, we measure an additional metric 𝑐 (𝑓 ) – called the

confidence-metric, that is a normalized signal-to-interference-plus-

noise ratio (SINR) across measurements at a given frequency. (2)

Second, we perform outlier rejection to remove frequencies where
𝜎 (𝑓 )
𝜇 (𝑓 ) exceeds a threshold to drop measurements in extremely noisy

frequencies. At the end of this process, the values (𝜇 (𝑓 ), 𝜎 (𝑓 ), 𝑐 (𝑓 ))
measured across a subset of frequencies 𝑓 ∈ 𝐹 represent the acoustic

signature of the product. Note that even our cheap transducer and

microphone setup only had sub-1dB variation across 90.8% of the

frequencies within 100 Hz to 20 kHz.

5.2 Validating the signature

Having computed the acoustic signature, we now seek to design a

mechanism to compare two signatures of the same product – one

the initial signature 𝑠𝐼 = (𝜇𝐼 (𝑓 ), 𝜎𝐼 (𝑓 ), 𝑐𝐼 (𝑓 )) computed during

packaging and another 𝑠 = (𝜇 (𝑓 ), 𝑐 (𝑓 )) collected at a warehouse in
the supply chain.We note that the latter signature lacks the standard

deviation 𝜎 (𝑓 ), since we typically take only one measurement at

a time in each warehouse facility per product. We now need a

mechanism to accurately compare how dissimilar two signatures

are relative to each other, i.e. a distance metric.

Defining a Distance Metric: We compare the two signatures by

computing the L-2 norm of the difference in their 𝜇 values. We

weight each difference in 𝜇 values by two factors: (1) 1/𝜎𝐼 (𝑓 ) to ac-
count for noise and interference in the initial product signature per

frequency; (2) 𝑐 (𝑓 ) and 𝑐𝐼 (𝑓 ), the respective confidence values in
the initial and newly observed product signatures. Mathematically,

the distance is:

𝑑 (𝑠𝐼 , 𝑠) =

�
�
�
�
�

�
�
�
�
�
𝑐 (𝑓 )𝑐𝐼 (𝑓 )

𝜇 (𝑓 ) − 𝜇𝐼 (𝑓 )

𝜎𝐼 (𝑓 )
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�
�
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Defining detection threshold: Next, based on the distance cal-

culated above, we need to make a decision on whether this distance

is sufficiently large to declare the product damaged or otherwise. In

other words, we need to define an optimal threshold on the distance

that accurately identifies if the product is damaged.
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To compute this threshold, we rely on the individual channel

measurements 𝐻𝑖 (f) collected shortly after the manufacture. Recall

that each of these acoustic channel measurements were used collec-

tively to form the initial product signature 𝑠𝐼 = (𝜇 (𝑓 ), 𝜎 (𝑓 ), 𝑐 (𝑓 )).
However, we can also process these channels one at a time to form

individual signatures 𝑠𝑖 = (𝜇𝑖 (𝑓 ), 𝑐𝑖 (𝑓 )). When we observe the

space of these individual signatures 𝑠𝑖 in relation to the initial prod-

uct signature 𝑠𝐼 , (Fig. 6), it is clear that the individual signatures 𝑠𝑖
would be spatially separated relative to 𝑠𝐼 within some circle. This

circle has a radius defined by the maximum distance across each in-

dividual signature 𝑠𝑖 relative to the initial product signature 𝑠
𝐼 , that

is: 𝑑𝑚𝑎𝑥 = max𝑖 𝑑 (𝑠
𝐼 , 𝑠𝑖 ). In other words, the maximum distance

circle shown in Fig. 6 provides a sense of how much signatures can

deviate across many measurements for an undamaged product.

Assessing Damage: Let us assume that we encounter a signature

𝑠 for a product at a warehouse. We declare that a product is dam-

aged if 𝑑 (𝑠𝐼 , 𝑠) > 𝜏𝑑𝑚𝑎𝑥 and not damaged otherwise, where 𝜏 is a
threshold parameter. The value 𝜏 is a parameter that offers error

tolerance in our initial data from the first stop of the supply chain.

The choice of the correct value of the threshold parameter 𝜏 di-

rectly impacts our false positives vs. false negatives and overall cost

savings. The value of 𝜏 is scaled inversely based on the number of

data points 𝑛 collected at the factory i.e. the more the confidence in

their signature, the stricter the threshold. We discuss how a supply

chain company would choose this parameter in Sec. 6.

5.3 Learning from Mistakes

There are two types of mistakes MiLTOn can make in practical

settings. First, consider false positives where MiLTOn fails to detect

a damaged object inside a package. In this case, there is no value

in learning from the mistake as all the associated costs have been

incurred. However, in the case of false negatives, when we open a

box and find an undamaged product, we can use this information

to reinforce our signature.

Sample Augmentation: One would think that MiLTOn can only

actively learn from undamaged boxes that were opened. However,

by opening a box, we are not only getting the information that

the box is undamaged now, but also for all previous stages in the

supply chain (including in previous warehouses, hubs, etc.). This is

valuable information because it immediately indicates to MiLTOn

that the signature of this product as well as all previously recorded

signatures of this product correspond to that of an undamaged

product. This improves the number of samples available forMiLTOn

reducing the effective validation cost of our system.

Bootstrapping: MiLTOn uses the above observation to include

all these signatures into the set of initial individual signatures as

shown in Fig. 6. It can then repeat the process described in Sec. 5.2

to update 𝑑𝑚𝑎𝑥 , if needed, based on the distance of these newly

added signatures as well as reduce 𝜏 to account for the number

of newly added signatures. The net effect would be an expansion

of the circle in Fig. 6 to accommodate these previously outlying

measurements. We could even start with a new product with no

measurements, and our system would trigger the box to be opened

and update its estimates throughout the supply chain.

It is indeed true that as a package moves across warehouses

without being checked, it will amortize a lot of unverified data

(could be false positives) polluting the detection threshold. How-

ever, MiLTOn makes a conscious decision by allowing it. MiLTOn

identifies that the real cost to the supply chain company is opening

the box repeatedly (shown in Sec. 6) and thus purposefully makes it

amicable to avoid opening the box while remaining robust to detect

product damage to a sufficient degree.

6 COST-BENEFIT ANALYSIS

In this section, we address a question common to any industrial

system: “Does the system result in cost-savings for a supply chain

company to deploy?”. We further assess how the threshold 𝜏 should
be decided by a retailer to maximize profit for its supply chain.

6.1 A Simplified Economic Model

We set some broad design principles and a simplified economic

model that influence our system’s threshold. First, let’s analyze the

losses a retailer incurs for every returned item today. The first cost

is the obvious cost of replacing and shipping the cup. However,

there is a much more pertinent cost that is often overlooked – the

reputation loss due to damaged product delivery. A survey by a

major shipment company estimated that 50% of customers are less

likely to buy from a retailer that shipped them damaged products[3].

Even though the reputation loss is intangible, it is so extensive that

retailers use several steps to minimize it today – for example, cash-

equivalent coupons as apology. Industry experts estimate that the

real cost of replacing a damaged item is, on average, 17 times the

cost of shipping it[2]. We call the sum of the above losses as the

total cost of replacing a damaged item – the damage cost. A retailer

effectively faces this cost if a customer receives a damaged object.

In contrast, our design adds an additional cost of enabling the

system - the validation cost of labor for opening flagged packages

to verify the damage. If the item is indeed damaged, the retailer

replaces the cup and incurs additional replacement cost of replacing

it. Note that replacement cost is lower than cost above because the

retailer no longer needs to compensate the customer and early

detection reduces the shipping cost as well.

However, when MiLTOn incorrectly tags a cup as damaged, the

retailer incurs an additional validation cost over the damage cost,

it faces for losing customer confidence. As an example, consider

a scenario where MiLTOn correctly tags a cup as damaged, the

net cost savings for a retailer or logistics provider in that case is:

damage cost - replacement cost - validation cost (always positive).

The final cost involved is the fixed cost of installing and main-

taining our system. However, this is subsumed by validation cost

for the most part since the latter is recurrent and often involves

labor versus our system that is automated and relatively low cost.

We further explore how this model corresponds to actual numbers

in our case-study on cups in Sec. 9.5.

Cost of Latency: Another important factor that governs the prof-

itability of a system like MiLTOn is the impact on the regular

operation of the supply chain. In our case, it is the latency of the

mechanical arm and time to send the acoustic signal on the order

of seconds. At first glance, this seems high for any supply chain

that operates on lower latency bounds. However, there are sev-

eral other processes such as putting the package from storage on

the conveyor belt, manually scanning packages as well as moving
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packages across warehouses that take significantly more time to

perform. We find that we can reduce the latency burden of MiLTOn

in a similar way that supply chain companies do for these processes

– parallelism. Similar to how a supply chain company would hire

multiple employees to scan packages, we would operate multiple

replicas of MiLTOn. This would reduce the latency and operational

costs of MiLTOn while increasing the capital expenses to deploy

MiLTOn. We evaluate the impact of these expenses in Sec. 11.3.

6.2 Tuning the Threshold

It is in the best interest of the retailer to choose our threshold

multiplier, 𝜏 , to optimize for the net cost savings. Around such an

optimum, as we lower the value of 𝜏 , the number of false negatives

increase and customers get more damaged items. On the other hand,

if the value of 𝜏 is too high, the number of false positives increases,

we incur more validation cost unnecessarily, but less damaged items

get shipped to customers. Therefore, for each threshold 𝜏 , we em-

pirically evaluate the anticipated false positives and false negatives.

We then tune our threshold so that net-on-net, the cost reductions

are maximized with our system compared to the prevalent system.

We call this choice of threshold the profit optimum. We note that

the profit-optimum may not always be the same as the canonical

accuracy optimum where the false positive and false negative rates

are weighed equally.

In Sec. 9.5, we make these economic trade-offs concrete in the

context of a case study – a manufacturer of porcelain cups, through

our simplified model developed in coordination with our industry

collaborator. We study how our choice of threshold impacts and

can ensure net-profitability from the deployment of our system.

7 IMPLEMENTATION AND EVALUATION

We implemented MiLTOn using Adafruit Large Surface Transducer

withWires - 4 Ohm 5Watt being fed in acoustic signals via Adafruit

Stereo 20WClass D Audio Amplifier - MAX9744 with 6dB amplifica-

tion (Fig. 7(a)). At the receiver, we use a AKG P170 Small-diaphragm

Condenser Microphone. We connect both of these via RME Baby-

face Pro FS to the computer . We use the TI AWR 2243 mmWave

Radar (Fig. 7(b)) for identifying the location of the cup inside the

box. Our code is built in MATLAB to perform real-time integrity

check on the products inside the box.

For each evaluation, our acoustic system transmits a 5 second

long chirp spanning bandwidth from 100 Hz to 24 KHz. Our receiver

receives the signal at 48KHz sampling rate. We then use these

signals to perform integrity check of the product and output a

boolean result : Positive (No need to open the box) or Negative

(Open the box to check integrity)

To evaluate our system, we consider various parameters such as

materials, training data, and type of object. For materials, we use 4

cups/mugs of different materials (plastic, glass, wood and porcelain).

For type of object, we use various objects of glass and ceramic that

are typically shipped such as children toys and wine/drink glasses.

Finally, for an in-depth analysis of the robustness of our system, we

perform a detailed evaluation across 30 types of breakages on "10

Strawberry Street" Catering Mug Set. All evaluation is performed

inside a closed box with single-wall E-flute corrugated cardboard

walls. The same undamaged cup is broken when switching from

Figure 7: Experimental Testbed

Figure 8: MiLTOn’s ability to replicate the response as heard

upon tapping the cup

positive to negative data collection. Note that we evaluate our sys-

tem on objects which are small enough to resonate from a single

transducer while operating in a cost range where more expensive

and complicated systems such as X-ray would be infeasible. Detect-

ing damage for objects that do not resonate readily under acoustic

signals (e.g. objects made of cloth, Styrofoam, etc.) remains out of

the scope for this paper.

Across our evaluation, we use four terms:

(1) True Positive: Not Damaged and Box not opened

(2) False Positive: Damaged and Box not opened

(3) True Negative: Damaged and Box opened

(4) False Negative: Not Damaged and Box opened

8 MICROBENCHMARKS

In this section, we evaluate the basic primitives behind MiLTOn.

8.1 Correlation with Tapping

One of the key intuitions that led to MiLTOn was the fact that we

can replicate the effect of tapping the cup by using a transducer. To

evaluate this, we use a spoon and collect a sound clip of tapping

the cup. We also collect an acoustic measurement for verification.

The cup is then broken into two clean parts using a hammer and

another acoustic signature is collected. Finally, we attempt to repair

the cup using a scotch tape and evaluate the acoustic behavior.

Result: Our evaluation demonstrates that the cup response even

after repair looks significantly different from the original response.

Further, as shown in Fig. 8, this difference in the responses can also

be seen in the acoustic signatures with corresponding peaks at the
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(a) (b)

(c)

Figure 9: Porcelain Cups Case Study: (a) Accuracy across the evaluated breakages ; (b) Effect of Training Samples on MiLTOn

performance; (c) Cracked cups after evaluation.

resonance modes. This shows the ability of MiLTOn to effectively

measure acoustic behavior of objects and, in turn, their integrity.

8.2 mmWave Location Classification

We evaluate the ability of mmWave Radar to identify the location

of the object reflection (as the location of the box is known ). To

evaluate this, we take the example of packaging typically seen in

tableware industry, a box with 6 compartments tightly holding six

articles (See Sec.4.4). We then place the cup in each of the compart-

ments and record their radar responses. Using the Bartlett-based

beamforming algorithm across the 4 antennae of the mmWave

radar, we attempt to identify the location of the cup.

Result: Fig. 5 shows that the radar can distinguish signatures across

compartments in a reasonably sized box. We achieve an accuracy

of 4.75cm in identifying the location of the cup inside the box.

However, since we know the bounding box across dimensions of

where the box is located, we can get perfect accuracy by mapping

the location to the closest compartment. Note that this may not

work for a large number of extremely small objects (such asmarbles)

or boxes that reflect mmWave signals strongly (such as metal).

9 PORCELAIN CUPS : A CASE STUDY

In this section, we present our main results based on the evaluation

across 60,000 trials for a single commodity object – a porcelain cup.

9.1 Motivation and evaluation

We chose porcelain cup as our object of study since it provides

diversity across multiple axes. First, the cup can be broken in vastly

different kind of ways ranging from a chip to breaking into powder.

Second, a large number of cups are transported across the world ev-

ery day. It is estimated that over a million cups are shipped around

the world every month. Finally, they are really cheap, making fi-

nancial parity of our system even more difficult to achieve.

Thus, to evaluate MiLTOn, we used 30 cups from "10 Strawberry

Street". We then identified typical breakages seen in the actual

supply chain for the same manufacturer across bad reviews[5].

We identified three typical types of damages seen in the review

pictures and comments: (1) Handle Breakage (2) Repairable Damage

(3) Unrepairable Damage. Since there are nowell accepted universal

standards for understanding the degree of damage in the supply

chain, we borrow a metric typically used in measuring cracks on

pavements to quantify these damages to the porcelain cup. The

surface cracking metric (SCM)[9] is measured as 100
∑𝑁

𝑖 𝑙𝑖𝑤𝑖

𝐴 where

𝑙𝑖 is the length of the crack, 𝑤𝑖 is the width of the crack and 𝐴 is

the surface area of the pavement. Since the width of the cracks are

extremely difficult to measure, we adapt a simplified version of the

crack metric 𝜎 =
∑𝑁

𝑖 𝑙2𝑖
𝐴 . For our cups, the external surface area (A)

is 110 sq. in. By measuring the size of the cracks, the ranges for the

three categories are: (1) Handle Breakage : 𝜎 < 0.2; (2) Repairable
Damage: 0.2 < 𝜎 < 1; (3) Unrepairable Damage: 𝜎 > 1.

We collect 15 data points for each of the 30 cups using our sys-

tem (rattling the box after every collected data) as undamaged data

points. Then we use a hammer to break the cups into aforemen-

tioned 3 categories of damages. After performing this breakage, we

collect 10 different acoustic samples for each of the broken cups.

We, then, train our acoustic signature on 5 randomly chosen good

data points that we collected earlier and evaluate the remaining 10

good and 10 bad data points for the system. We repeat this whole

process 100 times to ensure robustness across training data points.

9.2 Accuracy

As shown in Fig. 9a, our evaluation shows that we achieve a 96.21%

accuracy in identifying broken and unbroken cups. Note that for the

purposes of this evaluation, the threshold is optimized for accuracy

(unlike as mentioned in Sec. 6 to maximize profit). Only 3.75% of

the damaged cups are not detected by our system which based on

various observations cited in Sec. 6 corresponds to 0.22% of total

cups reach the customer damaged (compared to 6% prior).

9.3 Noise Resilience

We evaluate the resilience of MiLTOn’s performance in presence

of ambient noise in Fig. 10. As seen in the figure, we can clearly

see that even when the SNR of the signal is around 9 dB, accuracy

of MiLTOn remains above 90%. Note that most of our experiments

were conducted at a SNR of around 15.7 dB (quiet conference room).
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Figure 10: Noise Resilience of MiLTOn

Figure 11: Cost-Benefit Analysis of MiLTOn

Further, we reiterate that MiLTOn is designed to be deployed in a

closed box (acoustically isolated container) to reduce the effects of

ambient noise similar to a X-ray (albeit cheaper and much easier to

deploy). In fact, a simple makeshift isolation chamber (a cardboard

equivalent of a covered chamber for X-rays) can provide reasonable

acoustic shielding of the area of the system from loud ambient noise.

Further, more precise and directional microphones can overcome

the noise limitations of our proof-of-concept setup.

9.4 Effect of Training Data

To evaluate the effect of MiLTOn across training data, as we in-

crease the training samples, we proportionally reduce the number

of bad points chosen to ensure a 50-50 distribution between good

and the bad points. As shown in Fig. 9b, both false positives and

negatives decrease as we increase the number of training samples.

However, beyond a certain number of training samples the return

on investment by training on more and more data are limited. This

occurs around 9 training samples in our dataset. Thus, in a practical

setting, it would be perceptive of a retailer to identify this threshold

and not unnecessarily train on all available samples.

9.5 Cost Savings

It is critical to understand how MiLTOn’s performance translates

to cost savings for an enterprise to achieve profitability. We per-

form this analysis based on the publicly known costs and metrics

described in Sec. 6. We use standard metrics to evaluate the costs

involved in shipping ceramic cups. In this case study, each cup

costs $3 and costs $0.82 to ship per cup. In addition, the labor costs

are assumed to be $15/hr. Therefore, the effective cost of a broken

cup reaching the user is $16.94. The effective cost of a broken cup

that is detected early is $5.48, which includes the shipping cost, the

replacement cost, and the labor cost of verifying damage.

Therefore, any cup that is detected early saves the retailer $11.46.
For false positives, the retailer pays the entire damage cost ($16.94).

For false negatives, the retailer must pay an additional labor cost of

$4.16 for labor. Finally, according to public reports, the percentage

of damaged shipments varies from 6% to 15%. Higher damage rates

make our system more profitable. For this section, however, we

assume the lower end of this damage range: 6% as well as a 1%

worst case for analysis.

We use these metrics to estimate the effective cost savings pro-

vided by MiLTOn and plot the results in Fig. 11 as a function of the

threshold 𝜏 . We use this analysis to show that the profit optimum

value of 𝜏 is different from the equal error value. Based on our

analysis, we expect to save a company up to $607,440 if 6% of its

packages are being returned due to damages, or $76,521 if only 1%

are, for every million cups shipped.

The cost of deploying MiLTOn is $300 for mmWave radar and

$50 for acoustic setup as we can reuse existing cameras on the

supply chain. An estimate of cloud storage and compute cost for a

million signatures varies between $30-$90 a year. Further, suppose

we deploy the system in 100 warehouses of a large supply chain

company, the total cost comes to roughly $40, 000. This means that

even if 6% of a supply chain packages are being returned due to

damage, we can still see an effective profit of $567, 440 every year.

We further discuss how this is a lower bound for the potential profit

in Sec.11.3.

10 ROBUSTNESS ANALYSIS

In this section, we present robustness analysis of MiLTOn and

evaluate accuracy across materials, object type, size, padding and

presence of multiple objects in a package.

10.1 Accuracy across Materials

We study the effect of the material of the object on MiLTOn’s per-

formance. To evaluate this, we used 4 cups/mugs of similar sizes

made from 4 different materials – porcelain, glass, wood and plas-

tic. We then collected 15 acoustic measurements from each of the

mugs before breaking them with a hammer. We collect 10 acoustic

measurements after breakage while giving the box a strong shake

to emulate transportation. We use 5 out of the 15 good measure-

ments to train our signature and evaluate across the remaining 20

measurements. We repeat this selection of 5 training signatures 100

times to prevent training data bias.

Result: Our results shown in Fig.12a show a high accuracy in

detecting the damage across thematerials. This is due to the fact that

our acoustic signature is a combination of the box-object acoustic

system and a broken object also affects the behavior of the box in

turn improving the accuracy of the system. Across the 4 materials,

we achieve an aggregate accuracy of 97.91%. The most surprising

result here was the fact that the wooden cup had only it’s handle

broken, but showed the widest girth between the training and

testing behavior reaffirming our understanding of the system.
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(a) (b) (c)

Figure 12: Robustness Analysis: (a) Accuracy ofMiLTOn acrossmaterials of the object; (b) Accuracy ofMiLTOn across different

types of objects; (c) MiLTOn Multi-cup evaluation: 6 cups in a box; (top) shows the benefit of using multiple transducers over

a single transducer at center front across location of damage; (bottom) shows the accuracy vs. number of cups damaged

Figure 13: Effect of packaging on MiLTOn

10.2 Accuracy across Products

Another important dimension to evaluate is how the acoustic sig-

nature changes across shape and size of the products. Thus, we

picked two classes of objects that deviate from our case study. A set

of large and heavy glassware, and a set of articles typical children’s

porcelain toy sets. Evaluation steps are same as Sec. 10.1.

Result: Our result in Fig.12b shows the accuracy across the objects.

Clearly, the heavier and larger glassware demonstrates significantly

better accuracy than the smaller ceramic objects. We surmise that

this is due to the fact that bigger and heavier objects have a larger

contribution to the acoustic response of the box-object composite

system than the lighter and smaller ones. Another key observation

in this evaluation was that the signature remains robust to orienta-

tion changes as the glass products were removed and placed back

in a different orientation between measurements. Averaged across

the groups, we see a 99.23% accuracy (0.56% false positives) for the

glassware compared to the 97.23% accuracy (3.65% false positives)

for the porcelain toy set.

10.3 Resilience to Packaging

We evaluate the effect of lightweight packaging on MiLTOn’s op-

eration in real world. We evaluate our system for three packaging

materials – shaved paper, crumpled paper, and packing peanuts.

Evaluation steps are same as Sec. 10.1.

Result: As depicted in Fig. 13, across the three packaging materials,

MiLTOn’s performance remains above 97% accuracy. We observe

that padding creates small air pockets in the box that add behavior

at relatively high frequencies (8 KHz and above, cup-sized objects

resonate around 2.4 and 7.2 KHz), however as these behaviors are

highly dynamic, across signatures their contribution gets diluted.

We believe that the accuracy remains unaffected as enough energy

reaches the cup in a typical setting for it to resonate and contribute

it’s unique signature. If the cup does not vibrate and resonate (in an

adversarial setting), we surmise the accuracy will drop drastically.

10.4 Multiple Objects

Finally, before presenting our detailed study on porcelain cups,

we wanted to analyze how the accuracy of MiLTOn varies when

there are multiple objects inside the same box. We use 6 cups in

a box as the base line and first create a single breakage for each

cup location to evaluate MiLTOn. We also study the impact of

transducer location on the accuracy of the system. Finally, we also

attempt to detect multiple breakages within a box simultaneously.

Result: Our results in Fig.12c (top) shows that the accuracy of

MiLTOn is heavily affected by the location of transducer. When

the transducer is placed optimally (green), the accuracy in finding

damage to objects remains above 90%. However, when it is not

placed at the right location, the system becomes more inaccurate.

This behavior is expected as the amount of energy transferred to

cups on the rear and flank is significantly attenuated (rear more

so than flank). Thus, at an average the accuracy of detecting dam-

age across locations when the transducer is located statically at

center-front location (blue) is 80.8%. However, as multiple cups get

damaged (Fig.12c (bottom)), this accuracy increases due to large

changes in the cumulative received acoustic signals.

To improve accuracy further when sensing multiple cups, rather

than placing the transducer at only one location, we consider an

alternative denoted as MiLTOn (multiple locations) in Fig. 12c that

either uses multiple transducers or takes multiple measurements

at multiple locations from a single transducer. By doing so, we

demonstrate that the accuracy of the system remains above 90%

(green) when multiple cups are damaged, ensuring effectiveness.

11 DISCUSSION

11.1 Limitations

While our work solves many practical challenges in making acous-

tic vibrometry a reality over the air, there are several limitations
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of our work that need to be addressed to make the system more

ubiquitous and robust to various factors. First, our evaluation is

limited to the scenarios where object under consideration has a

resonant behavior. This means other commodity objects such as

clothes, groceries will require more sophisticated solutions to detect

spoilage or tears. However, the class of resonant objects does span

a wide variety of products from porcelain and metallic products

to wooden and glass products. We believe an acoustic synthetic-

aperture radar approach may allow for disambiguating individual

objects, which we leave for future work. Second, our system strug-

gles if the material of the enclosure itself is highly absorptive as

the amount of energy reaching the object is too little to make it

resonate. Another scenario which may affect the ability of MiLTOn

to correctly isolate the behavior of the object is when the object

moves inside a sparsely occupied box. While mmWave should be

able to detect this movement and flag it, it will remain difficult to

ascertain if the object is broken or not. However, while the response

SNR of the object-box system is greater than 9 dB, MiLTOn can

achieve greater than 90% accuracy. Finally, we acknowledge that no

quality control system can be truly exhaustive in its analysis – there

will always remain some forms of damage that are unforeseen.

11.2 Who deploys MiLTOn?

We ask the question of who has the correct incentives to deploy

MiLTOn with many diverse stakeholders and companies often in-

volved along the supply chain. While a detailed economic analysis

is beyond the scope of this paper, we believe MiLTOn can be a

win-win system if it augments the existing supply chain insurance

framework that various stakeholders already pay into (usually to

mitigate business interruption). Imagine insurance firms that offer

incentives for companies to deploy MiLTOn by reducing premiums

and rewarding companies that handle packages with less damage

caused. We believe that much like how big data from phone ac-

celerometers [14, 42] has revolutionized the auto insurance sector, a

similar opportunity exists in supply chain insurance with MiLTOn.

Another key factor to take into consideration is the cost effec-

tiveness of MiLTOn. Indeed, for an expensive or large object (e.g.,

a designer vase), it might be more cost-effective to open the box at

every location. Further, the cost of the system would make sense

to deploy where the quantity of the objects is sufficiently large to

amortize the initial cost of a few hundred dollars by sheer scale.

Much of the compute and storage can be offloaded to a cloud service

to further reduce the costs of deployment for the end user.

11.3 Improving MiLTOn latency and cost

A key bottleneck in real world adoption of many sensing solutions

for supply chain lies in the latency and cost of the system. MiLTOn’s

current implementation that relies on commodity hardware faces

similar bottlenecks. However, MiLTOn can improve significantly

with custom hardware purchased at scale. For e.g. MiLTOn uses

a 5 second chirp to sense the behavior of the object which gives

a resolution of 0.2 Hz in the received signal power. With custom

hardware, this can be reduced by at least a factor of 20 (frequency

resolution of 4 Hz) with little effect on the accuracy of the system

and in turn reducing the latency to 250 ms. Further, we use off-

the-shelf prototypes for mmWave Radar and acoustic transducers

which cost roughly 10× the cost of a customized solution. This can

reduce the cost of deploying the system as well as make multiple

parallel chains cost-effect for reducing the impact on latency of the

spring-loaded arm.

11.4 Future application scenarios

While we believe MiLTOn is an exciting first step in identifying

package anomalies, it’s underlying approach can scale across vari-

ous industry verticals. One such vertical is automated robotic ware-

houses, where all ingress, assessment and dispatch is performed

using smart algorithms. Our approach can provide an additional

sensing modality to track object integrity as a package is being

carried around by a robot. Failures can be investigated to further

improve reliability guarantees of the robots. Another direction of

exploration that logically follows MiLTOn is leveraging the vast

literature in acoustic vibrometry and sensing to improve the ca-

pabilities of MiLTOn beyond integrity checks to new objectives

such as material sensing and food quality identification. Each of

the above can build upon MiLTOn’s learnings.

Further, this highlights the strengths of using multiple modalities

to detect damage or mutilated products. MiLTOn’s three modalities

provide three complementary information sources measuring dif-

ferent properties of the object. The camera detects visible damage

to the box externally. mmWave signals can detect macro changes

in electro-magnetic properties of the object (detecting a brick in-

stead of a iPhone) and can see through the box to locate the objects.

Acoustic signals detect the mechanical properties of the object (typ-

ically mechanical stresses cause breakages) to perform integrity

checks. Thus, future applications can leverage more modalities to

complement MiLTOn and improve the capabilities of the system.

12 CONCLUSION

This paper presents MiLTOn, an acoustic solution for non-invasive

product testing that verifies the integrity of fragile porcelain and

glass products as they move through the supply chain. Assisted

by mm-wave and camera systems, MiLTOn can monitor even tiny

sub-millimeter cracks in the product using principles of acoustic

vibrometry. Different from prior research in vibrometry, MiLTOn

can achieve this without physical contact with the product within

the box and operates non-invasively with commodity sensors. To

do so, MiLTOn designs a novel mechanism that treats the box

itself as an acoustic speaker and processes its acoustic response to

assess damage of the product within it. Our extensive evaluation

demonstrates high accuracy in determining product damage for

fragile goods. While this paper focuses on fragile goods (primarily

glass and porcelain tableware), we believe that there is potential for

extensive future work in extending our approach to other diverse

domains including metallic goods and agricultural products, all of

which are known to offer distinctive acoustic responses.
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