Boki: Stateful Serverless Computing with Shared Logs

Zhipeng Jia
The University of Texas at Austin

Abstract

Boki is a new serverless runtime that exports a shared log
API to serverless functions. Boki shared logs enable stateful
serverless applications to manage their state with durability,
consistency, and fault tolerance. Boki shared logs achieve high
throughput and low latency. The key enabler is the metalog, a
novel mechanism that allows Boki to address ordering, consis-
tency and fault tolerance independently. The metalog orders
shared log records with high throughput and it provides read
consistency while allowing service providers to optimize the
write and read path of the shared log in different ways. To
demonstrate the value of shared logs for stateful serverless
applications, we build Boki support libraries that implement
fault-tolerant workflows, durable object storage, and message
queues. Our evaluation shows that shared logs can speed up
important serverless workloads by up to 4.7x.

CCS Concepts: « Information systems — Distributed
storage; - Computer systems organization — Depend-
able and fault-tolerant systems and networks; Cloud
computing.

Keywords: Serverless computing, function-as-a-service, shared
log, consistency

ACM Reference Format:

Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless
Computing with Shared Logs. In ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP °21), October 2629, 2021, Vir-
tual Event, Germany. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3477132.3483541

1 Introduction

Serverless computing has become increasingly popular for
building scalable cloud applications. Its function-as-a-service
(FaaS) paradigm empowers diverse applications including
video processing [21, 32], data analytics [39, 47], machine
learning [27, 51], distributed compilation [31], transactional
workflows [56], and interactive microservices [38].

One key challenge in the current serverless paradigm is the
mismatch between the stateless nature of serverless functions

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
SOSP °21, October 26-29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483541

691

Emmett Witchel
The University of Texas at Austin and Katana Graph

and the stateful applications built with them [36, 48, 52, 59].
Serverless applications are often composed of multiple func-
tions, where application state is shared. However, managing
shared state using current options, e.g., cloud databases or ob-
ject stores, struggles to achieve strong consistency and fault
tolerance while maintaining high performance and scalabil-
ity [50, 56].

The sharedlog [23,30,55] isapopular approach for building
storage systems that can simultaneously achieve scalability,
strong consistency, and fault tolerance [7, 22, 24, 26, 35, 41, 54,
55]. A shared log offers a simple abstraction: a totally ordered
log that can be accessed and appended concurrently. While
simple, a shared log can efficiently support state machine
replication [49], the well-understood approach for building
fault-tolerant stateful services [24, 55]. The shared log APIalso
frees distributed applications from the burden of managing
the details of fault-tolerant consensus, because the consen-
sus protocol is hidden behind the API [22]. Providing shared
logs to serverless functions can address the dual challenges
of consistency and fault tolerance (§ 2.1).

We present Boki (meaning bookkeeping in Japanese), a
FaaS runtime that exports the shared log API to functions for
storing shared state. Boki realizes the shared log API with
a LogBook abstraction, where each function invocation is
associated with a LogBook (§ 3). For a Boki application, its
functions share a LogBook, allowing them to share and co-
ordinate updates to state. In Boki, LogBooks enable stateful
serverless applications to manage their state with durability,
consistency, and fault tolerance.

The shared log API is simple to use and applicable to di-
verse applications [22, 24, 25, 55], so the challenge of Boki is
to achieve high performance and strong consistency while
conforming to the serverless environment (§ 2.2). Data lo-
cality is one challenge for serverless storage, because dis-
aggregated storage is strongly preferred in the serverless
environment [36, 48, 52]. Boki separates the read and write
path, where read locality is optimized with a cache on func-
tion nodes and writes are optimized with scale-out band-
width. Boki will scatter writes over variable numbers of shards
while providing consistent reads and fault tolerance. In Boki,
high performance, read consistency and fault tolerance are
achieved by a single log-based mechanism, the metalog.

The metalog defines a total order of Boki’s internal state
that applications can use to enforce consistency when they
need it. For example, monotonic reads are enforced by track-
ing metalog positions. The metalog contains metadata that
totally orders a log’s data records. Because Boki uses a com-
pact format for the metalog, durability and consensus are

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

vital, but high data throughput is not. Therefore Boki stores
and updates metalogs using a simple primary-driven design.

Boki handles machine failures by reconfiguration, simi-
lar to previous shared log systems [22, 30, 55]. Because the
metalog controls Boki’s internal state transitions, sealing the
metalog (making it no longer writable) pauses state transi-
tions. Therefore, Boki implements reconfiguration by sealing
the metalog, changing the system configuration, and starting
anew metalog.

Boki’s metalog allows easy adoption of state-of-the-art
techniques from previous shared log designs because it make
log ordering, consistency, and fault tolerance into indepen-
dent modules (§ 4.1). Boki adapts ordering from Scalog [30]
and fault tolerance from Delos’s [22] sealing protocol. An-
other benefit of the metalog is it decouples read consistency
from data placement, enabling indices and caches for log
records to be co-located with functions. Without interfering
with read consistency, cloud providers can build simple caches
which increase data locality when scheduling functions on
nodes where their data is likely to be cached.

We implement Boki’s shared log designs on top of Night-
core [38], a FaaS runtime optimized for microservices. Night-
core has no specialized mechanism for state management,
Boki provides it; while Nightcore’s design for I/O efficiency
benefits Boki. Boki achieves append throughput of 1.2M Ops/s
within a single LogBook, while maintaining a p99 latency of
6.4ms. With LogBook engines co-located with functions, Boki
achieves a read latency of 121yus for best-case LogBook reads.

To make writing Boki applications easier, we build support
libraries on top of the LogBook API aimed at three different
serverless use cases: fault-tolerant workflows, durable ob-
ject storage, and serverless message queues. Boki support
libraries leverage techniques from Beldi [56], Tango [24],
and vCorfu [55], while adapting them for the LogBook API.
Boki and its support libraries are open source on GitHub
ut-osa/boki.

This paper makes the following contributions.

e Boki is a FaaS runtime that exports a LogBook API for
stateful serverless applications to manage their state with
durability, consistency, and fault tolerance.

e Boki proposes a unified mechanism, the metalog, to ad-
dress log ordering, read consistency, and fault tolerance. The
metalog decouples the read and write path of LogBooks, let-
ting Boki achieve high throughput and low latency.

e We build Boki support libraries that use the LogBook API
to demonstrate the value of shared logs for stateful serverless
applications. The libraries implement fault-tolerant work-
flows (BokiFlow), durable object storage (BokiStore), and
serverless message queues (BokiQueue).

e Our evaluation shows: BokiFlow executes workflows
4.3-4.7x faster than Beldi [56]; BokiStore achieves 1.18-1.25x
higher throughput than MongoDB, while executing trans-
actions 1.5-2.3X faster; BokiQueue achieves 2.14x higher
throughput and up to 15x lower latency than Amazon SQS [2],

692

Zhipeng Jia and Emmett Witchel

while achieving 1.23% higher throughput and up to 2.0x lower
latency than Apache Pulsar [3].

2 Background and Motivation

Serverless functions, or function as a service (FaaS) [4, 6],
allow developers to upload simple functions to the cloud
provider which are invoked on demand. The cloud provider
manages the execution environment of serverless functions.
State management remains a major challenge in the current
FaaS paradigm [36, 48, 52, 59]. Because of the stateless nature
of serverless functions, current serverless applications rely
on cloud storage services (e.g., Amazon S3 and DynamoDB)
to manage their state. However, current cloud storage can-
not simultaneously provide low latency, low cost, and high
throughput [42, 47]. Relying on cloud storage also compli-
cates data consistency in stateful workflows [56], because
functions in a workflow could fail in the middle which leaves
inconsistent workflow state stored in the database.

2.1 Shared Log Approach for Stateful Serverless

In the current FaaS paradigm, stateful applications struggle to
achieve fault tolerance and strong consistency of their critical
state. For example, consider a travel reservation app built
with serverless functions. This app has a function for book-
ing hotels and another function for booking flights. When
processing a travel reservation request, both functions are
invoked, but both functions can fail during execution, leaving
inconsistent state. Using current approaches for state man-
agement such as cloud object stores or even cloud databases,
it is difficult to ensure the consistency of the reservation state
given the failure model [56].

The success of log-based approaches for data consistency
and fault tolerance motivates the usage of shared logs for
stateful FaaS. For example, Olive [50] proposes a client li-
brary interacting with cloud storage, where a write-ahead
redo log is used to achieve exactly-once semantics in face of
failures. Beldi [56] extends Olive’s log-based techniques for
transactional serverless workflows. State machine replication
(SMR) [49] is another general approach for fault tolerance,
where application state is replicated across servers by a com-
mand log. The command log is traditionally backed by con-
sensus algorithms [45, 46, 53]. But recent studies demonstrate
a shared log can provide efficient abstraction to support SMR-
based data structures [24, 55] and protocols [22, 25]. Boki pro-
vides shared logs to serverless functions, so that Boki’s appli-
cations can leverage well-understood log-based mechanisms
to efficiently achieve data consistency and fault tolerance.

By examining demands in serverless computing, we iden-
tify three important cases where shared logs provide a solu-
tion. Boki provides support libraries for these use cases (§ 5).

Fault-tolerant workflows. Workflows orchestrating state-
ful functions create new challenges for fault tolerance and

Boki: Stateful Serverless Computing with Shared Logs

transactional state updates. Beldi [56] addresses these chal-
lenges via logging workflow steps. Beldi builds an atomic log-
ging layer on top of DynamoDB. We adapt Beldi’s techniques
to the LogBook API without building an extra logging layer.

Durable object storage. Previous studies like Tango [24]
and vCorfu [55] demonstrate that shared logs can support
high-level data structures (i.e., objects), that are consistent,
durable, and scalable. Motivated by Cloudflare’s Durable Ob-
jects [17], we build a library for stateful functions to create
durable JSON objects. Our object library is more powerful
than Cloudflare’s because it supports transactions across ob-
jects, using techniques from Tango [24].

Serverless message queues. One constraint in the current
FaaS paradigm is that functions cannot directly communicate
with each other via traditional approaches [31], e.g., network
sockets. Shared logs can naturally be used to build message
queues [30] that offer indirect communication and coordina-
tion among functions. We build a queue library that provides
shared queues among serverless functions.

2.2 Technical Challenges for Serverless Shared Logs

While prior shared log designs [22, 23, 30, 55] provide inspi-
ration, the serverless environment creates new challenges.

Elasticity and datalocality. Serverless computing strongly
benefits from disaggregation [20, 34], which offers elasticity.
However, current serverless platforms choose physical disag-
gregation, which reduces data locality [36, 52]. Boki achieves
both elasticity and data locality, by decoupling the read and
the write paths for log data and co-locating read components
with functions.

Resource efficiency. Boki aims to support a high density
of LogBooks efficiently, so it multiplexes many LogBooks
on a single physical log. Multiplexing LogBooks can address
performance problems that arise from a skewed distribution
of LogBook sizes. But this approach creates a challenge for
LogBook reads: how to locate the records of a LogBook. Boki
proposes a log index to address this issue, with the metalog
providing the mechanism for read consistency (§ 4.4).

The ephemeral nature of FaaS. Shared logs are used for
building high-level data structures via state machine repli-
cation (SMR) [24, 55]. To allow fast reads, clients keep in-
memory copies of the state machines, e.g., Tango [24] has
local views for its SMR-based objects. However, serverless
functions are ephemeral - their in-memory state is not guar-
anteed to be preserved between invocations. This limitation
forces functions to replay the full log when accessing a SMR-
based object. Boki introduces auxiliary data (§ 3) to enable
optimizations like local views in Tango (§ 5.4). Auxiliary data
are designed as cache storage on a per-log-record basis, while
their relaxed durability and consistency guarantees allow a
simple and efficient mechanism to manage their storage (§ 4.4).

693

SOSP 21, October 26-29, 2021, Virtual Event, Germany

struct LogRecord {
uint64_t seqnum;
vector<tag_t> tags;

string data;

string auxdata;

+

// Append a new log record.

status_t logAppend(vector<tag_t> tags, string data,

uint64_t* seqnum);

// Read the next/previous record whose

// seqnum >="min_seqgnum’, or <="max_seqnum- .

status_t logReadNext(uint64_t min_seqnum, tag_t tag,
LogRecord* record);

status_t logReadPrev(uint64_t max_seqnum, tag_t tag,
LogRecord* record);

// Alias of logReadPrev(kMaxSeqNum, tag, record).

status_t logCheckTail(tag_t tag, LogRecordx record);

// Trim log records until ~seqgnum”.

status_t logTrim(uint64_t segnum, tag_t tag);

// Set auxiliary data for the record of ~seqgnum™.

status_t logSetAuxData(uint64_t seqnum, string auxdata);

Figure 1. Boki’s LogBook API (§ 3).

3 Boki’s LogBook API

Boki provides a LogBook abstraction for serverless functions
to access shared logs. Boki maintains many independent Log-
Books used by different serverless applications. In Boki, each
function invocation is associated with one LogBook, whose
book_id is specified when invoking the function. A LogBook
can be shared with multiple function invocations, so that
applications can share state among their function instances.
Like previous shared log systems [22, 23, 30, 55], Boki ex-
poses append, read, and trim APIs for writing, reading, and
deleting log records. Figure 1 lists Boki’s LogBook APL

Read consistency. LogBook guarantees monotonic reads
and read-your-writes when reading records. These guaran-
tees imply a function has a monotonically increasing view
of the log tail. Moreover, a child function inherits its parent
function’s view of the log tail, if two functions share the same
LogBook. This property is important for serverless applica-
tions that compose multiple functions (§4.4).

Sequence numbers (seqnum). The logAppend APIreturns
a unique seqnum for the newly appended log record. The
seqnums determine the relative order of records within a
LogBook. They are monotonically increasing but not guaran-
teed to be consecutive. Boki’s logReadNext and logReadPrev
APIs enable bidirectional log traversals, by providing lower
and upper bounds for seqnums (§4.2).

Logtags. Everylogrecord hasasetoftags, thatis specified in
logAppend. Log tags enable selective reads and trims, where
only records with the given tag are considered (see the tag
parameter in LogReadNext, LogReadPrev, and LogTrim APIs).
Records with same tags form abstract streams within a single
LogBook. Having sub-streams in a shared log for selective
reads is important for reducing log replay overheads, that is
used in Tango [24] and vCorfu [55] (§4.4).

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

Auxiliary data. LogBook’s auxiliary data is designed as per-
log-record cache storage, which is set by the logSetAuxData
API Log reads may return auxiliary data along with normal
dataiffound. Auxiliary data can cache object viewsin a shared-
log-based object storage. These object views can significantly
reduce log replay overheads (§ 5.4).

As auxiliary data is designed to be used only as a cache,
Boki does not guarantee its durability, but provides best effort
support. Moreover, Boki does not maintain the consistency of
auxiliary data, i.e., Boki trusts applications to provide consis-
tent auxiliary data for the same log record. Relaxing durability
and consistency allows Boki to have a simple yet efficient
backend for storing auxiliary data (§ 4.4).

4 BokiDesign

Boki’s design combines a FaaS system with shared log storage.
Boki internally stores multiple independent, totally ordered
logs. User-facing LogBooks are multiplexed onto internal
physical logs for better resource efficiency (§ 2.2). A Boki
physical log has an associated metalog, playing the central
role in ordering, consistency, and fault tolerance.

4.1 Metalog is “the Answer to Everything” in Boki

Every shared log system must answer three questions because
they store log records across a group of machines. The first
is how to determine the global total order of log records. The
second is how to ensure read consistency as the data are physi-
cally distributed. The third is how to tolerate machine failures.
Table 1 shows different mechanisms used by previous shared
log systems to address these three issues, whereas in Boki,
the metalog provides the single solution to all of them.

In Boki, every physical log has a single associated metalog,
to record its internal state transitions. Boki sequencers ap-
pend to the metalog, while all other components subscribe to
it. In particular, appending, reading, and sealing the metalog
provide mechanisms for log ordering, read consistency, and
fault tolerance:

e Log ordering. The primary sequencer appends metalog
entries to decide the total order for new records, using Sca-
log [30]’s high-throughput ordering protocol. (§ 4.3)

o Read consistency. Different LogBook engines update their
log indices independently, however, read consistency is en-
forced by comparing metalog positions. (§ 4.4)

o Fault tolerance. Boki is reconfigured by sealing metalogs,
because a sealed metalog pauses state transitions for the as-
sociated log. When all current metalogs are sealed, a new
configuration can be safely installed. (§ 4.5)

The metalogisbacked by a primary-driven protocol. Ev-
ery Boki metalog is stored by ny,et, sequencers (which is 3 in
the prototype). One of the nmeta Sequencers is configured as
primary, and only the primary sequencer can append the met-
alog. To append a new metalog entry, the primary sequencer
sends the entry to all secondary sequencers for replication.

694

Zhipeng Jia and Emmett Witchel

Table 1. Comparison between vCorfu [55], Scalog [30], and Boki.
Boki’s metalog provides a unified approach for log ordering, read
consistency, and fault tolerance (§ 4.1).

Ordering Read Failure
Log Records Consistency Handling
vCorfu A dedicated Stream replicas Hole-filling
sequencer protocol
Scalo Paxos and Sharding polic Paxos
& aggregators s poucy
. Appending Tracking Sealing
Boki i o
metalog entries | metalog positions | the metalog

Once acknowledged by a quorum, the new metalog entry is
successfully appended. The primary sequencer always waits
for the previous entry to be acknowledged by a quorum be-
fore issuing the next one. Sequencers propagate appended
metalog entries to other Boki components that subscribe to
the metalog.

4.2 Architecture

Figure 2 depicts Boki’s architecture, which is based on Night-
core [38], a state-of-the-art FaaS system for microservices. In
Nightcore’s design, there is a gateway for receiving function
requests and multiple function nodes for running serverless
functions. On each function node, an engine process commu-
nicates with the Nightcore runtime within function contain-
ers via low-latency message channels.

Boki extends Nightcore’s architecture by adding compo-
nents for storing, ordering, and reading logs. Boki also has a
control plane for storing configuration metadata and handling
component failures.

Storage nodes. Boki stores log records on dedicated storage
nodes. Boki’s physical logs are sharded, and each log shard is
stored on ng,e, storage nodes (ngata equals 3 in the prototype).
Individual storage nodes contain different shards from the
same log, and/or shards from different logs, depending on
how Boki is configured.

Sequencer nodes. Sequencer nodes run Boki sequencers
that store and update metalogs using a primary-driven pro-
tocol (see § 4.1). Sequencers append new metalog entries to
order physical log records as detailed in § 4.3. Similar to stor-
age nodes, individual sequencer nodes can be configured to
back different metalogs.

LogBook engines. In Nightcore, the engine processes run-
ning on function nodes are responsible for dispatching func-
tion requests. Boki extends Nightcore’s engine by adding a
new component serving LogBook calls. We refer the new part
as LogBook engine, to distinguish it from the part serving
function requests.

LogBook API requests are forwarded to LogBook engines
by Boki’s runtime, which is linked with user supplied function

Boki: Stateful Serverless Computing with Shared Logs

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

F i i I i 1 mmmmm e ———
reL;nucglstr; I:>| Gateway | ! Storage nodes 1 ISequencer nodes ! ' Control plane H
] Replicate 1 Store records H | store and update | I !
L i 1 1
Function node 2 "¢ of physicallogs | | [mefalogs 1 | zook i
” = ! | Report | 1 1 | ZooKeeper |
Container »| Record store [1£/097%5 @, Sequeé‘l cer i Append : |
Bl Function engine ﬁ : E (secondary) Nmetaios ® 1 [controtier | !
1 1
i 1
Runtime LogBook engine Record store [| I H—]
L 1 . h (secondary) \
------ Log Record | FH ! H : \ N
more function [! — nvoking functions
(il index || cache \? Record store I | Sequencer |/ g
— i ' P[_(pimay) |t —— LogBookAPI calls
L e e e e e e = e 4 TR @) .
L Propagate metalog @ (L@@ Appending logs

Figure 2. Architecture of Boki (§ 4.2), where red arrows show the workflow of log appends (§ 4.3).

code. LogBook engines maintain indices for physical logs, in
order to efficiently serve LogBook reads (detailed in § 4.4).
LogBook engines subscribe to the metalog, and incrementally
update their indices in accordance with the metalog. LogBook
engines also cache log records for faster reads, using their
unique sequence numbers as keys. Co-locating LogBook en-
gines with functions means that, in the best case, LogBook
reads can be served without leaving the function node.

Control plane. Boki’s control plane uses ZooKeeper [37]
for storing its configuration. Boki’s configuration includes
(1) the set of storage, sequencers, and indices constituting each
physical log; (2) addresses of gateway, function, storage, and
sequencer nodes; (3) parameters of consistent hashing [40]
used for the mapping between LogBooks and physical logs.
Every Boki node maintains a ZooKeeper session to keep syn-
chronized with the current configuration. ZooKeeper sessions
are also used to detect failures of Boki nodes.

Boki’s controller (see the control plane in Figure 2) is re-
sponsible for global reconfiguration. Reconfiguration hap-
pens when node failures are detected, or when instructed by
the administrator to scale the system, e.g., by changing the
number of physical logs (see §7.1 for reconfiguration latency
measurements). We define the duration between consecu-
tive reconfigurations as a term. Terms have a monotonically
increasing term_id.

Structure of sequence numbers (seqnum). In Boki, every
log record has a unique seqnum. The seqnum, from higher to
lower bits, is (term_id, log_id, pos), where log_id identifies the
physical log and pos is the record’s position in the physical
log. Seqnums in this structure determine a total order within
a LogBook, which is in accordance with the chronological
order of terms and the total order of the underlying physical
log. But note that this structure cannot guarantee seqnums
within a LogBook to be consecutive, whose records can be
physically interspersed with other LogBooks.

4.3 Workflow of Log Appends

When appending a LogBook (shown by the red arrows in Fig-
ure 2), the new record is appended to the associated physical

695

0°| 12| 22 [32| 4= |ob|1b|2b|3b| |o¢|1c 2C|35 4 5C|
«_shard a shard b shardc
Y
metalog| 211 |[313) | 634 |6G46 |
total order | 02 12]0° | 0° | 22 | 1¢ | 2¢| 32|42 [12 | 7 | 3°| 3k | 4°| 5¢

Figure 3. An example showing how the metalog determines the
total order of records across shards. Each metalog entry is a vector,
whose elements correspond to shards. In the figure, log records
between two red lines form a delta set, which is defined by two
consecutive vectors in the metalog (§ 4.3).

log. For simplicity, in this section, the term log always refers
to physical logs.

Records in a Boki log are sharded, and each shard is repli-
cated on ng,e, storage nodes. Within a Boki log, each function
node controls a shard. For a function node, its LogBook engine
maintains a counter for numbering records from its own shard.
On receiving a LogAppend call, the LogBook engine assigns
the counter’s current value as the local_id of the new record.

The LogBook engine replicates a new record to all storage
nodes backing its shard (@ in Figure 2). Storage nodes then
need to update the sequencers with the information of what
records they have stored. The monotonic nature of local_id
enables a compact progress vector, v. Suppose the log has
M shards. We use a vector v of length M to represent a set
of log records. The set consists of, for all shards j, records
with local_id <v/.If shard j is not assigned to this node, we
set the j-th element of its progress vector as co. Every stor-
age node maintains their progress vectors, and periodically
communicates them to the primary sequencer (@) in Figure 2).

By taking the element-wise minimum of progress vectors
from all storage nodes, the primary sequencer computes the
global progress vector. Based on the definition of progress
vectors, we can see the global progress vector represents the
set of log records that are fully replicated. Finally, the primary
sequencer periodically appends the latest global progress vec-
tor to the metalog (3 in Figure 2), which effectively orders
log records across shards.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

logReadNext (book_id = 3, min_seqnum = 8, tag=2) Storage nodes
i

1
’ :
mogBook engine | | | Record store | !

1
i 1
Log index @ @/‘\ : :
(book_id, tag) | seqnums Record ! Record store | |
...... L] cache ! H
1
3.2) 8.6.7,910 1 |—@ i !
I ——

Figure 4. Workflow of LogBook reads (§ 4.4): D Locate a LogBook
engine stores the index for the physical log backing book_id = 3;
@ Query the index row (book_id,tag) =(3,2) to find the metadata
of the result record (seqnum =9 in this case); 3 Check if the record
is cached; @ If not cached, read it from storage nodes.

We now explain how the total order is determined by the
metalog. Consider a newly appended global progress vector,
denoted by v;. By comparing it with the previous vector in
the metalog (denoted by v;_1), we can define the delta set
of log records between these two vectors: for all shards j,
records satisfying v]_, < local_id < vlj . This delta set exactly
covers log records that are added to the total order by the
new metalog entry v;. Records within a delta set are ordered
by (shard, local_id). Figure 3 shows an example of metalog
and its corresponding total order. In this figure, between two
consecutive red lines is a delta set.

The LogBook engine initiating the append operation learns
about its completion by its subscription to the metalog (@
in Figure 2). The metalog allows the LogBook engine to com-
pute the final position of the new record in the log, used to
construct the sequence number returned by logAppend.

4.4 From Physical Logs to LogBooks

Building indices for LogBooks. Boki virtualizes LogBooks
by multiplexing them on physical logs, which creates a prob-
lem for efficient reads — avoiding consulting every log shard.
Previous systems [55] have used fixed sharding, where a Log-
Book maps to some fixed shard, so that a single storage node
has all of its records. But then a single storage node becomes
the bottleneck for a LogBook’s write throughput. For per-
formance and operational advantages, Boki does not place
records from a LogBook using a fixed policy. Boki will store
LogBook records in any shard and it builds a log index for
locating records when reading LogBooks.

Boki’slog index is compact, only including necessary meta-
data of log records, so that a single machine can store the
entire index. Log indices are stored and maintained by Log-
Book engines, leading to locality benefits because LogBook
engines reside on function nodes. Every physical log has mul-
tiple copies of the log index maintained by different LogBook
engines, for higher read throughput and better read locality.

The structure of the log index is designed to fit the semantic
of LogBook read APIs. First, the log index groups records by
their book_id, because aread can only target a single LogBook.
The API semantics for LogReadNext and logReadPrev (see

696

Zhipeng Jia and Emmett Witchel

metalog o [B) [©
positions | % | | Y | the log >

o indices make progress
log indices @ @ independently

i Consistency checks i Updating metalog positions !

' '
 [FraJ[Preas (B | | [Prencs [D) = [P
1 1 1
i i P)appends I:>P> i
1 1 1

Figure 5. Consistency checks by comparing metalog positions
(§ 4.4). For a function, if reading from a log index whose progress
is behind its metalog position, it could see staled states. For example,
function h have already seen record X, so that it cannot perform
future log reads through index A.

Figure 1) allow selective reads by log tags (tags are specified by
users in LogAppend). Both APIs seek for records sequentially
by providing bounds for seqnums, e.g., LogReadNext finds
the first record whose seqnum > min_seqnum. Putting them
together, Boki’s log index groups records by (book_id,tag).
For each (book_id,tag), it builds an index row as an array of
records, sorted by their seqnums. Figure 4 depicts the work-
flow of LogBook reads using the index.

Read consistency. The consistency of Boki’s log reads are
determined by the log index. The log index is used to find the
seqnum of the result record. The seqnum uniquely identifies
alog record, while both data and metadata (i.e., tags) of a log
record are immutable after they are appended.

The challenge of enforcing read consistency comes from
multiple copies of the log index, which are maintained by
different LogBook engines. Keeping these copies consistent
makes the system vulnerable to “slowdown cascades” [19, 44],
i.e., the slowdown of a single node can prevent the whole
system from making progress.

Boki uses observable consistency [28,44], where consistency
checks are delayed to the time of data reads. The metalog po-
sition defines the version of the log index a function reads.
A log index whose version is determined by metalog posi-
tion [means the log index includes all records ordered by the
[-prefix of the metalog.

When a user function reads aLogBook at an index with met-
alog position /, it can never read an index at </, because that
would violate monotonic reads. Similarly, if a function appends
alog record that is ordered by the I-th metalog entry, subse-
quent reads from the same function cannot be served by an
index whose position < or read-your-writes could be violated.

Therefore, Boki maintains a metalog position for each func-
tion and that position provides consistent LogBook reads.
LogBook engines subscribe to the metalog to periodically
update their indices. Consistency checks are performed by
comparing a function’s metalog position with the index ver-
sion. Figure 5 depicts the mechanism. If a consistency check
fails, the read is suspended by the engine until its index has

Boki: Stateful Serverless Computing with Shared Logs

caught up. Successful reads and appends from a function up-
date the function’s metalog position, ensuring the consistency
of future reads. A child function inherits the metalog position
from its parent function, so that consistency guarantees hold
across function boundaries.

Trim operations. Because the log index plays an important
role in read consistency, trimming records in log indices ef-
fectively makes trim operations observable. Storage space
for trimmed records can be reclaimed independently in the
background by storage nodes. Therefore, Boki implements
logTrim API calls by simply appending a trim command to
the metalog. For a trim command in the metalog, the LogBook
engines executes it by trimming related index rows in their
log indices, while storage nodes gradually reclaim space for
trimmed records.

Auxiliary data. Described in the LogBook API (§ 3), the
auxiliary data of log records have relaxed requirements of
durability and consistency. This allows a very simple store of
auxiliary data that reuses the record cache within LogBook en-
gines. The relaxed consistency of auxiliary data does not even
require Boki to exchange them between nodes. Therefore, for
logSetAuxData calls, Boki simply caches the provided auxil-
iary data on the same function node. To serve reads from the
user function Boki checks if there is auxiliary data in the local
cache. If found, it is returned along with the result record.

4.5 Reconfiguration Protocol

Boki’s controller can initiate a reconfiguration if node failures
(including failures of primary sequencers) are detected or
when instructed by a system administrator.

The main part of Boki’s reconfiguration protocol is to seal
all current metalogs. A sealed metalog cannot have any more
entries appended, so the corresponding physical log is sealed
as well. Boki employs Delos [22]’s log sealing protocol, that is
surprisingly simple but fault-tolerant. To seal a metalog, the
controller sends the seal command to all relevant sequencers.
On receiving the seal command, the primary sequencer stops
issuing new metalog entries, while secondary sequencers
commit to reject future metalog entries from the primary
sequencer. The sealing is completed when a quorum of se-
quencers have acknowledged the seal command (see the Delos
paper [22] for details).

After all metalogs are successfully sealed, Boki can install
anew configuration to start the next term. In the new term,
all physical logs start with new, empty metalogs. To ensure
read consistency across terms, we include the term_id in the
consistency check, which is compared before metalog posi-
tions. If the number of physical logs changes, the consistent
hashing parameters are updated accordingly.

To tolerate failures of the controller, Boki runs a group of
controller processes. The reconfiguration protocol is executed
by aleader, elected via ZooKeeper.

697

SOSP 21, October 26-29, 2021, Virtual Event, Germany

5 BokiSupport Libraries

In this section, we present Boki support libraries, designed
for three different stateful FaaS paradigms that benefit from
the LogBook AP fault-tolerant workflows (§ 5.1), durable
object storage (§ 5.2), and queues for message passing (§ 5.3).

5.1 BokiFlow: Fault-Tolerant Workflows

We build a support library called BokiFlow for fault-tolerant
workflows. BokiFlow adapts Beldi [56]’s techniques to ensure
exactly-once semantics and support transactions for server-
less workflows.

In a Beldi workflow, every operation that has externally
visible effects (e.g., a database write) is logged with mono-
tonically increasing step numbers. When a workflow fails,
Beldi re-executes it using the workflow log. To ensure the
exactly-once semantic, Beldi recovers the internal state of the
failed workflow step-by-step, while skipping operations with
externally visible effects. Beldi builds a logging abstraction
on top of DynamoDB, a cloud database from AWS. Beldi ap-
plications store user data in the same DynamoDB database
with workflow logs.

BokiFlow implements Beldi’s techniques by using Log-
Books as the logging layer, i.e., logging every workflow step
in a LogBook. Similar to Beldi, BokiFlow applications store
user data in DynamoDB, so that BokiFlow provides the same
user-facing APIs as Beldi. There are three ways BokiFlow
distinguishes itself from Beldi.

Atomic “test-and-append”. Beldi requires an atomic op-
eration to check if the current step is previously logged and it
logs the step only if the check fails. Beldi relies on conditional
updates provided by a cloud database for this operation. Un-
fortunately, the LogBook API does not support conditional
log appends. Shown in Figure 6 (a), BokiFlow uses a different
mechanism based on log tags provided by LogBooks. The
pseudocode shows how BokiFlow uses log tags to distinguish
the log records of workflow steps. BokiFlow always reads
log records immediately after appends, and only honors the
first record of a step. This allows BokiFlow to recognize com-
pleted steps during workflow re-execution, by checking if the
appended record is the first one.

Idempotent database update. For a workflow step that
updates the database, Beldi requires the database update and
logging of this step to be a single atomic operation. Because
Beldi stores its logs along with user data in the same data-
base, it can use the atomic scope provided by the database
(e.g., a row in DynamoDB) for this requirement. However,
BokiFlow’s LogBook is not in the same atomic scope as user
data, so no mechanism exists to update both in a single atomic
operation. Instead, BokiFlow makes data updates idempotent.
Pseudocode in Figure 6 (a) demonstrates the approach, where
the rawDBWrite statement uses the sequence number of the

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Zhipeng Jia and Emmett Witchel

def write(table, key, val):
tag = hashLogTag([ID, STEP])
logAppend(tags: [tagl, data: [table, key, vall)

tail = None

update: "Value={val}; Version={rec.seqnum}") return tail

STEP = STEP + 1

STEP = STEP + 1
return rec.data["retval"]

def checkLockState(key):

for rec in logIterRecords(tag: key):

rec = logReadNext(tag: tag, minSeqnum: 0) if tail = None || # Suppose object x is
rawDBWrite(table, key, rec.data["prev"] = tail.segnum: # {"a":{}, "b":"foo"}
cond: "Version < {rec.seqnum}", tail = rec !

def trylLock(key, holderId): X.MakeArray(*a.d")
def invoke(callee, input): rec = checkLockState(key) x.PushArray(“a.d", 1)

tagPre = hashLogTag([1ID, STEP, "pre"]) if rec.data["holder"] = EMPTY: #x = {"a":{"c":"bar", "d":[11}
logAppend(tags: [tagPrel, logAppend(tags: [keyl, data: { # "b":"foo0"}

data: { "calleeId": UUID() }) "holder": holderId, "prev": rec.seqnum})
rec = logReadNext(tag: tagPre, minSeqnum: 0) rec = checkLockState(key) txn = createTransaction(readonly: False)
calleeld = rec.data["calleeId"] if rec.data["holder"] = holderId: alice = txn.GetObject("alice")
retVal = rawInvoke(callee, [calleeld, input]) # Lock succeeded bob = txn.GetObject("bob")
tagPost = hashLogTag([ID, STEP, "post"]) return rec # rec is used for unlock if alice.Get("balance") > 10:
logAppend(tags: [tagPost], return None # Lock failed alice.Inc("balance”, -10)

data: { "retval": retvVal }) bob.Inc("balance”, 10)
rec = logReadNext(tag: tagPost, minSeqnum: 0) def unlock(key, lockRec):

logAppend(tags: [key], data: {
"holder": EMPTY, "prev":

Get the object with name "x"
x = getObject("x")

print(x.Get("b")) # = "foo"
x.Set("a.c", "bar")
x = {"a":{"c":"bar"},"b": "foo"}

txn.Commit()

lockRec.seqnum})

(a) BokiFlow’s write and invoke functions

(b) BokiFlow’s lock

(c) Demonstration of BokiStore API

Figure 6. Pseudocode demonstrating Boki support libraries (§ 5). In BokiFlow pseudocode, hashLogTag computes a hashing-based log tag
for the provided tuple. logIterRecords iterates over log records having the provided tag in the increasing order of their sequence numbers.

step log as the “version” of the database update. During work-
flow re-execution, re-executing this database update will fail
the update condition.

Locks. Beldi provides locks for mutual exclusion; locks also
serve as building blocks for Beldi’s transactions. Implement-
ing locks requires an atomic “test-and-set” operation, where
Beldi uses conditional updates provided by the database. Bok-
iFlow implements locks as registers backed by replicated state
machines using the LogBook API. For a BokiFlow lock, its reg-
ister stores the lock holder (unique identifiers such as UUID),
or a special EMPTY value. The most natural way to “test” a lock
is to execute a predicate on the current state machine. The
most natural “set” is to append an update. When we try to
combine these operations into a “test-and-set”, the LogBook
API cannot linearize the result because other BokiFlow clients
may also append updates to the same state machine. Boki-
Flow’s solution is to include the log position of the current
state machine in the log record of the proposed update. On
log replay, only choose the first of any updates that were con-
currently proposed. In this way, the total order provided by
the LogBook API becomes a mechanism for linearizability.

Pseudocode in Figure 6 (b) demonstrates BokiFlow locks.
The lock uses the prev field to store the log position, as shown
in Figure 7. The “prev” pointers form a linearizable chain of
state machine updates. This technique provides a general
approach for building linearizable replicated state machines
with the LogBook APL

5.2 BokiStore: Durable Object Storage

The second support library we built is BokiStore, providing
durable object storage for stateful functions. BokiStore em-
ploys Tango’s [24] techniques for building replicated data

698

seqnum 0 1 2 3 4 5 6 7 8 9 10 11
holder |E|a|b|E|c|d|e|E|f|g|E|h

prev oOjo|1|0|3|3|585|7|7]|8]|7

the linearizable chain
Figure 7. An example log behind a BokiFlow lock. Holders {a,d,f}

acquire the lock. prev pointers form an implicit linearizable chain,
which alternates successful acquire and release attempts.

structures over a shared log. BokiStore’s objects are repre-
sented as JSON objects. Objects are identified by unique string
names. Figure 6 (c) shows the BokiStore APIs for reading and
modifying fields of JSON objects. BokiStore stores all object
updates within a LogBook. Reading object fields requires re-
playing the log to re-constructs the object’s state. Log records
containing object updates are tagged with object names, so
that objects can be re-constructed by only reading relevant
records.

Transactions. BokiStore supports transactions for reading
and modifying multiple objects. BokiStore’s log-based trans-
action protocol largely follows Tango. To start a transaction,
BokiStore first appends a txn_start record with its txn_id. For
all subsequent object reads within the transaction, BokiStore
only replays the log up to the position of its txn_start record.
This essentially takes a snapshot of the entire object storage
at the txn_start position, which achieves snapshot isolation.
When committing the transaction, BokiStore appends a
txn_commit record, including its txn_id and all object writes
made within the transaction. The txn_commit record is specu-
lative - by itself, it does not indicate the success of this trans-
action. The commit outcome of a transaction is determined by
replaying the log up to its txn_commit record. A transaction
succeeds in committing if and only if there is no conflicting

Boki: Stateful Serverless Computing with Shared Logs

lo TxnA | normal [TxnB | TxnA | TxnC | TxnB TxnC
€ | start | write start | commit | start | commit | commit
write set {Z} X, Y} v,z {X,Z}

Figure 8. Transactions in BokiStore (§ 5.2). TxnB fails due to conflict
with TxnA. For TxnC, despite its write set overlaps with TxnB’s,
TxnC still succeeds due to the failure of TxnB.

write made between its txn_start and txn_commit records (i.e.,
within the conflict window). Figure 8 depicts a transaction log.
In this example, TxnBis a failed transaction and it is ignored
when determining the commit outcome of TxnC.

Read-only transactions in BokiStore are simpler. They do
not need txn_start and txn_commit records, because there is
no need for conflict detection. To achieve isolation, BokiStore
simply caches the tail position of the current log when start-
ing the transaction, and only replays records until the cached
position to serve following object reads.

5.3 BokiQueue: Message Queues

Queues are the most common data structure for message pass-
ing. The final support library we build is BokiQueue which
provides serverless queues. BokiQueue provides a push and
pop API for sending and receiving messages. Like BokiStore,
BokiQueue uses the log to store all writes, i.e., push and pop
operations. The outcome of a pop is determined by replaying
the log. To improve the scalability of BokiQueue, we uses
vCorfu [55]’s composable state machine replication (CSMR)
technique, that divides a single queue into multiple SMR-
backed queue shards. Each queue shard is consumed by a
single consumer, which reduces contention. A queue pro-
ducer can choose an arbitrary queue shard to push. In our
implementation, we simply use round-robin.

5.4 Optimizing Log Replay with Auxiliary Data
Reads in BokiStore are served by replaying the log to re-
constructs object state. This naive approach makes read la-
tency proportional to the number of relevant log records, i.e.,
the number of object writes. Tango optimizes log replay by
caching local object views, such that only new records from
the shared log are replayed. However, in the FaaS setting,
in-memory state is not guaranteed to be preserved between
invocations, so a simple memory cache for objects is not a
viable solution.

Boki’s auxiliary data (§ 3) is motivated by the need to pro-
vide per-log-record cache storage. In BokiStore, for every
object write that generates a log record, the auxiliary data of
the record stores a snapshot view of the object. When reading
an object, BokiStore seeks from the log tail to find the first
relevant record having a cached object view in its auxiliary
data. Then BokiStore replays the log from this position to
re-construct the target object state. During replay, for records
missing cached object views, their auxiliary data are filled

699

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

j«———— (D Read backward until
| | | | | cached view exists

og [[[[[]]
auxiliary > @Replay thel d
|:| |:| D: fill miesr;i;}; caih(;&d ?frilews

data
Figure 9. Use auxiliary data to cache object views in BokiStore,
which can avoid a full log replay (§ 5.4).

with object views. Figure 9 demonstrates this accelerated
replay process.

One important special case for accelerating log replay is
commit records. For txn_commit records, their auxiliary data
stores the decided commit outcome and if the commit suc-
ceeds, the auxiliary data also caches a view of modified objects.

In BokiFlow’s log-based locks (shown in Figure 6 (b)), aux-
iliary data of a record is used for caching the current tail of the
linearizable chain. This allows the checkLockState function
to optimize its log replay as illustrated in Figure 9.

5.5 Garbage Collector Functions

The FaaS paradigm simplifies garbage collection in shared-
log-based storage systems. Boki support libraries use garbage
collector functions to trim useless log records, in order to
prevent unlimited growth of LogBooks. These functions are
periodically invoked and they reclaim space via LogBook’s
logTrim API (Figure 1).

In BokiFlow, garbage collector functions trim log records
produced by completed workflows. In BokiStore, log records
from deleted objects are trimmed. In BokiQueue, log records
related to popped queue elements are trimmed.

6 Implementation

The Boki prototype is based on Nightcore [16], where we add
9,726 lines of code, mostly in C++. Boki’s support libraries are
implemented in Go, consisting of 2,776 lines of code. One of
the support libraries, BokiFlow, derives from the Beldi code-
base [11]. The LogBook API makes Beldi’s techniques easier
to implement, so that BokiFlow shrinks the Beldi library from
1,823 lines to 1,137 lines, or a 38% reduction.

Boki’s storage nodes use RocksDB [12] for storing log
records. LogBook engines use Tkrzw [14]’s LRU cache DBM
for caching records. LogBook engines store and maintain log
indices in DRAM, while future implementation can choose to
use on-disk data structures (e.g., B-trees) if DRAM is scarce. In
the current prototype, metalogs are replicated in the DRAM
of sequencer nodes. This is viable in our failure assumption
that requires a quorum of sequencers for a metalog to always
be alive.

Bokiuses 64-bitintegers as the tag type for LogBook records.
In Boki support libraries, when we need other types (e.g.,
strings) as the log tag, we use their hash value for the log
tags and store the string in record data. Boki employs Dy-
namo [29]’s variant of consistent hashing (strategy 3 in their
paper) for mappings between LogBooks and physical logs.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

7 Evaluation

In this section, we first evaluate Boki with microbenchmarks
to explore its performance characteristics (§ 7.1). We then eval-
uate Boki’s support libraries using realistic workloads (§ 7.2,
§ 7.3, and § 7.4). Finally, we analyze how Boki’s techniques
benefit its use cases (§ 7.5).

Experimental setup. We conduct all our experiments on
Amazon EC2 instances in the us-east-2 region. Boki’s func-
tion, storage, and sequencer nodes use c5d.2xlarge instances,
each of which has 8 vCPUs, 16GiB of DRAM, and 1x200GiB
NVMe SSD. Boki’s gateway and control plane use c5d.4xlarge
instances. Experimental VMs run Ubuntu 20.04 with Linux
kernel 5.10.17, with hyper-threading enabled. We measure
that the round trip time between VMs is 107us +15us, and
the network bandwidth is 9,681 Mbps.

Unless otherwise noted, the following Boki settings are
fixed in our experiments: (1) the ZooKeeper cluster in the
control plane has 3 nodes; (2) the replication factors of both
physicallogs (n4ata) and metalogs (nmeta) equal 3; (3) one single
physical log configured for all LogBooks; (4) for each physical
log, there are 4 LogBook engines that store its index (though
functions can read their LogBooks via remote engines); (5) the
record cache per LogBook engine is 1GB (for both record data
and auxiliary data §3).

7.1 Microbenchmarks

We sstart the evaluation of Boki using microbenchmarks, where
we answer the following questions.

o What is the append throughput of a single LogBook? We
use an append-only workload to measure the throughput, and
how the throughput scales with more resources. In this work-
load, each function is a loop of appending 1KB log records.
Results are shown in Table 2a. From the table, we see that
when Boki is configured with 64 nodes, the append through-
put scales to 1.2M Ops/s under 2,560 concurrent appending

Table 2. Boki’s throughput in append-only microbenchmark (§ 7.1).

Concurrent functions / Storage (S) nodes

320/4S 640/8S 1280/16S 2560/32S
Nmeta =93 130.8 279.2 604.4 1157.8
Nmeta =5 142.3 282.8 583.2 1147.9

(a) Append throughput (in KOp/s) of a single LogBook, where nmeta denotes
the replication factor of Boki’s metalog. Boki can scale append throughput
of a totally ordered log to 1.2M Ops/s.

1PhyLog 2PhyLogs 4PhyLogs
100 LogBooks 120.5 226.3 458.2
100K LogBooks 122.3 225.6 446.9

(b) Aggregate throughput (in KOp/s) when using multiple physical logs
(PhyLogs) to virtualize LogBooks. Boki scales with more physical logs, and
can efficiently virtualize 100K LogBooks.

700

Zhipeng Jia and Emmett Witchel

Table 3. Boki’s read latencies under different scenarios (§ 7.1).

Local LogBook (LB) engine Remote
cache hit cache miss LB engine
median 0.12ms 0.57ms 0.79ms
99% tail 0.72ms 1.48ms 2.90ms

Metalog backed by 3 sequencers (Npets = 3)

99% tail

Latency (ms)
-
A

-03s -02s -0.1s 0.0s 0.1ls 02s 03s 0.4s

Metalog backed by 5 sequencers (Nmeta =5)

99% tail

—— median

Latency (ms)
=
2

100 2
-03s

-0.2s -0.1s 0.0s 0.1ls 03s 0.4s

Figure 10. Log append latencies during reconfiguration. The x-axis
shows the timeline (in seconds). The reconfiguration starts at t=0.

functions. At this point, the median latency is 2.03ms, and
the p99 tail latency is 6.42ms. We also increase the replication
factor of metalogs (nmeta) to 5, that provides higher durability
for a metalog but potentially affects the metalog’s append la-
tency. However, it demonstrates similar LogBook throughput
and scalability as nyer, =3.

o Can Boki efficiently virtualize LogBooks? We use the same
append-only workload, but log appends are uniformly dis-
tributed over many LogBooks. We use 1, 2, and 4 physical
logs to virtualize 100 and 100K LogBooks. Boki is configured
with 4 function and 4 storage nodes when using one physical
log, and resources are added linearly with more physical logs.
Table 2b shows the results. From the table, we can see Boki
is capable of virtualizing LogBooks with high density.

e How fast can Boki functions read LogBook records? We
use an append-and-read workload to measure read latencies,
where each function loops a procedure that first appends alog
record, then reads the appended record 4 times. We configure
Boki with 8 function and 8 storage nodes. Table 3 shows the
results. For remote engine case, we enforce Boki to use remote
LogBook engines for log reads. Cache hits take 121us and
never leave the local LogBook engine, retrieving the result
from the record cache (§ 4.4).

o Whatistheimpact of reconfiguration? We use the append-
only workload to evaluate the impact of reconfiguration. In
the experiment, Boki is reconfigured to a new set of sequencer
nodes. New sequencer nodes are provisioned before the recon-
figuration, to factor out provisioning delays from the exper-
iment. Figure 10 shows the results. We see that Boki recovers
to normal append latency after reconfiguration within 100ms.
The actual reconfiguration protocol, executed by the con-
troller, takes 15.7ms and 18.1ms, in experiments of nyeta =3
and npye, =95, respectively.

Boki: Stateful Serverless Computing with Shared Logs

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

=»=- Unsafe baseline —Ak- Beldi -®- BokiFlow =»=- Unsafe baseline —Ak- Beldi -®- BokiFlow
@ 5
E P20 I D WS Sy A £ 102 40
> 105 g * oy 10 SRRy TEETE Sl Sl § [Z<4 Unsafe baseline
3 _ !
S q S 2 30 Beldi

B e LT SECh TEbh il Sbeiely 4
g * s * £ O-———@- == === Q=== —Q@-=—=@--——0 £ = BokiFlow
o 10" fspmmm e e e —— =X L e e et s > 20
5

50 100 150 200 250 300 350 400 100 200 300 400 500 600 700 © 104 a
: g @
Eip - g -2 o L% & ‘ Ras
> 1. By PP) G S 1‘,__——Ar’ Read Write CondWrite Invoke
S 1024 & e _oX 510-
5 oo EEEY S Sobh Sohl tad & | TEEE DEL L L oLEEE L Ll Db SEEEE] () Microbenchmarks of Beldi primitive
° 10! =% 10! 4
R 10 BN operations. Main bars show median latencies,
L o

100 150 200 250 300 350 400 100 200
Throughput (requests per second)

(a) Movie review workload.

50

300

400 500 600 700 yyhile error bars show 99% latencies.

Throughput (requests per second)
(b) Travel reservation workload.

Figure 11. Comparison of BokiFlow with Beldi [56]. BokiFlow takes advantage of the LogBook API “Unsafe baseline” refers to running
workflows without Beldi’s techniques, where it cannot guarantee exactly-once semantics or support transactions (§ 7.2).

7.2 BokiFlow: Fault-Tolerant Workflows

We evaluate BokiFlow by comparing it with Beldi [56]. We use
Beldi’s workflow workloads, which model movie reviews and
travel reservations. Both of them are adapted from DeathStar-
Bench [8, 33] microservices. For a fair comparison, we port
Beldi and its workloads to Nightcore, the underlying FaaS
runtime of Boki. Both BokiFlow and Beldi store user data in
DynamoDB [1]. BokiFlow stores workflow logs in a LogBook,
while Beldi uses its linked DAAL technique to store logs in
DynamoDB. For both systems, they are configured with 8
function nodes and Boki is configured with 3 storage nodes.
Figure 11 shows the results. In both workloads, BokiFlow
achieves much lower latencies than Beldi for all throughput
values. In the movie workload, when running at 200 requests
per second (RPS), BokiFlow’s median latency is 26ms, 4.7
lower than Beldi (121ms). In the travel workload, BokiFlow’s
median latency is 18ms at 500 RPS, 4.3 lower than Beldi
(78ms). In this experiment, we also run a baseline without
Beldi’s techniques, where it cannot guarantee exactly-once
semantics or support transactions for workflows. When com-
paring BokiFlow with this baseline, we see that exactly-once
semantics and transactions increase median latency by 3.0x
in the movie workload, and by 1.8X in the travel workload.
We then run the microbenchmark that evaluates Beldi’s
primitive operations (Figure 13 in the Beldi paper [56]). Re-
sults are shown in Figure 11c. The Invoke operation shows
the largest differences among the three implementations and
Invoke operations are very frequent in microservice-based
workflows. In the baseline without workflow logs, the Invoke
operation is very fast (well below 1ms). The underlying FaaS
runtime, Nightcore, is heavily optimized to reduce invocation
latencies. In BokiFlow, the Invoke operation needs needs 5 Log-
Book appends, thus it has a median latency of 3.8ms. 2 of the
5 log appends are demonstrated in Figure 6 (a) and the other 3
appends are made within the child function. For comparison,
Invoke operation in Beldialso need 5 log appends, but has a me-
dian latency of 19ms, because of multiple DynamoDB updates
for each log append. These results justify the value of shared

701

N
o

1.25x

v

1.18x KX MongoDB

[ZZ1 BokiStore

1.19x

=
o

1.21x

T-put (KOp/s)

o wu

64 clients 96 cllients 128 cllients 192 c\ients

(a) Throughput of BokiStore compared with MongoDB.

50% latency 99% latency
Request types Mongo Boki | Mongo Boki
UserLogin (non-txn read) 0.86 147 3.32 6.32
UserProfile (non-txn read) 0.86 1.05 3.57 5.29
GetTimeline (read-only txn) 7.57 3.35 2501 11.38
NewTweet (read-write txn) 7.72 5.30 21.39 15.33

(b) Latencies (in ms) under 192 clients. Although non-transactional reads
in BokiStore are slower than MongoDB, transactions in BokiStore are up
to 2.3x faster. Best performing result is in bold.

Figure 12. Evaluating BokiStore on Retwis workload (§ 7.3).

logs for the serverless environment, where building logging
layers using a cloud database is difficult to make performant.

7.3 BokiStore: Durable Object Storage

Retwis workload. To evaluate BokiStore, we build a trans-

action workload inspired by Retwis, a simplified Twitter clone [15].

The Retwis workload has been used as a transaction bench-
mark in previous work [57, 58]. We re-implement the Retwis
workload in Go, requiring 1,458 lines of code. Our imple-
mentation uses BokiStore objects to store users, tweets, and
timelines. For comparison, we also implement a version that
uses MongoDB [13] to store objects, because MongoDB also
employs a JSON-derived data model.

The evaluation workload first initializes 10,000 users, and
then runs a mixture of four functions: UserLogin (15%), User-
Profile (30%), GetTimeline (50%), and NewTweet (5%). User-
Login are UserProfile are normal single object reads. Get-
Timeline is a read-only transaction that reads the timeline
and multiple tweets. NewTweet is a transaction that writes
multiple user, tweet, and timeline objects.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

In the experiment, we configure Boki with 8 function nodes
and 3 storage nodes. MongoDB is configured with 3 replicas.
For BokiStore, we configure LogBook engines on all 8 func-
tion nodes to have log index for the target LogBook, which
achieves best data locality. We analyze the performance im-
pact of using remote LogBook enginesin § 7.5.

Figure 12 shows the results. From the figure, we see Boki-
Store achieves 1.18-1.25X higher throughput than MongoDB.
When breaking down latency details by request types, we
see BokiStore has considerable advantages over MongoDB in
transactions (up to 2.3X faster). On the other hand, BokiStore
is slower than MongoDB for non-transactional reads. This is
caused by the log-structure nature of BokiStore, where log
replay incurs overheads for data reads.

Comparison with Cloudburst. Cloudburst [52] is a re-
cently proposed stateful FaaS runtime, which exports a put/get
interface (i.e., key-value store) for functions to store state.
BokiStore can also be used as a key-value store, by using
keys as object names and storing values in the correspond-
ing BokiStore object. However, BokiStore provides stronger
consistency guarantees (sequential) than Cloudburst (causal).
BokiStore also supports transactions reading and modifying
multiple keys, which are not supported by Cloudburst.

We use a microbenchmark to compare Cloudburst’s perfor-
mance with BokiStore. Both systems use 8 storage nodes and
8 function nodes in the experiment. Figure 13 shows the result.
BokiStore can achieve up to 2.01x higher throughput than
Cloudburst on get operations. For put operations, BokiStore
achieves 1.23x higher throughput when the concurrency is
high. BokiStore provides higher throughput and lower me-
dian latency at 192 clients than Cloudburst, but it does have
higher tail latency.

7.4 BokiQueue: Message Queues

We evaluate BokiQueue by comparing it with Amazon Simple
Queue Service (SQS) [2] and Apache Pulsar [3]. Amazon SQS s

Get latencies Put latencies

4
w —»— Cloudburst ’/’X @ —»— Cloudburst x
£ , | =« BokiStore /"' =X £ 37 = BokiStore __.—_‘_':,x
) 324 - e
§ 1 § =" N
© [5} 14
- —
0 - T T 0 - T T
48 clients 96 clients 192 clients 48 clients 96 clients 192 clients
— Get throughput — Put throughput
g 300 & 1501
8‘ KA Cloudburst 2.01x 8‘ KX Cloudburst 1.23x
X 200 [Z2 BokiStore 1.54x X 00 [Z3 BokiStore
E 1.46x 51997 0.99x
a ; a
< 100 < 50 0.89x
= 3
2 2
< =
F =

48 clvients 96 cllients 192 cllients 48 cllients 96 clients 192 cllients

Figure 13. Comparison of BokiStore with Cloudburst [52]. We
measure the latencies and throughput for put and get operations,
using different numbers of concurrent clients. In the latency charts,
solid lines show median latencies, and dashed lines show 99% tail
latencies. BokiStore not only provides stronger consistency guaran-
tees, but also achieves higher performance than Cloudburst (§ 7.3).

702

Zhipeng Jia and Emmett Witchel

Table 4. Comparison of BokiQueue with Amazon SQS [2] and Pul-
sar [3]. Throughput is measured in 102 message/s. Delivery latency
is the duration that a message stays in the queue. Latencies are shown
in the form of “median (99% tail)”. Best performing result is in bold.

Producer/ Throughput Delivery latency (ms)
Consumer | SQS Pulsar Boki SQS Pulsar Boki
16P/64C | 225 505 5.06 | 6.27(52.5) 4.01(12.3) 2.98(9.17)
32P/128C | 4.03 9.67 9.92 | 6.01(51.3) 6.70(12.8) 3.28(12.7)
64P/256C | 7.62 14.1 15.0 | 6.08(56.5) 7.39(13.7) 3.70(14.7)
64P/16C | 234 871 8.90 | 33.9(228) 6.20(12.7) 6.40(27.3)
128P/32C | 535 146 15.6 | 53.9(370) 7.38(14.0) 7.45(32.8)
256P/64C | 9.77 19.1 20.9 | 99.8(764) 7.81(33.7) 6.61(37.9)
64P/64C | 637 100 10.3 | 7.22(76.0) 6.77(12.9) 3.37(14.2)
128P/128C | 10.1 17.8 20.5 | 7.24(79.6) 7.74(21.4) 4.37 (17.7)
256P/256C | 18.5 250 30.8 | 12.1(84.5) 8.21(39.5) 7.96(35.5)

a fully managed message queue service from AWS, while Pul-
sar is a popular open source distributed message queue. Simi-
lar to BokiQueue, both SQS and Pulsar use sharding to improve
the data throughput of their message queues. In the experi-
ment, we configure Boki with 8 function nodes and 3 storage
nodes. For Pulsar, we run its broker services on function nodes
for better locality, and use the 3 storage nodes for queue data.
We use a fixed number of producer and consumer functions
for the evaluation, where each producer keeps pushing 1KB
messages to the queue. We experiment with three ratios of
producers to consumers (P:C ratio), which are 1:4, 4:1, and 1:1.
In the evaluation, we measure the message throughput of the
queue, and the median and p99 latency of message deliveries.
Table 4 shows the results. When the P:C ratio is 1:4, the
queue is lightly loaded. We see both BokiQueue and Pulsar
achieve double the throughput of Amazon SQS. BokiQueue
achieves up to 2.0x lower latencies than Pulsar. When the P:C
ratio is 4:1, the queue is saturated. Amazon SQS suffers sig-
nificant queueing delays, limiting its throughput. BokiQueue
and Pulsar have very similar throughput, while BokiQueue
achieves 1.18x lower latency than Pulsar in the case of 256
producers. Finally, when the P:C ratio is 1:1, the queue is bal-
anced. BokiQueue consistently achieves higher throughput
and lower latency than both Amazon SQS and Pulsar.
Combining these three cases, BokiQueue achieves 1.66—
2.14X higher throughput than Amazon SQS, and up to 15%
lower latency. Compared with Pulsar, BokiQueue achieves
1.06—1.23% higher throughput, and up to 2.0 lower latency.

7.5 Analysis

The importance of auxiliary data. We describe in § 5.4 the
log replay optimization using LogBook’s auxiliary data. We
use Retwis workload to demonstrate its importance for Bok-
iStore. We run an experiment that disables this optimization.
Furthermore, to demonstrate the efficiency of Boki’s stor-
age mechanism for auxiliary data, we modify Boki to store
auxiliary data in a dedicated Redis instance.

Boki: Stateful Serverless Computing with Shared Logs SOSP 21, October 26-29, 2021, Virtual Event, Germany

Table 5. The importance of log replay optimization using auxiliary Table 7. LogBook engines maintain local cache for log records,
data (§ 7.5). The table shows Retwis throughput (in Op/s). and the cache size has performance impact for Boki’s applications
(§ 7.5). The table shows Retwis throughput (in Op/s).
Workload duration 1min 3min 10min 30min
Optimization disabled 1,565 939 _ _ LRU cache size ~ 16MB 32MB 64MB 1GB
AuxData w/ Redis 11,014 10,046 9,548 9,344 Auxiliary data only stored on function nodes
AuxData w/ Boki 11,388 11,078 10,923 10,891 Throughput 3,561 10,476 11,263 11,245
Auxiliary data also backed up on storage nodes
Table 6. Locality impact from LogBook engines (§ 7.5). The table Throughput 11,358 11,852 12,032 12,075
shows Retwis throughput (in Op/s), when adjusting the percentage
of reads processed by local LogBook engines. Table 8. Append throughput (in KOp/s) when log appends are
distributed over 128 LogBooks under a uniform or Zipf distribution.
Local reads 25% 50% 75% 100%
Throughput 8,548 9319 10262 11,078 Uniform Zipf (s=3) Zipf (s=5)
Normalized tput ~ 0.77x 0.84x 0.93x 1.00x Fixed sharding 2492.7 164.0 129.6

Logindex (Boki) 250.6 253.4 278.6

Table 5 shows the results. From the table, we see that the log
replay optimization is crucial for BokiStore to achieve an ac-
ceptable performance. The results also show the optimization
is robust even for long executions, where more object writes Concurrent functions / LogBook engines
are logged. Compared to the Redis-backed implementation, 100/SE 200/16E 300/24E 400/32E 600/4SE
Boki achieves 1.17X higher throughput. Boki’s approach is

. ; T-put (txn/s) 6,548 12,749 18,618 23,662 30,286
more efficient because it maintains data locality by reusing Normalized 1.00x 1.95x% 2.84x 361x 4.63x
the record cache within LogBook engines.

Table 9. Scaling read-only transactions with LogBook engines (§ 7.5).
The experiment runs Retwis workload under a fixed write rate.

Locality impact from LogBook engines. In the previous
evaluation of BokiStore, we configure Boki so all LogBook
reads are served by local LogBook engines. In a large-scale de-
ployment, having all LogBook engines maintain an index for a
particular physicallog is not viable. Boki relies on the function
scheduler to optimize for the locality of LogBook engines.
To experiment with the impact from using remote Log-
Book engines we limit the ratio of log reads that are locally
processed, with the remainder processed remotely. Table 6
shows the results. We see even under a poor locality of Log-
Book engines, the performance drop is moderate (e.g., 77% of

fixed sharding used in previous systems such as vCorfu [55].
We use the append-only microbenchmark to demonstrate the
advantage of Boki’s approach. For comparison, we modify
Boki to use a fixed sharding approach, where a hashing func-
tion maps each LogBook to a log shard. Results are shown
in Table 8. When log appends are uniformly distributed over
LogBooks, the two approaches show no difference. However,
when the distribution is skewed, fixed sharding suffers from
uneven loads between log shards, while Boki’s log index ap-
proach is unaffected.

maximum throughput at 25% local reads). Scaling LogBook engines. We then demonstrate the scala-

Read locality also comes from the record cache included in bility of LogBook engines, by running read-only transactions
LogBook engines. The cache stores both record data and aux- in the Retwis workload. The workload is a mixture of read-
iliary data for LogBook records. We experiment with different only transactions (GetTimeline) and read-write transactions
cache sizes to analyze its impact on BokiStore performance. (NewTweet). In the experiment, we add more function nodes
Results are shown in Table 7. We observe a sharp dorp in to scale LogBook engines, while always using 3 storage nodes.
throughput when the cache size is decreased to 16MB. The Every LogBook engine maintains a log index for the target
cause of this drop is insufficient cache storage for auxiliary LogBook. We fix the rate of NewTweet to 700 requests per
data. Auxiliary data is important for BokiStore performance, second. Results are shown in Table 9. The results demonstrate
and a small record cache decreases the effectiveness of the log Boki can scale from 8 LogBook engines to 48, thereby provid-
replay optimization. We modify Boki to backup auxiliary data ing 4.63% higher read throughput.

on storage nodes, so that under a cache miss, storage nodes
can also return auxiliary data. With this mechanism, small
cache sizes no longer cause a sharp dorp in performance.

Sensitivity study of reconfigurations. We finally study
how reconfiguration frequency affects Boki’s performance. In
the experiment, Boki is configured with a single physical log

Log index versus fixed sharding. In § 4.4, we motivate the using Nmeta = 3. To allow reconfigurations without frequently
log index design because it allows records from a LogBook to allocating new nodes, we provision redundant nodes for Boki.
be placed in arbitrary log shards. An alternative approach is In the experiment, 8 sequencer nodes are provisioned, while

703

SOSP 21, October 26-29, 2021, Virtual Event, Germany

- 154 WEm every 1 second
every 3 seconds
101 mmm every 10 seconds

Em every 30 seconds
B no reconfiguration

Latency (m

read (99%)

read (99.9%)

append (99%) append (99.9%)

Figure 14. Sensitivity study of LogBook latencies to reconfiguration
frequency (§ 7.5). Reconfigurations have little impact on log read
latencies, but can significantly affect tail latencies of log appends
when they are frequent. In all tested frequencies, throughput of log
reads and appends is not affected (same as “no reconfiguration”).
Data are collected over a 5-minute period.

only 3 of them are active at one time because nyet, =3. Recon-
figurations are manually triggered periodically with a fixed
frequency, from every 1 second to every 30 seconds. For each
reconfiguration, 3 sequencer nodes are randomly chosen to
store the metalog in the new term. We run a workload of log
appends and reads (check tail), where the ratio between ap-
pends and reads is 1:4. 320 concurrent functions are executed
over 8 function nodes. Results are shown in Figure 14. For
read operations, we see that even frequent reconfigurations
have little impact on their latencies. But for append opera-
tions, when reconfigurations become very frequent, their tail
latencies increase significantly.

8 Related Work

Stateful serverless computing. State managementremains
akey challenge in the current serverless environment [36, 48].
To meet the increasing demand for stateful serverless, there
are recent attempts from industry, e.g., Cloudflare’s Durable
Objects [17] and Azure’s Entity Functions [9]. These systems
are still in their early stages and have seen limited adoption.

There are also proposals from academia, e.g., Pocket [42],
Cloudburst [52], and Faasm [51]. These projects have differ-
ent focus, e.g., heterogeneous storage technology [42], light-
weight isolation [51], and auto-scaling [52]. These systems all
export put-get interfaces (i.e., a key-value store) for functions
to manage state. Boki is the first to study a different interface
for serverless state management, the shared log API. Boki’s
shared log approach is motivated by the fault-tolerance and
consistency challenges encountered by stateful serverless ap-
plications, which the put-get interface cannot easily address.

A recent article [48] argues future serverless abstractions
will be general-purpose, where cloud providers expose a few
basic building blocks, e.g., cloud functions (FaaS) for computa-
tion and serverless storage for state management. The shared
log and key-value store are both promising storage building
blocks, which can work together to enable new serverless
applications.

Distributed shared logs. Recent studies on distributed
shared logs [22-25, 30, 43, 55] heavily inspire the design of
Boki. A shared log is a powerful primitive for achieving strong

704

Zhipeng Jia and Emmett Witchel

data consistency in the presence of failures, because it can be
used for state machine replication (SMR) [49], the canonical
approach for building fault-tolerant services.

Boki leverages Scalog [30]’s high-throughput ordering pro-
tocol. Virtual consensus in Delos [22] inspires Boki’s design
of metalogs. Materialized streams in vCorfu [55] inspire the
design of log tags in the LogBook API, and LogBook’s virtual-
ization. However, Boki’s metalog design distinguishes it from
these prior works. The logical decoupling provided by the
metalog allows existing techniques to be adopted smoothly,
while enabling new techniques, e.g., the log index for read
efficiency. For applications, Tango [24]’s techniques enable
serverless durable objects [17] backed by shared logs.

Fault-tolerant workflows. Orchestrating serverless func-
tions as workflows is an important serverless paradigm, pro-
vided by all major cloud providers [5, 10, 18]. Workflows aim
at providing exactly-once execution semantics, but stateful
serverless functions (SSF) complicate this goal.

Beldi [56] proposes solutions for current serverless plat-
forms. Beldi’s mechanism is inspired by Olive [50]’s log-based
fault tolerance protocol. In a Beldi workflow, during execution
of SSF operations, the actions are logged. Beldi periodically
re-executes SSFs that encounter failures. The operation log
is used to prevent duplicated execution of operation, so that
at-most-once execution semantics are guaranteed. On the
other hand, re-execution for failed SSFs ensures at-least-once
execution semantics.

Beldi’slog-based fault-tolerant mechanism motivates Boki’s
shared log approach for stateful serverless computing. How-
ever, their techniques would need to be adapted for use with
shared logs (§ 5.1), mostly because the workflow log is not
co-located with user data in the same database.

9 Conclusion

State management has become a major challenge in serverless
computing. Boki is the first system that allows stateful server-
less functions to manage state using distributed shared logs.
Boki’s shared log abstraction (i.e., LogBooks) can support di-
verse serverless use cases, including fault-tolerant workflows,
durable object storage, and message queues. Boki’s shared
logs achieve elasticity, data locality, and resource efficiency,
enabled by a novel metalog design. The metalog is a unified
solution to the problems of log ordering, consistency, and fault
tolerance in Boki. Evaluations of Boki and its support libraries
demonstrate the performance advantages (up to 4.7x) of the
shared-log-based approach for serverless state management.

Acknowledgements. We thank our shepherd Jason Flinn
and the anonymous reviewers for their insightful feedback.
We also thank Cong Ding, Youer Pu, Zhiting Zhu, Yige Hu,
Cheng Tan, Vijay Chidambaram, and Mark Silberstein for
their valuable comments on the early draft of this work. This
work is supported in part by NSF grants CNS-2008321 and NSF
CNS-1900457, and the Texas Systems Research Consortium.

Boki: Stateful Serverless Computing with Shared Logs

References

(1]

(10]

(11]
(12]
(13]
(14]

(15]

(16]

(17]

(18]

(19]

[20

=

[21]

[22]

[n.d.]. Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web
Services. https://aws.amazon.com/dynamodb/ [Accessed Jan, 2021].
[n.d.]. Amazon SQS | Message Queuing Service | AWS.
https://aws.amazon.com/sqs/ [Accessed Apr, 2021].

[n.d.]. Apache Pulsar. https://pulsar.apache.org/ [Accessed Apr, 2021].
[n.d.]. AWS Lambda - Serverless Compute - Amazon Web Servicesy.
https://aws.amazon.com/lambda/ [Accessed Jan, 2021].

[n.d.]. AWS Step Functions. https://aws.amazon.com/step-functions/
[Accessed Jan, 2021].

[n.d.]. Azure Functions Serverless Compute | Microsoft Azure. https:
//azure.microsoft.com/en-us/services/functions/ [Accessed Jan, 2021].
[n.d.]. CorfuDB. https://github.com/corfudb [Accessed Apr, 2021].
[n.d.]. delimitrou/DeathStarBench: Open-source benchmark suite for
cloud microservices. https://github.com/delimitrou/DeathStarBench
[Accessed Jan, 2021].

[n.d.]. Durable entities - Azure Functions. https://docs.microsoft.com/
en-us/azure/azure-functions/durable/durable-functions-entities
[Accessed Jan, 2021].

[n.d.]. Durable Functions Overview - Azure | Microsoft Docs.
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
durable-functions-overview?tabs=csharp [Accessed Apr, 2021].
[n.d.]. eniac/Beldi. https://github.com/eniac/Beldi [Accessed Apr,
2021].

[n.d.]. RocksDB | A persistent key-value store | RocksDB.
https://rocksdb.org/ [Accessed Apr, 2021].

[n.d.]. The most popular database for modern apps | MongoDB.
https://www.mongodb.com/ [Accessed Apr, 2021].
[n.d]. Tkrzw: a set of implementations of DBM.
//dbmx.net/tkrzw/ [Accessed Apr, 2021].

[n.d.]. Tutorial: Design and implementation of a simple
Twitter clone using PHP and the Redis key-value store.
https://redis.io/topics/twitter-clone [Accessed Apr, 2021].

[n.d.]. ut-osa/nightcore: Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices.
https://github.com/ut-osa/nightcore [Accessed Apr, 2021].

[n.d.]. Workers Durable Objects Beta: A New Approach to Stateful
Serverless. https://blog.cloudflare.com/introducing-workers-durable-
objects/ [Accessed Jan, 2021].

[n.d.]. Workflows | Google Cloud. https://cloud.google.com/workflows
[Accessed Apr, 2021].

Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and
Kaushik Veeraraghavan. 2015. Challenges to Adopting Stronger
Consistency at Scale. In 15th Workshop on Hot Topics in Operat-
ing Systems (HotOS XV). USENIX Association, Kartause Ittingen,
Switzerland. https://www.usenix.org/conference/hotos15/workshop-
program/presentation/ajoux

Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Dis-
aggregation and the Application. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX Association.
https://www.usenix.org/conference/hotcloud20/presentation/angel
Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
2018. Sprocket: A Serverless Video Processing Framework. In
Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA,
USA) (SoCC ’18). Association for Computing Machinery, New York,
NY, USA, 263-274. https://doi.org/10.1145/3267809.3267815

Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi,
Ahmed Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar,
Rhed Shi, Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,
Ahmed Yossef, Francois Richard, and Yee Jiun Song. 2020. Virtual Con-
sensus in Delos. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 617-632. https:
//www.usenix.org/conference/osdi20/presentation/balakrishnan

https:

705

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted
Wobbler, Michael Wei, and John D. Davis. 2012. CORFU: A Shared
Log Design for Flash Clusters. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). USENIX Association, San
Jose, CA, 1-14. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/balakrishnan

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan
Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou,
and Aviad Zuck. 2013. Tango: Distributed Data Structures over a
Shared Log. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 325-340.
https://doi.org/10.1145/2517349.2522732

Mabhesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David
Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh
Ghosh, Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li,
Rounak Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed Yossef, Francois
Richard, and Yee Jiun Song. 2021. Log-structured Protocols in Delos.
In Proceedings of the 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP °21). Association for Computing
Machinery, New York, NY, USA.

Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman.
2015. Optimizing Optimistic Concurrency Control for Tree-Structured,
Log-Structured Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New
York, NY, USA, 1295-1309. https://doi.org/10.1145/2723372.2737788
Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang,
and Randy Katz. 2019. Cirrus: A Serverless Framework for End-
to-End ML Workflows. In Proceedings of the ACM Symposium
on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 13-24.
https://doi.org/10.1145/3357223.3362711

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017.
Seeing is Believing: A Client-Centric Specification of Database
Isolation. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (Washington, DC, USA) (PODC ’17). As-
sociation for Computing Machinery, New York, NY, USA, 73-82.
https://doi.org/10.1145/3087801.3087802

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (Stevenson,
Washington, USA) (SOSP °07). Association for Computing Machinery,
New York, NY, USA, 205-220. https://doi.org/10.1145/1294261.1294281
Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi,
and Robbert Van Renesse. 2020. Scalog: Seamless Reconfigura-
tion and Total Order in a Scalable Shared Log. In 17th USENLX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 20). USENIX Association, Santa Clara, CA, 325-338.
https://www.usenix.org/conference/nsdi20/presentation/ding

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENLX ATC 19). USENIX Association, Renton, WA, 475-488.
https://www.usenix.org/conference/atc19/presentation/fouladi
Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Va-
suki Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh
Sivaraman, George Porter, and Keith Winstein. 2017. Encoding,
Fast and Slow: Low-Latency Video Processing Using Thousands of
Tiny Threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association, Boston,

SOSP ’21, October 26-29, 2021, Virtual Event, Germany

(33

[34

(35

[36

(37

(38

(39

[40

(41

(42

[43

]

]

]

—

—

—

—

=

—

]

—

MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 3-18. https://doi.org/10.1145/3297858.3304013
Pedro Garcia-Lopez, Aleksander Slominski, Simon Shillaker, Michael
Behrendt, and Barnard Metzler. 2020. Serverless End Game: Disaggre-
gation enabling Transparency. arXiv preprint arXiv:2006.01251(2020).
S. Guo, R. Dhamankar, and L. Stewart. 2017. DistributedLog:
A High Performance Replicated Log Service. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). 1183-1194.
https://doi.org/10.1109/ICDE.2017.163

Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019.
Serverless Computing: One Step Forward, Two Steps Back. In CIDR 2019,
9th Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-Free Coordination for Internet-Scale
Systems. In Proceedings of the 2010 USENLX Conference on USENLX
Annual Technical Conference (Boston, MA) (USENIXATC’10). USENIX
Association, USA, 11.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable
Serverless Computing for Latency-Sensitive, Interactive Microservices.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS 2021). Association for Computing Machinery, New York,
NY, USA, 152-166. https://doi.org/10.1145/3445814.3446701

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. 2017. Occupy the Cloud: Distributed Computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,
California) (SoCC ’17). Association for Computing Machinery, New
York, NY, USA, 445-451. https://doi.org/10.1145/3127479.3128601
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing (El Paso, Texas, USA) (STOC ’97).
Association for Computing Machinery, New York, NY, USA, 654-663.
https://doi.org/10.1145/258533.258660

Martin Kleppmann and Jay Kreps. 2015. Kafka, Samza and the Unix
Philosophy of Distributed Data. IEEE Data Eng. Bull. 38, 4 (2015), 4-14.
http://sites.computer.org/debull/A15dec/p4.pdf

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,
Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic
Ephemeral Storage for Serverless Analytics. In 13th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). USENIX Association, Carlsbad, CA, 427-444.
https://www.usenix.org/conference/osdi18/presentation/klimovic
Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran,
Daniel J. Abadi, James Aspnes, Siddhartha Sen, and Mahesh Balakr-
ishnan. 2018. The FuzzyLog: A Partially Ordered Shared Log. In
13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 357-372.
https://www.usenix.org/conference/osdi18/presentation/lockerman

706

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Zhipeng Jia and Emmett Witchel

Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not
Causal! Scalable Causal Consistency with No Slowdown Cas-
cades. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA,
453-468. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/mehdi

Tulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. Thereis
More Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New
York, NY, USA, 358-372. https://doi.org/10.1145/2517349.2517350
Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). USENIX Association, Philadelphia,
PA, 305-319. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In
16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19). USENIX Association, Boston, MA, 193-206.
https://www.usenix.org/conference/nsdi19/presentation/pu

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What Serverless Computing
is and Should Become: The next Phase of Cloud Computing. Commun.
ACM 64,5 (April 2021), 76—84. https://doi.org/10.1145/3406011

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec.
1990), 299-319. https://doi.org/10.1145/98163.98167

Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen,
Parveen Patel, and Jinglei Ren. 2016. Realizing the Fault-Tolerance
Promise of Cloud Storage Using Locks with Intent. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 501-516. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/setty

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENLX ATC 20). USENIX Association, 419-433.
https://www.usenix.org/conference/atc20/presentation/shillaker
Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.
2020. Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow.
13,12 (July 2020), 2438-2452. https://doi.org/10.14778/3407790.3407836
Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made
Moderately Complex. ACM Comput. Surv. 47, 3, Article 42 (Feb. 2015),
36 pages. https://doi.org/10.1145/2673577

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brah-
madesam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor
Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon
Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases. In Proceedings of the 2017 ACM International
Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA,
1041-1052. https://doi.org/10.1145/3035918.3056101

Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham,
Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott
Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi. 2017.
vCorfu: A Cloud-Scale Object Store on a Shared Log. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). USENIX Association, Boston, MA, 35-49. https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/wei-michael
Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless

Boki: Stateful Serverless Computing with Shared Logs

[57]

workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 1187-1204. https:
//www.usenix.org/conference/osdi20/presentation/zhang-haoran
Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond
Cheng, Ariadna Norberg, Arvind Krishnamurthy, and Henry M.
Levy. 2016. Diamond: Automating Data Management and Storage
for Wide-Area, Reactive Applications. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 723-738. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/zhang-irene

707

[58]

[59]

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-
murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions
with Inconsistent Replication. In Proceedings of the 25th Symposium
on Operating Systems Principles (Monterey, California) (SOSP ’15).
Association for Computing Machinery, New York, NY, USA, 263-278.
https://doi.org/10.1145/2815400.2815404

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing
the Gap Between Serverless and Its State with Storage Functions. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for Computing Machinery, New York,
NY, USA, 1-12. https://doi.org/10.1145/3357223.3362723

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Shared Log Approach for Stateful Serverless
	2.2 Technical Challenges for Serverless Shared Logs

	3 Boki's LogBook API
	4 Boki Design
	4.1 Metalog is ``the Answer to Everything'' in Boki
	4.2 Architecture
	4.3 Workflow of Log Appends
	4.4 From Physical Logs to LogBooks
	4.5 Reconfiguration Protocol

	5 Boki Support Libraries
	5.1 BokiFlow: Fault-Tolerant Workflows
	5.2 BokiStore: Durable Object Storage
	5.3 BokiQueue: Message Queues
	5.4 Optimizing Log Replay with Auxiliary Data
	5.5 Garbage Collector Functions

	6 Implementation
	7 Evaluation
	7.1 Microbenchmarks
	7.2 BokiFlow: Fault-Tolerant Workflows
	7.3 BokiStore: Durable Object Storage
	7.4 BokiQueue: Message Queues
	7.5 Analysis

	8 Related Work
	9 Conclusion
	References

