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We introduce the G-stable rank of a higher order tensors over perfect fields. The G-stable rank is related
to the Hilbert—-Mumford criterion for stability in geometric invariant theory. We will relate the G-stable
rank to the tensor rank and slice rank. For numerical applications, we express the G-stable rank as a
solution to an optimization problem. Over the field F; we discuss an application to the cap set problem.
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1. Introduction

1A. Ranks of tensors. We will introduce the G-stable rank for tensors, describe its properties and
relate it to other notions for the rank of a tensor, such as the tensor rank, border rank, slice rank and
noncommutative rank. Suppose that K is a field, Vi, V,, ..., V; are finite dimensional K-vector spaces
and V=V, ®V,Q®---® V, is the tensor product. All tensor products are assumed to be over the field K
unless stated otherwise. The definition of tensor rank goes back to Hitchcock [1927; 1928].

Definition 1.1. The rank rk(v) of a tensor v € V is the smallest nonnegative integer » such that we can
write v = Zle Vi1 ®Vi2®--Qu;q withv; j € V; foralli and ;.

There are many applications of the tensor rank and the related concept of CP-decomposition; see
[Kolda and Bader 2009] for a survey. For d = 2, tensor rank coincides with matrix rank. Computing the
tensor rank is NP-hard [Hastad 1989], and tensor rank is ill-behaved. For example, the set X (rk, ) C V of
all tensors of rank < r is not always Zariski closed. The border rank brk(v) of a tensor v was introduced
by Bini [1980] and is the smallest positive integer r such that v lies in the Zariski closure of X (rk, r); see
also [Biirgisser et al. 1997; Landsberg 2012]. The slice rank of a tensor was introduced by Terence Tao;
see [Tao and Sawin 2016; Blasiak et al. 2017].
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Definition 1.2. A nonzero tensor v € V has slice rank 1 if it is contained in
Vi - QVi_1Quwe Vit 1 ®---QVy

for some i and some w € V;. The slice rank srk(v) of an arbitrary tensor v € V is the smallest nonnegative
integer r such that v is the sum of r tensors with slice rank 1.

1B. The definition of the G-stable rank. We will now define the G-stable rank. It was noted in [Blasiak
et al. 2017] that the slice-rank is closely related the notion of stability in geometric invariant theory; see
[Mumford et al. 1994]. The authors also introduce the instability of a tensor and relate it to the slice rank.
The instability of a tensor does not behave like a rank function, but it is closely related to the G-stable
rank. We will define the G-stable rank in terms of degenerations and power series. It can also be defined
in terms 1-parameter subgroup using the Hilbert—-Mumford criterion in geometric invariant theory (see
Theorem 2.4). The Hilbert—-Mumford criterion is often formulated when working over an algebraically
closed field K. Kempf [1978] showed that the Hilbert—-Mumford criterion still applies when working of a
perfect field K. For this reason, we will assume that K is a perfect field for the remainder of the paper.

To define the G-stable rank, we need to introduce the ring K [[#]] of formal power series in ¢ and its
quotient field K ((¢)) of formal Laurent series. The #-valuation of a series a(t) € K((¢)) is the smallest
integer d such that a(¢) = t“b(r) with b(t) € K[[t]. By convention, val;(0) = co. If W is a K-vector
space and v(¢) € K((t)) ® W then we define

val;(v(¢)) = min{d | v(t) = tdw(t) and w(t) € K[[t] ® W}.

We say that v(¢) has no poles when val,(v(¢)) > 0, which is equivalent to v(¢) € K[t]] ® W. In that case
we say that lim,_, ¢ v(¢) exists, and is equal to v(0) € W.

The group GL(W, K((¢))) will denote the group of K((¢))-linear endomorphisms of the space
K((t)) ®x W. We may view GL(W, K((t))) as a subset of K((t)) ®x End(W). If W = K" then
K@) ®g W = K((t))" and we can identify GL(W, K ((¢))) with the set of n x n matrices with entries in
the field K ((¢)). If R € K((¢)) is a K-subalgebra of K ((¢)) (suchas R=K[[t]], R=K][t, t~or R=K|[1]),
then GL(W, R) is the intersection of GL(W, K ((t))) with R ® ¢ End(W) in K ((t)) ®x End(W). Note
that the inverse of an element in GL(W, R) lies in GL(W, K ((t))), but not necessarily in GL(W, R). If
W = K", then GL(W, R) is the set of n x n matrices with entries in R that, viewed as a matrix with
entries in K ((¢)), are invertible.

We consider the action of the group G = GL(V}) x GL(V») x --- x GL(V},) on the tensor product
space V=V, @ V, ® - - - ® V;. For any K-subalgebra R C K ((¢)), we define

G(R) =GL(V1, R) x --- x GL(Vg4, R).

The group G(K((t))) actson K((1)) ® V.
For any weight o = (a1, a2, ..., 04) € [R{‘io we will have a notion of G-stable rank, but the case
a=(1,1,...,1) will be of particular interest. Suppose that g(t) € G(K[¢]), ve V and val;(g(¢) -v) > 0.
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We consider the slope
> val, (det g; (1))
val; (g(1) - v)

Heuristically, the denominator in the slope measures how fast g(¢) - v goes to 0 as t — 0. The numerator

Ma(g(1), v) = €]

measures how fast the product of the eigenvalues of g(¢), g2(¢), ..., g4(t) goto 0 as t — 0. A small
slope means that v is very unstable in the sense that g(¢) - v goes to 0 quickly, while, on average, the
eigenvalues of g;(¢) go to O slowly.

Definition 1.3. The G-stable «-rank rkg (v) of v as the infimum of all (g (?), v) where g(¢) € G(K[[¢])
and val,(g(t)-v) > 0. Ife = (1,1, ..., 1), then we may write 1tk instead of rkg.

Using a K-rational version of the Hilbert—-Mumford criterion [Hilbert 1893; Mumford et al. 1994]
by Kempf [1978], we will show that for computing the G-stable a-rank, one only has to consider g(¢)
that are 1-parameter subgroups of G without poles (Theorem 2.4). In this context, g(¢) € G(K[t]) is a
1-parameter subgroup if for every i we can choose a basis of V; such that the matrix of g(¢) is diagonal
and each diagonal entry of that matrix is a nonnegative power of ¢.

We denote the standard basis vectors in K" by [1], [2], ..., [n#], and we abbreviate a tensor [i{] ®
[(2]1® - ®lig]l by [i1, i, ..., ial.

Example 1.4. Suppose that V| = V, = V3 = K% and v = [2, 1, 1] +[1,2,1]14+[1, 1,2]. We take
g(1) = (g1(2), g2(1), g3(1)) with

g1(t) = g2(t) = g3(1) = ((t) 0) )

We have g (1) - v = t?v, det(g; (1)) = £, and

val,(det g1 (¢)) + val,(det g(¢)) + val, (det g3(¢)) 1+1+1 3
n(g®),v) = pua,1,1)(g),v) = vl () - 0) = 5 =5
. .

This shows that tk® (v) < % One can show that k% (v) = %; see Examples 1.5 and 4.5.

1C. Properties of the G-stable rank. 1If v is a rank 1 tensor, then we have rkg(v) =min{wq, ..., oy} and
k¢ (v) =1 (Lemma 3.1). The G-stable rank is related to other notions of rank. We have (see Corollary 3.7

and Proposition 4.9)
2 srk(v)

d

This implies that for d = 2, the G-stable rank, the slice rank and the matrix rank coincide.

< k% (v) < stk(v) < brk(v) < rk(v).

The tensor rank depends on the field one is working over. For example, the tensor [1, 1, 1]—[1, 2, 2] —
[2,1,2] —[2,2, 1] has rank 3 as a tensor in R?*?*2 but rank 2 when viewed as a tensor in C>*?*2.
Although it is not clear from the definition, the G-stable rank does not change when passing to a field
extension of K (see Theorem 2.5).
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Another nice property of the G-stable rank is that the border rank phenomenon does not happen and
the set X (rkg, r) of all tensors v with rkg(v) <r is Zariski closed (Theorem 2.11). Tao and Sawin [2016]
proved a similar result for the slice rank, and this implies that srk(v) < brk(v) for all tensors v.

Like other rank notions, the G-stable rank satisfies the triangle inequality: rkg (v+w) < rkg (v) +rkg (w)
(see Proposition 3.6). fve Vi@ Vo ®--- @ Vyand w e W Q Wo ® - - - ® W, then the direct sum of v
and w, viewed as

y VigWo®---®@Vy Vi V2 Va
( )e &5 CVHW =1 || & |® - &
WiW,®- - @ Wy Wi W> Wy

will be denoted by vEHw. (We will use the notation vEHw and VEW rather than the more common notation
v@w and V @ W to emphasize that this direct sum is a “vertical” operation, i.e., the sum V; @ W; is taken
within each tensor factor.) The G-stable rank is additive (Proposition 3.8): rkg (wHw) = rkg (v) —i—rkg (w).
In particular, if

v=[1,1,...,114+(2,2,...,2]+---+1[r,r, ..., 7]

=[1,1,...,118[1,1,..., 118---#H[1,1,...,1]1e K" K" ® ---® K",
r d

then rkg (w)y=r rkg([l, 1,..., 1) =rmin{ay, ..., oy} and rkG(v) =r. Strassen [1973] conjectured that
tensor rank is additive when K is infinite, but Shitov recently gave a counterexample to this long standing
conjecture; see [Shitov 2019].

fveVi®@Vo® --@Vy;andw e W@ Wo®- - -Q W, then we can form the “horizontal” tensor product
VRWeEVIRQ - QV; QW ®---® W,. Itis clear that rk(v ® w) <rk(v) rk(w). It was recently shown in
[Christandl et al. 2019] that we do not always have equality. The G-stable rank behaves quite differently
for the horizontal tensor product. We have rkﬁ P r@w) = min{rkg (v), rkg(w)} (see Proposition 3.4). If
d = e then there is another way of forming a tensor product. The tensor product v ® w viewed as

v VigVo®---®Vy Vi V> Va
® € & ClI I QI® - ®
w WiW,®---Q W, Wi W, Wy

will be denoted by v Xw. We will refer to this operation as a vertical tensor product or a Kronecker tensor
product. It is clear that rk(v K w) <rk(v ® w). It has long been known that rk(v X w) can be smaller than
rk(v) tk(w). For example, if v; =[1, 1, 1]4+[2, 2, 1], v =[1, 1, 1]+[2, 1,2] and v3 =1, 1, 1]+ [2, 2, 1]
then vy X vy X v3 is the matrix multiplication tensor for 2 x 2 matrices which has rank 7 [Strassen
19691, so 7 = rk(v; K vy X v3) < rk(v;) rk(v2) rk(v3) = 23. If K has characteristic 0, then we have
rkgﬁ (wXw) > rkg(v) rkg(v) (Theorem 5.4). We conjecture that this inequality is also true when K is a
perfect field of positive characteristic. The slice rank does not behave as nicely with respect to vertical
tensor product and srk(v X w) could be larger or smaller than srk(v) srk(w); see [Christandl et al. 2018,
Example 5.2].
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1D. G-stable rank for complex tensors. If K = C, then the G-stable rank can be computed in a different
way. For a finite dimensional complex Hilbert space, we will denote the Hermitian form by (-, - ) and
the ¢, norm (or Frobenius norm) by ||v| = +/(v, v). Suppose that Vi, V5, ..., V; are finite dimensional
Hilbert spaces, which makes V into a Hilbert space. If A is a linear map between finite dimensional
Hilbert spaces, then its spectral norm [|A||, is the operator norm [|A|l, = max,ol|Av|/||v], which is
also the largest singular value of A.

Foratensorve V,let ®;(v): (Vi ---® f/\, R - Vy)* — V; be the i-th flattening. Then the G-stable
a-rank of a tensor v € V is equal to

2
aillg - vll

2

k¢ (v) = sup min ——>——
* ecG 1 Pi(g-v)|I2

(see Theorem 5.2).

Example 1.5. Consider again the example v =[2, 1, 11+[1, 2, 1]+, 1, 2] € K****? as in Example 1.4,
but now we will work over K = C. We have |v|| = V/3. The first flattening of v is equal to
2= (" g0 0)
which has singular values 1 and V2. So |©1(0)|ls = V2. By symmetry, we also have [[®,(v)|l, =
[D3(v)|le = ~/2. It follows that
rkG(v) = sup min —Ilg ‘ UHZ > min —”sz — E
g i IPi(g-0IZ T i [P 2
1E. The cap set problem. We say that a subset S of an abelian group A does not contain an arithmetic
progression (of length 3) if there are no distinct elements x, y, z € § with x4z =2y. For an abelian group A,
let r3(A) be the largest cardinality of a subset S € A without an arithmetic progression. Finding upper and
lower bounds for r3(A) has been studied extensively in number theory. For the group A = (Z/32)" =F}
this is known as the cap set problem. Brown and Buhler [1982] showed that r3(F5) = 0(3") and this
was later improved to r3(F;) = O(3"/n) by Meshulam [1995] and to o(3"/ n'*%) by Bateman and Katz
[2012]. Using the polynomial method of Croot, Lev and Pach [Croot et al. 2017], who showed that
r3((Z/4Z)") = o(c") for some ¢ < 4, Ellenberg and Gijswijt [2017] showed that r3([F5) < 30" = 0(2.756"),
where 6 < 2.756. We also have a lower bound r3(F;) = w(2.21") by Edel. The bound (and the proof) of
Ellenberg and Gijswijt is also valid for tricolored sum-free sets for which an asymptotic lower bound
w(0™) was given by Kleinberg, Sawin and Speyer [Kleinberg et al. 2018]. So for tricolored sum-free sets,
the upper and lower bound have the same exponential growth.

Tao noted that the Ellenberg—Gijswijt proof can be nicely presented using the concept of slice rank. A
key idea is to prove the inequality r3(F;) < stk(u™") where

u= Yy [i,j. ke

i,jkez /37
i+ j+k=0
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n |upper bound | E.—G. P. n | upper bound E-G. P.

1 2 3 20 |11 37,477 43,365 25,896
2 6 7 41 (12 100,296 116,532 70,890
3 15 18 11 13 266,997 300,888 200,592
4 39 45 30| (14 728,661 840,030 503,964
5 105 123 72| |15 1,961,103| 2,267,838| 1,382,334
6 274 324 196| |16| 5,235,597| 5,883,309| 3,922,206
7 722 822 548 17| 14,316,784 | 16,459,335 9,906,786
8 1,957| 2,277| 1,350| |18| 38,685,141 | 44,580,537| 27,215,544
9 5,193| 6,075| 3,686| |19]103,504,935|116,055,423| 77,370,282
10 13,770(15,579|10,386| |20|283,466,139|325,182,235|195,202,290

Table 1. Comparison to the bounds of Ellenberg and Gijswijt and of Petrov.

and to combine this with asymptotic estimates for the slice rank. We will show that r3(F5) < k€ W™y <
stk(u™"). Using the G-stable rank, we get better upper bounds for the cardinality of a cap set (or a
tricolored sum-free set). Below is a table of the upper bounds we get for n < 20. We compared our bound
to the bound of Ellenberg and Gijswijt that is based on the slice rank. In the comment section of Tao’s
blog [2016], Fedor Petrov outlined a more refined argument to improve the upper bound for the cardinality
of cap sets. We also compared our bounds with Petrov’s bound. The comparisons are given in Table 1.

As we see, our bounds improve the bounds of Ellenberg and Gijswijt, but not the bounds of Petrov.
Since Petrov’s argument uses the symmetry, it is not clear whether his bound is also an upper bound for
the tricolored sum-free sets. Also, this bound does not exactly come from bounds for the slice rank, but
may be related to some other notion of rank. It would be interesting to see if the notion of G-stable rank
could be combined with Petrov’s approach to obtain even sharper bounds for the cap set problem.

Since the slice rank and the G-stable rank are the same up to a constant, the asymptotic slice rank and
the asymptotic G-stable rank are the same. It was shown in [Christandl et al. 2018] that, over the complex
numbers, the asymptotic slice rank can be expressed in quantum functionals. It was also noted there that
the Ellenberg—Gijswijt bound for the cap set problem is closely related to the Strassen’s computation of
the asymptotic spectrum of the multiplication tensor of the algebra F3[x]/(x>); see [Strassen 1991].

2. The G-stable rank and the Hilbert—-Mumford criterion

2A. The Hilbert—~Mumford criterion. We will discuss the K-rational version of the Hilbert—-Mumford
criterion by Kempf [1978]. We remind the reader that the base field K is assumed to be perfect. Suppose
that G is a connected reductive algebraic group over a field K, X is a separated K-scheme of finite type
and G x X — X is a G-action that is also a morphism of schemes over K. The multiplicative group
is defined as G,, = Spec K [¢, 1. A 1-parameter subgroup of G is a homomorphism A : G,;, — G of
algebraic groups. We say that this 1-parameter subgroup of G is K-rational if the homomorphism is a
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morphism of algebraic varieties defined over K. In the case where K is finite, we caution the reader that
the set G(K) of K rational points in G is finite and may not be Zariski dense in the algebraic group G.
If x € X(K) is a K-rational point of X, then G - x denotes a subscheme of X which is not necessarily
Zariski closed (even if G(K) is finite). The Zariski closure G - x is a closed subscheme of X.

Theorem 2.1 [Kempf 1978, Corollary 4.3]. Suppose that x € X(K) is a K-rational point, S C X is a
G-invariant closed subscheme of X such that G - x NS # @, Then there exists a K-rational 1-parameter
subgroup X : G,, — G such that lim;_.g A(t) - x = y for some y € S(K).

In our situation, X = V is a K-vector space which is a representation of G, and S = {0}. A vector
v € V is called G-semistable if G - v does not contain 0. Now Theorem 2.1 implies:

Corollary 2.2. If G is a connected reductive algebraic group, v € V and 0 € G - v then there exists a
K-rational 1-parameter subgroup A : G, — G such that lim,_,o A(t) - v =0.

A 1-parameter subgroup of GL,, is of the form

tx(l)
tx(2)
At =C _ c!

tx(n)

with C e GL,, and x(1), x(2), ..., x(n) € Z. In particular, we can view A as an element of GL,, (K [z, 1™'])
where K[z, 1711 C K (1)) is the ring of Laurent polynomials. If v=(v; vy - -+ v,)" € K" then lim,_,o A(7)-
v = 0 if for all i, we have v; = 0 or x(i) > 0. Wewilltake V=V Vo, ®---® Vs and G =
GL(V1) x GL(V;) x - - - x GL(Vy). A 1-parameter subgroup of G is of the form (A;(?), A2(2), ..., Ag(?))
where A;(t) : G,, — GL(V;) is a 1-parameter subgroup for all i.

For an integer vector o = (a1, a2, ..., ay) € Z¢ we define a homomorphism of algebraic groups
det*:G — G, by (Aq, ..., Ay) — ]_[f.lzl det(A;)* . This homomorphism corresponds to a 1-dimensional
representation of G, which we will also denote by det*. We will now relate the G-stable rank to
semistability in geometric invariant theory. We compare the G-stable rank with a rational number p/q and
for this we use semistability in the representations V®” and certain twists with products of determinants.

Proposition 2.3. Suppose that B € @‘io, p is a nonnegative integer and q is a positive integer with
qpB € 7". We define a representation W by

W=gdt P oV'eV, e --aV).
and choose u; € Vi"" = K" of maximal rank n; for every i. Then we have rkg(v) > p/q if and only if
w=wW®"®1,uy,...,uy) is G-semistable.
Proof. Suppose that rkg(v) < p/q. Then there exists g(t) = (g1(¢), ..., g4(t)) € G(K[¢]) with

d
val, (g(1) - (0¥ ® 1)) = pval,(g(1) - v) — Zflﬂi val; (gi (1)) > 0.

i=1
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The limit lim; .o g(¢)-w = (0, g(0) -u) = (0, g(0) - uy, ..., g(0) -uy) lies in the closure of the orbit G - w.
Since 0 lies in the orbit closure of (0, g(0) - u), it also lies in the orbit closure of w. We conclude that w
is not G-semistable.

Now suppose that w is not G-semistable. By the Hilbert—-Mumford criterion, there exists a 1-parameter
subgroup A(t) = (A1(¢), ..., Aq(t)) € G(K[t,t']) of G such that lim,_,q A(¢) - w = 0. This implies that
lim; o X; (¢) - u; = 0. Since u; has maximal rank, we get lim,;_,o X;(#) =0 and X;(t) € GL(V;, K[¢]). So
we have A() € G(K[t]) € G(K[¢]). We also get

d

0 < val, (A(1) - (v®P ® 1)) = p val, (A (1) - v) — Zq,Bi val; (4; (1))
i=1

and therefore

>4 Bival, (1 (1)) P
val; (A7) - v q

i (v) =

We conclude that rkg(v) < p/q. U

Theorem 2.4. If o € Rio’ then the G-stable rank rkg(v) is the infimum of uy(A(t), v) where A(t) €
G (K[t)]) is a 1-parameter subgroup of G and val,(A(t) - v) > 0.

Proof. Assume that rkg(v) < r for some rational number r. There exists a 8 € @io with f —«a € R‘io
and rkg (v) < r. We can write r = p/q where p and g are positive integers such that g8 € 7Z¢. By
Proposition 2.3, w is not G-semistable and from the proof of Proposition 2.3 follow that there exists a
1-parameter subgroup A(¢) € G(K[t]) such that py (A(2), v) < ug(A(t), v) < r. This shows that even if
A(t) € G(K[t]) is a 1-parameter subgroup of G, uy(A(t), v) can get arbitrarily close to rkg(v). U

2B. The relation between G-stable rank and SL-stability. First we prove that the G-stable rank does
not change when we extend the field.

Theorem 2.5. Suppose thatveV =V Qg VaQ@k R - - Qg Vg where V|, V,, ..., V, are finite dimensional
K-vector spaces,and v =1Q v € V=L VEV, Q. VoQ, Q- QL \_/d with ‘7,- =L Q®kV; for
alli. Then we have rkg(v) = rkg (v). In other words, the G-stable rank does not change under base field
extension.

Proof. If B € @‘io then we can follow the set up in Proposition 2.3, where p,qg € Z, p >0, g > 0 and
qB € 7¢. We choose u; € Vl.”" invertible for all i, and define

w=@@Lui,...,u)) eW= (VP gdet FroVv" e V,>® - @ V).
Using the base field extension, we get

W=0®1,i1,...,iHg) LR W= (V@ det Yo V]'®Via -V
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Now G-semistability does not chance after base field extension. So w is G-semistable if and only if w is
G-semistable. So we have

rkg(w) > g & w is G-semistable < w is G-semistable < rkg(u‘)) > g.

This proves that rkg(w) = rkg(zi)). Since rkg(w) is the supremum of rkg(w) over all 8 € @io with
B <, we also get rkg(w) = rkg(w) for all o € Rio- O

Proposition 2.6. Suppose that« = (1/ny, 1/ny, ..., 1/ng) wheren; =dimV;. Forve V=V, V, ®
- - ® Vg we have rkg (v) < 1. Moreover, rkg (v) = 1 ifand only if v is semistable with respect to the group
H = SL(Vy) x SL(V;) x - - x SL(Vy).

Proof. The inequality rkg (v) <1 is obvious. Suppose that v € V is not H-semistable. Then there
exists a 1-parameter subgroup A(t) = (A((¢), ..., Aq(?)) : G, — H with lim;_,g A(z) - v = 0. We can
choose ¢y, 2, ..., cq such that A'(£) = (t1A1(2), ..., t9%y(2)) € G(K[t]). Note that det(t%A; () =
det(t¢ I,,) det(A; (1)) = t“"i. Now we have val,(A'(t) -v) =s+c1+c2+---+ ¢4 and

Yy val(dett (1) Y4 ¢

- = 7 < 1.
val, (W (1) -v) s+ e

wA' (@), v) =

This proves that rkg(v) < 1.

Conversely, suppose that rkg(v) < 1. Choose a polynomial 1-parameter subgroup of G such that
val;(A(t) -v) = s > 0 and uy(A(¢),v) < 1. Let ¢; = val;(det;(¢)). Then we have u,(A(?),v) =
Zle ci/ni < s. After replacing t by t* for some positive integer k we may assume that ¢; /n; € Z for
alli. Let A'(t) = (¢=V/™ A (1), 7200 (1), ..., t~S4/" )y 4(1)). Then A'(¢) is a 1-parameter subgroup of
H and val,(\(#) -v) =5 — Zle c¢i/ni >0, so lim;_,oA/(¢) - v= 0. This shows that v is H-unstable. [

2C. The G-stable rank and the noncommutative rank. The noncommutative rank is defined as the
rank of A(t) = t1A1 + hA> + --- + 1,,A,, Where t1,1,...,1t, are variables in the free skew field
R=K<t1,1,...,t,» and A(t) is viewed as a p x ¢ matrix with entries in R; see [Fortin and Reutenauer
2004; Cohn 1995] for more on free skew fields. We will use the following equivalent definition; see
[Fortin and Reutenauer 2004]:

Definition 2.7. Suppose that A, A,, ..., A, are p X g matrices. Then the noncommutative rank ncrk(A)
of A= (Ay, ..., Ay) is equal to the maximal value of

q +dim§:A[(W) —dim W
i=1
over all subspaces W € K9.
It was shown in [Ivanyos et al. 2017] that the noncommutative rank of A is also equal to maximum of
k(7L T KA
d
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where d is a positive integer, 71, 1>, ..., T, are d x d matrices, and X is the Kronecker product of two
matrices (so T; X A; is a dp x dg-matrix).

The noncommutative rank relates to stability. If A is an m-tuple of n x n matrices (i.e., p =g = n) then
ncrk(A) =n if and only if A is semistable with respect to the simultaneous left-right action of SL,, x SL,,
on m-tuples of matrices; see [Ivanyos et al. 2017].

We can relate the noncommutative and G-stable rank as follows. First, we will view the m-tuple
A = (A, Ay, ..., Ay) as a tensor. Using a linear isomorphism K?” ® K7 = KP*9, we can view
Ay, Ay, ..., Ay as tensors in K? ® K9. The m-tuple A = (A, Ay, ..., Ap) corresponds to a tensor
Ta=)>1" A ®[]leKIr®KIQK"™.

Lemma 2.8. The noncommutative rank is the smallest value of r + s for which there exist linearly

independent vectors vy, ..., v, € K? and linearly independent vectors wy, ..., ws € K9 with

r s
Tae) v ®KIQK"+) K'®@uw; @K™ 3)
i=1 j=1
Proof. If (3) holds, then take W to be the (¢g—s)-dimensional space perpendicular to the vectors
wi, wy, ..., ws. The space A;(W) is contained in the span of vy, v ..., v,. So the noncommutative rank
isatmostg+r—(qg—s)=r-+s.

We show that r 4+ s can be equal to ncrk(A). Suppose that k = ncrk(A). For some s there exists an
subspace V € K? with k=g +dim V —dim W, where V = 2?1:1 A;(W). Choose a basis wy, wa, ..., wy
of the space orthogonal to W. Then we have s = ¢ —dim W. Also choose a basis vy, vz, ..., v, of V.
Now (3) holdsand r +s =g —dim W +dim V =k. [l

The following proposition shows that the noncommutative rank can be seen as a special case of the
G-stable rank.

Proposition 2.9. For o = (1, 1, £) and £ > min{p, q} we have ncrk(A) = rkg(TA).

Proof. Let k = ncrk(A). Then we have

r s
The) vi®K'@K"+) K’ @w;®K",
i=1 j=1
for some r and s with r +s = k and vectors vy, ..., v, wy, ..., ws. We extend vy, ..., v, to a basis
v, ..., v, and extend wy, ..., w, to a basis wy, ..., w,. We define a 1-parameter subgroup A(t) =
(A1(2), A2(2), A3(1)) in G =GL, x GL; x GL,, by A1(¢) -v; =tv; fori =1,2,...,r, A1(t) -v; = v; for
i=r+1,r+2,...,p, k@) wj=tw;for j=1,2,...,5, @) - wj=w;j for j=s+1,5+2,...,q and
A3(¢) is just the identity. Then we have val, (A(¢)-T4) = 1, det(A1(¢)) =¢", det(Ap(2)) =¢*, det(A3(¢)) =1

and
1. 1. 2.0
kG (Th) < pa(h(0), Ta) = ——- 1” — & = nerk(A).
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On the other hand, let h = rkg(TA) and suppose that A(t) € G is a 1-parameter subgroup with
Ua(M(), Ta) = h. If h = min{p, g} then clearly ncrk(A) < h, so we assume that &z < min{p, ¢}.
Suppose £ > p (the case £ > g will go similarly). If det(A3(¢)) = ¢ then we can define another 1-
parameter subgroup o (t) = (p1(), p2(t), p3(1)) by p1(t) = t°A1(2), p2(f) = A2(¢) and p3(¢) = I. Then
val,(p(t) - T4) > val;(A(t) - T4), and we get

val; (det p; (¢)) + val,(det p,(¢)) + £ val,(det p3(2))

Ka(p(t), Ta) =
val, (p(1) - Tp)

_pe + val; (det A1 (¢)) + val, det(A> (7))
- val; (A(2) - Tx)
- val, (det A (¢)) + val,(det A»(¢)) + € val,(det A3(¢))
- val; (A(t) - Ta)
= Ra(A(2), Ta)

because ¢ > p and val,;(det A3(¢)) = e. We can replace A(¢) by p(¢) and without loss of generality we
may assume that A3(t) = 1.
Let d := val,(A(t) - T4). After base changes, we have

(D v

M) = and  p(7) =
t*(p) Y@

From
S @) +yh+2-i) _ X X+ v()

i=1
_I’LO[ )\, t N T4 —h

follows that x(r + 1) + y(s + 1) < hd/(k + 1) < hd for some r, s with r + s = h. If a basis vector
[Z, j, k] =[I]1®[j]® [k] appears in T4 then x (i) + y(j) > dk and therefore i <r or j <s. This means
that

r S
Tye) lNI®KI®K"+Y K’ @[j1®K"
i=1 j=1

and nerk(Ta) <7 +s = h = k% (Ty). O

2D. Semicontinuity of the G-stable rank. We will show that the G-stable rank is semicontinuous, which
means that for every r, the set of all tensors with G-stable rank < r is Zariski closed.

Let us for the moment fix a 1-parameter subgroup A(¢) of G. We can choose bases in the vector spaces V;
fori =1, 2,...,d such that the matrix of A;(¢) is diagonal, with diagonal entries pr@D px@2) o px(oni)

where x(i, 1) > x(i,2) > --- > x(i, n;) > 0. Define

Z={veV|us@),v) <r}.
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The space Z is spanned by all basis vectors [iy, iz, ..., ig] € V with

d n;
D Y xi ) <rx(lin) +x(2 i)+ +x(d. ig)).

i=1  j=I

Let B=B,, x By, x---x B,, € G where By C GLy is the Borel group of upper triangular invertible
matrices. If [i1, i, ..., i4] lies in Z, and ji < i; for all k, then [, jo, ..., js] lies in Z. This implies
that Z is stable under the action of B.

Lemma 2.10. The set G -Z =J,.; & - Z is Zariski closed.

Proof. Consider the Zariski closed subset S € G/B x V defined by
S={gB,v) g -veZ)

andletw : G/B x V — V be the projection onto V. The flag variety G/ B is projective, so 7 is a projective
morphism which maps closed sets to closed sets. In particular, G - Z = 7 (S) is Zariski closed. (]

Theorem 2.11. For any weight o € Rio and r € R the sets X°(rkg, r={veV] rkg(v) <r}and
X(rkg, r={veV] rkg(v) < r} are finite unions of sets of the form G - Z where Z is a Borel-fixed
subspace. In particular, these sets are Zariski closed.

Proof. If rkg (v) < r, then there exists a 1-parameter subgroup A(¢) of G such that p, (A(2), v) <r. If
Z={weV|u,(A), w) <r}then X°(rkg, r) contains Z and G - Z. Since there are only finite many
Borel stable subspaces of V, we see that X"(rkf, r) must be a finite union G- Z{UG - Z,U---UG - Z;
where Z,, Z», ..., Z; are Borel stable subspaces. Since each G - Z; is closed, X °(rkg, r) is closed.
Because there are only finitely many Borel stable subspaces, there are only finitely many possibilities for
X°(rkg, s) where s € R. (. There exists an & > 0 such that X° (rkg, s) is the same for all s € (r, r + €].
We have X (1k$, r) = (), <y ye X°(KS, 8) = X°(kS , r +£). O

3. Results on the G-stable rank
3A. Easy observations and a technical lemma.
Lemma 3.1. If v # 0, then we have rkg(v) > min{ay, o, ..., &g} > 0. In particular, rkG(v) > 1.

Proof. Choose g(t) € G(K[[t])) with uy(g(?),v) = rkg(v). From v # 0 follows that g(¢) - v # 0, say
val;(g(t) -v) =s > 0. Then we get Zf‘l:l val;(g;(t)) > s and

d s
Yoo o vali(gi (1)) > minfa. ... Old}Zi:l val, (gi (1))

> i c ey .
val,(g(1) - v) p > min{o, ag)

It follows that k& (v) > min{ey, ..., a4} > 0. O
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Suppose that v =u ® w is nonzero withu € Vi and w € Vo, ® - - - ® V;. We choose bases in Vi, ..., Vy
such that u is the first basis vector in V. We can choose a one parameter subgroup A(f) with

t
r) =
1
and A () =1,, fork=2,3,...,d. Then we have A(t) - v =1tv and uy(A(?), v) = «. This shows that

rkg(v) < «q. From Lemma 3.1 follows that rkg (v) < ay. If v has slice rank 1 concentrated in the i-th

slice, then rkg(v) <a; <max{u, oy, ..., aq}.

Corollary 3.2. If v has slice rank 1, then tk€ (v) = 1.

Proof. If v has slice rank 1, rkG(v) :rkgwl)(v) <max{l,...,1}=1and rkG(v) >1by Lemma 3.1. J
Corollary 3.3. If v has rank 1 then rkg(v) =min{ay, ..., o4}

Proof. If v has rank 1 then rkg < «; for every i and rkg > min{w;, ..., oz} by Lemma 3.1. |

Proposition 3.4. Suppose thatve ViV, ® - - QVyandw e Wi Wo ® - - Q@ W, and v@w € Vi ®
RV QW R - - Q W, is the horizontal tensor product. We have rkgﬂ(v QW) = min{rkg (v), rkg(w)}.
Proof. Let G = GL(V}) x - -- x GL(V,) and H = GL(Wj) x - - - x GL(W,). There exists g(¢) € G(K[t])
with 114 (g(1), v) =1ke (v). For (g(7), 1) € (G x H)(K[[11)) we get jq,p((g(1), h(1)), vQw) =1Ky (v). This
proves that rkgﬂ(v Q w) <rky(v). Similarly, we have rkgﬁ(v Rw) < rkg(w), so we get rkgﬁ(v Rw) <
min{rkg(v), rkg(w)}.

Conversely, suppose that (g(7), h(2)) € G x H(K[[t]) satisfies o, g((g(2), h(2)), vQw) = rkgﬂ(v@)w).
Using that

val; ((g(1), h(t)) - (v @ w)) = val; ((g(?) - v) ® (h(1) - w)) = val,(g(¢) - v) + val; (h(z) - w)
we get
S val,(det g; (1)) + Y_6_; val, (deth; (1))
val;(g(t) - v) + val, (h(t) - w)
i { S val, (det g; ) > 5=y val(deth;(1)) }
- val; (g(t) - v) val (h(t) - w)
= min{rk{ (v), 1k§ (w)}. O

Hap(V QW) =

We will need the following technical lemma to prove Proposition 3.6.

Lemma 3.5. If g(¢), h(t) € GL, (K [[r]) then there exists u(t), g’'(t), h'(¢t) € GL,, (K [¢]) such that u(t) =
g (t)h(t) = h'(t)g(t) and val,(detu(t)) < val,(det g(¢)) + val,(det h(¢)).
Proof. We have

K[:]"

Valt(detg([)) = dlm]( m
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The K[[t]-module g(t)K[t]" NAh()K[¢]" is a submodule of the free module K [[#])", so it is also free
of rank < n. So there exists a matrix u(¢) such that g(t/)K[t]" N h(@®)K[¢]* = u(@®)K[¢]"*. From
u@)K[t]" C g(¢t)K[[¢]" follows that there exists a matrix 4’(¢) such that u(z) = h’(t)g(¢). Similarly, we
find a matrix g’(¢) with u(r) = g'(t)h(z).

We have
val;(detu(t)) < dim Lt]]n =dim K
u() K] gOKI" MA@ K[]"
K[]" . g K[]"
=dim ————— +dim
g K[]" gOKLI" Nh@)K[]"
_ 8K +h@)K]"
= val,(det g(¢)) + dim OKIL"
< val,(det g(t)) + val,(det h(t)). [l

3B. The triangle inequality for the G-stable rank.
Proposition 3.6. For tensors v, w € V we have rkg(v +w) < rkg (v) + rkg (w).

Proof. Suppose that g(¢), h(t) € G(K[t]]). If we replace ¢ by ¢¢, then wu,(g(?), v) does not change.
Without changing 1, (g(t), v) and . (A(2), w) we may assume that val,(g(¢) -v) = val,(h(¢)-w) =s > 0.
Then there exist u(z), g’(¢), h'(t) € G(K[[t]) such that u(r) = h'(¢)g(¢r) = g’ (t)h(¢) and val, (detu; (r)) <
val,(det g;(¢)) + val, (det h; (¢)) for all i by Lemma 3.5. We get
val; (u(?) - (v4w)) = val, (h'(1)g (1) - v+ &' (A (z) - w)

> minf{val, (h'(t)g(t) - v), val, (g'(t)h(t) - w}

> min{val,(g() - v), val, (h(¢) - w)}

=s

and

d d d
D i vali(detu; (1) < ) o vali(det gi (1) + ) e valy(dethi (1)) = s1a(8(1), v) + sp1a (h(D), w).
i=1 i=1 i=1

It follows that

3oiey i valy(detu; (1) _ spta(8(1), v) +5ia (h(1), w)
val;(u(t) - (v+w)) — S

Mo (1), v+w) = = o (g(1), V) + o (h(1), w).

Taking the infimum over all g(¢) and h(f) gives rkS v+w) < rkg(v) + rkg(w). O
Corollary 3.7. For any tensor v € V we have
k% (v) < srk(v).

Proof. By definition, we can write v = v; + v, + - - - + v, where r = srk(v) and vy, vy, ..., v, are tensors
of slice rank 1. Now rk® (v) =tkC(vi +- - -+v,) <tkC () +---+1kb(v,) =14 - -+ 1 =r =srk(v). O



The G-stable rank for tensors and the cap set problem 1085

3C. The additive property of the G-stable rank.
Proposition 3.8. Ifd > 2, the G-stable rank is additive: we have tk& (v Bw) = k% (v) + k& (w).

Proof. From Proposition 3.6 follows that rkg(v Hw) < rkg (wHO0) + rkg OB w) < rkg v) + rkg(w).
Suppose that g(¢) € G(K[[t]) with val,(g(¢) - (v Hw)) = ¢* for some s > 0. Assume that the block form
of g;(¢) with respect to the decomposition V; & W; is

_ (ai(®) bi(?)
&)= (c,m di<t))‘

The K[[t]l-module generated by the rows of a;(¢) and c;(¢) is a free submodule of K[[¢]]"' of rank n;,
where n; =dim V;. Using the Smith normal form, there exist invertible matrices in p(¢) € GL,, 1, (K1)

and g (t) € GL,, (K[[t]) such that
ar)\ _ r(t)
(cl(l)) =p@®) ( 0 )q(t)
where r(¢) is an n| x n; diagonal matrix. It follows that

por a0 = (")

*

So without loss of generality, we may assume that c; () =0. A similar argument shows that we may assume
without loss of generality that by (t) = b3(t) = --- = by(¢t) = 0. If we project g(¢) - vEH w onto V, we get
a(t)-v+b(t)-w=a(t) v because by (t) =0. This implies that val, (a(¢)-v) > s and Zflzl o; val,(deta; (1)) >
srkg(v). Similarly, the projection of g(¢) - v w onto W is equal to c(¢) -v+d() - w =d() - w
because ¢ () = 0. Therefore, we have val,(d(¢) - w) > s and Z?: a; val;(detd; (1)) > s rkg (w). Since
det g;(t) = deta; (t) detd; (t) because of the upper triangular or lower triangular form of g;(¢), we get

> o val,(det g () = Y _ e val,(deta; (1)) + Y _ i val,(detd; (1)) = s(tk$ (v) +1k§ (w)).

This proves that tk& (v Bw) > k% (v) + kS (w). O

4. The stable T-rank

4A. The G-stable rank and the T-stable rank. The G-stable «-rank of a tensor v is the maximum of
Ue(M(2), v) where A(¢) is a 1-parameter subgroup of G with val,(A(¢) - v) > 0. A 1-parameter subgroup
is contained in some maximal torus 7 (which itself is contained in some Borel subgroup B of G). We
can fix a maximal torus 7" and consider all 1-parameter subgroups contained in 7. Choosing a maximal
torus of G corresponds to choosing a basis in each vector space V;. So let us choose a basis in each V;
so that we can identify GL(V;) with GL,,. Let T; € GL; be the subgroup of invertible diagonal k x k
matrices, and T =1, x T, x --- x T,,, € G. Then T is a maximal torus of G.
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Definition 4.1. We define the «-stable T-rank rkg (v) as the infimum over all gy (A(?), v) where A(t) €
T (K[t]) is a 1-parameter subgroup of 7" with val,(A(¢) - v) > 0.

Since every 1-parameter subgroup is conjugate to a 1-parameter subgroup in the maximal torus, we get

the following corollary.

Corollary 4.2. We have
rkg(v) = inf rkoTl(g - V).
geG

4B. The T-stable rank and linear programming. For a tensor v = (v;, j,....i,) € V = K">"2X X we
define its support by

supp(v) = {(i1, ... ia) | Vi is,....ig 7 O}

As we will see, rch( (v) only depends on supp(v) and «. For a nonnegative integer k, let k = {1, 2, ..., k}.
We will fix a support S € ny X ny X - - - X ng and compute the corresponding «-stable 7-rank.

Definition 4.3. Let x(i, j) with 1 <i <d and 1 < j <n; be real variables and S Cn; x --- X ng be a
support. The linear program LP, (S) asks to minimize Z?: 1 O Z;”:l x(i, j) under the constraints:

(1) x(i, j)=0fori=1,2,...,dand 1 < j <n;.

2) Y x(@i,s;) = 1foralls € 5.

Theorem 4.4. If v € V has support S, then rkg(v) is the value of the linear program LP,(S).

Proof. Suppose A(t) = (A1(t),...,Aq(t)) € T(K][t]) is a 1-parameter subgroup, and A;(t) is diagonal
with entries (@D ¢¥@2) - px@ni) where x (7, J) is a nonnegative integer for all i, j. Also, assume that
val; (A(¢) - v) = g > 0 where v is a tensor with support S. This means that Zle a;x(i, s;j) > g for all
(51,82, ., 5a) € S. We have 1 (h(1), v) = F(X0, o i, x(, j)) and rk] (v) is the infimum of all
U (M(2), v). If we replace x (i, j) by x(i, j)/q, then we have Zflzl o;x(i,s;)>1forall (sq,...,55) €S
and p1q (A(t), v) = Y4 @ Y x(i, j). This shows that rk] (v) is the infimum of Y°{_, o 3%, x(i, j)
under the constraints x (i, j) > 0 for all 7, j, and Zle x(i,s;) > 1forall s € § for all i, j. This is the

linear program LP, (S), except that the numbers x (i, j) have to be rational. However, since the constraints

are inequalities with coefficients in Q, there exists an optimal solution over Q. ]

Example 4.5. Consider the tensor
v=[2,1,11+[1,2,1]+[1,1,2] e K¥*? = K’ Q@ K’ Q K°.

with support S = {(2, 1, 1), (1,2, 1), (1, 1, 2)}. We have to solve the following linear program LP(S) =
LP(1.1,1)(S): minimize 21'3:1 Z?:l x(i, j) under the constraints x (i, j) >0fori =1,2,3and j =1, 2 and
x(L,2)+x2, DH+x3, 1) >1
x(I, D) +x2,2)+x@3, 1) >1
x(I, D) +x2,1)+x(3,2)>1
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An optimal solutionis x(1, 1) =x(2, 1) =x(3, 1) = % and x(1,2) =x(2,2) =x(3,2) =0. So the optimal
value is rk” (v) = 3 - % = % It follows that tk® (v) < rk” (v) < % It is easy to see that srk(v) > 1 (and
thus equal 2). We will show that k% (v) = %

Suppose that k¢ (v) < % Then there exists a tensor w € K2*>*2 in the same G-orbit as v such
that rk” (w) < % Let S’ = supp(w) € 2 x 2 x 2 be the support of w. Also assume that {x(i, j)} is
an optimal solution for the linear program LP(S’). By permuting coordinates, we may assume that
x(i, 1) > x(i,2) fori =1, 2, 3. The support S’ is not contained in {1} x {1, 2} x {1, 2} because otherwise
w and v would have slice rank 1. Therefore, (2, i, j) € S’ for some i, j. Because of the ordering of the
variables x (i, j), (2, 1, 1) € §’. Similarly, (1, 2, 1), (1, 1,2) € §’. Now supp(w) = §’ 2 § = supp(v), so
tk? (w) > kT (v) = % Contradiction.

4C. Comparison between the G-stable rank and the slice rank. Besides the slice rank, we will also define
a slice rank relative to a maximal torus 7', or equivalently, relative to bases choices for Vi, V,, ..., V.

Definition 4.6. We say that a tensor v has 7-slice rank 1 if v is contained in a space of the form
Vij=Vi@V®--- Vi ®jl®Vi® - V.

Now the T-slice rank srk’ (v) of an arbitrary tensor v is the smallest nonnegative integer r such that v is a
sum of r tensors of 7-slice rank 1.

The following result is clear from the definition of slice rank:
Corollary 4.7. We have
srk(v) = min stk (g-v).
geG
The T-slice rank of v depends only on its support S = supp(v) and can be expressed in terms of integer

solutions of the linear program LP(S).

Proposition 4.8. The T-slice rank stk (v) is the smallest possible value of Z?: 1 Z'}’:l x(i, j) where the

x(i, j) satisfy the constraints:
(1) x(@, j)e{0,1}fori=1,2,...,dand 1 < j <n;.
2 Z?:l x(i,s;) > 1foralls € S.
Proof. Suppose that x(i, j) € {0, 1} for all i, j. Define
Vo= Y Vi
ij
x(i, j)=1

A vector [sq, 52, ..., 54] lies in V (x) if and only if Zf.l:l x(i,s;) > 1. So a tensor v lies in V (x) if and
only if Z?:l x(i, s;) > 1 for all s € supp(v). By definition, srk” (v) is the smallest possible value of
Zi’jx(i, j) such that v € V(x). O
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It is now easy to see that tk? (v) > %srkT(v) (and this implies k% (v) > %srk(v)): If x(@, j)is a
solution to the linear program LP(S) where S = supp(v), then we define x'(i, j) € {0, 1} such that
X', j)=1if x@, j) > 5 and x'(i, j) = 0 otherwise. If s € § then we have Zlex(i,si) >1. It
follows that x (i, s;) > % for some i and x’(i, s;) = 1 for some i. Therefore, Zf‘l=1 x'(i,s;) > 1. Now
stk? (v) < Zi’j x'(i, ) < Zi,j dx(i, j) = d k" (v). With a more refined argument, we can improve this

bound.
Proposition 4.9. For d > 2 we have 1k’ (v) > % stk” (v) and therefore 1k (v) > % srk(v).

Proof. Suppose that x (7, j) is an optimal solution to the linear program. Note that 0 < x(i, j) <1 for all
i, j. We define functions fi, f2,..., fa:[0, 1] > R by

fil)=1{j | x(@, j) = a}l.

We have [y fi()da = Y;x(i, j). In particular, [j(fi(@) + -+ fa(@)de = ¥, x(i, j). Let
si=2i/(dd—-1))fori =0,1,2,...,d — 1. Note that sg + 51 +-- -+ s4—1 = 1. We define a closed
piecewise linear curve y = (y1, ..., Ya) : [0,d] — R4 with y(d) =vy(0) = [so, S1,...,8q¢-1], y(1) =

[s1,82, ..., 81,8l ..., y(d—1)=1[s4-1, S0, ..., Sq—2] such that y is linear on each of the intervals
[i,i+1],i =0,1,...,d — 1. On the intervals [0, 1], [1,2],...,[d — 1,d], y;(t) goes through the
intervals [so, s11.[51, s21,. . ., [Sa—2, Sa—11,[S4—1, So] in some order. So éf: fi(yi (1)) dt is the average of

the averages of f; of each of these d intervals. This is equal to the average value of f;(¢) on the interval
[0, sa—11=[0, 3]:

ni

1
fi(o) dr s%’/o fiwyde =53 G ),

j=1

2/d

L i (yi (¢ dt—d
E/O Jitvi(@)) —50

It follows that
d

LYy d S d g
3/0 (;ﬁ(%(t)))dtfEZZX(Z’J)ZErk .

i=1 j=1

Since the minimal value of Zflz 1 fi(yi(1)) is at most the average, there exists a ¢ € [0, d] such that
Y ) < k" (v). Now define x'(i, j) = 1 if x(i, j) = y;(t) and X'(i, j) = 0 if x(i, j) < yi (1).
If s = (51,52, - .., Sq) € supp(v), then 3% x(i, s;) > 1. Since 3", y;(t) = 1, we have x(i, s;) > y; (1)
for some i and Zflzl x'(i, s;) > 1. We conclude that

n n; d

d d

stk (v) < le ;x/(i, J) = le fin@) <5 k" (v).
1= ]: 1=

Finally, we get

d d
k(v) = inf stk (g-v) < = inf k7 (g-v) = = k% (v). O
srk(v) ;QG stk (g -v) < > ;gGr (g-v) 2r (v)
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4D. The dual program and the T-stable rank.

Definition 4.10. For a support set S, the dual program LP; (S) is to maximize ) _¢ y(s) under the
constraints:

(1) y(s) =0forall s € S.
(2) For all i, j we have

D o vis) <.

seS.
Si=]

If x and y are optimal solutions for LP, (S) and LP) (S) respectively, then we have

d n;
Yoy =Y oy x(, j)=rkl(v)

seS i=1  j=1
and

(1) for all i, j, we have

Y v =a; or x(i,j)=0;

SES.
Si=]

(2) for all s € S we have 27:1 x(i,s;)=1ory(s)=0.

4E. The supermultiplicative property of the T-stable rank. If ve V=V, V, ®---® Vy and w €
Wi@W,®---® W, then we can consider the “vertical” tensor product v™®w € (ViQ W) ®- - - (V@ Wy).

Proposition 4.11. We have rk[;(vi&w) > rk] (v) tkj (w), where @ = (a1, . .., &q), B=(B1. ..., Ba) and
af = (11, ..., oqBa).

Proof. Let S = supp(v), S’ = supp(w), y(s), s € S be an optimal solution for theLP (v) and y'(s), s € S’
be an optimal solution for LPE(w). The tensor v X w has support S x S’. For the dual program for v X w
we have to maximize ZseS,s’eS’ Y (s, s") under the constraints Y (s, s’) >0 forall s € S, s’ € S’ and

Y Ys.s)=aiby
seS,s/eSf

for all i, j, j’. One solution for this linéélijpi?():gjram is Y(s,s") = y(s)y'(s"). We get

kl,0Rw) =YD V(.8 = y(s) Y y(s") =1kl (v) 1kf (w). O

ses s’'eS’ seS s'eS’

’

5. G-stable rank over C

5A. Kempf-Ness theory. We recall some of the main results from Kempf-Ness theory [Kempf and Ness
1979; Woodward 2010]. Suppose that G is an complex reductive algebraic group with a maximal compact
subgroup C and V is a representation of G. We fix a Hermitian inner product (-, -) on V that is invariant
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under C, i.e., (g-v, g -w) = (v, w) forall v, w e V and g € C. Let ¢ and g be the Lie algebras of C and
G respectively, and let ¢* be the dual space of ¢. We have g = c®ic. For v € V, we define a morphism
Yy,:G—>Rbygr|g- v||> = (g-v, g-v). The differential (dv,); : g — R of ¥, at the identity I € G
is given by

dyy)r & —> (§v,v) + (v, §v) €R.

Because ||g - v||? is constant on C, (dv,); vanishes on ¢. So (v, £v) = —(&v, v) for & € ¢. If £ € ¢ then
we have (dy,);(i&) = (v, v) + (v, i&v) =i(Ev, v) —i{v, Ev) = 2i(£v, v). For the following result, see
[Woodward 2010, Corollary 5.2.5].

Theorem 5.1 (Kempf and Ness). An orbit G - v is closed if and only there exists w € G -v with (dyr,); =0.

Let V=V @V, ®---Q@Vygwith V; =C% Forve V,let ®;(v) € (V| ® - @ Vi ®---® Vy)* > V,
be the i-th flattening of v.
5B. A formula for the G-stable rank over C. We will use Kempf-Ness theory to prove the following

theorem:

Theorem 5.2. For a € R.( we have

2
oillg-v

rkg(v) = sup min e lg -l 5

e i [Pi(g V)5

For the proof of the theorem, we need the following lemma:

Lemma 5.3. Suppose that g € Q¢

>

---Q® Vy4. As in Proposition 2.3, let

0ol =y with p, q positive integers, gB € 7Z¢ andv eV =V, @ V> ®

W={V?det "oV ®V,2 @ V).

and w = (VP @1, uy, ..., ug). Define Yy, : G — W by ¥,,(g) = g - w. Then we have (dr,); =0 if and
only if
PP 72 ®; (0) @} (v) — gBi 0P Iy, + ujuf =0

foralli.

Proof. The Hermitian scalar products on Vy, Vs, ..., V,; induce Hermitian scalar productson V"', .. ., V; d
V,V®r y®P @det % and W in a natural way. We have

d
2 2 2
lwl® = 1vl7? + Il |
i=1

and

d
Yu(®) = llg-wl? = llg - vl* det 2 () + > llgius 1>

i=1
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The Lie algebra of G can be identified with
g=End(V)) ®End(V,) & - - - ® End(V,).

The Lie algebra ¢ consists of all d-tuples (&1, ..., &) of skew-Hermitian matrices, and ic consists
of d-tuples of Hermitian matrices. We compute the differential (dyr,);. Note that GL(V;) acts on
the i-th mode. If we view v as the flattened tensor ®;(v), then g; acts just by left multiplication:
D;(g;-v) = g;P;(v). Let Tr(-) denote the trace. The differential of g; — || g; -v||2 =Tr(g; ®; (v) P (v)g})
at the identity is given by & € End(V;) — Tr(§ ®; (v) P} (v)) + Tr(®; (v) D} (v)EF). If we restrict to
Hermitian &;, then this is equal to 2 Tr(§; ®; (v) @7 (v)). The differential of ||g - v||? restricted to ic C g is
E1,.... )2 Zf:] Tr(§; ®; (v) P} (v)). The differential of g; > det(g;) at the identity is & > Tr(§;).
Combining these results with the product rule of differentiation, we get for § € ic that

d

(dpu)1(€) =Y _Q2pllvlI*’ > Tr(& @i (v) P} (v)) — 2qBig | vI*” Tr(&) + 2 Tr(§u;u))

i=1
d

=D (&L I 720 (0) @7 (v) = 2gB [V Iy, +2uiu).
i=1

We have (d¢,,); = 0 if and only if
2?72 @; (v) @ (v) — 2gBi |VII*P I, + 2u;u} =0
for all i. g

Proof of Theorem 5.2. Let us define

. aillg-vl?
fo (V) =supmin ——
¢ e i ®Pi(g-v)l2

Suppose that r € Q@ and f,(v) <r. Assume that 8 € @io with 8; > «; for all i. We can write r = p/q
such that p, g € Z are positive and gB; € Z for all i. From f,(v) <r follows that

aillg- vl L, —rdi(g-v)®; (g v)
is nonnegative definite for all i. This implies that
Billg - vl* I, — r®i(g - )P} (g - v)
is positive definite for all . Multiplying with p||g - v[|*?~2 we get that
PBillg - vI* I, — qllg - vl @i (g - )P} (g - v)

is positive definite and equal to u;u* for some u; € V;"". This shows that (dy/4.,,); = 0. By Theorem 5.1,
the G-orbit of w is closed. By Proposition 2.3, we have rkg (v) > r. Because this is true for every
rational 8 > o, we get rkg(v) > r. Since this is true for any » € Q with r > f, (v), we can conclude that

kS (v) > fo ().
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Suppose that g € @io and B; < «; foralli. Letr = rkg v) < rkg(v). We can write r = § such that p,

q are positive integers, and g8 € Z¢. We can choose an invertible u; € Vl."" for all i. Now
w="Q1,ui,u...,us) € (V¥ @det P @V o V,2 @ @V}

is G-semistable by Proposition 2.3. So there exists a nonzero w’ € G - w with (dvy,/); = 0. We can write
w' = ((v)%, uly, ..., uy). Using Lemma 5.3, we get

plIv P22 d; (W) ®F (V') — gBi |V 127 Iy, + u(u})* = 0.
So
aBillV I1PP I, — pllV 1P 2 ®; (v)) DF (V)
is nonnegative definite for all i. Therefore,
qai |V 1?7 L, — plv/ P72 d; (v) @} (V)

is positive definite for all i.
Since w’ lies in G - w, there exists a ¢ € G such that

qaillg - vl* I, — pllg - vI*P @i (g - v) D} (g - v)
is positive definite for all i. It follows that

qaillg-vlI*?  aillg-vl?
plig-vlI*r—2 r

[®i(g- V)2 = Di(g-v)PI(g-V)lls <

for all i and
aillg - vl?
mn -————-=7 =
i | Pig-v5

This shows that f,(v) >r = rkg (v). Since S € @‘io was arbitrary with 8 < «, we obtain f, (v) > rkg (v).
We conclude that f, (v) = rkg (v). O

5C. The supermultiplicative property of the G-stable rank in characteristic 0.

Theorem 54. Ifve Vi Vo ®--- Q@ Vyandw e Wi QWo ® - - ® Wy where Vi, ..., Vg, Wi, ..., Wy

are C-vector spaces and a, B € R‘io, then we have
rk{y (v R w) > 1k (v) 1k§ (w).

Proof. if g € GL(V]) x -+ x GL(Vy) and h € GL(W)) x - -- x GL(W,) then we can consider g X h €
GL(Vi @ W) x --- x GL(Vy; ® W;). We have
aiBill(g®h) - (vRw)|? _ aiBill((g-v) R (h-w)l _ aillg - vlI*Billh - w|?
[®;((gX¥A) - WRw) o Pi((g-VIXGE-w)lle  [Pi(g- Vol Pi(h-w)lls
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Therefore, we get

i Bill(g ®h) - (v Rw)| aillg-vl* L Billh-w)?
min >mn-————— -mn-——.
i PR - Rw)lle — i 1Pi(g-v)lle i PR w)llo

Taking the supremum over all g and # now gives rkgﬂ(v Xw) > rkg(v) rkg(w). Ol

6. Application of the G-stable rank to the cap set problem

The cap set problem asks for a largest possible subset S C [; without an arithmetic progression. Let c(n)
be the largest possible cardinality of such a set. It was recently proved by Ellenberg and Gijswijt that
c(n) = 0(0"), where 6 = %(207 + 33«/@)1/3 < 2.756. Tao gave an elegant formulation of the proof of
this bound using the notion of slice rank. Here we will use a similar approach, using the G-stable rank
instead of the slice rank to get an explicit bound for all » which the same asymptotic behavior. We view
K3 as the vector space with basis [0], [1], [2] where we view 0, 1, 2 as elements in F3. More generally,
we view K3 as the vector space with basis [a], a € 5. Note that a, b, ¢ form an arithmetic progression
in [; if and only if @ + b + ¢ = 0. Consider the tensor

v= Y [al®bl®lcl= Y [a.bclek’ @KV @K™,
(6l»b,C)E|]:§X3 (a,b,c)e[l:gX3

a+b+c=0 a+b+c=0

Suppose that § C [ is a set without arithmetic progression. Then we have

w= Y [a.bceK’QK’®K’=) [a,a,al.
(a,b,c)eS? aes
a+b+c=0
The tensor w is a projection of v and lies in the orbit closure of v. In particular, we have k% (w) <1k (v).
Since w is a direct sum of |§| rank 1 tensors, we get tk®(w) > |S| by Proposition 3.8. So we have
k% (v) > k% (w) > |S].
We will work over the field K = [F3. For a function f : [} — F3 we define

(f)=> fl@lale K™,

acly
In particular, we have (1) = [0] 4 [1] 4 [2], (x) = [1]+2[2] = [1] — [2] and (x?) =[1]+[2]. A basis
of K3 is formed by taking all (p(x)) where p(x) = p(xi, ..., x,) is a polynomial of degree < 2 in
each of the variables x{, xs, ..., x,. With respect to the basis (1), (x), (x?), we have v, = (f) where
f B x5 x F§ — F3 is given by

1 ifx+y4+z=0;
0 otherwise.

f(x,y,Z)={
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For n = 1 we have v; = (f) where f : F3 x F3 x F3 — F3 is given by fx,yv,0)=1—(x+y+2>=
1—x2—y>—72+x+y+z So we have

vi= (L 11— 1, 1) = (1L,x% 1) = (1, L, x?) 4+ (1, x, x) + (x, 1, x) + (x, x, 1),
The support of S with respect to the basis (1), (x), (x?) is
{(0,0,0), (2,0,0),(0,2,0), (0,0, 2), 0,1, 1), (1,0, 1), (1, 1, 0)}.

An optimal solution to the linear programis x (1, 0) =x(2,0)=x(3,0)= %,x(l, D=x2,1)=x@3,1) :%
and x (1, 2) =x(2,2) =x(3,2) =0, which gives rkG(v) > k! (v) = Zi’j x(i, j)= % =2.25. An optimal
solution for the dual program is y(2,0,0) = y(0, 2,0) = y(0, 0, 2) = }‘ and y(0,1,1) =y(1,0,1) =
y(1,1,0) =1 and y(0, 0, 0) = 0.

Xn

The support of the tensor v=" = v X v X --X v is contained in the set

T ={(hy 11, v) € ({0, 1,2)) | |A] < 2, || < 2n, |v] < 2n).

We will give a solution to the linear program LP(S™) that we conjecture to be optimal. Whether optimal
or not, it will give an upper bound for the G-stable rank of v, Suppose that 1, t1, 12, ..., t2, > 0 are
numbers such that #; +1; +1# > 1 whenever i + j +k < 2n. If we define x (i, A) =1, for all A € {0, 1, 2}",
and i =1, 2, 3 then we have x(1, A) +x(2, u) +x(3, v) = tj3| + 1 +}v; = 1, so we have a solution to
the linear program. So we get

3 2n
kC@W) <Y D T x (@) =3 =3 faiti
A A i=0

i=1
where f, ; is the number of solutions to a; +ax +---+a, =d withay, as, ..., a, € {0, 1,2}. So f,.; is
the coefficient of x’ in (1 4 x 4+ x2)". To choose the  optimally, we have to solve a linear program by
minimizing 3 Y7, f,.; under the constraints:

(D) ti+tj+u=>1ifi+j+k<2n.
(2) t; =0 foralli.

The optimal solutions for the #; are given in Table 2.

In Table 2, the column UB gives the value of 3 Zizio fn.iti which is an upper bound for the G-stable
rank and the cardinality of a cap set in [F;. The column labeled “best cap set” gives the cardinality of
the largest known cap set in [;. The column EG gives the Ellenberg—Gijswijt upper bound, which is
3 Z}ff nl fu.i- This estimate relies on the fact that if i, j, k are nonnegative integers with i 4+ j +k < 2n,
then it follows that min{i, j, k} < LZTHJ But one can say something stronger, namely i < L%"J ,Jj < |_2”3—_1J
ork < |_2”3—_2J This observation gives a better bound that is still based on the slice rank in the column
labeled EG’. In the comment section of [Tao 2016], Fedor Petrov gives a refined argument to improve on
that of Ellenberg and Gijswijt to 2 ZILZZ({ 3n] fu.i» an improvement by a factor % This bound is given in the
column labeled P. In fact, the discussion of Petrov and Tao shows that we get an even better upper bound if

we minimize Y7 fo.i+ 32 272" f, ; over all m with 0 <m < n. This bound is given in the column P’
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n 0/112|3|4|5 |6 |UB|P | P |EG |EG bestcap set
fiiftjrfrfojolo|o|_,
1”%%00000212233 2
frilll21312/1101]0

2177 32 1 6 |46 71]9 4
t 212/ flojojo0 |0

P b3pe 7ol h o oo | 18 | 30 9
to|1|3]5]0(0] 00

fail114110/16|19| 16 | 10

73 R I A R 39 (30| 30 | 45 | 45 20
to|13]51510]0]0

fs.i|1]5]15(30(45| 51 | 45

5100 1422 1 g | g |105] 72 102]123 |153 45
li 5/5/5]53

foill|6]21/50]90|126|141

6| 2 274(196 (336|324 |504| 112
11133/ 0]0

Table 2. Optimal solutions for the ¢;.

In the table of Section 1E we have computed the optimal value of 3 lei o Jn,iti Tounded down to the

nearest integer for n < 20. This bound is an upper bound for the cardinality of a cap set in [F.

Looking at optimal solutions for small n, we make the following conjecture:

Conjecture 6.1. The optimal solution of the linear program for ty, t1, t, .

,1,...,

@n-3)/3
1,1,...,1,

2n—5)/3
1,1,...,

2n—=7)/3

L

1
» 3

1

17

7. Conclusion and further directions

.., by is as follows:

ifn =0 mod 3,
ifn=1mod 3,

ifn =2 mod 3.

The G-stable rank is a new notion of rank for tensors. Up to a constant it is equal to the slice rank, but it is

more refined in the sense that it can take noninteger values, and unlike the slice rank it is supermultiplicative

with respect to vertical tensor products. As an illustration, we showed that the G-stable rank can be used

to improve upper bounds for the cardinality of cap sets. Zhi Jiang recently proved Conjecture 6.1 in

[Jiang 2021]. He also improved the asymptotic upper bound of Ellenberg and Gijswijt to suggest an upper

bound of the form C6"/./n where C is some explicit constant. Since the asymptotic subrank of the cap

set tensor is 6, the approach with G-stable rank cannot give an upper bound O (y") where y < 6.
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Besides algebraic applications of tensor decompositions there are also many numerical applications such
as psychometrics [Tucker 1963; 1964; 1966; Carroll and Chang 1970; Harshman 1970] and chemometrics
[Appellof and Davidson 1981]. For more details and references, see the survey article [Kolda and
Bader 2009] or the books [Kroonenberg 2008; Landsberg 2012]. Formula (2) allows us to compute
or approximate the G-stable rank for real or complex tensors using optimization. Future directions of
research include algorithms for approximating the G-stable rank of a tensor, or to approximate a given
tensors by tensors of low G-stable rank and apply these to such tasks as denoising, dimension reduction
and tensor completion.
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