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Abstract

Electronic and excitonic states in an /nSb strongly flattened ellipsoidal quantum dot (QD) with complicated disper-
sion law are theoretically investigated within the framework of the geometric adiabatic approximation in the strong,
intermediate, and weak quantum confinement regimes. For the lower levels of the spectrum, the square root depend-
ence of energy on QD sizes is revealed in the case of Kane's dispersion law. The obtained results are compared to the
case of a parabolic (standard) dispersion law of charge carriers. The possibility of the accidental exciton instability is
revealed for the intermediate quantum confinement regime. For the weak quantum confinement regime, the motion
of the exciton’s center-of-gravity is quantized, which leads to the appearance of additional Coulomb-like sub-levels. It
is revealed that in the case of the Kane dispersion law, the Coulomb levels shift into the depth of the forbidden band
gap, moving away from the quantum confined level, whereas in the case of the parabolic dispersion law, the opposite
picture is observed. The corresponding selection rules of quantum transitions for the interband absorption of light are
obtained. New selection rules of quantum transitions between levels conditioned by 2D exciton center of mass verti-
cal motion quantization in a QD are revealed. The absorption threshold behavior characteristics depending on the
QDs geometrical sizes are also revealed.

Keywords: Klein-Gordon equation, Ellipsoidal quantum dot, Narrow band gap semiconductor, Adiabatic
approximation, Kane's dispersion law, Parabolic dispersion law, Exciton spontaneous collapse (decay), Coulomb
accidental instability, Direct light absorption, Selection rules

Introduction the quantum confinement as well. Another advantage of
The achievements of modern semiconductor technolo- the quantum confinement is that by changing the size,
gies provide ample opportunities for the design and external shape, or material of the QD, one can success-
production of the semiconductor QDs having nontrivial ~ fully control the energy spectrum of CCs in them. Obvi-
geometric shapes [1-8]. The energy spectrum of the QD  ously, an increase in the number of the QD geometric
is linear due to the complete quantization of charge car-  parameters leads to the possibility of more flexible and
riers’ (CCs) motion, which makes it possible to call these  effective control of the energy spectrum and other physi-
structures artificial atoms. However, in contrast to real cal characteristics of CCs in them. For example, Hund’s
atoms, where the CC quantization is due solely to the rule is fulfilled for spherical QDs, whereas for ellipsoidal
Coulomb interaction, the discrete spectrum in the QD is  QDs this rule becomes more complicated, namely it leads
formed due to quantum confinement, and in addition to  to the appearance of new rules for filling the electronic
charged particles (an electron, hole, impurity), uncharged ~ shells and to the partial cancellation of old rules [4].

particles (a phonon, exciton, biexciton) are affected by In low-dimensional structures, quantum confinement
successfully competes with Coulomb quantization and
even prevails over it in certain cases. The significant dif-
ference in the effective masses of an impurity (hole) and
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approximation [9, 10]. When the quantum confined
energy is much more than the Coulomb energy, the per-
turbation theory is applicable, where the role of a small
correction plays the term of the Coulomb interaction
in the problem Hamiltonian [10]. The situation is radi-
cally changed when the effective mass of the impurity
center (hole) is comparable to the mass of the electron.
For example, in the narrow-gap semiconductors for
which the CC standard (parabolic) dispersion law is vio-
lated, the effective masses of the electron and light hole
are equal [11-13], and obviously, Born—Oppenheimer
approximation is not further applicable.

In recent years, the most unexpected areas of applica-
tion of QDs’ properties have appeared in the design of new
high-tech devices used in science, technology, medical, and
domestic appliances fields. On the basis of QDs, quantum
lasers, LEDs of various spectra [14—16], biochemical sensors
[17, 18], single-electron diodes and transistors [19, 20], and
saturated TV screens with a wide range of different colors
have been designed and successfully implemented. Recent
studies also show that QDs are key objects for the successful
implementation of qubits [21-23]. One of the priority tasks
of modern semiconductor physics is the development of a
new generation of label-free biochemical sensors based on
quantum confinement and tunneling between nanostruc-
tures as well as sensors for detection of structural changes
in the material. Currently existing biochemical sensors are
based, for example, on the chemical capture of surrounding
molecules using ligands. However, this method allows only
one-time use of the sensor, since after the formation of a
chemical bond, the sensor becomes inoperative (unusable)
or needs to be cleaned. For sensors based on the quantum
tunneling effect, such issues are eliminated, since chemical
bonds do not arise, and the detection of molecules occurs
only on the basis of electron tunneling. It should be noted
that the tunneling of electrons from analyte to the QD
is possible only if the electronic levels of the QD and ana-
lyte coincide. In addition to energy orbitals, analyte mole-
cules also have families of vibration and rotation levels, the
interlevel distances of which are a kind of unique markers
(fingerprints). For successful imitation of these families of
levels, QDs with a specific external shape—strongly flat-
tened QDs—are suitable, which ensures the appearance of
similar families of levels within the QD. For a more success-
ful mimicry of inter-level distances, the correct choice of
QD material is also important. For this very purpose, in this
work, we consider the electronic properties, exciton states,
and direct interband absorption of light in a strongly flat-
tened ellipsoidal QD with the Kane dispersion law of CCs.
Theoretical calculations on the spectra of these systems
will provide wide possibilities for modeling of highly selec-
tive quantum sensors and highly sensitive structural sensors
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of the new generation, with a wide range of controllable
properties.

Theory
Let us consider an impermeable strongly flattened ellipsoi-
dal QD (see Fig. 1.). Then, the potential energy of the CC
in cylindrical coordinates can be written in the following
form:
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where a; and ¢; are minor and major semiaxes of the
ellipsoid, respectively. One needs to compare the geo-
metric sizes of the QD with effective exciton radius of
the CC in order to determine the quantum confinement
regimes.

Strong Quantum Confinement Regime

First, we solve the problem in the strong quantum confine-
ment regime, when the condition a.x >> a; >> ¢ takes
place (see Fig. 1a), and a4, is the effective Bohr radius of
an exciton. In this approximation, the Coulomb interac-
tion between an electron and a hole is much less than the
quantum confinement energy, therefore the former can be
neglected. Then, the problem reduces to the determination
of CCs’ energy states independently. As noted above, the
dispersion law for narrow-gap semiconductors is non-par-
abolic and is given in the following form [11, 24]:

E* =P*S* + m, S* )

where S ~ 108sm/ sec is the parameter related with the
semiconductor band gap E, = 2m}S% Let us write the
Klein—Gordon equation [25] for an ellipsoidal QD con-
sisting of InSb, with an electron and hole when their
Coulomb interaction is neglected:

\/(Pg +P})S? + (m2 + mf2) S W (Fe, ) = E W (Fe, )

3)

Here P,y is the momentum operator of the CC (electron,

hole), mz(h) is the effective mass of the CC, and E is the

total energy of the system. After simple transformations,

equation (3) can be written as the reduced Schrodinger
equation in dimensionless units:

1 1 N o o
<—2ve _ 2v,3>w<re,rh> = eoW (e 7) @
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a >> dex >> C holds, and the motion of a 2D exciton is quantized

Fig. 1 Strongly flattened ellipsoidal QD: (a) realization of the strong quantum confinement regime, when the condition dex >> a >> ¢ holds,
and the motions of an electron and a hole are quantized separately, (b) realization of the weak quantum confinement regime, when the condition
€ >> dey holds, and the motion of a 3D exciton is quantized, (c) realization of the intermediate quantum confinement regime, when the condition

2 2

2 7 % T Eex’ 87T Eer’ T T 2ual, T Kdex

is the effective Rydberg energy of an exciton, « is the die-
. . 2 .

lectric constant of the semiconductor, a.y = % is an

it o 1S the reduced
mass of an exciton, and e is the elementary charge. The
wave functions (WFs) of the problem are sought in the

form W (7, 7)) = We(Fe) Wy (7). After separation of

where gy =

exciton effective Bohr radius, u =

variables, one can obtain the following equation for the
electron:

(V2 + 20 ) WelFe) = 0 5)

The CC motion in the radial direction is much slower
than in the direction OZ due to the geometric shape of
the QD (a; >> c1). Based on this, the Hamiltonian in
the dimensionless variables can be represented as the
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sum of the Hamiltonians of the “fast” I%ﬁ and “slow” ﬁg
subsystems [26, 27]:

12121211 +1:[2+U(Vx‘/’:z) (6)
where

i R 92 1a+132 ;

P77z T ar2  ror  r?o¢? @

gy _H . _»p ,_
Here, H = Lol = a0 %=
the form:

é. The WFs are sought in

We(r,¢,2) = Ce™ x (z; r)R(r) 8)

where C is the normalization constant. For a fixed value
of the coordinate r of the slow subsystem, the electron
motion is localized in the one-dimensional potential well
with an effective variable width:

72
L(r) =2c4/1— ) 9)

where a = :1 and ¢ = ~L notations are introduced. First,
let us solve the Schrodlnger equation for the “fast” sub-
system, which can be written in the form of the harmonic
equation:

x"(z;r)+e(r)x(z;r) =0 (10)

where ¢(r) is the energy of the “fast” subsystem. The solu-
tions of Eq. (10) are given in the form:

L 2 .(mq 7m>
XED =\ M\ 1t

where 7 is the quantum number (QN) of the “fast” sub-

system. One can obtain the “fast” subsystem energy from

the boundary conditions x (z; N,_ 10 =0, taking into
- 2

(11)

account the expression (9):
(12)

For the lower levels of the energy spectrum, the elec-
tron motion is mainly localized in the region of the geo-
metric center-of-gravity of the QD (r << a). Based on
this, one can expand in series &(r):
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e(r) ~ 82 + wﬁr2 (13)

where &) = = 77 notations are introduced.

Now let us consider the CC motion in the “slow” subsys-
tem, for which the expression (13) serves as an effective
potential energy. The Schrodinger equation of the “slow”
subsystem takes the form:

82+18+132 N
—|—=+-= &9+ wr?
ar2  ror  r?o¢?

(14)
R(r)e™ = 2e, R(r)e"™
After the change of a variable £ = w, 7% and y = 22”0:;2
notation, Eq. (14) is written as
/! / m2 ‘é):
ER7(E)+R () + _E—H/ 2 R(E)=0 (15)

The solution of Eq. (15) is sought in the form of

R(&) ~ e_%é%ﬁ(f), after which the Kummer equation
is obtained:

|m| + 1
2

EQ'E) + (Iml +1-6)Q'E) + <V— )Q($)=0

(16)

the solutions of which are given by degenerate hyper-
geometric functions of the first kind:

lm| +1
Q(€)=1F1<—<V— 5 >,|Wl|+1,§> (17)

For the total energy of an electron, from the boundary
conditions, one obtains

7T2}12 mn 7T21’l2 n

) +ﬁ(2nr+|m|+l)= 32 +ﬂ(N+1)

(18)
where n,, m and N = 2n, + |m| are the radial, magnetic,
and oscillatory QNs of an electron, respectively. The elec-

tron energy (18) is a constant of separation of variables in
the hole reduced Schrodinger equation:

Ee =

(V2 + 200 = 20) ) Wn(Fy) = 0 (19)

Solving equation (19) in a similar way, in the strong
quantum confinement regime, one can derive the fol-
lowing expression for the total energy of the particles’
system:

Kane }’12 n/2 4 24
gy = [Eg —|—Tac(n(an—l-|m|+1)+n/(2n/,+|m/|+1))—I—E

(20)
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Here, n, ny, mand #/, n,,, m’ are the QNs of electron and
hole, respectively. For comparison (see (20)), in the case
of a parabolic dispersion law (e.g., for QD consisting of
GaAs) the total energy in the strong quantum confine-
ment regime is given as [5]:

Jpar _ 202 wn 22n
str T 802 8
" (21)
—(N'+1), N,N =0,1,2,...
+ 2ac( + )

Here, n, N and #n/, N’ are the QNs of “fast” and “slow”
subsystems of electron and hole, respectively. Normal-
ized WFs are given in the form:

ey 2 s (rm +TH’I>
—z+ — |x
ﬂ/27r L(r L(r) 2
mn _VnAl(ml+ 1) e’%rz(nn 2)%1151{ —ny, |m| +1; ﬂrz}.
ac T32(\m| +1+n,) 2ac 2ac
(22)

lI’e(h) (r,p,2) =

Weak Quantum Confinement Regime

Let us discuss the weak quantum confinement regime,
when the condition a., << ¢ is satisfied (see Fig. 1b).
Then, the binding energy of the exciton prevails over the
quantum confinement energy, and the weak influence
of the QD walls appears as a small correction. In other
words, the quantized motion of an exciton as a whole is
considered in a strongly flattened ellipsoidal QD. In the
case of the presence of Coulomb interaction between an
electron and hole, the Klein—Gordon equation can be
written as [25, 28—30]
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are the radial, orbital, and magnetic QNs of the exciton,
correspondingly. After switching to the new coordinates,
the reduced Schrédinger equation takes the following
form:

( Z:Z\/[Ovlge_ﬂ )Wnrlq(r)q)nG,nRM(R)
() -

m 24 mh )54
2mxS?

Vit ®ngrmar (R)

(25)
where Mo = mj; + mj, is the mass of an exciton. In the
E,, and a,, units, Eq. (25) is written in the form:

Lo 2 - P

— 2 V2 = V2 ) Y01 P Prgran (R)
8 (26)
= (‘90 + -+ )wn,,l q(r)cbngr,nR M (R)
262 —¢2
o A= B=
duced. One can derive the equatlon for the exciton’s
center-of-gravity, after separation of variables:

where g9 = notatlons are intro-

—iv,%ﬂbncmnk,M(Nm (R) = €6r PngynrM(NR) (R)
(27)
The energy g, of the exciton’s center-of-gravity can be
obtained by repeating the procedure of calculations of
the strong quantum confinement regime for the adiabatic
approximation, considering the exciton mass My instead
of the mz}:

\/((Pe2 +P})S2 + (m2 + m %) S*) U (Fe, 1) = <E +

K|Fe — Tl

2

> U (Fe, 7) (23)

After some transformations, as in the case of a strong
quantum confinement regime, the Klein—Gordon equa-
tion reduces to the Schrodinger equation with a certain

effective energy. Using the coordinates of the exciton’s
Wl:;e“"mZ;h

mi -+
75, are the 3D radius-vectors of an electron and a hole,
respectively, mj is the effective mass of a hole, and con-
sidering the case of a light hole m; = m;, one can repre-
sent the system WFs in the following form:

center-of-gravity 7 =7, — 7, R = , where 7, and

lIJ(;:e» ;h) = Wn,,l,q(;)q)ngr,nR,M <I_é) (24)

Here, the WF v,, ; ,(7) describes the relative motion of
an electron and a hole, and WF ®,,,, « (R) describes the

motion of the exciton’s center-of-gravity, where n,, [, q

2,2
JTI’IGV

e = Qg+ 1M+ 1)

_ nZnZGr nnGr (N + 1) (28)
T 16¢2?

7TGr

EGr =

where ng, is the QN of the “fast” subsystem of exciton’s
center-of-gravity motion, ng, M, and Ng = 2np + |M|are
the radial, magnetic, and oscillatory QNs of the “slow”
subsystem of the same motion, respectively.

Further, let us consider the relative motion of the electron—
hole pair. The \X/Fs of the problem are sought in the form
U, 1qg(F) = —=X,,1(r) Yi4 (60, @), where Y, (0, ¢) are spheri-
cal functlons, nr, I, q are radial, orbital, and magnetic QNs
of relative motion. After simple transformations, the radial
part of the reduced Schrodinger equation can be written as:
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1\2

” 1 ’ (l+§) _ﬂ o

X(r)+;X(r)+ T R X(r)=0
(29)

where &1 = g9 — €gy. The change of variable n = 2./—&1r
transforms Eq. (29) to

2
, 1, 1 <1+§> —B s
Xm+-Xm+|-—F—"—F—+-|X()=0
n 4 U U
(30)
where the parameter § = 2«/01771 is introduced. When

n — 0, the desired solution of (30) is sought in the form
X(n — 0) = Xo ~ n*[29]. Substituting this in Eq. (30),
one gets a quadratic equation with two solutions:

1 2
/11,2 = F <l + ) - ,3 (31)

2

The solution satisfying the finiteness condition of the

\/ (l+1)2—/3
WE is given as Xo ~ 1 2 . When n — oo, equa-

tion (30) takes the form: X" (n) — %X(n) = 0. The solu-
tion satisfying the standard conditions can be written

as X(n = 00) = X ~ e_n/2 [28, 29]. Thus, the solution
is sought in the form:

X(p) = n'e™ 2f (n) (32)

Substituting the function (32) into Eq. (30) one gets
the Kummer equation [30]:

1
nf" () + QA+1—nf' (n) + (5 — - 2>f(n) =0
(33)

the solutions of which are given by the first kind
degenerate hypergeometric functions:

S =1 F1<—<8 —A— ;>:2/1+1,n>

The expression § — A — % needs to be a nonnegative
integer n, (radial QN) providing the finiteness of the
WFs:

(34)

1
me=8—J— -,

=0,1,2,...
M

(35)

From the condition (35) for the energy, one can derive
the following expression in dimensionless units:
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4

(37)

For comparison, in the case of parabolic dispersion law,

system energy of the weak confinement regime is given
by the formula

2,2
ar NG, | THGr
= + g + M| + 1
weak =162 4ac (@me + 1M+ 1)
1 7%k, nng 1
- n Ne+1) — —
NZ 162 " dac Ne+D N2
(38)

where N¢c = 1,2,... is the Coulomb main QN of the
exciton.
It is necessary to note some important results:

(a) In contrast to the case of the problem of hydrogen
impurities in a semiconductor with Kane’s disper-
sion law, considered in works [31, 32], in the case of
the exciton, the instability of the ground state
energy is absent. Thus, in the case of hydrogen-like
impurity, the electron energy becomes unstable
when Zag > % (Z is an ordinal number, «q is the
fine structure constant), and the phenomenon of
the particle falling into the center takes place. How-

ever, in the case of an exciton wizth Kane’s disper-
sion law, the expression (l + %) — % under the

square root does not become negative even for the
ground state with [ =0, hence fulfillment of the
condition «g > % would be necessary to obtain

instability in the ground state.

(b) For narrow band gap semiconductor QDs, the quan-
tum confined motion introduces an energy term
under the square root in the energy of an exciton
(expressed in the center-of-gravity referential),
whereas in the case of parabolic dispersion law, this
energy appears as a linear expression (a simple sum).
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(c) The exciton energy depends only on the main QN
of the Coulomb motion in the case of realization
of the parabolic dispersion, whereas in the case of
Kane’s dispersion law it reveals a rather complicated
dependence on the radial and orbital QNs. Thus,
the non-parabolicity of the charge carrier’s disper-
sion law leads to the removal of “random” Coulomb
degeneracy in the orbital QN.

(d) In the case of the implementation of the para-
bolic dispersion law, a family of Coulomb levels is
located under each quantum confined level; with
an increase in the Coulomb QN, these levels shift
closer to the quantum confined level (see 38). A
similar situation is observed in the case of a diamag-
netic exciton[33], where the magnetic quantization
energy level, under which the Coulomb levels are
located, takes the quantum confined level role. The
picture is the opposite in the case of the implemen-
tation of the Kane’s dispersion law. In a narrow-gap
semiconductor, due to interband interaction, the
quantum confined and Coulomb energies do not
appear as additive terms in the total energy, but as
a sum under the square root (see 37). In this case,
with an increase in the Coulomb QNs, the levels
shift deeper into the forbidden band, moving away
from the quantum confined level. This consolida-
tion of Coulomb levels resembles the behavior of
acceptor levels, while in the case of a parabolic dis-
persion law, exciton levels behave similarly to donor
levels.

Intermediate Quantum Confinement Regime

(@ >> dex >> €)

Let us discuss the intermediate-weak quantum confine-
ment regime, when the condition a >> a. >> c is sat-
isfied (see Fig. 1c). In this regime, in the OZ-direction,
the quantum confinement significantly exceeds the Cou-
lomb interaction of an electron and a hole, however, in
the radial direction the picture is the opposite. In this
case, the system’s energy for the radial motion is caused
mainly by the electron—hole Coulomb interaction, and
the formation of quasi-2D exciton is possible. Note that
such a quantization regime was not considered in the
case of a parabolic dispersion law either. Repeating the
calculation procedure as in the case of a weak quantum
confinement regime, we switch to the coordinates of the
center-of-gravity and relative motion. Since the motion
of the center-of-gravity is the motion of an electrically
neutral particle, there is no competition for this motion
between quantum confinement and Coulomb quantiza-
tion. Again, one solves the Klein—-Gordon equation, and
repeat the calculations from (23) to (28). Further, let us
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consider in more detail the relative motion of an elec-
tron and a hole. In the case of wide-gap semiconductors,
the probability of the formation of excitons with a heavy
hole more often prevails over the probability of the for-
mation of an exciton with a light hole due to the speci-
ficity of the band structure. Therefore, in the case of an
intermediate quantum confinement regime, the motion
of a heavier particle, a hole, is considered in the averaged
field created by a faster and lighter particle, an electron.
In other words, the Born—Oppenheimer approximation
is used to describe the motion of a heavy hole in a poten-
tial field created by an electron. To solve this problem,
the electron potential is expanded in the Taylor series at
the coordinate of the hole motion. In this case, when a
light hole is considered, such an approach would be com-
pletely unjustified. Considering the condition a., >> ¢y,
we can assert that the motion of a quasi-2D exciton is
ensured under the condition z << r. Therefore, instead
of the averaged potential, we expand the Hamiltonian of
the relative motion in a series, omitting the terms pro-
portional to i—z — 0. In other words, let us consider the
relative motion of a quasi-2D exciton, which is confined
in the perpendicular direction by the walls of the QD.
Then, in cylindrical coordinates, the reduced Schrédinger
equation for relative motion will be written in the form:

< 2 92 198 1 92

a B
@—'—ﬁ +r7237(p2+(80_€Gr)+7+r72)

ror
Yy, (s 9;2) =0
(39)
WEFs are sought in the form of

Wnr,m,nz (r,p,z) = Ceimwxnr,m (r)DnZ (2) (40)

where C is the normalization constant. After separating
the variables, for the WFs and the energy of motion in
the OZ-direction, respectively, one gets:

Dy (2) a ) < T an, N nnz>
7) = sin z )
" cva*—1 2cva? —1 2
n, =1,2,...
(41)
o — n?nta? "
T 4c(a2 -1) (42)
Further, for the radial part, one obtains equation
” 1., m?* — B«
X'(r)+-X(r)+ | & — +—|X(r)=0
r r2 r
(43)

where the notation &y = g9 — g, — &, is introduced. The
change of variable £ = 2,/—e&yr transforms Eq. (29) to



Dvoyan et al. Nanoscale Research Letters (2022) 17:77

" L, 1 m*—g § _
X (5)+§X ($)+<—4— g2 +$>X(f)—0
(44)

where the similar parameter § = 5 Nk introduced.

At & — 0 the solution of (44) is sought in the form
X(& = 0) = xo ~ &*. Here, in contrast to Eq. (30)
the quadratic equation is obtained with the following
solutions:

2 =FVm?—B (45)

In 2D case, the solution satisfying the condition

of finiteness of the WF is given as xo ~ EV’”Z_/S. At
& — oo, proceeding analogously to the solution of Eq.
(30), one should again arrive at the equation of Kum-
mer (33), but with different parameter A. Finally, for the
energy of the 2D exciton with the Kane dispersion law
one gets:

2
Tenza

22 2,2
\/%g I 72ng, + TGy Qnp + M|+ 1) + 2(2-1)

2
Kane __ l6c Aac

int 1 2
wt S i)
eé(nr+ m27§+§)

(46)
As noted above, for an exciton with a light hole, this
quantization regime was not considered even in the
case of the parabolic dispersion law, hence let us con-
sider the differences from the Kane’s dispersion law in
more detail. Using the coordinates of the center-of-
gravity and relative motion, the Schrodinger equation
for this case is written as:

K2 K2 e?
- V2o —Vip
2My R 2u k|7
wn,,m,nz (;)q)nGr,nR,M (1}) (47)
=E 1pn,ﬂ,m,nz (;)q)nGr,nR,/\/I (I_é)

In the E,, and 4., units Eq. (47) will be written in the

form:
1 2
—*vg—vg—j
(4 R |r|)

wnr,m,nz (;) q)ngr,nR,M <R)

=€ l[fnr,m,nz (;)cbngr,nR,M <R)

(48)

Separating the variables and solving the Schrodinger
equation, as in the case of the Kane’s dispersion law, for
the center-of-gravity energy one obtains the result (28).
However, for radial motion, in the case of the parabolic
dispersion law, one gets
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32+a2+1a+1 92
0z2 = 0Or? r2 9¢?

l[/n,,m,nz (ry (ﬂ, Z) = O

-~ +(so—sGr>+2>
ror r
(49)

Note that Eq. (49) is also obtained considering the con-
dition a.x >> c; and omitting the terms proportional to
i—z — 0. Again the WFs are sought in the form (40) and
for the motion in the OZ-direction, repeating the calcu-
lation procedure, one obtains the results (41) and (42).
However, for the radial part, in this case, an equation
similar to the 2D Coulomb equation is obtained:

" 1 ’ le 2
X'(r) + -X'(r) + <82 -— + )X(r) =0 (50)
r r r

the solutions of which are given by degenerate hyper-
geometric functions of the first kind:

_ lml _5/2 1 1
X(§)=&"e “F(— ﬁ—lml—i ,2lml + 1,
(51)

A similar result for the case of the parabolic disper-
sion law is written as:

2.2
Par s nGy TnGr
int 16¢2 + 4ac @ne+ MI+1)
a? 1 (52)

712715
4c?(a® — 1) (Nc + %)2

+ —
where N¢ = n, 4+ |m| is Coulomb principal QN for
exciton.
It is also important to make the following remarks
here:

(a) In contrast to the 3D exciton case, all states with
m = 0 are unstable in a semiconductor with Kane’s
dispersion law. It is also important that instability is
the consequence not only of the dimension reduc-
tion of the sample, but also the change in the dis-
persion law. “The particle falling into center” or the
recombination (exciton collapse) of the pair in the
states with m = 0, is the consequence of interaction
of energy bands. Thus, the dimension reduction
leads to the fourfold increase in the exciton ground
state energy in case of parabolic dispersion law, but
in the case of Kane’s dispersion law, recombina-
tion (exciton spontaneous collapse) is also possible.
Note also that the presence of quantum confine-
ment does not affect the occurrence of instability, as
it exists in both the presence and absence of quan-
tum confinement (see formulae above).



Dvoyan et al. Nanoscale Research Letters (2022) 17:77

(b) Consideration of the bands’ interaction removes the
degeneracy of the magnetic QN. However, the two-
fold degeneracy of m of energy remains. Thus, in
the case of Kane dispersion law the exciton energy
depends on m?, whereas in the parabolic case it
depends on |m|. Due to the circular symmetry of the
problem, the twofold degeneracy of energy holds in
both cases of dispersion law.

(c) In this quantum confinement regime, the behavior
of the Coulomb levels is similar to the case of the
weak quantum confinement regime. Thus, in the
case of the implementation of the Kane’s dispersion
law, the Coulomb interaction appears as a mixed
interference term with the quantum confinement
in the total energy, while in the case of a parabolic
dispersion law, the Coulomb energy appears as an
additive term (compare to 46 and 52).

Interband Absorption of Light

Direct interband absorption of light in a strongly flattened
ellipsoidal QD in a strong quantum confinement regime
is considered, when the Coulomb interaction between the
electron and a hole is neglected. The case of a light hole
is discussed (m; = myj), and the absorption coefficient is
determined by the expression [34]:

2

wowhdr| 5(he - E, — B — 1)

(53)
where v and v’ are the QN sets corresponding to the elec-
tron and hole, Eg is the band gap of a bulk semiconductor,
Q is an incident light frequency, A is a quantity propor-
tional to the square of the matrix element taken by the
Bloch functions. After simple calculations, one gets the
following expression for the absorption edge (AE) W1go:

wkano — 1 n? d2 & (54)
s =t e T
where Wigg = h%“’o, d= «/ZZ_Eg, = m*ﬂr mh —is the

reduced mass of the exciton. For the Kane’s dispersion
law

(55)

22 2
Kane n2d 8wd
WSW "= \/1 * 2 + ac

The selection rules in quantum transitions are consid-
ered. Quantum transitions for the energy levels allowed for
the magnetic QNs m = —n7, and for the "fast” subsystem
QNs # = #/, while the "slow" subsystem selection rules are
N =N
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Next, let us consider the interband absorption of light in
the weak quantum confinement regime. Due to the locali-
zation of the exciton in a relatively small vicinity of the geo-
metric center of the QD, the expression for the absorption
coefficient can be written as [34]

K=4 Y |¥niq0f ‘/d>nG,nRM(R)q>nn,m(ie>die

nGrNRM
Ty

8(h2 — Eg — E)

2

(56)
where E is the energy (37) in dimensional units. It should
be noted that v, ;,(0) # 0 only for the ground state,
when [ =g =0 (/,q are the orbital and magnetic QNs
of the exciton). In this regime, the following analytical

expressions are finally obtained for the absorption coef-
ficient and the AE:

32a1c1 ny!

K=AY" 8(h2 — E; — E)
313 g

nGrlR T n3(a ) T A+ )

(57)
272 2

Par . e h®  mwh 9
Wieaic 1001 = 1+ — T RPr —h (58)
where #n, is the radial QN of the exciton,

7’191001(0)

Wioo1(0) = h= , and M, is the total

. /2M oEg

mass of the exc1t0n. For the Kane’s dispersion law in the
case of weak quantum confinement, one has

w2h? 7 h?
Kaneiogo —1— 2 + 16¢2 + dac
weak -
42 59
n : 59
<‘/§74h2+%>
and quantum transitions for the energy lev-

els are allowed for the exciton radial QNs n, =,
and n, =n, £1, and for the "fast" subsystem QNs
nGr = ”/Gr’ while the "slow" subsystem selection rules
are N = N’. In the case of the parabolic dispersion law,
quantum transitions for the energy levels allowed for
the exciton main QN N¢ = N, while for the motion of
center-of-gravity selection rules remain the same.

The most important feature of the latter case is that
the shift of the exciton level with a change in the semi-
axes of the QD is determined by the total mass of the
exciton.

Let us proceed to consideration of direct interband
light absorption in the QD in the intermediate quantum
confinement regime. Here, the electron-hole interac-
tion leads to the fact that in the spectrum of interband
optical absorption, each line corresponding to specified
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values of v turns into a series of closely spaced lines
corresponding to different values of v'. The absorption
coefficient in this regime has the form [34]

K =AY |W (e, 7)o — Fy)diedry|”

v (60)
8(n2 — Eg — Eg — Ef )

Finally, in the case of the CC’s parabolic dispersion
law, for the AE one obtains

. wd? 72a%d?
4

ac  4c? (az - 1)

24>

- — 44
16¢2

WPW1010 =1+

int
(61)

For the Kane’s dispersion law,

1, m%2d?> | nd* w2a’d?
1 \/2 T T6r T 2ac + 4c2(a2-1)
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Strictly speaking, formula (62) is the reduced AE, since
the exciton in the ground state with a QN m = 0 is not
stable and collapses spontaneously. Therefore, this for-
mula is written for the first stable excited state of an exci-
ton with the magnetic QN m = 1. In the intermediate
quantum confinement regime, for the case of the Kane’s
dispersion law of CCs, quantum transitions are allowed
between levels with n, =n,, m=—m' and n, =n,
exciton QNs, while for the motion of center-of-gravity
selection rules are ng, = ng, and N = N'. In the case
of parabolic dispersion law, quantum transitions for the
energy levels allowed for the exciton main QN N¢ = N/
and n, = nl, while for the motion of center of gravity
selection rules remain the same. Remarkably, in contrast
to the case of the weak quantum confinement regime,
for both cases of the dispersion law in the intermediate
quantum confinement regime, the shift of the exciton

wKaneionor _ level with a change in the geometric parameters of the
int - . . .
QD is determined by the reduced exciton mass. Moreo-
ver, the superimposed effect of the quantum confinement
(62) and the Coulomb interaction of an electron and a hole
leads to the emergence of new selection rules n, = n, as a
- 7000 T 3
s Kane’s dispersion law ,EE_ X Parabolic dispersion law egime
N i s =2 =
a) 3000 b) 6000 0 :;:1 -
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Fig. 2 The dependences of the lower two families of levels of the energy spectrum of an electron in a strongly flattened ellipsoidal QD with the
Kane's and parabolic dispersion laws of CCs: (a) and (b) on the minor semiaxis ¢ at the fixed value of the major semiaxis g, (c) and (d) on the major
semiaxis a at the fixed value of the minor semiaxis ¢
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result of the vertical motion of the center-of-gravity with
the reduced mass of the 2D exciton.

Discussion

Strong Quantum Confinement Regime

As is seen from the results obtained in (20) and (21), the
energy spectra of particles corresponding to both the
Kane’s and parabolic dispersion laws of CCs have a com-
mon characteristic. In both cases, for the lower levels of
the spectrum, families of energy levels of the “slow” sub-
system are located above each level of the “fast” subsys-
tem, the interlevel distances of which depend on the QN
n(n/ ) of the “fast” subsystem. Figure 2 shows the depend-
ences of the lower two families of levels of the energy
spectrum of an electron in a strongly flattened ellipsoi-
dal QD with Kane’s and parabolic dispersion laws of CCs.
Numerical calculations are made for the QD consisting of
InSb with the following parameters: mj; = 1, >~ 0.013my,

Eer >~ 3-107%V, E; >~ 023eV, k = 17.8, ao, >~ 10° A,
where m is the mass of the free electron. As can be seen
from the figure, with an increase in the semiaxes, the
energy levels in the case of both dispersion laws decrease
due to a decrease in the influence of quantum confine-
ment. As expected, with an increase in the semiminor
axis ¢, the levels decrease more sharply than with an
increase in the semi-major axis a (compare graphs (a) and
(c), and graphs (b) and (d) in Fig. 2), since the quantum
confinement in the perpendicular direction has a much
greater contribution to the energy of the particle than
the quantum confinement in the radial direction, due
to the strongly flattened external shape of the ellipsoi-
dal QD. However, in the case of the parabolic dispersion
law, the families of the “slow” subsystems turn out to be
equidistant, while in the case of the Kane’s dispersion law,
equidistance is violated. Thus, for the case of the Kane’s
dispersion law with the values of the semiaxes a = 0.3,
and ¢ = 0.054,, (see Fig. 2a), for the first family of lev-
els (n =1) we have the following interlevel distances:
Ef§me — Ef§"e ~ 70.68Eer,  Ef§" — Ef4™ =~ 66.65Ey,

and Ef4"¢ — Ef4" ~ 63.24E,,. For the second family of lev-

els (n = 2), the following interlevel distances are obtained:
ES{me — X6 ~ 82.36E,,,  Efg" — EX4" ~ 79.08E,y,
and Eéfg”e —Ef‘z”’e ~ 76.18E,,. For the same values of
the semiaxes, in the case of the parabolic dispersion law
(see Fig. 2b), for all levels of the first family one obtains
the result AEf‘" ~ 104.72E,,, and for the second fam-
ily, as expected, all interlevel distances are twice as large:
AEg‘" ~ 209.44E,,. As can be seen from these data,
the frequencies corresponding to the energies of inter-
level distances in both cases of the CCs’ dispersion law
belong to the infrared spectrum. Thus, for the values of
the semiaxes @ = 0.3a,, and ¢ = 0.05a4,,, in the case of
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the Kane’s dispersion law, for the first interlevel transi-
tion, the frequency w = 3.22 x 10'3Hz is obtained, and
for the parabolic dispersion law, @ = 4.77 x 103Hz is
obtained. For the second family of energies, the frequen-
cies remain in the infrared range as well. For instance,
w = 0.95 x 101Hz for the parabolic dispersion law,
whereas the values are smaller for the case of the Kane’s
dispassion law. As is known, for many diatomic mol-
ecules, the frequencies corresponding to vibrational
modes fall into the infrared region w ~ 10'3 - 10*Hz
[35-37]. The typical vibrational frequencies range
from less than 10'3Hz to approximately 10'*Hz, cor-
responding to wavenumbers of approximately 300-—
3000 cm ™! and wavelengths of approximately 30-3 pm.
At low ambient temperatures, vibrational modes of mol-
ecules with high accuracy can be approximated by har-
monic oscillations. In other words, the vibrational levels
of the molecules are quasi-equidistant. At high tem-
peratures, which correspond to room temperatures and
higher, the anharmonicity of the oscillations becomes
significant, and, therefore, the equidistance of the vibra-
tion levels is violated. Moreover, for polyatomic mol-
ecules, vibrational modes can be both symmetric and
asymmetric, hence both anharmonicity and asymmetry
of vibrations need to be considered. For detecting such
vibrations, strongly flattened ellipsoidal QDs with the
Kane’s dispersion law are excellently suited, since their
energy levels, due to their non-equidistance, can easily
mimic the vibrational levels of complex molecules. For
simpler diatomic molecules, or for lower temperatures,
it is preferable to use QDs with the parabolic disper-
sion law. Since their energy levels are equidistant, with
an appropriate choice of geometric parameters, they are
perfect for mimicking the spectra of diatomic molecules.
Figure 3 shows the dependence of the ground state energy

E
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5000 —— Kane’s dispersion law
—— Parabolic dispersion law

a=0.3a.

4000

3000

2000

0016 0018 0020 0022 0024 002 0028  0.030
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Fig. 3 The dependence of the ground state energy on the minor

semiaxis ¢ at the fixed value of the major semiaxis a for the Kane's and

parabolic dispersion laws of CCs




Dvoyan et al. Nanoscale Research Letters (2022) 17:77

Page 12 of 19

E.. Strong QC Regime

—— Kane’s dispersion law

—— Parabolic dispersion law

¢=0.03a..

1700

1600

1500

0.1 0.2 0.3 0.4 0.5
aja..

Fig. 4 The dependence of the ground state energy on the major
semiaxis g at the fixed value of the minor semiaxis ¢ for the Kane's and
parabolic dispersion laws of CCs

on the minor semiaxis ¢ at the fixed value of the major
semiaxis a for both cases of CC’s dispersion laws, and
Fig. 4 shows a similar dependence, but only on the major
semiaxis a at the fixed value of the minor semiaxis c. As
can be seen from the figures, as the values of the semi-
axes increase, the energy curves corresponding to differ-
ent dispersion laws intersect. In both cases, at relatively
small values of the semiaxis, the particle energy curve
corresponding to the case of the parabolic dispersion
law is positioned higher than the curve corresponding
to the two-band Kane’s dispersion law. With an increase
in the values of the semiaxes, the curves change places.
This happens because the particle energy in the case of a
parabolic dispersion law is proportional to ~ CLZ or ~ i,
while in the case of the two-band Kane’s approximation,
an analogous proportionality appears under the square
root sign (see 20). It is for this reason that the energy of
a particle in the paraboliccase turns out to be larger for
small values of the semiaxes and is less than the energy
of the Kane’s dispersion law case for large values of the

7000 s y ;
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Fig. 5 The dependence of the first family of the energy levels on
the minor semiaxis ¢ at the fixed value of the major semiaxis a for the
Kane's and parabolic dispersion laws of CCs
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Fig. 6 The dependence of the first family of the energy levels on
the major semiaxis a at the fixed value of the minor semiaxis ¢ for the
Kane's and parabolic dispersion laws of CCs

semiaxes. The intersection point means that the energies
of the two cases of the CC’s dispersion law are the same.
However, this does not mean the identity of the entire
spectrum. Dependence of the first family of levels of the
energy spectrum of an electron in a QD with Kane’s and
parabolic dispersion laws on the semiminor axis is shown
on Fig. 5. As can be seen from the figure, the energy lev-
els corresponding to different values of QNs intersect
at different values of the semiaxes. A similar picture is
observed in Fig. 6 which shows the dependence of the
first family of levels of the energy spectrum of an electron
on the semi-major axis for both dispersion laws. It should
be noted that in both figures, with an increase in the QN
value, the intersection point of the energy levels shifts to
the right (toward the large values of the semiaxes) due to
the above reason.

Figure 7 shows the dependence of the interlevel dis-
tances of the first family of electron energy levels on the
semiaxes of the ellipsoidal QD in the case of a compli-
cated Kane’s dispersion law. As can be seen from the
graph, with an increase in the values of both semiaxes,
the interlevel distances of the particle energy decrease by
a nonlinear dependence, and interlevel distances are dif-
ferent for different sets of QNs. Hence, by changing the
geometric parameters of the QD, the desired distances of
the levels within the same family can be obtained much
more flexibly than in the case of the parabolic dispersion
law, where the interlevel distances within each family
vary the same depending on the values of the semiaxes.
Thus, it can be stated that for the strong quantum con-
finement regime, in the case of using a QD with the
Kane’s dispersion law, manipulating interlevel distances
allows covering an even larger number of possible ana-
lyte molecules, which can be detected by mimicking their
vibration levels. Obviously, the more flexible possibility
of controlling the interlevel distances within each family
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Fig. 7 The dependence of the interlevel distances of the first family of electron energy levels on the semiaxes of the ellipsoidal QD in the case of a
complicated (Kane's) dispersion law: (a) on the minor semiaxis ¢ at the fixed value of the major semiaxis a, (b) on the major semiaxis a at the fixed

increases the probability of successful electron tunneling
between analytes and QDs, and their registration.

Weak Quantum Confinement Regime

Let us proceed to discussing the results of the weak
quantum confinement regime, when the energy of the
Coulomb interaction of an electron and a hole exceeds
the quantum confinement energy in all three geometric
directions. The formation of an exciton and the quanti-
zation of its motion as a whole dramatically changes the
energy spectrum of a QD. An important feature of the
implementation of this regime is the ability to cover new
energy areas for the purposes one pursues, in particular,
negative energies. As can be seen from result (38), in the
parabolic dispersion law case, the energy conditioned by
quantum confinement of the QD walls is positive, and the
Coulomb energy is negative. With a change in the geo-
metric parameters of the QD, the total energy can change

sign. The situation changes drastically in the Kane’s
dispersion law case, where the energy is entirely nega-
tive (see 37). In the weak quantum confinement regime,
consideration of the interband interaction in the case of
the two-band Kane’s model leads to the superimposed
manifestation of the Coulomb and quantum confinement
energies. Moreover, the Coulomb energy in the Kane’s
model case has an explicit dependence on the radial and
orbital QNs. The interband interaction in the case of the
two-band model violates the high order of hidden sym-
metry of the Coulomb interaction due to the imposition
of lower order symmetry [38]. Obviously, this cannot be
a consequence of the imposition of the ellipsoidal sym-
metry of the QD itself, since the hidden symmetry is
not violated in the case of the parabolic dispersion law.
In both cases of dispersion laws in the weak quantum
confinement regime, a 3D exciton with spherical sym-
metry is formed. The ellipsoidal shape (symmetry) of the
QD affects only the quantization of the motion of the
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Fig. 8 The dependences of the exciton energy on (a) the minor semiaxis ¢ at the fixed value of the major semiaxis a, (b) the major semiaxis a at the
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exciton’s center-of-gravity, while not breaking the inter-
nal spherical symmetry of the exciton. Internal symmetry
is broken (lowered) due to the interaction of the bands
and is a characteristic of a narrow-gap semiconductor
material. Such a complex interaction is absent in the case
of a parabolic dispersion law, which is the main feature of
the two-band Kane’s model.

Figure 8 shows the dependences of the exciton energy
on the geometric parameters of the QD in the case of the
parabolic dispersion law of CCs. As can be seen from the
figure, with an increase in the values of both semiaxes,
the energies decrease and shift to the region of negative
energies. This is due to the fact that with a decrease in the
influence of the quantum confinement, due to an increase
in the size of QDs, the dominance of the negative Cou-
lomb energy appears more distinctly. An unexpected
inverse pattern of the dependence of the exciton energy
on the geometric parameters of the QD is observed in the
case of a complex two-band model dispersion law, which
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is shown in Fig. 9. With an increase in the values of the
semiaxes, the quantum confined exciton energy increases
(decreases in absolute value), despite the decrease in the
effect of the QD walls. As expected, the dependence on
geometric parameters is much weaker than in the case
of a strong quantum confinement regime. As can be
seen from the figure, the energy levels of the exciton are
negative and are positioned much lower in contrast to
the parabolic case. By absolute value, the energy of the
Kane’s exciton is much higher than the exciton energy of
the parabolic case. Thus, for the values of the semiaxes
a = 5deyx, ¢ = 1.2a,y, the energy of the ground state of
the exciton in the parabolic case is SE/Z:;k =~ 0.44E,,, while

in the Kane’s case 8{;::/? =~ 541.08E,,. Comparison of
the energy spectra (37) and (38) reveals another signifi-
cant detail. At a fixed value of the QNs ng, and N and
an increase in the value of the Coulomb QN N¢ leads

to a shift of the excited Coulomb energy levels toward
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positive energies. The opposite shift of the Coulomb lev-
els is observed in the case of the Kane’s dispersion law,
when the excited Coulomb levels are shifted toward neg-
ative energies and are positioned lower. As noted above,
in the parabolic case, the behavior of exciton levels is
similar to that of donor levels, while in the Kane’s case it
resembles the behavior of acceptor levels. It is notewor-
thy that in both cases of dispersions, the energy increases
in absolute value with an increase in Coulomb QNss.

Intermediate Quantum Confinement Regime

Figure 10 represents the dependences of the ground and
first excited energy levels of a 2D exciton on the geo-
metric parameters of the QD, with parabolic and Kane’s
dispersion laws of CCs, respectively. In the case of the
Kane’s dispersion law, the ground level of the 2D exci-
ton is unstable—it collapses spontaneously; therefore,
the dependences of the first excited energy level are
presented. As can be seen from the figure, the exciton
energy is negative for the Kane’s dispersion law, as in
the case of the weak quantum confinement regime, but,
in contrast, the exciton energy does not change sign in
the parabolic case. With an increase in the values of the
semiaxes, the energy decreases due to a decrease in the
contribution of the quantum confinement, but remains
positive even for the ground state, due to the presence
of a strong influence of the quantum confinement in
the vertical direction. In the intermediate quantum
confinement regime, due to the condition ¢ << 4.y, the
value of the semiminor axis changes in such a range
that the positive contribution to the energy from the
quantum confinement in the vertical direction exceeds
by an order of magnitude the negative contribution
from the quasi-2D Coulomb interaction of the exci-
ton. Hence, at the values of the semiaxes a = 1.5a,,
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and ¢ = 0.154,y, the energy is E'*" ~ 224.3E,,, while at

int —

¢ = 0.3agy, E%’ ~ 53.95E,,. A twofold increase in the
value of the semiminor axis leads to a sharp decrease
in energy, but does not change its sign. The presence of
a strong quantum confinement in the vertical direction
also leads to a much larger difference between the ener-
gies of the Kane’s and parabolic cases, in contrast to the
weak quantum confinement regime. Another feature of
the implementation of the intermediate quantum con-
finement regime is the appearance of new energy lev-
els due to the vertical quantization of the motion of the
quasi-2D exciton. Also, in contrast to the weak quan-
tum confinement regime, the motion of the center-of-
gravity of a 2D exciton is conditioned by its reduced
mass [, instead of the total mass Mj.

Figure 11 shows the dependence of the energy levels of
vertical quantization of the motion of the center-of-grav-
ity of a 2D exciton in a strongly flattened ellipsoidal QD
with the Kane’s and parabolic dispersion laws of CCs. As
can be seen from the figure, with an increase in the value
of the vertical QN #,, the interlevel distances of excited
energy levels become very large, since the reduced mass p
is less than the total mass M (for the InSb QD, My = 4u).
Therefore, in contrast to the heavy 3D exciton in the weak
quantum confinement regime, in the intermediate regime,
the motion of a much lighter 2D exciton in the QD is
quantized, which accounts for the large values of excited
energies. The energy levels of the 2D exciton conditioned
by the relative motion of an electron and a hole in the
radial direction, are similar to the levels of a 3D exciton
in the weak quantum confinement regime. For these lev-
els, the analogy with donor and acceptor levels also takes
place, as in the case of a weak quantum confinement
regime. However, since the decrease in the dimension
enhances the Coulomb interaction, the binding energy of
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Fig. 11 The dependence of the energy levels of vertical quantization of the motion of the center-of-gravity of a 2D exciton with parabolic and
Kane's dispersion laws of CCs: (a) on the minor semiaxis ¢ at the fixed value of the major semiaxis a, (b) on the major semiaxis a at the fixed value of
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Fig. 12 The dependences of the AE for Kane's and parabolic dispersion laws of CCs in the strong quantum confinement regime: (a) on the minor
semiaxis ¢ at the fixed value of the major semiaxis g, (b) on the major semiaxis a at the fixed value of the minor semiaxis ¢

a 2D exciton is always greater than the binding energy of
a 3D exciton. Thus, in the case of a parabolic dispersion
law, the binding energy of a 2D exciton is fourfold of a 3D
exciton energy (compare the last terms in formulas (38)
and (52), due to a decrease in dimensionality, and in both
cases depends on the reduced mass p.

Light Absorption

Figure 12 shows the dependences of the AE on the QD
semiaxes for Kane’s and parabolic dispersion laws of CCs
in the strong quantum confinement regime. For both
dispersion laws, with an increase in the values of the
semiaxes, the AE decreases due to a decrease in the con-
tribution of the quantum confinement, since the “effec-
tive” band gap, E, plus the energy of quantum confined
levels, decreases, and the absorption frequencies belong
to the infrared range of the spectrum [39]. As can be seen
from the graphs, the decrease in the AE is more distinct
for the dependence on the semiminor axis. The AE curve
corresponding to the Kane’s dispersion law is positioned
lower (redshift) due to the weaker root dependence of the

CC’s energy on the values of the QD’s geometric param-
eters. Therefore, for the Kane’s dispersion law, with an
increase in the semiaxes, the decrease in the AE is pro-
nounced weaker that in the case of parabolic dispersion,
where the curve decreases more sharply.

As is seen from Fig. 13, in the case of the parabolic dis-
persion also, for the weak quantum confinement regime,
the AE dependence on the QD’s geometric parameters is
more distinct for the dependence on the semiminor axis.
For the same reason, the curves corresponding to differ-
ent values of the semiminor axis are positioned with a
greater relative shift (Fig. 13b) than in the opposite case
(Fig. 13a). The Coulomb interaction consideration leads
to a decrease in the width of the “effective” band gap and
to the appearance of energy levels inside the forbidden
band gap. Hence, the quantum transitions occur at lower
values of the incident light frequency, shifting the AE
toward the longer wavelengths.

Figure 14 shows the dependence of the AE on the
QD’s geometric parameters for the Kane’s dispersion law
in weak quantum confinement regime. The interband
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Fig. 13 The dependences of the AE for the parabolic dispersion law of CCs in the weak quantum confinement regime: (a) on the minor semiaxis ¢
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interaction leads to a significant shift of the AE frequen-
cies toward the far infrared range, and the change in the
AE appears more distinctly for the dependence on the
semiminor axis. However, in contrast to the parabolic
case, an increase in the QD’s geometric parameters leads
to a blue shift of the threshold frequencies, as a result of
a complex effect of quantum confinement and the Cou-
lomb interaction along with interband interaction in the
two-band Kane’s model. The curves corresponding to
the large values of the semiaxes are shifted toward the
shorter wavelengths (dashed lines on the graphs), which
is the opposite behavior compared to the parabolic case.
Finally, Fig. 15 represents the dependences of the AE
in the intermediate quantum confinement regime on the
geometric parameters of the QD for parabolic and Kane
dispersion laws of CCs. As can be seen from the graphs,
in the parabolic case, 2D Coulomb interaction does not
sufficiently displace the AE toward longer waves, since
even at the value of ¢ = 0.54,, of the semiminor axis, the
absorption edge remains Wig19 > 1. Hence, in contrast to

the weak quantum confinement regime, the energy levels
do not shift further in the forbidden band gap, and the
width of the “effective” band gap is larger than E,, due to
the stronger contribution of the quantum confinement in
the vertical direction. As in the case of the weak quantum
confinement regime, in the intermediate quantum con-
finement regime with the Kane’s dispersion law, a shift of
the threshold absorption frequencies toward short wave-
lengths is observed, in contrast to the parabolic case.

Conclusion

In this work, the electronic and exciton states in a
strongly flattened ellipsoidal QD have been considered in
three quantum confinement regimes: strong, weak, and
intermediate, both in the case of the two-band Kane’s
dispersion law and the parabolic dispersion law of CCs.
Analytical expressions for the WFs and for the energies
of CCs have been obtained in a QD with a complex dis-
persion law of CCs in all regimes of the quantum confine-
ment. The obtained results have been compared with the
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case of the CC’s parabolic law of dispersion. For a nar-
row-gap semiconductor, the possibility of spontaneous
exciton collapse (instability) has been revealed for all lev-
els with a QN m = 0 in the intermediate quantum con-
finement regime, while for a wide-gap semiconductor the
levels are stable. The removal of an accidental Coulomb
degeneracy of energy in the orbital QN for the 3D exciton
in InSb QD and in a magnetic QN for the 2D exciton, as a
result of a CC dispersion law symmetry degree reduction,
has been noticed. It has been shown that in the strong
quantum confinement regime, QDs with the Kane’s dis-
persion law are better suited for detecting vibrational
levels of asymmetric molecules or vibrations at high
temperatures, while QDs with the parabolic dispersion
law are preferable for detecting vibrational levels of sym-
metric molecules or vibrations at low temperatures. Con-
sideration of the Coulomb interaction and the possibility
of the formation of 2D or 3D excitons have been shown
to expand the range of encompassed energies for analyte
detection. In particular, for the Kane’s dispersion law, a
significant shift of energies to the region of negative ener-
gies has been revealed. The dependences of the AEs on
the geometric parameters of the QD have been revealed,
and the corresponding selection rules for quantum tran-
sitions have been obtained. New selection rules in the
intermediate quantum confinement regime have been
revealed. An atypical blue shift of the threshold absorp-
tion frequencies with an increase in the sample size for
InSb QDs has been obtained due to a complex super-
imposed contribution of the interband and Coulomb
interactions.
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