

SOSP ’21, October 26ś29, 2021, Virtual Event, Germany Zhipeng Jia and EmmettWitchel

vital, but high data throughput is not. Therefore Boki stores

and updates metalogs using a simple primary-driven design.

Boki handles machine failures by reconfiguration, simi-

lar to previous shared log systems [22, 30, 55]. Because the

metalog controls Boki’s internal state transitions, sealing the

metalog (making it no longer writable) pauses state transi-

tions. Therefore, Boki implements reconfiguration by sealing

the metalog, changing the system configuration, and starting

a newmetalog.

Boki’s metalog allows easy adoption of state-of-the-art

techniques from previous shared log designs because it make

log ordering, consistency, and fault tolerance into indepen-

dent modules (ğ 4.1). Boki adapts ordering from Scalog [30]

and fault tolerance from Delos’s [22] sealing protocol. An-

other benefit of the metalog is it decouples read consistency

from data placement, enabling indices and caches for log

records to be co-located with functions. Without interfering

with read consistency, cloudproviders canbuild simple caches

which increase data locality when scheduling functions on

nodes where their data is likely to be cached.

We implement Boki’s shared log designs on top of Night-

core [38], a FaaS runtime optimized for microservices. Night-

core has no specialized mechanism for state management,

Boki provides it; while Nightcore’s design for I/O efficiency

benefitsBoki. Boki achieves append throughput of 1.2MOps/s

within a single LogBook, while maintaining a p99 latency of

6.4ms.With LogBook engines co-locatedwith functions, Boki

achieves a read latency of 121𝜇s for best-case LogBook reads.

To make writing Boki applications easier, we build support

libraries on top of the LogBook API aimed at three different

serverless use cases: fault-tolerant workflows, durable ob-

ject storage, and serverless message queues. Boki support

libraries leverage techniques from Beldi [56], Tango [24],

and vCorfu [55], while adapting them for the LogBook API.

Boki and its support libraries are open source on GitHub

ut-osa/boki.

This paper makes the following contributions.

• Boki is a FaaS runtime that exports a LogBook API for

stateful serverless applications to manage their state with

durability, consistency, and fault tolerance.

• Boki proposes a unified mechanism, the metalog, to ad-

dress log ordering, read consistency, and fault tolerance. The

metalog decouples the read and write path of LogBooks, let-

ting Boki achieve high throughput and low latency.

• WebuildBoki support libraries that use the LogBookAPI

to demonstrate the value of shared logs for stateful serverless

applications. The libraries implement fault-tolerant work-

flows (BokiFlow), durable object storage (BokiStore), and

serverless message queues (BokiQueue).

• Our evaluation shows: BokiFlow executes workflows

4.3ś4.7× faster thanBeldi [56]; BokiStore achieves 1.18ś1.25×

higher throughput than MongoDB, while executing trans-

actions 1.5ś2.3× faster; BokiQueue achieves 2.14× higher

throughput andup to 15× lower latency thanAmazonSQS [2],

while achieving 1.23×higher throughput andup to 2.0× lower

latency than Apache Pulsar [3].

2 Background andMotivation

Serverless functions, or function as a service (FaaS) [4, 6],

allow developers to upload simple functions to the cloud

provider which are invoked on demand. The cloud provider

manages the execution environment of serverless functions.

Statemanagement remains amajor challenge in the current

FaaS paradigm [36, 48, 52, 59]. Because of the stateless nature

of serverless functions, current serverless applications rely

on cloud storage services (e.g., Amazon S3 and DynamoDB)

to manage their state. However, current cloud storage can-

not simultaneously provide low latency, low cost, and high

throughput [42, 47]. Relying on cloud storage also compli-

cates data consistency in stateful workflows [56], because

functions in a workflow could fail in the middle which leaves

inconsistent workflow state stored in the database.

2.1 Shared Log Approach for Stateful Serverless

In the current FaaS paradigm, stateful applications struggle to

achieve fault tolerance and strong consistency of their critical

state. For example, consider a travel reservation app built

with serverless functions. This app has a function for book-

ing hotels and another function for booking flights. When

processing a travel reservation request, both functions are

invoked, but both functions can fail during execution, leaving

inconsistent state. Using current approaches for state man-

agement such as cloud object stores or even cloud databases,

it is difficult to ensure the consistency of the reservation state

given the failure model [56].

The success of log-based approaches for data consistency

and fault tolerance motivates the usage of shared logs for

stateful FaaS. For example, Olive [50] proposes a client li-

brary interacting with cloud storage, where a write-ahead

redo log is used to achieve exactly-once semantics in face of

failures. Beldi [56] extends Olive’s log-based techniques for

transactional serverlessworkflows. Statemachine replication

(SMR) [49] is another general approach for fault tolerance,

where application state is replicated across servers by a com-

mand log. The command log is traditionally backed by con-

sensus algorithms [45, 46, 53]. But recent studies demonstrate

a shared log can provide efficient abstraction to support SMR-

based data structures [24, 55] and protocols [22, 25]. Boki pro-

vides shared logs to serverless functions, so that Boki’s appli-

cations can leverage well-understood log-based mechanisms

to efficiently achieve data consistency and fault tolerance.

By examining demands in serverless computing, we iden-

tify three important cases where shared logs provide a solu-

tion. Boki provides support libraries for these use cases (ğ 5).

Fault-tolerant workflows. Workflows orchestrating state-

ful functions create new challenges for fault tolerance and

692

Boki: Stateful Serverless Computing with Shared Logs SOSP ’21, October 26ś29, 2021, Virtual Event, Germany

transactional state updates. Beldi [56] addresses these chal-

lenges via logging workflow steps. Beldi builds an atomic log-

ging layer on top of DynamoDB.We adapt Beldi’s techniques

to the LogBook API without building an extra logging layer.

Durable object storage. Previous studies like Tango [24]
and vCorfu [55] demonstrate that shared logs can support

high-level data structures (i.e., objects), that are consistent,

durable, and scalable. Motivated by Cloudflare’s Durable Ob-

jects [17], we build a library for stateful functions to create

durable JSON objects. Our object library is more powerful

than Cloudflare’s because it supports transactions across ob-

jects, using techniques from Tango [24].

Serverless message queues. One constraint in the current
FaaS paradigm is that functions cannot directly communicate

with each other via traditional approaches [31], e.g., network

sockets. Shared logs can naturally be used to build message

queues [30] that offer indirect communication and coordina-

tion among functions. We build a queue library that provides

shared queues among serverless functions.

2.2 Technical Challenges for Serverless Shared Logs

While prior shared log designs [22, 23, 30, 55] provide inspi-

ration, the serverless environment creates new challenges.

Elasticity anddata locality. Serverless computing strongly

benefits from disaggregation [20, 34], which offers elasticity.

However, current serverless platforms choose physical disag-

gregation, which reduces data locality [36, 52]. Boki achieves

both elasticity and data locality, by decoupling the read and

the write paths for log data and co-locating read components

with functions.

Resource efficiency. Boki aims to support a high density

of LogBooks efficiently, so it multiplexes many LogBooks

on a single physical log. Multiplexing LogBooks can address

performance problems that arise from a skewed distribution

of LogBook sizes. But this approach creates a challenge for

LogBook reads: how to locate the records of a LogBook. Boki

proposes a log index to address this issue, with the metalog

providing the mechanism for read consistency (ğ 4.4).

The ephemeral nature of FaaS. Shared logs are used for
building high-level data structures via state machine repli-

cation (SMR) [24, 55]. To allow fast reads, clients keep in-

memory copies of the state machines, e.g., Tango [24] has

local views for its SMR-based objects. However, serverless

functions are ephemeral ś their in-memory state is not guar-

anteed to be preserved between invocations. This limitation

forces functions to replay the full log when accessing a SMR-

based object. Boki introduces auxiliary data (ğ 3) to enable

optimizations like local views in Tango (ğ 5.4). Auxiliary data

are designed as cache storage on a per-log-record basis, while

their relaxed durability and consistency guarantees allow a

simple andefficientmechanism tomanage their storage (ğ 4.4).

struct LogRecord {

uint64_t seqnum; string data;

vector<tag_t> tags; string auxdata;

};

// Append a new log record.

status_t logAppend(vector<tag_t> tags, string data,

uint64_t* seqnum);

// Read the next/previous record whose

// seqnum >=`min_seqnum`, or <=`max_seqnum`.

status_t logReadNext(uint64_t min_seqnum, tag_t tag,

LogRecord* record);

status_t logReadPrev(uint64_t max_seqnum, tag_t tag,

LogRecord* record);

// Alias of logReadPrev(kMaxSeqNum, tag, record).

status_t logCheckTail(tag_t tag, LogRecord* record);

// Trim log records until `seqnum`.

status_t logTrim(uint64_t seqnum, tag_t tag);

// Set auxiliary data for the record of `seqnum`.

status_t logSetAuxData(uint64_t seqnum, string auxdata);

Figure 1. Boki’s LogBook API (ğ 3).

3 Boki’s LogBook API

Boki provides a LogBook abstraction for serverless functions

to access shared logs. Boki maintains many independent Log-

Books used by different serverless applications. In Boki, each

function invocation is associated with one LogBook, whose

book_id is specified when invoking the function. A LogBook

can be shared with multiple function invocations, so that

applications can share state among their function instances.

Like previous shared log systems [22, 23, 30, 55], Boki ex-

poses append, read, and trim APIs for writing, reading, and

deleting log records. Figure 1 lists Boki’s LogBook API.

Read consistency. LogBook guarantees monotonic reads

and read-your-writes when reading records. These guaran-

tees imply a function has a monotonically increasing view

of the log tail. Moreover, a child function inherits its parent

function’s view of the log tail, if two functions share the same

LogBook. This property is important for serverless applica-

tions that compose multiple functions (ğ4.4).

Sequence numbers (seqnum). The logAppendAPI returns
a unique seqnum for the newly appended log record. The

seqnums determine the relative order of records within a

LogBook. They are monotonically increasing but not guaran-

teed to be consecutive. Boki’s logReadNext and logReadPrev

APIs enable bidirectional log traversals, by providing lower

and upper bounds for seqnums (ğ4.2).

Log tags. Every log recordhas a set of tags, that is specified in
logAppend. Log tags enable selective reads and trims, where

only records with the given tag are considered (see the tag

parameter in logReadNext, logReadPrev, and logTrimAPIs).

Records with same tags form abstract streams within a single

LogBook. Having sub-streams in a shared log for selective

reads is important for reducing log replay overheads, that is

used in Tango [24] and vCorfu [55] (ğ4.4).

693

SOSP ’21, October 26ś29, 2021, Virtual Event, Germany Zhipeng Jia and EmmettWitchel

Auxiliary data. LogBook’s auxiliary data is designed as per-
log-record cache storage, which is set by the logSetAuxData

API. Log reads may return auxiliary data along with normal

data if found.Auxiliarydatacancacheobjectviews inashared-

log-based object storage. These object views can significantly

reduce log replay overheads (ğ 5.4).

As auxiliary data is designed to be used only as a cache,

Boki does not guarantee its durability, but provides best effort

support. Moreover, Boki does not maintain the consistency of

auxiliary data, i.e., Boki trusts applications to provide consis-

tent auxiliary data for the same log record. Relaxing durability

and consistency allows Boki to have a simple yet efficient

backend for storing auxiliary data (ğ 4.4).

4 Boki Design

Boki’s design combines a FaaS systemwith shared log storage.

Boki internally stores multiple independent, totally ordered

logs. User-facing LogBooks are multiplexed onto internal

physical logs for better resource efficiency (ğ 2.2). A Boki

physical log has an associatedmetalog, playing the central

role in ordering, consistency, and fault tolerance.

4.1 Metalog is łthe Answer to Everythingž in Boki

Every shared log systemmust answer three questions because

they store log records across a group of machines. The first

is how to determine the global total order of log records. The

second is how to ensure read consistency as the data are physi-

cally distributed. The third is how to toleratemachine failures.

Table 1 shows different mechanisms used by previous shared

log systems to address these three issues, whereas in Boki,

themetalog provides the single solution to all of them.

In Boki, every physical log has a single associatedmetalog,

to record its internal state transitions. Boki sequencers ap-

pend to the metalog, while all other components subscribe to

it. In particular, appending, reading, and sealing the metalog

provide mechanisms for log ordering, read consistency, and

fault tolerance:

• Log ordering. The primary sequencer appends metalog

entries to decide the total order for new records, using Sca-

log [30]’s high-throughput ordering protocol. (ğ 4.3)

• Read consistency.Different LogBookenginesupdate their

log indices independently, however, read consistency is en-

forced by comparing metalog positions. (ğ 4.4)

• Fault tolerance. Boki is reconfigured by sealing metalogs,

because a sealed metalog pauses state transitions for the as-

sociated log. When all current metalogs are sealed, a new

configuration can be safely installed. (ğ 4.5)

Themetalog isbackedbyaprimary-drivenprotocol. Ev-
ery Boki metalog is stored by 𝑛meta sequencers (which is 3 in

the prototype). One of the 𝑛meta sequencers is configured as

primary, and only the primary sequencer can append themet-

alog. To append a newmetalog entry, the primary sequencer

sends the entry to all secondary sequencers for replication.

Table 1. Comparison between vCorfu [55], Scalog [30], and Boki.

Boki’s metalog provides a unified approach for log ordering, read

consistency, and fault tolerance (ğ 4.1).

Ordering

Log Records

Read

Consistency

Failure

Handling

vCorfu
A dedicated

sequencer
Stream replicas

Hole-filling

protocol

Scalog
Paxos and

aggregators
Sharding policy Paxos

Boki
Appending

metalog entries

Tracking

metalog positions

Sealing

themetalog

Once acknowledged by a quorum, the newmetalog entry is

successfully appended. The primary sequencer always waits

for the previous entry to be acknowledged by a quorum be-

fore issuing the next one. Sequencers propagate appended

metalog entries to other Boki components that subscribe to

the metalog.

4.2 Architecture

Figure 2 depicts Boki’s architecture, which is based on Night-

core [38], a state-of-the-art FaaS system for microservices. In

Nightcore’s design, there is a gateway for receiving function

requests and multiple function nodes for running serverless

functions. On each function node, an engine process commu-

nicates with the Nightcore runtime within function contain-

ers via low-latency message channels.

Boki extends Nightcore’s architecture by adding compo-

nents for storing, ordering, and reading logs. Boki also has a

control plane for storing configurationmetadata andhandling

component failures.

Storage nodes. Boki stores log records on dedicated storage
nodes. Boki’s physical logs are sharded, and each log shard is

stored on 𝑛data storage nodes (𝑛data equals 3 in the prototype).

Individual storage nodes contain different shards from the

same log, and/or shards from different logs, depending on

how Boki is configured.

Sequencer nodes. Sequencer nodes run Boki sequencers

that store and update metalogs using a primary-driven pro-

tocol (see ğ 4.1). Sequencers append newmetalog entries to

order physical log records as detailed in ğ 4.3. Similar to stor-

age nodes, individual sequencer nodes can be configured to

back different metalogs.

LogBook engines. In Nightcore, the engine processes run-
ning on function nodes are responsible for dispatching func-

tion requests. Boki extends Nightcore’s engine by adding a

new component serving LogBook calls.We refer the new part

as LogBook engine, to distinguish it from the part serving

function requests.

LogBook API requests are forwarded to LogBook engines

byBoki’s runtime,which is linkedwithuser supplied function

694

Boki: Stateful Serverless Computing with Shared Logs SOSP ’21, October 26ś29, 2021, Virtual Event, Germany

caught up. Successful reads and appends from a function up-

date the function’smetalogposition, ensuring the consistency

of future reads. A child function inherits the metalog position

from its parent function, so that consistency guarantees hold

across function boundaries.

Trim operations. Because the log index plays an important

role in read consistency, trimming records in log indices ef-

fectively makes trim operations observable. Storage space

for trimmed records can be reclaimed independently in the

background by storage nodes. Therefore, Boki implements

logTrimAPI calls by simply appending a trim command to

themetalog. For a trim command in themetalog, the LogBook

engines executes it by trimming related index rows in their

log indices, while storage nodes gradually reclaim space for

trimmed records.

Auxiliary data. Described in the LogBook API (ğ 3), the

auxiliary data of log records have relaxed requirements of

durability and consistency. This allows a very simple store of

auxiliary data that reuses the record cachewithinLogBook en-

gines. The relaxed consistency of auxiliary data does not even

require Boki to exchange them between nodes. Therefore, for

logSetAuxData calls, Boki simply caches the provided auxil-

iary data on the same function node. To serve reads from the

user function Boki checks if there is auxiliary data in the local

cache. If found, it is returned along with the result record.

4.5 Reconfiguration Protocol

Boki’s controller can initiate a reconfiguration if node failures

(including failures of primary sequencers) are detected or

when instructed by a system administrator.

The main part of Boki’s reconfiguration protocol is to seal

all current metalogs. A sealed metalog cannot have any more

entries appended, so the corresponding physical log is sealed

as well. Boki employs Delos [22]’s log sealing protocol, that is

surprisingly simple but fault-tolerant. To seal a metalog, the

controller sends the seal command to all relevant sequencers.

On receiving the seal command, the primary sequencer stops

issuing new metalog entries, while secondary sequencers

commit to reject future metalog entries from the primary

sequencer. The sealing is completed when a quorum of se-

quencershaveacknowledged the seal command (see theDelos

paper [22] for details).

After all metalogs are successfully sealed, Boki can install

a new configuration to start the next term. In the new term,

all physical logs start with new, empty metalogs. To ensure

read consistency across terms, we include the term_id in the

consistency check, which is compared before metalog posi-

tions. If the number of physical logs changes, the consistent

hashing parameters are updated accordingly.

To tolerate failures of the controller, Boki runs a group of

controller processes. The reconfigurationprotocol is executed

by a leader, elected via ZooKeeper.

5 Boki Support Libraries

In this section, we present Boki support libraries, designed

for three different stateful FaaS paradigms that benefit from

the LogBook API: fault-tolerant workflows (ğ 5.1), durable

object storage (ğ 5.2), and queues for message passing (ğ 5.3).

5.1 BokiFlow: Fault-TolerantWorkflows

We build a support library called BokiFlow for fault-tolerant

workflows. BokiFlow adapts Beldi [56]’s techniques to ensure

exactly-once semantics and support transactions for server-

less workflows.

In a Beldi workflow, every operation that has externally

visible effects (e.g., a database write) is logged with mono-

tonically increasing step numbers. When a workflow fails,

Beldi re-executes it using the workflow log. To ensure the

exactly-once semantic, Beldi recovers the internal state of the

failed workflow step-by-step, while skipping operations with

externally visible effects. Beldi builds a logging abstraction

on top of DynamoDB, a cloud database from AWS. Beldi ap-

plications store user data in the same DynamoDB database

with workflow logs.

BokiFlow implements Beldi’s techniques by using Log-

Books as the logging layer, i.e., logging every workflow step

in a LogBook. Similar to Beldi, BokiFlow applications store

user data in DynamoDB, so that BokiFlow provides the same

user-facing APIs as Beldi. There are three ways BokiFlow

distinguishes itself from Beldi.

Atomic łtest-and-appendž. Beldi requires an atomic op-

eration to check if the current step is previously logged and it

logs the step only if the check fails. Beldi relies on conditional

updates provided by a cloud database for this operation. Un-

fortunately, the LogBook API does not support conditional

log appends. Shown in Figure 6 (a), BokiFlow uses a different

mechanism based on log tags provided by LogBooks. The

pseudocode shows how BokiFlow uses log tags to distinguish

the log records of workflow steps. BokiFlow always reads

log records immediately after appends, and only honors the

first record of a step. This allows BokiFlow to recognize com-

pleted steps during workflow re-execution, by checking if the

appended record is the first one.

Idempotent database update. For a workflow step that

updates the database, Beldi requires the database update and

logging of this step to be a single atomic operation. Because

Beldi stores its logs along with user data in the same data-

base, it can use the atomic scope provided by the database

(e.g., a row in DynamoDB) for this requirement. However,

BokiFlow’s LogBook is not in the same atomic scope as user

data, so nomechanism exists to update both in a single atomic

operation. Instead, BokiFlowmakes data updates idempotent.

Pseudocode in Figure 6 (a) demonstrates the approach, where

the rawDBWrite statement uses the sequence number of the

697

Boki: Stateful Serverless Computing with Shared Logs SOSP ’21, October 26ś29, 2021, Virtual Event, Germany

Table 5. The importance of log replay optimization using auxiliary

data (ğ 7.5). The table shows Retwis throughput (in Op/s).

Workload duration 1min 3min 10min 30min

Optimization disabled 1,565 939 ś ś
AuxData w/ Redis 11,014 10,046 9,548 9,344
AuxData w/ Boki 11,388 11,078 10,923 10,891

Table 6. Locality impact from LogBook engines (ğ 7.5). The table

shows Retwis throughput (in Op/s), when adjusting the percentage

of reads processed by local LogBook engines.

Local reads 25% 50% 75% 100%

Throughput 8,548 9,319 10,262 11,078
Normalized tput 0.77x 0.84x 0.93x 1.00x

Table 5 shows the results. From the table,we see that the log

replay optimization is crucial for BokiStore to achieve an ac-

ceptable performance. The results also show the optimization

is robust even for long executions, where more object writes

are logged. Compared to the Redis-backed implementation,

Boki achieves 1.17× higher throughput. Boki’s approach is

more efficient because it maintains data locality by reusing

the record cache within LogBook engines.

Locality impact from LogBook engines. In the previous
evaluation of BokiStore, we configure Boki so all LogBook

reads are served by local LogBook engines. In a large-scale de-

ployment, having all LogBook enginesmaintain an index for a

particular physical log is not viable. Boki relies on the function

scheduler to optimize for the locality of LogBook engines.

To experiment with the impact from using remote Log-

Book engines we limit the ratio of log reads that are locally

processed, with the remainder processed remotely. Table 6

shows the results. We see even under a poor locality of Log-

Book engines, the performance drop is moderate (e.g., 77% of

maximum throughput at 25% local reads).

Read locality also comes from the record cache included in

LogBook engines. The cache stores both record data and aux-

iliary data for LogBook records.We experimentwith different

cache sizes to analyze its impact on BokiStore performance.

Results are shown in Table 7. We observe a sharp dorp in

throughput when the cache size is decreased to 16MB. The

cause of this drop is insufficient cache storage for auxiliary

data. Auxiliary data is important for BokiStore performance,

and a small record cache decreases the effectiveness of the log

replay optimization.Wemodify Boki to backup auxiliary data

on storage nodes, so that under a cache miss, storage nodes

can also return auxiliary data. With this mechanism, small

cache sizes no longer cause a sharp dorp in performance.

Log index versus fixed sharding. In ğ 4.4, we motivate the

log index design because it allows records from a LogBook to

be placed in arbitrary log shards. An alternative approach is

Table 7. LogBook engines maintain local cache for log records,

and the cache size has performance impact for Boki’s applications

(ğ 7.5). The table shows Retwis throughput (in Op/s).

LRU cache size 16MB 32MB 64MB 1GB

Auxiliary data only stored on function nodes
Throughput 3,561 10,476 11,263 11,245

Auxiliary data also backed up on storage nodes
Throughput 11,358 11,852 12,032 12,075

Table 8. Append throughput (in KOp/s) when log appends are

distributed over 128 LogBooks under a uniform or Zipf distribution.

Uniform Zipf (𝑠 =3) Zipf (𝑠 =5)

Fixed sharding 242.7 164.0 129.6
Log index (Boki) 250.6 253.4 278.6

Table 9. Scaling read-only transactionswithLogBook engines (ğ 7.5).

The experiment runs Retwis workload under a fixed write rate.

Concurrent functions / LogBook engines
100/8E 200/16E 300/24E 400/32E 600/48E

T-put (txn/s) 6,548 12,749 18,618 23,662 30,286
Normalized 1.00x 1.95x 2.84x 3.61x 4.63x

fixed sharding used in previous systems such as vCorfu [55].

We use the append-only microbenchmark to demonstrate the

advantage of Boki’s approach. For comparison, we modify

Boki to use a fixed sharding approach, where a hashing func-

tion maps each LogBook to a log shard. Results are shown

in Table 8. When log appends are uniformly distributed over

LogBooks, the two approaches show no difference. However,

when the distribution is skewed, fixed sharding suffers from

uneven loads between log shards, while Boki’s log index ap-

proach is unaffected.

Scaling LogBook engines. We then demonstrate the scala-

bility of LogBook engines, by running read-only transactions

in the Retwis workload. The workload is a mixture of read-

only transactions (GetTimeline) and read-write transactions

(NewTweet). In the experiment, we add more function nodes

to scale LogBook engines, while always using 3 storage nodes.

Every LogBook engine maintains a log index for the target

LogBook. We fix the rate of NewTweet to 700 requests per

second. Results are shown in Table 9. The results demonstrate

Boki can scale from 8 LogBook engines to 48, thereby provid-

ing 4.63× higher read throughput.

Sensitivity study of reconfigurations. We finally study

how reconfiguration frequency affects Boki’s performance. In

the experiment, Boki is configured with a single physical log

using 𝑛meta=3. To allow reconfigurations without frequently

allocating new nodes, we provision redundant nodes for Boki.

In the experiment, 8 sequencer nodes are provisioned, while

703

Boki: Stateful Serverless Computing with Shared Logs SOSP ’21, October 26ś29, 2021, Virtual Event, Germany

References
[1] [n.d.]. AmazonDynamoDB |NoSQLKey-ValueDatabase | AmazonWeb

Services. https://aws.amazon.com/dynamodb/ [Accessed Jan, 2021].

[2] [n.d.]. Amazon SQS | Message Queuing Service | AWS.

https://aws.amazon.com/sqs/ [Accessed Apr, 2021].

[3] [n.d.]. Apache Pulsar. https://pulsar.apache.org/ [Accessed Apr, 2021].

[4] [n.d.]. AWS Lambda ś Serverless Compute - AmazonWeb Servicesy.

https://aws.amazon.com/lambda/ [Accessed Jan, 2021].

[5] [n.d.]. AWS Step Functions. https://aws.amazon.com/step-functions/

[Accessed Jan, 2021].

[6] [n.d.]. Azure Functions Serverless Compute | Microsoft Azure. https:

//azure.microsoft.com/en-us/services/functions/ [Accessed Jan, 2021].

[7] [n.d.]. CorfuDB. https://github.com/corfudb [Accessed Apr, 2021].

[8] [n.d.]. delimitrou/DeathStarBench: Open-source benchmark suite for

cloud microservices. https://github.com/delimitrou/DeathStarBench

[Accessed Jan, 2021].

[9] [n.d.]. Durable entities - Azure Functions. https://docs.microsoft.com/

en-us/azure/azure-functions/durable/durable-functions-entities

[Accessed Jan, 2021].

[10] [n.d.]. Durable Functions Overview - Azure | Microsoft Docs.

https://docs.microsoft.com/en-us/azure/azure-functions/durable/

durable-functions-overview?tabs=csharp [Accessed Apr, 2021].

[11] [n.d.]. eniac/Beldi. https://github.com/eniac/Beldi [Accessed Apr,

2021].

[12] [n.d.]. RocksDB | A persistent key-value store | RocksDB.

https://rocksdb.org/ [Accessed Apr, 2021].

[13] [n.d.]. The most popular database for modern apps | MongoDB.

https://www.mongodb.com/ [Accessed Apr, 2021].

[14] [n.d.]. Tkrzw: a set of implementations of DBM. https:

//dbmx.net/tkrzw/ [Accessed Apr, 2021].

[15] [n.d.]. Tutorial: Design and implementation of a simple

Twitter clone using PHP and the Redis key-value store.

https://redis.io/topics/twitter-clone [Accessed Apr, 2021].

[16] [n.d.]. ut-osa/nightcore: Nightcore: Efficient and Scalable Server-

less Computing for Latency-Sensitive, Interactive Microservices.

https://github.com/ut-osa/nightcore [Accessed Apr, 2021].

[17] [n.d.]. Workers Durable Objects Beta: A New Approach to Stateful

Serverless. https://blog.cloudflare.com/introducing-workers-durable-

objects/ [Accessed Jan, 2021].

[18] [n.d.]. Workflows | Google Cloud. https://cloud.google.com/workflows

[Accessed Apr, 2021].

[19] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and

Kaushik Veeraraghavan. 2015. Challenges to Adopting Stronger

Consistency at Scale. In 15th Workshop on Hot Topics in Operat-

ing Systems (HotOS XV). USENIX Association, Kartause Ittingen,

Switzerland. https://www.usenix.org/conference/hotos15/workshop-

program/presentation/ajoux

[20] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Dis-

aggregation and the Application. In 12th USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud 20). USENIX Association.

https://www.usenix.org/conference/hotcloud20/presentation/angel

[21] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

2018. Sprocket: A Serverless Video Processing Framework. In

Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA,

USA) (SoCC ’18). Association for Computing Machinery, New York,

NY, USA, 263ś274. https://doi.org/10.1145/3267809.3267815

[22] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi,

Ahmed Jafri, Xiao Shi, SantoshGhosh, HazemHassan, Aaryaman Sagar,

Rhed Shi, Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,

Ahmed Yossef, Francois Richard, and Yee Jiun Song. 2020. Virtual Con-

sensus inDelos. In 14thUSENIXSymposiumonOperating SystemsDesign

and Implementation (OSDI 20). USENIX Association, 617ś632. https:

//www.usenix.org/conference/osdi20/presentation/balakrishnan

[23] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted

Wobbler, Michael Wei, and John D. Davis. 2012. CORFU: A Shared

Log Design for Flash Clusters. In 9th USENIX Symposium on Networked

SystemsDesign and Implementation (NSDI 12). USENIXAssociation, San

Jose, CA, 1ś14. https://www.usenix.org/conference/nsdi12/technical-

sessions/presentation/balakrishnan

[24] Mahesh Balakrishnan, Dahlia Malkhi, TedWobber, MingWu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou,

and Aviad Zuck. 2013. Tango: Distributed Data Structures over a

Shared Log. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).

Association for Computing Machinery, New York, NY, USA, 325ś340.

https://doi.org/10.1145/2517349.2522732

[25] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, SuyogMapara, David

Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh

Ghosh, Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li,

Rounak Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed Yossef, Francois

Richard, and Yee Jiun Song. 2021. Log-structured Protocols in Delos.

In Proceedings of the 28th Symposium on Operating Systems Principles

(Virtual Event, Germany) (SOSP ’21). Association for Computing

Machinery, New York, NY, USA.

[26] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman.

2015. Optimizing Optimistic Concurrency Control for Tree-Structured,

Log-Structured Databases. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (Melbourne, Victoria,

Australia) (SIGMOD ’15). Association for Computing Machinery, New

York, NY, USA, 1295ś1309. https://doi.org/10.1145/2723372.2737788

[27] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang,

and Randy Katz. 2019. Cirrus: A Serverless Framework for End-

to-End ML Workflows. In Proceedings of the ACM Symposium

on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Asso-

ciation for Computing Machinery, New York, NY, USA, 13ś24.

https://doi.org/10.1145/3357223.3362711

[28] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017.

Seeing is Believing: A Client-Centric Specification of Database

Isolation. In Proceedings of the ACM Symposium on Principles of

Distributed Computing (Washington, DC, USA) (PODC ’17). As-

sociation for Computing Machinery, New York, NY, USA, 73ś82.

https://doi.org/10.1145/3087801.3087802

[29] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, andWerner Vogels. 2007. Dynamo: Amazon’s

Highly Available Key-Value Store. In Proceedings of Twenty-First

ACM SIGOPS Symposium on Operating Systems Principles (Stevenson,

Washington, USA) (SOSP ’07). Association for Computing Machinery,

New York, NY, USA, 205ś220. https://doi.org/10.1145/1294261.1294281

[30] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi,

and Robbert Van Renesse. 2020. Scalog: Seamless Reconfigura-

tion and Total Order in a Scalable Shared Log. In 17th USENIX

Symposium on Networked Systems Design and Implementa-

tion (NSDI 20). USENIX Association, Santa Clara, CA, 325ś338.

https://www.usenix.org/conference/nsdi20/presentation/ding

[31] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,

Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From

Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of

Transient Functional Containers. In 2019 USENIXAnnual Technical Con-

ference (USENIX ATC 19). USENIX Association, Renton, WA, 475ś488.

https://www.usenix.org/conference/atc19/presentation/fouladi

[32] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Va-

suki Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh

Sivaraman, George Porter, and Keith Winstein. 2017. Encoding,

Fast and Slow: Low-Latency Video Processing Using Thousands of

Tiny Threads. In 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17). USENIX Association, Boston,

705

SOSP ’21, October 26ś29, 2021, Virtual Event, Germany Zhipeng Jia and EmmettWitchel

MA, 363ś376. https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/fouladi

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris

Colen, FukangWen, Catherine Leung, SiyuanWang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina

Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices

and Their Hardware-Software Implications for Cloud & Edge Systems.

In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(Providence, RI, USA) (ASPLOS ’19). Association forComputingMachin-

ery,NewYork,NY,USA, 3ś18. https://doi.org/10.1145/3297858.3304013

[34] Pedro García-López, Aleksander Slominski, Simon Shillaker, Michael

Behrendt, and Barnard Metzler. 2020. Serverless End Game: Disaggre-

gation enabling Transparency. arXiv preprint arXiv:2006.01251 (2020).

[35] S. Guo, R. Dhamankar, and L. Stewart. 2017. DistributedLog:

A High Performance Replicated Log Service. In 2017 IEEE 33rd

International Conference on Data Engineering (ICDE). 1183ś1194.

https://doi.org/10.1109/ICDE.2017.163

[36] JosephM.Hellerstein, JoseM. Faleiro, JosephGonzalez, JohannSchleier-

Smith, Vikram Sreekanti, Alexey Tumanov, and ChenggangWu. 2019.

ServerlessComputing:OneStep Forward, TwoStepsBack. InCIDR2019,

9th Biennial Conference on Innovative Data Systems Research, Asilomar,

CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.

http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[37] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin

Reed. 2010. ZooKeeper: Wait-Free Coordination for Internet-Scale

Systems. In Proceedings of the 2010 USENIX Conference on USENIX

Annual Technical Conference (Boston, MA) (USENIXATC’10). USENIX

Association, USA, 11.

[38] Zhipeng Jia andEmmettWitchel. 2021. Nightcore: Efficient andScalable

Serverless Computing for Latency-Sensitive, Interactive Microservices.

In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (Virtual,

USA) (ASPLOS 2021). Association for ComputingMachinery, New York,

NY, USA, 152ś166. https://doi.org/10.1145/3445814.3446701

[39] Eric Jonas, Qifan Pu, ShivaramVenkataraman, Ion Stoica, and Benjamin

Recht. 2017. Occupy the Cloud: Distributed Computing for the 99%.

In Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,

California) (SoCC ’17). Association for Computing Machinery, New

York, NY, USA, 445ś451. https://doi.org/10.1145/3127479.3128601

[40] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew

Levine, and Daniel Lewin. 1997. Consistent Hashing and Random

Trees: Distributed Caching Protocols for Relieving Hot Spots on the

World Wide Web. In Proceedings of the Twenty-Ninth Annual ACM

Symposium on Theory of Computing (El Paso, Texas, USA) (STOC ’97).

Association for Computing Machinery, New York, NY, USA, 654ś663.

https://doi.org/10.1145/258533.258660

[41] Martin Kleppmann and Jay Kreps. 2015. Kafka, Samza and the Unix

Philosophy of Distributed Data. IEEE Data Eng. Bull. 38, 4 (2015), 4ś14.

http://sites.computer.org/debull/A15dec/p4.pdf

[42] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,

Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic

Ephemeral Storage for Serverless Analytics. In 13th USENIX

Symposium on Operating Systems Design and Implementa-

tion (OSDI 18). USENIX Association, Carlsbad, CA, 427ś444.

https://www.usenix.org/conference/osdi18/presentation/klimovic

[43] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran,

Daniel J. Abadi, James Aspnes, Siddhartha Sen, and Mahesh Balakr-

ishnan. 2018. The FuzzyLog: A Partially Ordered Shared Log. In

13th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 18). USENIX Association, Carlsbad, CA, 357ś372.

https://www.usenix.org/conference/osdi18/presentation/lockerman

[44] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,

Nathan Bronson, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not

Causal! Scalable Causal Consistency with No Slowdown Cas-

cades. In 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17). USENIX Association, Boston, MA,

453ś468. https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/mehdi

[45] IulianMoraru,DavidG.Andersen,andMichaelKaminsky.2013. There is

MoreConsensus inEgalitarianParliaments. InProceedingsof theTwenty-

Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New

York, NY, USA, 358ś372. https://doi.org/10.1145/2517349.2517350

[46] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-

standable Consensus Algorithm. In 2014 USENIX Annual Technical

Conference (USENIX ATC 14). USENIX Association, Philadelphia,

PA, 305ś319. https://www.usenix.org/conference/atc14/technical-

sessions/presentation/ongaro

[47] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,

Fast and Slow: Scalable Analytics on Serverless Infrastructure. In

16th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 19). USENIX Association, Boston, MA, 193ś206.

https://www.usenix.org/conference/nsdi19/presentation/pu

[48] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao

Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,

Ion Stoica, and David A. Patterson. 2021. What Serverless Computing

is and Should Become: The next Phase of Cloud Computing. Commun.

ACM 64, 5 (April 2021), 76ś84. https://doi.org/10.1145/3406011

[49] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial. ACMComput. Surv. 22, 4 (Dec.

1990), 299ś319. https://doi.org/10.1145/98163.98167

[50] Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen,

Parveen Patel, and Jinglei Ren. 2016. Realizing the Fault-Tolerance

Promise of Cloud Storage Using Locks with Intent. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16).

USENIX Association, Savannah, GA, 501ś516. https://www.usenix.

org/conference/osdi16/technical-sessions/presentation/setty

[51] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation

for Efficient Stateful Serverless Computing. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20). USENIX Association, 419ś433.

https://www.usenix.org/conference/atc20/presentation/shillaker

[52] VikramSreekanti, ChenggangWu,XiayueCharles Lin, JohannSchleier-

Smith, Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov.

2020. Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow.

13, 12 (July 2020), 2438ś2452. https://doi.org/10.14778/3407790.3407836

[53] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made

Moderately Complex. ACMComput. Surv. 47, 3, Article 42 (Feb. 2015),

36 pages. https://doi.org/10.1145/2673577

[54] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brah-

madesam, Kamal Gupta, RamanMittal, Sailesh Krishnamurthy, Sandor

Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon

Aurora: Design Considerations for High Throughput Cloud-Native

Relational Databases. In Proceedings of the 2017 ACM International

Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD

’17). Association for Computing Machinery, New York, NY, USA,

1041ś1052. https://doi.org/10.1145/3035918.3056101

[55] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham,

MaithemMunshed, Medhavi Dhawan, Jim Stabile, UdiWieder, Scott

Fritchie, Steven Swanson,Michael J. Freedman, andDahliaMalkhi. 2017.

vCorfu: A Cloud-Scale Object Store on a Shared Log. In 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

17). USENIX Association, Boston, MA, 35ś49. https://www.usenix.

org/conference/nsdi17/technical-sessions/presentation/wei-michael

[56] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and

Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless

706

Boki: Stateful Serverless Computing with Shared Logs SOSP ’21, October 26ś29, 2021, Virtual Event, Germany

workflows. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20). USENIX Association, 1187ś1204. https:

//www.usenix.org/conference/osdi20/presentation/zhang-haoran

[57] Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond

Cheng, Ariadna Norberg, Arvind Krishnamurthy, and Henry M.

Levy. 2016. Diamond: Automating Data Management and Storage

for Wide-Area, Reactive Applications. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16). USENIX

Association, Savannah, GA, 723ś738. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/zhang-irene

[58] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions

with Inconsistent Replication. In Proceedings of the 25th Symposium

on Operating Systems Principles (Monterey, California) (SOSP ’15).

Association for Computing Machinery, New York, NY, USA, 263ś278.

https://doi.org/10.1145/2815400.2815404

[59] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing

the Gap Between Serverless and Its State with Storage Functions. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,

CA, USA) (SoCC ’19). Association for ComputingMachinery, New York,

NY, USA, 1ś12. https://doi.org/10.1145/3357223.3362723

707

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Shared Log Approach for Stateful Serverless
	2.2 Technical Challenges for Serverless Shared Logs

	3 Boki's LogBook API
	4 Boki Design
	4.1 Metalog is ``the Answer to Everything'' in Boki
	4.2 Architecture
	4.3 Workflow of Log Appends
	4.4 From Physical Logs to LogBooks
	4.5 Reconfiguration Protocol

	5 Boki Support Libraries
	5.1 BokiFlow: Fault-Tolerant Workflows
	5.2 BokiStore: Durable Object Storage
	5.3 BokiQueue: Message Queues
	5.4 Optimizing Log Replay with Auxiliary Data
	5.5 Garbage Collector Functions

	6 Implementation
	7 Evaluation
	7.1 Microbenchmarks
	7.2 BokiFlow: Fault-Tolerant Workflows
	7.3 BokiStore: Durable Object Storage
	7.4 BokiQueue: Message Queues
	7.5 Analysis

	8 Related Work
	9 Conclusion
	References

