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Abstract 

Electronic and excitonic states in an InSb strongly flattened ellipsoidal quantum dot (QD) with complicated disper-
sion law are theoretically investigated within the framework of the geometric adiabatic approximation in the strong, 
intermediate, and weak quantum confinement regimes. For the lower levels of the spectrum, the square root depend-
ence of energy on QD sizes is revealed in the case of Kane’s dispersion law. The obtained results are compared to the 
case of a parabolic (standard) dispersion law of charge carriers. The possibility of the accidental exciton instability is 
revealed for the intermediate quantum confinement regime. For the weak quantum confinement regime, the motion 
of the exciton’s center-of-gravity is quantized, which leads to the appearance of additional Coulomb-like sub-levels. It 
is revealed that in the case of the Kane dispersion law, the Coulomb levels shift into the depth of the forbidden band 
gap, moving away from the quantum confined level, whereas in the case of the parabolic dispersion law, the opposite 
picture is observed. The corresponding selection rules of quantum transitions for the interband absorption of light are 
obtained. New selection rules of quantum transitions between levels conditioned by 2D exciton center of mass verti-
cal motion quantization in a QD are revealed. The absorption threshold behavior characteristics depending on the 
QDs geometrical sizes are also revealed.

Keywords:  Klein–Gordon equation, Ellipsoidal quantum dot, Narrow band gap semiconductor, Adiabatic 
approximation, Kane’s dispersion law, Parabolic dispersion law, Exciton spontaneous collapse (decay), Coulomb 
accidental instability, Direct light absorption, Selection rules
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Introduction
The achievements of modern semiconductor technolo-
gies provide ample opportunities for the design and 
production of the semiconductor QDs having nontrivial 
geometric shapes [1–8]. The energy spectrum of the QD 
is linear due to the complete quantization of charge car-
riers’ (CCs) motion, which makes it possible to call these 
structures artificial atoms. However, in contrast to real 
atoms, where the CC quantization is due solely to the 
Coulomb interaction, the discrete spectrum in the QD is 
formed due to quantum confinement, and in addition to 
charged particles (an electron, hole, impurity), uncharged 
particles (a phonon, exciton, biexciton) are affected by 

the quantum confinement as well. Another advantage of 
the quantum confinement is that by changing the size, 
external shape, or material of the QD, one can success-
fully control the energy spectrum of CCs in them. Obvi-
ously, an increase in the number of the QD geometric 
parameters leads to the possibility of more flexible and 
effective control of the energy spectrum and other physi-
cal characteristics of CCs in them. For example, Hund’s 
rule is fulfilled for spherical QDs, whereas for ellipsoidal 
QDs this rule becomes more complicated, namely it leads 
to the appearance of new rules for filling the electronic 
shells and to the partial cancellation of old rules [4].

In low-dimensional structures, quantum confinement 
successfully competes with Coulomb quantization and 
even prevails over it in certain cases. The significant dif-
ference in the effective masses of an impurity (hole) and 
electron allows application of the Born–Oppenheimer 
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approximation [9, 10]. When the quantum confined 
energy is much more than the Coulomb energy, the per-
turbation theory is applicable, where the role of a small 
correction plays the term of the Coulomb interaction 
in the problem Hamiltonian [10]. The situation is radi-
cally changed when the effective mass of the impurity 
center (hole) is comparable to the mass of the electron. 
For example, in the narrow-gap semiconductors for 
which the CC standard (parabolic) dispersion law is vio-
lated, the effective masses of the electron and light hole 
are equal [11–13], and obviously, Born–Oppenheimer 
approximation is not further applicable.

In recent years, the most unexpected areas of applica-
tion of QDs’ properties have appeared in the design of new 
high-tech devices used in science, technology, medical, and 
domestic appliances fields. On the basis of QDs, quantum 
lasers, LEDs of various spectra [14–16], biochemical sensors 
[17, 18], single-electron diodes and transistors [19, 20], and 
saturated TV screens with a wide range of different colors 
have been designed and successfully implemented. Recent 
studies also show that QDs are key objects for the successful 
implementation of qubits [21–23]. One of the priority tasks 
of modern semiconductor physics is the development of a 
new generation of label-free biochemical sensors based on 
quantum confinement and tunneling between nanostruc-
tures as well as sensors for detection of structural changes 
in the material. Currently existing biochemical sensors are 
based, for example, on the chemical capture of surrounding 
molecules using ligands. However, this method allows only 
one-time use of the sensor, since after the formation of a 
chemical bond, the sensor becomes inoperative (unusable) 
or needs to be cleaned. For sensors based on the quantum 
tunneling effect, such issues are eliminated, since chemical 
bonds do not arise, and the detection of molecules occurs 
only on the basis of electron tunneling. It should be noted 
that the tunneling of electrons from analyte to the QD 
is possible only if the electronic levels of the QD and ana-
lyte coincide. In addition to energy orbitals, analyte mole-
cules also have families of vibration and rotation levels, the 
interlevel distances of which are a kind of unique markers 
(fingerprints). For successful imitation of these families of 
levels, QDs with a specific external shape—strongly flat-
tened QDs—are suitable, which ensures the appearance of 
similar families of levels within the QD. For a more success-
ful mimicry of inter-level distances, the correct choice of 
QD material is also important. For this very purpose, in this 
work, we consider the electronic properties, exciton states, 
and direct interband absorption of light in a strongly flat-
tened ellipsoidal QD with the Kane dispersion law of CCs. 
Theoretical calculations on the spectra of these systems 
will provide wide possibilities for modeling of highly selec-
tive quantum sensors and highly sensitive structural sensors 

of the new generation, with a wide range of controllable 
properties.

Theory
Let us consider an impermeable strongly flattened ellipsoi-
dal QD (see Fig. 1.). Then, the potential energy of the CC 
in cylindrical coordinates can be written in the following 
form:

where a1 and c1 are minor and major semiaxes of the 
ellipsoid, respectively. One needs to compare the geo-
metric sizes of the QD with effective exciton radius of 
the CC in order to determine the quantum confinement 
regimes.

Strong Quantum Confinement Regime
First, we solve the problem in the strong quantum confine-
ment regime, when the condition aex >> a1 >> c1 takes 
place (see Fig.  1a), and aex is the effective Bohr radius of 
an exciton. In this approximation, the Coulomb interac-
tion between an electron and a hole is much less than the 
quantum confinement energy, therefore the former can be 
neglected. Then, the problem reduces to the determination 
of CCs’ energy states independently. As noted above, the 
dispersion law for narrow-gap semiconductors is non-par-
abolic and is given in the following form [11, 24]:

where S ∼ 108sm/ sec is the parameter related with the 
semiconductor band gap Eg = 2m∗

e S
2 . Let us write the 

Klein–Gordon equation [25] for an ellipsoidal QD con-
sisting of InSb , with an electron and hole when their 
Coulomb interaction is neglected:

Here Pe(h) is the momentum operator of the CC (electron, 
hole), m∗

e(h) is the effective mass of the CC, and E is the 
total energy of the system. After simple transformations, 
equation (3) can be written as the reduced Schrödinger 
equation in dimensionless units:

(1)U(ρ,ϕ,Z) =
0,

ρ2

a21
+ Z2

c21
≤ 1

∞,
ρ2

a21
+ Z2

c21
> 1

, a1 >> c1

(2)E2 = P2S2 +m∗ 2
e(h)S

4

(3)

√

(

P2
e + P2

h

)

S2 +
(

m∗ 2
e +m∗ 2

h

)

S4 �(�re, �rh) = E�(�re, �rh)

(4)
(

−1

2
∇2
e − 1

2
∇2
h

)

�(�re, �rh) = ε0�(�re, �rh)
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where ε0 =
2ε2−ε2g
2εg

, ε = E
Eex

, εg = Eg
Eex

 , Eex = �
2

2µa2ex
= e2

κaex
 

is the effective Rydberg energy of an exciton, κ is the die-
lectric constant of the semiconductor, aex = κ�2

µe2
 is an 

exciton effective Bohr radius, µ = m∗
em

∗
h

m∗
e+m∗

h
 is the reduced 

mass of an exciton, and e is the elementary charge. The 
wave functions (WFs) of the problem are sought in the 
form �(�re, �rh) = �e(�re)�h(�rh) . After separation of 

variables, one can obtain the following equation for the 
electron:

The CC motion in the radial direction is much slower 
than in the direction OZ due to the geometric shape of 
the QD ( a1 >> c1 ). Based on this, the Hamiltonian in 
the dimensionless variables can be represented as the 

(5)
(

∇2
e + 2εe

)

�e(�re) = 0

Fig. 1  Strongly flattened ellipsoidal QD: (a) realization of the strong quantum confinement regime, when the condition aex >> a >> c holds, 
and the motions of an electron and a hole are quantized separately, (b) realization of the weak quantum confinement regime, when the condition 
c >> aex holds, and the motion of a 3D exciton is quantized, (c) realization of the intermediate quantum confinement regime, when the condition 
a >> aex >> c holds, and the motion of a 2D exciton is quantized
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sum of the Hamiltonians of the “fast” Ĥ1 and “slow” Ĥ2 
subsystems [26, 27]:

where

Here, Ĥ = Ĥ
Eex

 , r = ρ
aex

 , z = Z
aex

 . The WFs are sought in 
the form:

where C is the normalization constant. For a fixed value 
of the coordinate r of the slow subsystem, the electron 
motion is localized in the one-dimensional potential well 
with an effective variable width:

where a = a1
aex

 and c = c1
aex

 notations are introduced. First, 
let us solve the Schrödinger equation for the “fast” sub-
system, which can be written in the form of the harmonic 
equation:

where ε(r) is the energy of the “fast” subsystem. The solu-
tions of Eq. (10) are given in the form:

where n is the quantum number (QN) of the “fast” sub-
system. One can obtain the “fast” subsystem energy from 
the boundary conditions χ(z; r)|

z=± L(r)
2

= 0 , taking into 
account the expression (9):

For the lower levels of the energy spectrum, the elec-
tron motion is mainly localized in the region of the geo-
metric center-of-gravity of the QD ( r << a ). Based on 
this, one can expand in series ε(r):

(6)Ĥ = Ĥ1 + Ĥ2 + U(r,ϕ, z)

(7)Ĥ1 = − ∂2

∂z2
, Ĥ2 = −

(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂ϕ2

)

(8)�e(r,ϕ, z) = Ceimϕχ(z; r)R(r)

(9)L(r) = 2c

√

1− r2

a2

(10)χ ′′(z; r)+ ε(r)χ(z; r) = 0

(11)χ(z; r) =
√

2

L(r)
sin

(

πn

L(r)
z + πn

2

)

(12)ε(r) = π2n2

L2(r)
, n = 1, 2, ...

where ε0n = π2n2

4c2
 and ωn = πn

2ac notations are introduced. 
Now let us consider the CC motion in the “slow” subsys-
tem, for which the expression (13) serves as an effective 
potential energy. The Schrödinger equation of the “slow” 
subsystem takes the form:

After the change of a variable ξ = ωn r
2 and γ = 2εe−ε0n

4ωn
 

notation, Eq. (14) is written as

The solution of Eq. (15) is sought in the form of 
R(ξ) ∼ e−

ξ
2 ξ

|m|
2 �(ξ) , after which the Kummer equation 

is obtained:

the solutions of which are given by degenerate hyper-
geometric functions of the first kind:

For the total energy of an electron, from the boundary 
conditions, one obtains

where nr , m and N = 2nr + |m| are the radial, magnetic, 
and oscillatory QNs of an electron, respectively. The elec-
tron energy (18) is a constant of separation of variables in 
the hole reduced Schrödinger equation:

Solving equation (19) in a similar way, in the strong 
quantum confinement regime, one can derive the fol-
lowing expression for the total energy of the particles’ 
system:

(13)ε(r) ≈ ε0n + ω2
nr

2

(14)

(

−
(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)

+ ε0n + ω2

nr
2

)

R(r)eimϕ = 2εe R(r)e
imϕ

(15)ξR′′(ξ)+ R′(ξ)+
(

−m2

4ξ
+ γ − ξ

4

)

R(ξ) = 0

(16)

ξ �′′(ξ)+ (|m| + 1− ξ)�′(ξ)+
(

γ − |m| + 1

2

)

�(ξ) = 0

(17)�(ξ) = 1F1

(

−
(

γ − |m| + 1

2

)

, |m| + 1, ξ

)

(18)
εe =

π2n2

8c2
+ πn

2ac
(2nr + |m| + 1) = π2n2

8c2
+ πn

2ac
(N + 1)

(19)
(

∇2
h + 2(ε0 − εe)

)

�h(�rh) = 0

(20)εKanestr = √
εg

√

π2
(

n2 + n′2
)

8c2
+ π

2ac

(

n(2nr + |m| + 1)+ n′
(

2n′r + |m′| + 1
))

+ εg

2
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Here, n, nr , m and n′, n′r , m′ are the QNs of electron and 
hole, respectively. For comparison (see (20)), in the case 
of a parabolic dispersion law (e.g., for QD consisting of 
GaAs ) the total energy in the strong quantum confine-
ment regime is given as [5]:

Here, n,N  and n′,N ′ are the QNs of “fast” and “slow” 
subsystems of electron and hole, respectively. Normal-
ized WFs are given in the form:

Weak Quantum Confinement Regime
Let us discuss the weak quantum confinement regime, 
when the condition aex << c1 is satisfied (see Fig.  1b). 
Then, the binding energy of the exciton prevails over the 
quantum confinement energy, and the weak influence 
of the QD walls appears as a small correction. In other 
words, the quantized motion of an exciton as a whole is 
considered in a strongly flattened ellipsoidal QD. In the 
case of the presence of Coulomb interaction between an 
electron and hole, the Klein–Gordon equation can be 
written as [25, 28–30]

After some transformations, as in the case of a strong 
quantum confinement regime, the Klein–Gordon equa-
tion reduces to the Schrödinger equation with a certain 
effective energy. Using the coordinates of the exciton’s 
center-of-gravity �r = �re − �rh , �R = m∗

e �re+m∗
h�rh

m∗
e+m∗

h
 , where �re and 

�rh are the 3D radius-vectors of an electron and a hole, 
respectively, m∗

h is the effective mass of a hole, and con-
sidering the case of a light hole m∗

e = m∗
h , one can repre-

sent the system WFs in the following form:

Here, the WF ψnr ,l,q(�r) describes the relative motion of 
an electron and a hole, and WF �n,m,k

(

�R
)

 describes the 
motion of the exciton’s center-of-gravity, where nr , l, q 

(21)
ε
par
str =π2n2

8c2
+ πn

2ac
(N + 1)+ π2n′2

8c2

+ πn′

2ac

(

N ′ + 1
)

, N ,N ′ = 0, 1, 2, ...

(22)

�e(h)(r,ϕ, z) =
e
imϕ

√
2π

√

2

L(r)
sin

(

πn

L(r)
z + πn

2

)

×

×
√

πn

ac

√
nr !Ŵ(|m| + 1)

Ŵ3/2(|m| + 1+ nr )
e
− πn

2ac
r
2
( πn

2ac
r
2
)

|m|
2

1F1

{

−nr , |m| + 1; πn

2ac
r
2
}

.

(23)
√

((

P2
e + P2

h

)

S2 +
(

m∗ 2
e +m∗ 2

h

)

S4
)

�(�re, �rh) =
(

E + e2

κ|�re − �rh|

)

�(�re, �rh)

(24)�(�re, �rh) = ψnr ,l,q(�r)�nGr ,nR ,M

(

�R
)

are the radial, orbital, and magnetic QNs of the exciton, 
correspondingly. After switching to the new coordinates, 
the reduced Schrödinger equation takes the following 
form:

where M0 = m∗
e +m∗

h is the mass of an exciton. In the 
Eex and aex units, Eq. (25)  is written in the form:

where ε0 =
2ε2−ε2g
2εg

, α = 4ε
εg
, β = 4

εg
 notations are intro-

duced. One can derive the equation for the exciton’s 
center-of-gravity, after separation of variables:

The energy εGr of the exciton’s center-of-gravity can be 
obtained by repeating the procedure of calculations of 
the strong quantum confinement regime for the adiabatic 
approximation, considering the exciton mass M0 instead 
of the m∗

e:

where nGr is the QN of the “fast” subsystem of exciton’s 
center-of-gravity motion, nR, M , and NR = 2nR + |M| are 
the radial, magnetic, and oscillatory QNs of the “slow” 
subsystem of the same motion, respectively.

Further, let us consider the relative motion of the electron–
hole pair. The WFs of the problem are sought in the form 
ψnr ,l,q(�r) = 1√

r
Xnr ,l(r)Ylq(θ ,ϕ) , where Ylq(θ ,ϕ) are spheri-

cal functions, nr , l, q are radial, orbital, and magnetic QNs 
of relative motion. After simple transformations, the radial 
part of the reduced Schrödinger equation can be written as:

(25)

�

− �
2

2M0

∇2

�R − �
2

2µ
∇2

�r

�

ψnr ,l,q(�r)�nGr ,nR ,M

�

�R
�

=







�

E + e2

κ|�r|
�2

−
�

m∗ 2
e +m∗ 2

h

�

S4

2m∗
e S

2






ψnr ,l,q(�r)�nGr ,nR ,M

�

�R
�

(26)

(

−1

4
∇2

�R −∇2

�r

)

ψnr ,l,q(�r)�nGr ,nR ,M

(

�R
)

=
(

ε0 +
α

r
+ β

r2

)

ψnr ,l,q(�r)�nGr ,nR ,M

(

�R
)

(27)
−1

4
∇2

�R�nGr ,nR ,M(NR)

(

�R
)

= εGr�nGr ,nR ,M(NR)

(

�R
)

(28)
εGr =

π2
n
2

Gr

16c2
+

πnGr

4ac
(2nR + |M| + 1)

=
π2

n
2

Gr

16c2
+

πnGr

4ac
(NR + 1)
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where ε1 = ε0 − εGr . The change of variable η = 2
√−ε1r 

transforms Eq. (29) to

where the parameter δ = α
2
√−ε1

 is introduced. When 
η → 0 , the desired solution of (30) is sought in the form 
X(η → 0) = X0 ∼ η�[29]. Substituting this in Eq. (30), 
one gets a quadratic equation with two solutions:

The solution satisfying the finiteness condition of the 

WF is given as X0 ∼ η

√

(

l+ 1
2

)2

−β
 . When η → ∞ , equa-

tion (30) takes the form: X′′(η)− 1
4
X(η) = 0 . The solu-

tion satisfying the standard conditions can be written 
as X(η → ∞) = X∞ ∼ e−

η
/2 [28, 29]. Thus, the solution 

is sought in the form:

Substituting the function (32) into Eq. (30) one gets 
the Kummer equation [30]:

the solutions of which are given by the first kind 
degenerate hypergeometric functions:

The expression δ − �− 1
2
 needs to be a nonnegative 

integer nr (radial QN) providing the finiteness of the 
WFs:

From the condition (35) for the energy, one can derive 
the following expression in dimensionless units:

(29)

X
′′(r)+ 1

r
X
′(r)+






ε1 −

�

l + 1
2

�2

− β

r2
+ α

r






X(r) = 0

(30)

X
′′(η)+ 1

η
X
′(η)+






−1

4
−

�

l + 1
2

�2

− β

η2
+ δ

η






X(η) = 0

(31)�1,2 = ∓
√

(

l + 1

2

)2

− β

(32)X(η) = η�e−
η
/2f (η)

(33)

ηf ′′(η)+ (2�+ 1− η)f ′(η)+
(

δ − �− 1

2

)

f (η) = 0

(34)f (η) =1 F1

(

−
(

δ − �− 1

2

)

, 2�+ 1, η

)

(35)nr = δ − �− 1

2
, nr = 0, 1, 2, ....

or

For comparison, in the case of parabolic dispersion law, 
system energy of the weak confinement regime is given 
by the formula

where NC = 1, 2, ... is the Coulomb main QN of the 
exciton.

It is necessary to note some important results:

(a)	 In contrast to the case of the problem of hydrogen 
impurities in a semiconductor with Kane’s disper-
sion law, considered in works [31, 32], in the case of 
the exciton, the instability of the ground state 
energy is absent. Thus, in the case of hydrogen-like 
impurity, the electron energy becomes unstable 
when Zα0 > 1

2
 ( Z is an ordinal number, α0 is the 

fine structure constant), and the phenomenon of 
the particle falling into the center takes place. How-
ever, in the case of an exciton with Kane’s disper-
sion law, the expression 

(

l + 1
2

)2

− 4
εg

 under the 
square root does not become negative even for the 
ground state with l = 0 , hence fulfillment of the 
condition α0 > 1√

2
 would be necessary to obtain 

instability in the ground state.
(b)	 For narrow band gap semiconductor QDs, the quan-

tum confined motion introduces an energy term 
under the square root in the energy of an exciton 
(expressed in the center-of-gravity referential), 
whereas in the case of parabolic dispersion law, this 
energy appears as a linear expression (a simple sum).

(36)
εKaneweak = −

√

εg
2
+ εGr

√

√

√

√

1
εg

+ 4

ε2g

(

nr+
√

(

l+ 1
2

)2

− 4
εg
+ 1

2

)2

(37)

εKaneweak = −

√

εg
2
+ π2n2Gr

16c2
+ πnGr

4ac (2nR + |M| + 1)
√

√

√

√

1
εg

+ 4

ε2g

(

nr+
√

(

l+ 1
2

)2

− 4
εg
+ 1

2

)2

(38)

ε
par
weak = π2n2Gr

16c2
+ πnGr

4ac
(2nR + |M| + 1)

− 1

N 2

C

= π2n2Gr
16c2

+ πnGr

4ac
(NR + 1)− 1

N 2

C
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(c)	 The exciton energy depends only on the main QN 
of the Coulomb motion in the case of realization 
of the parabolic dispersion, whereas in the case of 
Kane’s dispersion law it reveals a rather complicated 
dependence on the radial and orbital QNs. Thus, 
the non-parabolicity of the charge carrier’s disper-
sion law leads to the removal of “random” Coulomb 
degeneracy in the orbital QN.

(d)	 In the case of the implementation of the para-
bolic dispersion law, a family of Coulomb levels is 
located under each quantum confined level; with 
an increase in the Coulomb QN, these levels shift 
closer to the quantum confined level (see 38). A 
similar situation is observed in the case of a diamag-
netic exciton[33], where the magnetic quantization 
energy level, under which the Coulomb levels are 
located, takes the quantum confined level role. The 
picture is the opposite in the case of the implemen-
tation of the Kane’s dispersion law. In a narrow-gap 
semiconductor, due to interband interaction, the 
quantum confined and Coulomb energies do not 
appear as additive terms in the total energy, but as 
a sum under the square root (see 37). In this case, 
with an increase in the Coulomb QNs, the levels 
shift deeper into the forbidden band, moving away 
from the quantum confined level. This consolida-
tion of Coulomb levels resembles the behavior of 
acceptor levels, while in the case of a parabolic dis-
persion law, exciton levels behave similarly to donor 
levels.

Intermediate Quantum Confinement Regime 
( a >> aex >> c)
Let us discuss the intermediate-weak quantum confine-
ment regime, when the condition a >> aex >> c is sat-
isfied (see Fig.  1c). In this regime, in the OZ-direction, 
the quantum confinement significantly exceeds the Cou-
lomb interaction of an electron and a hole, however, in 
the radial direction the picture is the opposite. In this 
case, the system’s energy for the radial motion is caused 
mainly by the electron–hole Coulomb interaction, and 
the formation of quasi-2D exciton is possible. Note that 
such a quantization regime was not considered in the 
case of a parabolic dispersion law either. Repeating the 
calculation procedure as in the case of a weak quantum 
confinement regime, we switch to the coordinates of the 
center-of-gravity and relative motion. Since the motion 
of the center-of-gravity is the motion of an electrically 
neutral particle, there is no competition for this motion 
between quantum confinement and Coulomb quantiza-
tion. Again, one solves the Klein–Gordon equation, and 
repeat the calculations from (23) to (28). Further, let us 

consider in more detail the relative motion of an elec-
tron and a hole. In the case of wide-gap semiconductors, 
the probability of the formation of excitons with a heavy 
hole more often prevails over the probability of the for-
mation of an exciton with a light hole due to the speci-
ficity of the band structure. Therefore, in the case of an 
intermediate quantum confinement regime, the motion 
of a heavier particle, a hole, is considered in the averaged 
field created by a faster and lighter particle, an electron. 
In other words, the Born–Oppenheimer approximation 
is used to describe the motion of a heavy hole in a poten-
tial field created by an electron. To solve this problem, 
the electron potential is expanded in the Taylor series at 
the coordinate of the hole motion. In   this case, when a 
light hole is considered, such an approach would be com-
pletely unjustified. Considering the condition aex >> c1 , 
we can assert that the motion of a quasi-2D exciton is 
ensured under the condition z << r . Therefore, instead 
of the averaged potential, we expand the Hamiltonian of 
the relative motion in a series, omitting the terms pro-
portional to z

2

r2
→ 0 . In other words, let us consider the 

relative motion of a quasi-2D exciton, which is confined 
in the perpendicular direction by the walls of the QD. 
Then, in cylindrical coordinates, the reduced Schrödinger 
equation for relative motion will be written in the form:

WFs are sought in the form of

where C is the normalization constant. After separating 
the variables, for the WFs and the energy of motion in 
the OZ-direction, respectively, one gets:

Further, for the radial part, one obtains equation

where the notation ε2 = ε0 − εGr − εz is introduced. The 
change of variable ξ = 2

√−ε2r transforms Eq. (29) to

(39)

(

∂2

∂z2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ (ε0 − εGr)+

α

r
+ β

r2

)

ψnr ,m,nz (r,ϕ, z) = 0

(40)ψnr ,m,nz (r,ϕ, z) = Ceimϕ
Xnr ,m(r)Dnz (z)

(41)

Dnz (z) =
√

a

c
√
a2 − 1

sin

(

π a nz

2c
√
a2 − 1

z + πnz

2

)

,

nz =1, 2, ...

(42)εz =
π2n2za

2

4c2
(

a2 − 1
)

(43)

X
′′(r)+ 1

r
X
′(r)+

(

ε2 −
m2 − β

r2
+ α

r

)

X(r) = 0
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where the similar parameter δ = α
2
√−ε2

 is introduced.
At ξ → 0 the solution of (44) is sought in the form 

χ(ξ → 0) = χ0 ∼ ξ� . Here, in contrast to Eq. (30) 
the quadratic equation is obtained with the following 
solutions:

In 2D case, the solution satisfying the condition 
of finiteness of the WF is given as χ0 ∼ ξ

√
m2−β . At 

ξ → ∞ , proceeding analogously to the solution of Eq. 
(30), one should again arrive at the equation of Kum-
mer (33), but with different parameter � . Finally, for the 
energy of the 2D exciton with the Kane dispersion law 
one gets:

As noted above, for an exciton with a light hole, this 
quantization regime was not considered even in the 
case of the parabolic dispersion law, hence let us con-
sider the differences from the Kane’s dispersion law in 
more detail. Using the coordinates of the center-of-
gravity and relative motion, the Schrödinger equation 
for this case is written as:

In the Eex and aex units Eq. (47) will be written in the 
form:

Separating the variables and solving the Schrödinger 
equation, as in the case of the Kane’s dispersion law, for 
the center-of-gravity energy one obtains the result (28). 
However, for radial motion, in the case of the parabolic 
dispersion law, one gets

(44)

X
′′(ξ)+ 1

ξ
X
′(ξ)+

(

−1

4
− m2 − β

ξ2
+ δ

ξ

)

X(ξ) = 0

(45)�1,2 = ∓
√

m2 − β

(46)

εKaneint = −

√

εg
2
+ π2n2Gr

16c2
+ πnGr

4ac (2nR + |M| + 1)+ π2n2za
2

4c2(a2−1)
√

1
εg

+ 4

ε2g

(

nr+
√

m2− 4
εg
+ 1

2

)2

(47)

(

− �
2

2M0

∇2

�R − �
2

2µ
∇2

�r + e
2

κ|�r|

)

ψnr ,m,nz (�r)�nGr ,nR ,M

(

�R
)

= E ψnr ,m,nz (�r)�nGr ,nR ,M

(

�R
)

(48)

(

−1

4
∇2

�R − ∇2

�r − 2

|�r|

)

ψnr ,m,nz (�r)�nGr ,nR ,M

(

�R
)

= ε ψnr ,m,nz (�r)�nGr ,nR ,M

(

�R
)

Note that Eq. (49) is also obtained considering the con-
dition aex >> c1 and omitting the terms proportional to 
z2

r2
→ 0 . Again the WFs are sought in the form (40) and 

for the motion in the OZ-direction, repeating the calcu-
lation procedure, one obtains the results (41) and (42). 
However, for the radial part, in this case, an equation 
similar to the 2D Coulomb equation is obtained:

the solutions of which are given by degenerate hyper-
geometric functions of the first kind:

A similar result for the case of the parabolic disper-
sion law is written as:

where NC = nr + |m| is Coulomb principal QN for 
exciton.

It is also important to make the following remarks 
here:

(a)	 In contrast to the 3D exciton case, all states with 
m = 0 are unstable in a semiconductor with Kane’s 
dispersion law. It is also important that instability is 
the consequence not only of the dimension reduc-
tion of the sample, but also the change in the dis-
persion law. “The particle falling into center” or the 
recombination (exciton collapse) of the pair in the 
states with m = 0 , is the consequence of interaction 
of energy bands. Thus, the dimension reduction 
leads to the fourfold increase in the exciton ground 
state energy in case of parabolic dispersion law, but 
in the case of Kane’s dispersion law, recombina-
tion (exciton spontaneous collapse) is also possible. 
Note also that the presence of quantum confine-
ment does not affect the occurrence of instability, as 
it exists in both the presence and absence of quan-
tum confinement (see formulae above).

(49)

(

∂2

∂z2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ (ε0 − εGr)+

2

r

)

ψnr ,m,nz (r,ϕ, z) = 0

(50)X
′′(r)+ 1

r
X
′(r)+

(

ε2 −
m2

r2
+ 2

r

)

X(r) = 0

(51)

X(ξ) = ξ |m|e
−ξ/2
1 F1

(

−
(

1√−ε2
− |m| − 1

2

)

, 2|m| + 1, ξ

)

(52)

εPar
int

= π2
n
2

Gr

16c2
+ πnGr

4ac
(2nR + |M| + 1)

+ π2
n
2
za

2

4c2
(

a2 − 1
) − 1

(

NC + 1

2

)2
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(b)	 Consideration of the bands’ interaction removes the 
degeneracy of the magnetic QN. However, the two-
fold degeneracy of m of energy remains. Thus, in 
the case of Kane dispersion law the exciton energy 
depends on m2 , whereas in the parabolic case it 
depends on |m| . Due to the circular symmetry of the 
problem, the twofold degeneracy of energy holds in 
both cases of dispersion law.

(c)	 In this quantum confinement regime, the behavior 
of the Coulomb levels is similar to the case of the 
weak quantum confinement regime. Thus, in the 
case of the implementation of the Kane’s dispersion 
law, the Coulomb interaction appears as a mixed 
interference term with the quantum confinement 
in the total energy, while in the case of a parabolic 
dispersion law, the Coulomb energy appears as an 
additive term (compare to 46 and 52).

Interband Absorption of Light
Direct interband absorption of light in a strongly flattened 
ellipsoidal QD in a strong quantum confinement regime 
is considered, when the Coulomb interaction between the 
electron and a hole is neglected. The case of a light hole 
is discussed ( m∗

e = m∗
h ), and the absorption coefficient is 

determined by the expression [34]:

where ν and ν′ are the QN sets corresponding to the elec-
tron and hole, Eg is the band gap of a bulk semiconductor, 
� is an incident light frequency, A is a quantity propor-
tional to the square of the matrix element taken by the 
Bloch functions. After simple calculations, one gets the 
following expression for the absorption edge (AE) W100:

where W100 = ��100

Eg
 , d = �√

2µEg
 , µ = m∗

em
∗
h

m∗
e+m∗

h
—is the 

reduced mass of the exciton. For the Kane’s dispersion 
law

The selection rules in quantum transitions are consid-
ered. Quantum transitions for the energy levels allowed for 
the magnetic QNs m = −m′ , and for the "fast" subsystem 
QNs n = n′ , while the "slow" subsystem selection rules are 
N = N ′.

(53)

K = A
∑

ν,ν′

∣

∣

∣

∣

∫

�e
ν�

h
ν′d�r

∣

∣

∣

∣

2

δ

(

��− Eg − Ee
ν − Eh

ν′

)

(54)W
Par100
Str = 1+ π2

4

d2

c2
+ π

d2

a c

(55)W
Kane100
Str =

√

1+ π2d2

c2
+ 8πd2

ac

Next, let us consider the interband absorption of light in 
the weak quantum confinement regime. Due to the locali-
zation of the exciton in a relatively small vicinity of the geo-
metric center of the QD, the expression for the absorption 
coefficient can be written as [34]

where E is the energy (37) in dimensional units. It should 
be noted that ψnr ,l,q(0)  = 0 only for the ground state, 
when l = q = 0 ( l, q are the orbital and magnetic QNs 
of the exciton). In this regime, the following analytical 
expressions are finally obtained for the absorption coef-
ficient and the AE:

where nr is the radial QN of the exciton, 
W1001(0) = ��1001(0)

Eg
 , h = �√

2M0Eg
 , and M0 is the total 

mass of the exciton. For the Kane’s dispersion law in the 
case of weak quantum confinement, one has

and quantum transitions for the energy lev-
els  are allowed for the exciton radial QNs nr = n′r 
and nr = n′r ± 1 , and for the "fast" subsystem QNs 
nGr = n′Gr , while the "slow" subsystem selection rules 
are N = N ′ . In the case of the parabolic dispersion law, 
quantum transitions for the energy levels allowed for 
the exciton main QN NC = N ′

C , while for the motion of 
center-of-gravity selection rules remain the same.

The most important feature of the latter case is that 
the shift of the exciton level with a change in the semi-
axes of the QD is determined by the total mass of the 
exciton.

Let us proceed to consideration of direct interband 
light absorption in the QD in the intermediate quantum 
confinement regime. Here, the electron–hole interac-
tion leads to the fact that in the spectrum of interband 
optical absorption, each line corresponding to specified 

(56)

K = A
∑

nGr ,nR ,M
nr ,l

∣

∣ψnr ,l,q(0)
∣

∣

2

∣

∣

∣

∣

∫

�nGr ,nR ,M

(

�R
)

�n,nr ,m

(

�R
)

d�R
∣

∣

∣

∣

2

δ
(

��− Eg − E
)

(57)

K = A
∑

nGr ,nR

32a1c
2
1

π5n3(aex)
3

nr !
Ŵ3(1+ nr)

δ
(

��− Eg − E
)

(58)WPar
weak 1001 = 1+ π2

16

h2

c2
+ πh2

4a c
− h2

(59)
W

Kane1000
weak = 1−

√

1
2
+ π2h2

16c2
+ πh2

4ac
√

1+ 4h2
(

√

1
4
−4h2+ 1

2

)2
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values of ν turns into a series of closely spaced lines 
corresponding to different values of ν′ . The absorption 
coefficient in this regime has the form [34]

Finally, in the case of the CC’s parabolic dispersion 
law, for the AE one obtains

For the Kane’s dispersion law,

(60)
K =A

∑

ν,ν′

∣

∣�(�re, �rh)δ(�re − �rh)d�red�rh
∣

∣

2

δ

(

��− Eg − Ee
ν − Eh

ν′

)

(61)

W
Par1010
int = 1+ π2d2

16c2
+ πd2

4ac
+ π2a2d2

4c2
(

a2 − 1
) − 4d2

(62)

W
Kane10101
int = 1−

√

1
2
+ π2d2

16c2
+ πd2

4ac + π2a2d2

4c2(a2−1)
√

1+ 4d2
(
√

1− 4
εg
+ 1

2

)2

Strictly speaking, formula (62) is the reduced AE, since 
the exciton in the ground state with a QN m = 0 is not 
stable and collapses spontaneously. Therefore, this for-
mula is written for the first stable excited state of an exci-
ton with the magnetic QN m = 1 . In the intermediate 
quantum confinement regime, for the case of the Kane’s 
dispersion law of CCs, quantum transitions are allowed 
between levels with nr = n′r , m = −m′ and nz = n′z 
exciton QNs, while for the motion of center-of-gravity 
selection rules are nGr = n′Gr and N = N ′ . In the case 
of parabolic dispersion law, quantum transitions for the 
energy levels allowed for the exciton main QN NC = N ′

C 
and nz = n′z , while for the motion of center of gravity 
selection rules remain the same. Remarkably, in contrast 
to the case of the weak quantum confinement regime, 
for both cases of the dispersion law in the intermediate 
quantum confinement regime, the shift of the exciton 
level with a change in the geometric parameters of the 
QD is determined by the reduced exciton mass. Moreo-
ver, the superimposed effect of the quantum confinement 
and the Coulomb interaction of an electron and a hole 
leads to the emergence of new selection rules nz = n′z as a 

Fig. 2  The dependences of the lower two families of levels of the energy spectrum of an electron in a strongly flattened ellipsoidal QD with the 
Kane’s and parabolic dispersion laws of CCs: (a) and (b) on the minor semiaxis c at the fixed value of the major semiaxis a , (c) and (d) on the major 
semiaxis a at the fixed value of the minor semiaxis c 
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result of the vertical motion of the center-of-gravity with 
the reduced mass of the 2D exciton.

Discussion
Strong Quantum Confinement Regime
As is seen from the results obtained in (20) and (21), the 
energy spectra of particles corresponding to both the 
Kane’s and parabolic dispersion laws of CCs have a com-
mon characteristic. In both cases, for the lower levels of 
the spectrum, families of energy levels of the “slow” sub-
system are located above each level of the “fast” subsys-
tem, the interlevel distances of which depend on the QN 
n
(

n′
)

 of the “fast” subsystem. Figure 2 shows the depend-
ences of the lower two families of levels of the energy 
spectrum of an electron in a strongly flattened ellipsoi-
dal QD with Kane’s and parabolic dispersion laws of CCs. 
Numerical calculations are made for the QD consisting of 
InSb with the following parameters: m∗

e = m∗
h ≃ 0.013m0 , 

Eex ≃ 3 · 10−4eV  , Eg ≃ 0.23 eV  , κ = 17.8 , aex ≃ 103 Å, 
where m0 is the mass of the free electron. As can be seen 
from the figure, with an increase in the semiaxes, the 
energy levels in the case of both dispersion laws decrease 
due to a decrease in the influence of quantum confine-
ment. As expected, with an increase in the semiminor 
axis c , the levels decrease more sharply than with an 
increase in the semi-major axis a (compare graphs (a) and 
(c), and graphs (b) and (d) in Fig. 2), since the quantum 
confinement in the perpendicular direction has a much 
greater contribution to the energy of the particle than 
the quantum confinement in the radial direction, due 
to the strongly flattened external shape of the ellipsoi-
dal QD. However, in the case of the parabolic dispersion 
law, the families of the “slow” subsystems turn out to be 
equidistant, while in the case of the Kane’s dispersion law, 
equidistance is violated. Thus, for the case of the Kane’s 
dispersion law with the values of the semiaxes a = 0.3aex 
and c = 0.05aex (see Fig.  2a), for the first family of lev-
els ( n = 1 ) we have the following interlevel distances: 
EKane
1,1 − EKane

1,0 ≃ 70.68Eex , EKane
1,2 − EKane

1,1 ≃ 66.65Eex , 
and EKane

1,3
− E

Kane

1,2
≃ 63.24Eex . For the second family of lev-

els ( n = 2 ), the following interlevel distances are obtained: 
EKane
2,1 − EKane

1,0 ≃ 82.36Eex , EKane
2,2 − EKane

2,1 ≃ 79.08Eex , 
and EKane

2,3 − EKane
2,2 ≃ 76.18Eex . For the same values of 

the semiaxes, in the case of the parabolic dispersion law 
(see Fig. 2b), for all levels of the first family one obtains 
the result �EPar

1 ≃ 104.72Eex , and for the second fam-
ily, as expected, all interlevel distances are twice as large: 
�EPar

2 ≃ 209.44Eex . As can be seen from these data, 
the frequencies corresponding to the energies of inter-
level distances in both cases of the CCs’ dispersion law 
belong to the infrared spectrum. Thus, for the values of 
the semiaxes a = 0.3aex and c = 0.05aex , in the case of 

the Kane’s dispersion law, for the first interlevel transi-
tion, the frequency ω = 3.22× 1013Hz is obtained, and 
for the parabolic dispersion law, ω = 4.77× 1013Hz is 
obtained. For the second family of energies, the frequen-
cies remain in the infrared range as well. For instance, 
ω = 0.95× 1014Hz for the parabolic dispersion law, 
whereas the values are smaller for the case of the Kane’s 
dispassion law. As is known, for many diatomic mol-
ecules, the frequencies corresponding to vibrational 
modes fall into the infrared region ω ∼ 1013 ÷ 1014Hz 
[35–37]. The  typical  vibrational frequencies  range 
from less than 1013Hz to approximately 1014Hz , cor-
responding to  wavenumbers  of approximately 300–
3000  cm−1  and  wavelengths  of approximately 30–3  µm. 
At low ambient temperatures, vibrational modes of mol-
ecules with high accuracy can be approximated by har-
monic oscillations. In other words, the vibrational levels 
of the molecules are quasi-equidistant. At high tem-
peratures, which correspond to room temperatures and 
higher, the anharmonicity of the oscillations becomes 
significant, and, therefore, the equidistance of the vibra-
tion levels is violated. Moreover, for polyatomic mol-
ecules, vibrational modes can be both symmetric and 
asymmetric, hence both anharmonicity and asymmetry 
of vibrations need to be considered. For detecting such 
vibrations, strongly flattened ellipsoidal QDs with the 
Kane’s dispersion law are excellently suited, since their 
energy levels, due to their non-equidistance, can easily 
mimic the vibrational levels of complex molecules. For 
simpler diatomic molecules, or for lower temperatures, 
it is preferable to use QDs with the parabolic disper-
sion law. Since their energy levels are equidistant, with 
an appropriate choice of geometric parameters, they are 
perfect for mimicking the spectra of diatomic molecules. 
Figure 3 shows the dependence of the ground state energy 

Fig. 3  The dependence of the ground state energy on the minor 
semiaxis c at the fixed value of the major semiaxis a for the Kane’s and 
parabolic dispersion laws of CCs
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on the minor semiaxis c at the fixed value of the major 
semiaxis a for both cases of CC’s dispersion laws, and 
Fig. 4 shows a similar dependence, but only on the major 
semiaxis a at the fixed value of the minor semiaxis c . As 
can be seen from the figures, as the values of the semi-
axes increase, the energy curves corresponding to differ-
ent dispersion laws intersect. In both cases, at relatively 
small values of the semiaxis, the particle energy curve 
corresponding to the case of the parabolic dispersion 
law is positioned higher than the curve corresponding 
to the two-band Kane’s dispersion law. With an increase 
in the values of the semiaxes, the curves change places. 
This happens because the particle energy in the case of a 
parabolic dispersion law is proportional to ∼ 1

c2
 or ∼ 1

ac , 
while in the case of the two-band Kane’s approximation, 
an analogous proportionality appears under the square 
root sign (see 20). It is for this reason that the energy of 
a particle in the paraboliccase turns out to be larger for 
small values of the semiaxes and is less than the energy 
of the Kane’s dispersion law case for large values of the 

semiaxes. The intersection point means that the energies 
of the two cases of the CC’s dispersion law are the same. 
However, this does not mean the identity of the entire 
spectrum. Dependence of the first family of levels of the 
energy spectrum of an electron in a QD with Kane’s and 
parabolic dispersion laws on the semiminor axis is shown 
on Fig. 5. As can be seen from the figure, the energy lev-
els corresponding to different values of QNs intersect 
at different values of the semiaxes. A similar picture is 
observed in Fig.  6 which shows the dependence of the 
first family of levels of the energy spectrum of an electron 
on the semi-major axis for both dispersion laws. It should 
be noted that in both figures, with an increase in the QN 
value, the intersection point of the energy levels shifts to 
the right (toward the large values of the semiaxes) due to 
the above reason.

Figure  7 shows the dependence of the interlevel dis-
tances of the first family of electron energy levels on the 
semiaxes of the ellipsoidal QD in the case of a compli-
cated Kane’s dispersion law. As can be seen from the 
graph, with an increase in the values of both semiaxes, 
the interlevel distances of the particle energy decrease by 
a nonlinear dependence, and interlevel distances are dif-
ferent for different sets of QNs. Hence, by changing the 
geometric parameters of the QD, the desired distances of 
the levels within the same family can be obtained much 
more flexibly than in the case of the parabolic dispersion 
law, where the interlevel distances within each family 
vary the same depending on the values of the semiaxes. 
Thus, it can be stated that for the strong quantum con-
finement regime, in the case of using a QD with the 
Kane’s dispersion law, manipulating interlevel distances 
allows covering an even larger number of possible ana-
lyte molecules, which can be detected by mimicking their 
vibration levels. Obviously, the more flexible possibility 
of controlling the interlevel distances within each family 

Fig. 4  The dependence of the ground state energy on the major 
semiaxis a at the fixed value of the minor semiaxis c for the Kane’s and 
parabolic dispersion laws of CCs

Fig. 5  The dependence of the first family of the energy levels on 
the minor semiaxis c at the fixed value of the major semiaxis a for the 
Kane’s and parabolic dispersion laws of CCs

Fig. 6  The dependence of the first family of the energy levels on 
the major semiaxis a at the fixed value of the minor semiaxis c for the 
Kane’s and parabolic dispersion laws of CCs
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increases the probability of successful electron tunneling 
between analytes and QDs, and their registration.

Weak Quantum Confinement Regime
Let us proceed to discussing the results of the weak 
quantum confinement regime, when the energy of the 
Coulomb interaction of an electron and a hole exceeds 
the quantum confinement energy in all three geometric 
directions. The formation of an exciton and the quanti-
zation of its motion as a whole dramatically changes the 
energy spectrum of a QD. An important feature of the 
implementation of this regime is the ability to cover new 
energy areas for the purposes one pursues, in particular, 
negative energies. As can be seen from result (38), in the 
parabolic dispersion law case, the energy conditioned by 
quantum confinement of the QD walls is positive, and the 
Coulomb energy is negative. With a change in the geo-
metric parameters of the QD, the total energy can change 

sign. The situation changes drastically in the Kane’s 
dispersion law case, where the energy is entirely nega-
tive (see 37). In the weak quantum confinement regime, 
consideration of the interband interaction in the case of 
the two-band Kane’s model leads to the superimposed 
manifestation of the Coulomb and quantum confinement 
energies. Moreover, the Coulomb energy in the Kane’s 
model case has an explicit dependence on the radial and 
orbital QNs. The interband interaction in the case of the 
two-band model violates the high order of hidden sym-
metry of the Coulomb interaction due to the imposition 
of lower order symmetry [38]. Obviously, this cannot be 
a consequence of the imposition of the ellipsoidal sym-
metry of the QD itself, since the hidden symmetry is 
not violated in the case of the parabolic dispersion law. 
In both cases of dispersion laws in the weak quantum 
confinement regime, a 3D exciton with spherical sym-
metry is formed. The ellipsoidal shape (symmetry) of the 
QD affects only the quantization of the motion of the 

Fig. 7  The dependence of the interlevel distances of the first family of electron energy levels on the semiaxes of the ellipsoidal QD in the case of a 
complicated (Kane’s) dispersion law: (a) on the minor semiaxis c at the fixed value of the major semiaxis a , (b) on the major semiaxis a at the fixed 
value of the minor semiaxis

Fig. 8  The dependences of the exciton energy on (a) the minor semiaxis c at the fixed value of the major semiaxis a , (b) the major semiaxis a at the 
fixed value of the minor semiaxis c (parabolic dispersion law)
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exciton’s center-of-gravity, while not breaking the inter-
nal spherical symmetry of the exciton. Internal symmetry 
is broken (lowered) due to the interaction of the bands 
and is a characteristic of a narrow-gap semiconductor 
material. Such a complex interaction is absent in the case 
of a parabolic dispersion law, which is the main feature of 
the two-band Kane’s model.

Figure 8 shows the dependences of the exciton energy 
on the geometric parameters of the QD in the case of the 
parabolic dispersion law of CCs. As can be seen from the 
figure, with an increase in the values of both semiaxes, 
the energies decrease and shift to the region of negative 
energies. This is due to the fact that with a decrease in the 
influence of the quantum confinement, due to an increase 
in the size of QDs, the dominance of the negative Cou-
lomb energy appears more distinctly. An unexpected 
inverse pattern of the dependence of the exciton energy 
on the geometric parameters of the QD is observed in the 
case of a complex two-band model dispersion law, which 

is shown in Fig. 9. With an increase in the values of the 
semiaxes, the quantum confined exciton energy increases 
(decreases in absolute value), despite the decrease in the 
effect of the QD walls. As expected, the dependence on 
geometric parameters is much weaker than in the case 
of a strong quantum confinement regime. As can be 
seen from the figure, the energy levels of the exciton are 
negative and are positioned much lower in contrast to 
the parabolic case. By absolute  value, the energy of the 
Kane’s exciton is much higher than the exciton energy of 
the parabolic case. Thus, for the values of the semiaxes 
a = 5aex, c = 1.2aex , the energy of the ground state of 
the exciton in the parabolic case is εParweak ≃ 0.44Eex , while 
in the Kane’s case εKaneweak ≃ 541.08Eex . Comparison of 
the energy spectra (37) and (38) reveals another signifi-
cant detail. At a fixed value of the QNs nGr and NR and 
an increase in the value of the Coulomb QN NC leads 
to a shift of the excited Coulomb energy levels toward 

Fig. 9  The dependences of the exciton energy on (a) the minor semiaxis c at the fixed value of the major semiaxis a , (b) the major semiaxis a at the 
fixed value of the minor semiaxis c (Kane’s dispersion law)

Fig. 10  The dependences of the ground and first excited energy levels of a 2D exciton with parabolic and Kane’s dispersion laws of CCs, 
respectively, at the intermediate quantum confinement regime: (a) on the minor semiaxis c at the fixed value of the major semiaxis a , (b) on the 
major semiaxis a at the fixed value of the minor semiaxis c 
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positive energies. The opposite shift of the Coulomb lev-
els is observed in the case of the Kane’s dispersion law, 
when the excited Coulomb levels are shifted toward neg-
ative energies and are positioned lower. As noted above, 
in the parabolic case, the behavior of exciton levels is 
similar to that of donor levels, while in the Kane’s case it 
resembles the behavior of acceptor levels. It is notewor-
thy that in both cases of dispersions, the energy increases 
in absolute value with an increase in Coulomb QNs.

Intermediate Quantum Confinement Regime
Figure 10 represents the dependences of the ground and 
first excited energy levels of a 2D exciton on the geo-
metric parameters of the QD, with parabolic and Kane’s 
dispersion laws of CCs, respectively. In the case of the 
Kane’s dispersion law, the ground level of the 2D exci-
ton is unstable—it collapses spontaneously; therefore, 
the dependences of the first excited energy level are 
presented. As can be seen from the figure, the exciton 
energy is negative for the Kane’s dispersion law, as in 
the case of the weak quantum confinement regime, but, 
in contrast, the exciton energy does not change sign in 
the parabolic case. With an increase in the values of the 
semiaxes, the energy decreases due to a decrease in the 
contribution of the quantum confinement, but remains 
positive even for the ground state, due to the presence 
of a strong influence of the quantum confinement in 
the vertical direction. In the intermediate quantum 
confinement regime, due to the condition c << aex , the 
value of the semiminor axis changes in such a range 
that the positive contribution to the energy from the 
quantum confinement in the vertical direction exceeds 
by an order of magnitude the negative contribution 
from the quasi-2D Coulomb interaction of the exci-
ton. Hence, at the values of the semiaxes a = 1.5aex 

and c = 0.15aex , the energy is EPar
int ≃ 224.3Eex , while at 

c = 0.3aex , EPar
int ≃ 53.95Eex . A twofold increase in the 

value of the semiminor axis leads to a sharp decrease 
in energy, but does not change its sign. The presence of 
a strong quantum confinement in the vertical direction 
also leads to a much larger difference between the ener-
gies of the Kane’s and parabolic cases, in contrast to the 
weak quantum confinement regime. Another feature of 
the implementation of the intermediate quantum con-
finement regime is the appearance of new energy lev-
els due to the vertical quantization of the motion of the 
quasi-2D exciton. Also, in contrast to the weak quan-
tum confinement regime, the motion of the center-of-
gravity of a 2D exciton is conditioned by its reduced 
mass µ , instead of the total mass M0.

Figure 11 shows the dependence of the energy levels of 
vertical quantization of the motion of the center-of-grav-
ity of a 2D exciton in a strongly flattened ellipsoidal QD 
with the Kane’s and parabolic dispersion laws of CCs. As 
can be seen from the figure, with an increase in the value 
of the vertical QN nz , the interlevel distances of excited 
energy levels become very large, since the reduced mass µ 
is less than the total mass M0 (for the InSb QD, M0 = 4µ ). 
Therefore, in contrast to the heavy 3D exciton in the weak 
quantum confinement regime, in the intermediate regime, 
the motion of a much lighter 2D exciton in the QD is 
quantized, which accounts for the large values of excited 
energies. The energy levels of the 2D exciton conditioned 
by the relative motion of an electron and a hole in the 
radial direction, are similar to the levels of a 3D exciton 
in the weak quantum confinement regime. For these lev-
els, the analogy with donor and acceptor levels also takes 
place, as in the case of a weak quantum confinement 
regime. However, since the decrease in the dimension 
enhances the Coulomb interaction, the binding energy of 

Fig. 11  The dependence of the energy levels of vertical quantization of the motion of the center-of-gravity of a 2D exciton with parabolic and 
Kane’s dispersion laws of CCs: (a) on the minor semiaxis c at the fixed value of the major semiaxis a , (b) on the major semiaxis a at the fixed value of 
the minor semiaxis c 
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a 2D exciton is always greater than the binding energy of 
a 3D exciton. Thus, in the case of a parabolic dispersion 
law, the binding energy of a 2D exciton is fourfold of a 3D 
exciton energy (compare the last terms in formulas (38) 
and (52), due to a decrease in dimensionality, and in both 
cases depends on the reduced mass µ.

Light Absorption
Figure  12 shows the dependences of the AE on the QD 
semiaxes for Kane’s and parabolic dispersion laws of CCs 
in the strong quantum confinement regime. For both 
dispersion laws, with an increase in the values of the 
semiaxes, the AE decreases due to a decrease in the con-
tribution of the quantum confinement, since the “effec-
tive” band gap, Eg plus the energy of quantum confined 
levels, decreases, and the absorption frequencies belong 
to the infrared range of the spectrum [39]. As can be seen 
from the graphs, the decrease in the AE is more distinct 
for the dependence on the semiminor axis. The AE curve 
corresponding to the Kane’s dispersion law is positioned 
lower (redshift) due to the weaker root dependence of the 

CC’s energy on the values of the QD’s geometric param-
eters. Therefore, for the Kane’s dispersion law, with an 
increase in the semiaxes, the decrease in the AE is pro-
nounced weaker that in the case of parabolic dispersion, 
where the curve decreases more sharply.

As is seen from Fig. 13, in the case of the parabolic dis-
persion also, for the weak quantum confinement regime, 
the AE dependence on the QD’s geometric parameters is 
more distinct for the dependence on the semiminor axis. 
For the same reason, the curves corresponding to differ-
ent values of the semiminor axis are positioned with a 
greater relative shift (Fig. 13b) than in the opposite case 
(Fig.  13a). The Coulomb interaction consideration leads 
to a decrease in the width of the “effective” band gap and 
to the appearance of energy levels inside the forbidden 
band gap. Hence, the quantum transitions occur at lower 
values of the incident light frequency, shifting the AE 
toward the longer wavelengths.

Figure  14 shows the dependence of the AE on the 
QD’s geometric parameters for the Kane’s dispersion law 
in weak quantum confinement regime. The interband 

Fig. 12  The dependences of the AE for Kane’s and parabolic dispersion laws of CCs in the strong quantum confinement regime: (a) on the minor 
semiaxis c at the fixed value of the major semiaxis a , (b) on the major semiaxis a at the fixed value of the minor semiaxis c 

Fig. 13  The dependences of the AE for the parabolic dispersion law of CCs in the weak quantum confinement regime: (a) on the minor semiaxis c 
at the different values of the major semiaxis a , (b) on the major semiaxis a at the different values of the minor semiaxis c 
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interaction leads to a significant shift of the AE frequen-
cies toward the far infrared range, and the change in the 
AE appears more distinctly for the dependence on the 
semiminor axis. However, in contrast to the parabolic 
case, an increase in the QD’s geometric parameters leads 
to a blue shift of the threshold frequencies, as a result of 
a complex effect of quantum confinement and the Cou-
lomb interaction along with interband interaction in the 
two-band Kane’s model. The curves corresponding to 
the large values of the semiaxes are shifted toward  the 
shorter wavelengths (dashed lines on the graphs), which 
is the opposite behavior compared to the parabolic case.

Finally, Fig.  15 represents the dependences of the AE 
in the intermediate quantum confinement regime on the 
geometric parameters of the QD for parabolic and Kane 
dispersion laws of CCs. As can be seen from the graphs, 
in the parabolic case, 2D Coulomb interaction does not 
sufficiently displace the AE toward longer waves, since 
even at the value of c = 0.5aex of the semiminor axis, the 
absorption edge remains W1010 > 1 . Hence, in contrast to 

the weak quantum confinement regime, the energy levels 
do not shift further in the forbidden band gap, and the 
width of the “effective” band gap is larger than Eg , due to 
the stronger contribution of the quantum confinement in 
the vertical direction. As in the case of the weak quantum 
confinement regime, in the intermediate quantum con-
finement regime with the Kane’s dispersion law, a shift of 
the threshold absorption frequencies toward short wave-
lengths is observed, in contrast to the parabolic case.

Conclusion
In this work, the electronic and exciton states in a 
strongly flattened ellipsoidal QD have been considered in 
three quantum confinement regimes: strong, weak, and 
intermediate, both in the case of the two-band Kane’s 
dispersion law and the parabolic dispersion law of CCs. 
Analytical expressions for the WFs and for the energies 
of CCs have been obtained in a QD with a complex dis-
persion law of CCs in all regimes of the quantum confine-
ment. The obtained results have been compared with the 

Fig. 14  The dependences of the AE for the Kane’s dispersion law of CCs in the weak quantum confinement regime: (a) on the minor semiaxis c at 
the different values of the major semiaxis a , (b) on the major semiaxis a at the different values of the minor semiaxis c

Fig. 15  The dependences of the AE for Kane’s and parabolic dispersion laws of CCs in the intermediate quantum confinement regime: (a) on the 
minor semiaxis c at the fixed value of the major semiaxis a , (b) on the major semiaxis a at the fixed value of the minor semiaxis c
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case of the CC’s parabolic law of dispersion. For a nar-
row-gap semiconductor, the possibility of spontaneous 
exciton collapse (instability) has been revealed for all lev-
els with a QN m = 0 in the intermediate quantum con-
finement regime, while for a wide-gap semiconductor the 
levels are stable. The removal of an accidental Coulomb 
degeneracy of energy in the orbital QN for the 3D exciton 
in InSb QD and in a magnetic QN for the 2D exciton, as a 
result of a CC dispersion law symmetry degree reduction, 
has been noticed. It has been shown that in the strong 
quantum confinement regime, QDs with the Kane’s dis-
persion law are better suited for detecting vibrational 
levels of asymmetric molecules or vibrations at high 
temperatures, while QDs with the parabolic dispersion 
law are preferable for detecting vibrational levels of sym-
metric molecules or vibrations at low temperatures. Con-
sideration of the Coulomb interaction and the possibility 
of the formation of 2D or 3D excitons have been shown 
to expand the range of encompassed energies for analyte 
detection. In particular, for the Kane’s dispersion law, a 
significant shift of energies to the region of negative ener-
gies has been revealed. The dependences of the AEs on 
the geometric parameters of the QD have been revealed, 
and the corresponding selection rules for quantum tran-
sitions have been obtained. New selection rules in the 
intermediate quantum confinement regime have been 
revealed. An atypical blue shift of the threshold absorp-
tion frequencies with an increase in the sample size for 
InSb QDs has been obtained due to a complex super-
imposed contribution of the interband and Coulomb 
interactions.
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