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Fig. 1. Our method is able to construct seamless parametrizations with prescribed holonomy signature, i.e. it offers full control over map topology. This
topological information can be given as values (holonomy numbers) on a system of certain loops on the surface (a) or, e.g., be derived from a cross-field that
the parametrization is supposed to align to. A state-of-the-art method [Campen et al. 2019] can reliably generate seamless parametrizations (b), but it ignores
this information at the global level, i.e. it does not offer full control over map topology. Our method adjusts the loop system with associated numbers into a
topologically equivalent state (c) of very particular type. Using a cut graph constructed from this loop system, we are then able to reliably generate a seamless
parametrization (d) that perfectly matches the prescribed holonomy signature, and for instance allows for lower distortion and better cross-field alignment.

We describe a method for the generation of seamless surface parametrizations
with guaranteed local injectivity and full control over holonomy. Previous
methods guarantee only one of the two. Local injectivity is required to enable
these parametrizations’ use in applications such as surface quadrangulation
and spline construction. Holonomy control is crucial to enable guidance or
prescription of the parametrization’s isocurves based on directional informa-
tion, in particular from cross-fields or feature curves, and more generally to
constrain the parametrization topologically. To this end we investigate the
relation between cross-field topology and seamless parametrization topol-
ogy. Leveraging previous results on locally injective parametrization and
combining them with insights on this relation in terms of holonomy, we
propose an algorithm that meets these requirements. A key component
relies on the insight that arbitrary surface cut graphs, as required for global
parametrization, can be homeomorphically modified to assume almost any
set of turning numbers with respect to a given target cross-field.
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1 INTRODUCTION

Seamless surface parametrization is one of the most common ap-
proaches to constructing seamless texture atlases, conforming sur-
face quadrangulations, and high-order (spline or subdivision) ap-
proximations to surface data. A chart-based parametrization is called
seamless if it satisfies certain conditions on its transitions between
charts or across cuts.

In particular, a seamless parametrization of a discrete surface
defines a metric, i.e., an edge length assignment on a mesh, that
is intrinsically flat almost everywhere, i.e. angles around vertices
sum to 27, except at a (often small) set of cone vertices with an
angle deficit (or excess) of some multiple of Z-. More generally, the
holonomy angle for any closed loop on the surface is a multiple
of Z. The holonomy angle is the angle between the first and last
edge when laying out a closed chain of mesh triangles in the plane
according to the metric (Fig. 2, cf. [Bright et al. 2017; Crane et al.
2010]). Informally, this holonomy condition on a parametrization’s
metric ensures that parametric lines continue seamlessly across cuts,
although, e.g., a u-parametric line may become a v-parametric line.

While the set of closed triangle chains on a discrete surface is
infinite, all their holonomy angles are actually defined by a set of
angles on a finite basis, the holonomy signature, which we define
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more precisely below. In essence, loops around individual vertices
capture all local aspects of holonomy, while (in case of non-trivial
topology, genus > 0) a system of non-contractible loops captures
the additional global aspects.

Holonomy Control. To clarify the importance of parametrization
topology defined by the holonomy signature, consider quad meshes
or quad layouts obtained from (constrained classes of) seamless
parametrizations by tracing a grid of parametric lines on the surface.
The cones become the extraordinary vertices, where n # 4 quads
meet. The holonomy angles determine how many quads meet at
such extraordinary vertices, and more generally, how many turns the
edges of the quads make along any closed curve on the surface, e.g.,
a feature line. As a consequence, controlling the parametrization’s
topology in the form of its holonomy angles is critical for obtaining
a high-quality parametrization with intended behavior.

In many approaches to seamless parametrization, the target topol-
ogy is provided as input, e.g., it is derived from a given cross-field
or partially or completely specified by the user. At the same time, as
we discuss in detail in Section 2, no existing general method guaran-
tees that the target topology is fully respected, although significant
progress was made towards this goal.

Existence. Moreover, to the best of our knowledge, the answer to
the following question is not known:

For which holonomy signatures, seamless parametriza-
tions with corresponding topology exist?

Partially, this question was answered in [Jucovi¢ and Trenkler 1973],
and more specifically in [Campen et al. 2019], where angles at cones,
but not complete signatures (including global aspects), were consid-
ered. In this paper, we resolve the question of existence for a broad
class of signatures, subject to only a mild condition.

Remarkably, it turns out that for surfaces of genus # 1, there is a
seamless parametrization for any holonomy signature (e.g. implied
by a cross-field) under this condition. For genus 1, we show that
in this class the one known example of holonomy signatures for
which there is no seamless parametrization (signatures with exactly
two cones, with angles 37 /2 and 57/2) is the only one.

For the condition to be satisfied, it is already sufficient (but not
necessary) to have one cone with angle deficit +% or —7% in the
signature (corresponding to at least one valence 3 or valence 5 ex-
traordinary quad vertex). This is essentially always satisfied for
holonomy signatures implied by cross-fields optimized for smooth-
ness or curvature alignment [Vaxman et al. 2016].

Contribution. We describe an algorithm for the construction of
seamless parametrizations with full control over holonomy. It ex-
tends the construction of [Campen et al. 2019] (referred to as Seam-
less Padding (SP) in the following) which provides control only over
local holonomy aspects (i.e. cone angles). Our contribution includes:

e An existence result for seamless parametrizations with given
holonomy signature, indicating a remarkably small topologi-
cal gap between cross-fields and parametrizations;

e An algorithm for, given a holonomy signature, construct-
ing an alternative system of loops on which the equivalent
holonomy signature has arbitrary desired angles;
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e A variant of the SP method that, based on the above, builds a
valid seamless parametrization with prescribed holonomy.

We note that the topology of cross-fields—which are often used
to guide the computation of seamless parametrizations—can be
controlled very flexibly and precisely using existing discrete con-
struction algorithms. In fact, one can easily construct a cross-field
with any given turning number signature (the field analogue of a
holonomy signature, cf. Section 3.1) by solving a linear system of
equations [Crane et al. 2010]. The ability to near-universally match
this signature, provided by our method, means that this possibility
of precise topology control extends to parametrizations.

2 RELATED WORK

Seamless Parametrization. Seamless surface parametrization with
prescribed singularities (locations and indices) is a problem that has
received significant attention recently. Results include [Bommes
et al. 2009; Bright et al. 2017; Campen et al. 2015, 2019; Chien et al.
2016; Ebke et al. 2016; Fang et al. 2018; Fu et al. 2015; Hefetz et al.
2019; Kalberer et al. 2007; Kovacs et al. 2011; Lyon et al. 2019; Myles
et al. 2014; Myles and Zorin 2013; Tong et al. 2006; Zhou et al. 2018,
2020]. Prominent use cases are surface quadrangulation [Bommes
et al. 2013b; Campen 2017] and spline conversion [Campen and
Zorin 2017; Marinov et al. 2019].

Cross-Field Guidance. Most often such parametrizations are gen-
erated and optimized guided by a cross-field or frame field on the
surface [Vaxman et al. 2016]. Seminal works on cross-field guided
parametrization are [Kalberer et al. 2007; Knupp 1995]. Important
ideas for cross-field generation are presented by [Bommes et al.
2009; Crane et al. 2010; Li et al. 2006; Ray et al. 2009, 2008]; many of
these offer control over the fields’ turning numbers.

Local Injectivity. For common use cases, parametrizations are
valid only if they are locally injective, i.e. free of fold-overs. Local
injectivity constraints required to ensure a valid parametrization
are, due to their challenging non-convex nature, not rarely omitted
[Bommes et al. 2009; Ebke et al. 2016; Kélberer et al. 2007; Kovacs
et al. 2011; Myles and Zorin 2013; Zhou et al. 2018] or convexified
in a conservative manner [Bommes et al. 2013a; Bright et al. 2017;
Campen et al. 2015; Hefetz et al. 2019; Lipman 2012].

Guarantees. In special cases (restricted genus, restricted cone
configurations) convex formulations can be used to reliably yield
locally injective seamless parametrizations [Aigerman and Lipman
2015; Gortler et al. 2006; Gu and Yau 2003]. Alternatively, additional
user input like a surface partition may be exploited to ensure validity
[Tong et al. 2006], or more general, non-piecewise-linear forms of
parametrization may be employed [Aigerman and Lipman 2016].

Recently, first methods have emerged that provide validity guar-
antees while supporting arbitrary genus and general cone config-
urations [Campen et al. 2019; Zhou et al. 2020]. In this sense, they
offer control over local holonomy aspects. No global control over
holonomy is provided, though. Therefore, when for instance aim-
ing to generate a cross-field guided parametrization, while locally
cones are reproduced, there may be global topological mismatches
between the given cross-field and the constructed parametrization,
for instance precluding proper alignment, as in Fig. 1 (b).
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Existence. [Jucovi¢ and Trenkler 1973] consider the question of
existence of quadrilateral meshes with prescribed irregular vertex
valences, [Campen et al. 2019] the very closely related question
of existence of seamless parametrizations with prescribed cones.
Both consider only local holonomy (irregular vertex valence, cone
angles), not global holonomy.

Distortion Optimization. The task of parametrization optimization
(with respect to varying measures of distortion) while maintaining
properties such as local injectivity or seamlessness, is addressed in a
number of recent works [Hormann and Greiner 2000; Kovalsky et al.
2016; Mandad and Campen 2020; Rabinovich et al. 2017; Schiiller
et al. 2013; Shtengel et al. 2017; Zhu et al. 2018]. They are useful as
a post-process in the context of our method as we initially focus
mainly on validity, holonomy, and seamlessness.

Cone Choice. The choice of cones (and more generally guiding
cross-fields, holonomy signatures) is an application dependent mat-
ter. Various approaches have been proposed for the selection of
a cone configuration, for instance curvature-based (e.g. via cross-
fields [Vaxman et al. 2016]), distortion-based [Ben-Chen et al. 2008;
Kharevych et al. 2006; Soliman et al. 2018], or interactive [Campen
and Kobbelt 2014; Ebke et al. 2016]. The problem of positioning
cones such that conformal maps with these cones become seamless
is addressed by [Chen et al. 2019, 2020].

Holonomy. Some of the above methods for parametrization con-
struction (such as [Bommes et al. 2009; Bright et al. 2017]) offer full
control over the resulting parametrizations’ holonomy, but do not
guarantee local injectivity. Those that guarantee local injectivity in a
general setting (e.g. [Campen et al. 2019; Myles et al. 2014; Zhou et al.
2020]), in turn, do not offer full control over holonomy. The method
of [Campen and Zorin 2017] offers full holonomy control, albeit
only for the broader class of seamless similarity parametrizations.

3 HOLONOMY SIGNATURE

We consider a closed orientable manifold mesh M of genus g and a
cut graph G on M that cuts M to one or more topological disks. We
let M€ denote the resulting cut mesh, which has a canonical map
7+ M® — M that is the identity on the interior and maps exactly
two boundary edges in M€ to each edge in G ¢ M. We call two
edges e, ¢’ in the boundary of M® mates if n(e) = n(e’). We also
define a loop as an oriented closed walk of facets (or dual vertices) of
M and a simple loop as an oriented cycle of facets (or dual vertices).

DEFINITION 1 (SEAMLESS PARAMETRIZATION). A discrete seam-
less parametrization, as in [Myles and Zorin 2013], is a continuous
piecewise linear, locally injective map F : M€ — R? such that for
any boundary edge e with mate ¢’, there is a rigid transformation
Oe(x) = Rex + te, where R, is a rotation by an integer multiple of 7.,
that maps F(e) to F(e’), i.e. ¢(F(e)) = F(e’).

A seamless parametrization naturally induces a discrete metric
E — R> on M€ by letting the length of an edge e of M€ be the
length of F(e) c R2. Since mated edges e, e’ in the boundary of
ME are related by a rigid transformation, F(e) and F(e’) have the
same length, so this metric extends to a well-defined metric on

F
/KOY\

Fig. 2. The holonomy angle ic)f (Def. 2) of a dual loop (cyclic triangle strip)
under a metric F is the sum of signed inner angles (yellow and orange). Up
to multiples of 277 (if the loop makes multiple turns) this corresponds to the
angle between first and last edge when laying out the strip in the plane.

M. Moreover, the metric on M is flat except at isolated vertices
C ={v1,...,um} in G, i.e. in the boundary of M€, called cones.

DEFINITION 2 (HoLoNomY ANGLE). For a loop y, the holonomy
angle (or discrete geodesic curvature [Crane et al. 2010]) of y under a
seamless parametrization F is

K)I/: = Z ay (f*),
frey
where f* is the vertex dual to facet f, oy (f*) is the signed angle of
F(f) at the vertex of f incident to the preceding and succeeding facets
in the loop. The sign is positive (negative) for vertices on left (right)
hand side of the loop. See Fig. 2 for an illustration.

Let v* denote the dual facet of vertex v, and dv* the cycle of this
dual facet’s dual vertices. In other words, dv* is the loop around
the single vertex v.

DEFINITION 3 (HoLoNoMY NUMBER). For a loop y, we define the
holonomy number as k; = lc)f/er. In the case of a vertex-loop, y =

dv*, we additionally define the index of the vertex asI5 = 1 - kgv*.

Since the images of edges in the boundary of M¢ under F are
related by rotation angles that are integer multiples of 7, the holo-
nomy numbers are always integer multiples of ‘—ll.

DEFINITION 4 (HoLoNOMY SIGNATURE). We call the holonomy
numbers for a choice of homology basis loops y1, ..., Yag+m of M\ C
the holonomy signature of F. A natural choice of basis is a homology
basis y1, ..., yag of M together with cone vertex loops v}, ..., 0vy,,.
The loops are referred to as signature loops.

A homology basis of M can, for instance, be chosen as a so-called
system of loops [Erickson and Whittlesey 2005].

Importantly, such a finite holonomy signature completely cap-
tures the holonomy number of any loop: First, since the metric is flat
except at cones, any two loops homotopic in M \ C (i.e., loops that
can be continuously deformed into each other within M without
crossing a cone vertex) have the same holonomy number (cf. Prop. 1
in [Myles and Zorin 2012]). Second, given an arbitrary loop y and
a homology basis of M \ C, there is (by the nature of a homology
basis [Hatcher 2002]) a surface M so that its boundary is composed
of y and some combination of the basis loops. The Gauss-Bonnet
theorem then gives a formula for the holonomy number of this
boundary in terms of the Euler characteristic of M. Thus, the holo-
nomy number of y is determined by the holonomy numbers of the
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Fig. 3. Algorithm overview: (a) Example input signature loops (yellow and green) and cones (red and blue). (b) Loops of an equivalent signature obtained
by strategically modifying this input; notice that the yellow loop takes a different path between the cones. (c) Conformal parametrization respecting the
prescribed cones and aligned with the cut graph that is formed by the loops; due to this alignment, it has a specific holonomy pattern along the loops. (d) The
map is modified by parametric padding to make it seamless while preserving its holonomy properties. (e) Finally, the map can be continuously optimized for

low distortion and possibly cross field alignment, naturally within its topological class.

loops of a homology basis (cf. Prop. 2 in [Myles and Zorin 2012]).
Fig. 3 (a) shows an example of signature loops: the green and yellow
loops form a homology basis of M, while the small cone vertex loops
are visualized as red and blue dots at the respective vertices.

Note that the holonomy signature is not unique, neither its loops
nor its numbers (Fig. 4). For a fixed seamless parametrization F, a
different choice of signature loops will lead to different associated
holonomy numbers—even though the same parametrization topol-
ogy is represented. Such holonomy signatures are called equivalent.

3.1 Relation to Cross-Fields

Seamless parametrizations are often employed in conjunction with
cross-fields, most importantly when parametrizations are built and
optimized for directional alignment with such a field. In such cases
it is important for field topology and parametrization topology to
match. In this context, there is a close connection between the
holonomy of a seamless parametrization and the turning numbers
of a cross-field.

For a smooth surface S, a cross-field d is a differentiable mapping
of four tangent vectors to each point p € S (except at isolated
singularities) that are invariant to rotation by 7 /2 around the normal
fip to S at p. Given such a field and a loop y on the surface S, the
field will make some number of rotations along this loop, and due
to the rotational symmetry of the field these turning numbers T,
can be integer multiples of }1.

1
4

Fig. 4. Example of two equivalent holonomy signatures. Red and blue cones
have index —% and +%, respectively; the holonomy numbers of the green
and yellow loops are indicated. Note that from left to right, the loops are
essentially deformed across a cone (the leftmost red cone), and this affects
the loops’ associated holonomy numbers accordingly.
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Moreover, as shown in [Ray et al. 2008], there is a discrete ana-
logue of cross-fields and turning numbers for triangle meshes, and
turning numbers along loops satisfy a theorem analogous to the
Poincaré-Hopf theorem for vector fields that states Tgg = —x(S).
This implies that the holonomy number of the boundary of a flat
surface, which does not contain any cone, is the same as the turning
number of a singularity-free cross-field along that boundary. Hence,
if turning numbers of a cross field agree with holonomy numbers
on a set of signature loops then they will agree for any loop on the
surface. Consequently, by taking as our desired holonomy numbers
the turning numbers of a given cross-field on a homology basis of
M\ C, where C is the set of the cross-field’s singularities, the seam-
less parametrization is fully constrained to topologically match the
input cross-field—in terms of local (cone indices) as well as global
behavior.

4 APPROACH OVERVIEW

Given a holonomy signature (or a cross-field implying a holonomy
signature, cf. Section 3.1), consisting of loops associated with a
holonomy number each, on a surface M, our goal is to construct a
valid seamless parametrization F for M that respects this signature.
In Section 5 we discuss the question for which signatures this is
actually feasible.

Key Idea. We show in Section 5 that, given a holonomy signature,
we can find an equivalent signature (by exchanging or modifying
the signature loops) such that the associated holonomy numbers
assume almost any desired values. Essentially, we are exploiting the
above mentioned non-uniqueness of the signature (cf. Fig. 4). We
make use of this algorithmically in Section 6 in the following way:
The SP method [Campen et al. 2019] enables constructing a seamless
parametrization that has prescribed local holonomy (i.e. cones), but
it lacks the ability to prescribe holonomy globally. However, its
result has not a random but a fixed holonomy pattern along the cut
graph that is used in the construction. We therefore modify the 2¢g
global signature loops such that their union forms a cut graph and
such that their corresponding holonomy numbers in an equivalent
signature match exactly the fixed pattern that SP will produce. Fig. 3
illustrates the main steps of our construction process.
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Fig. 5. A hole-chain cut graph G, as used in [Campen et al. 2019]. As an
example, the contained loop that is highlighted in red, because it makes two
left turns (in ccw sense), will have holonomy number % in the parametriza-
tion constructed by that method.

Cut Graph. The seamless parametrization construction by SP re-
lies on using cut graphs with certain structural restrictions, so-called
hole-chains (or modifications thereof). Fig. 5 shows an example, de-
tails follow in Section 6.1. Let G be such a cut graph. Let H be a
system of loops of M, i.e., H is a homology basis and cuts M into a
topological disk. In particular, as G cuts M into a topological disk, H
can be chosen such that the (non-disjoint) union of its loops equals
G (Section 6.2).

Fixed-Holonomy Parametrization. By construction, SP will yield
certain predetermined holonomy numbers along G, thus on these
loops H, regardless of the loops’ geometry. More concretely, each
branch point of the hole-chain G has four incident cut segments,
conceptually forming a cross. When following a loop through G, at
such a branch point it may therefore take a left-turn, a right-turn, or
continue straight. The generated parametrization’s holonomy num-
ber along any loop in G is simply the (signed) difference between its
number of right-turns and its number of left-turns (times %). This
is due to the SP-parametrization being aligned to all segments of G,
i.e., they are geodesic under this metric, and the corners between
segments at branch points form right angles under this metric.

Cut Graph Rerouting. Given target holonomy numbers on the
loops of H (e.g., derived from an input cross-field), by Prop. 2 we
can modify the loops of H, yielding H’, such that their target ho-
lonomy numbers equal their left-right-turn balance. Conceptually,
this rerouting of loops is described in Section 5; in Section 6.3 we
describe algorithms that practically implement it. As this rerouting
does not alter the loops’ intersections, i.e., it preserves the branch
points of G and the loops’ left-right-turns, the union of loops from
H’ still forms a hole-chain, which we can then use as prescribed cut
graph for the parametrization construction.

Holonomy Soft-Guidance. In order to yield parametrizations that
are not just topologically correct but also (already initially, before
distortion optimization) of reasonable geometric quality, we aim to
reduce the need for cut graph rerouting as much as possible. To this
end we construct the individual paths that the initial hole-chain G
is made of in a holonomy-guided (e.g. cross-field guided) manner
(Sections 6.1.1 and 6.1.2). This promotes hole-chains that largely
have the desired holonomy properties right away.

L~

Fig. 6. lllustration for Prop. 1 concerning quasi-additivity of holonomy
numbers on loops.

4.1 Algorithmic Outline
Our method’s overall algorithmic pipeline can be outlined as follows:

(1) Construct Cut Graph
o Initial field-guided hole-chain G
e Extract loop basis H of G
e Reroute H — H’, yield G/

(2) Construct Seamless Parametrization
e Construct G’-aligned mapping f : M® — Q (Section 7.1)
e Pad f to yield seamless map f’ : M€ — Q" (Section 7.2)
e Optimize f’and Q’, maintaining seamlessness (Section 7.3)

(Section 6.1)
(Section 6.2)
(Section 6.3)

5 EXISTENCE OF SEAMLESS PARAMETRIZATIONS

Before discussing the algorithmic details, let us settle the question
of existence of seamless parametrizations for prescribed holonomy
signatures. In particular, this will allow us to guarantee that the
above mentioned rerouting can actually be performed as needed.
While any choice of homology basis loops will yield a holonomy
signature, our method relies on bases whose loops’ holonomy num-
bers are some specific values. As a first step towards achieving
this, the following proposition gives us a simple way to "add" to-
gether two loops so that the holonomy number of the new loop is
determined by the holonomy numbers of the constituent loops.

PROPOSITION 1 (QUASI-ADDITIVITY). Suppose y and § are two
non-intersecting simple oriented loops and « is a path from the right
side of y to the right side of § that only intersects these loops at its
endpoints and does not contain any cones (see Fig. 6). Then (provided
the mesh is suitably refined) there is a simple loop yo—which can be
made arbitrarily close to 8, y, and a—such that

F _,F , F
kYO_kY+k5_l

If a is a path from the left side of y to the left side of 5 we have nearly
the same result, but the holonomy number of yy is instead given by

F _F F
ky, =k, +ks+1
A proof and an illustration can be found in appendix A.

Rerouting around a Cone. In particular, for a cone v;, provided
there is a path from the right side of y to v}, the above proposition
tells us there is a loop yp such that k)fo = k}f - 151_, We refer to
the construction of the latter loop as rerouting y around vy (with a
counterclockwise orientation). On the other hand, if there is a path
from the left hand side of y to v} (the dual facet of vertex v;), the
above proposition gives us a loop yg such that k)},:0 = k{: + Igi, which
we refer to as rerouting y around v; with a clockwise orientation.
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Fig. 7. Rerouting (ccw, twice in a row) of a loop around a cone of index i.

Moreover, it is clear from the construction of these loops that yp
is homotopic to y on M, although the homotopy will necessarily
cross the cone as otherwise the holonomy numbers of the two loops
would be the same. Fig. 7 shows an example of rerouting a loop
around a cone of index % twice, so as to yield a loop whose holonomy
number differs by %

These observations lead to the following key proposition.

ProrosITION 2. Let H = {y1, ..., Y24} a basis of loops for M that
cuts M into a topological disk, and let vy, ..., vy, be vertices of M. Also,
letky,....kag, 11, ... Im € L—I}Z and assume ged (L4, ..., I;;) = i. Then
there is another basis of loops 41, ..., 529 that cuts M into a disk such
that kgi = k)l,:i + ki, i =1,...,2g, for any seamless parametrization F

that has cones with indices 15]_ = I; at the vertices vy, ..., Unm.

For a constructive proof see appendix B. Conceptually, we can
reroute the loops y; one-by-one around suitable subsets of the cones
in a manner that preserves the topology of H, such that their holo-
nomy numbers change exactly by the desired values k;.

For the purpose of our method, this result means that we can start
from a cut graph formed by the union of 2g loops y1, ..., y2¢, and
modify these loops using an appropriate choice of integers k1, ..., k2g
to yield loops 41, ..., 624 instead, with any holonomy numbers we
want, forming an equivalent signature—under the only condition
that ged (L1, ..., In) = %. This ability is sufficient for the method
presented in the following to construct a seamless parametrization
with the desired holonomy, which constructively shows existence,
under the above condition.

GCD-Condition. This condition is obviously satisfied as soon as
there is even just one cone of index i% among all prescribed cones.
But this (practically very mild assumption) is not even necessary;
even if all indices are of higher magnitude, they may have a greatest
common divisor of %. If the ged is indeed larger than % (a poten-
tially realistic scenario is one with indices restricted to multiples
of %) note that while not all holonomy numbers can be achieved
by rerouting, it may still be possible to achieve those desired.

6 HOLONOMY-CONSTRAINED CUT GRAPH

The cut graph with particular holonomy pattern is built in three
steps. We start by constructing a hole-chain G; in deviation from
the algorithm described for this purpose in [Campen et al. 2019] we
employ soft-guidance by a given input cross-field already in this
step. Afterwards a holonomy basis of loops H is extracted from G,
and its associated target holonomy numbers are derived from the
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cross-field. Finally, these loops are rerouted where necessary, i.e.,
where soft-guidance did not yield exactly those holonomy numbers
we require for the subsequent stage.

6.1 Field-Guided Hole-Chain

A hole-chain G on M is built out of g loops (non-contractible, non-
separating, non-homotopic) and 2g — 1 connecting paths. Intuitively,
cutting the surface by the g loops yields a topological sphere with
2g holes, and the 2g — 1 paths connect these in a chain-like manner,
further cutting the surface to a topological sphere with one hole,
i.e. a disk. Fig. 5 shows an example with 4 loops (circular, inside the
tunnels) and 7 connectors. We here describe how to construct these
loops and connectors guided by a given cross-field.

Remark: For certain special cases (genus < 2) a slightly modified
hole-chain structure needs to be chosen. This is done exactly as in
the SP method. Likewise, an extra connector path possibly needs to
be added; this occurs after rerouting (Section 6.3).

6.1.1 Field-Guided Loops. We construct g non-contractible, non-
separating, non-homotopic loops on M \ C following the algorithm
of [Diaz-Gutierrez et al. 2009]. To promote cross-field alignment
(thus turning number zero along the loop) we employ the field-
alignment metric of [Campen et al. 2012] in this process. This in
particular means that the loop construction is performed on My, a
four-sheeted covering of M, owing to the four different directions a
cross-field specifies per point.

A loop resulting from this, while simple (i.e. intersection-free) on
My by construction, may in some cases be self-intersecting when
projected down onto M. Conceptually, it may pass “over” itself on a
different sheet of My, which corresponds to an actual crossing on
M. In such a case we fall back to a non-guided construction of a
replacement loop directly on M.

6.1.2  Field-Guided Connectors. Connector paths between the loops
are selected in a Hamiltonian path manner as in the SP method. By
contrast, however, we do not build these from simple shortest paths
but again in a field-guided manner. As in the loop construction in
Section 6.1.1 we use an anisotropic metric and perform the path
search on My. As the above loops have an embedding in My by
construction, we know on which sheet of My to start and end the
search, respectively: one sheet lower or higher than the respective
loop, as a connector will be orthogonal (rather than parallel) to its
two incident loops under the final parametrization. Again, should
a self-intersecting connector path occur, we fall back to a shortest
path computed on M.

Remark: Loops constructed by the fallback method (if any) have
no native embedding on My. We locally (at the intended connector
start or end point) assign them to the sheet on which the field
direction best fits the loop’s tangent, so as to have a reasonable setup
for the computation of incident connectors. In any case, however, let
us remind that the worst possible outcome of a locally suboptimal
choice is a hole-chain that requires some more rerouting—structural
correctness is not at stake in this soft-guided approach.

The resulting loops and connectors are embedded in edges of M
and together form the discrete cut graph G.
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Fig. 8. Two equivalent holonomy signatures, based on different signature
loops; the different associated holonomy numbers are not shown in the
figure. Both are the result of rerouting so as to achieve the required holo-
nomy pattern, therefore the resulting optimized seamless parametrizations
based on the cut graphs formed by these loop systems are identical (up to
seamless transformation, due to a differently located cut graph).

6.2 Homology Basis Extraction

We construct a homology basis H of M in the form of 2g loops
contained in the cut graph G. To this end we compute a spanning
tree T in G. The remainder G\T consists of 2g edges, called bridges
[Erickson and Whittlesey 2005]. For each bridge, its union with
the two paths from its incident vertices to the root of T is a loop,
and these 2g loops form a homology basis, and more specifically a
system of loops.

Note that these loops may coincide partially. Each of the 2g bridge
edges, however, is part of exactly one of these loops only. By rerout-
ing the segments of G that contain these bridge edges (called bridge
segments) we are therefore able to individually alter the holonomy
number or turning number of each of these 2g loops with respect to
a given field. Effectively, the bridge segments are the places where
the conceptual a-path from the proof of Prop. 2 can be attached
without intersecting any other basis loops. Ultimately, a modified
cut graph G’ with the desired holonomy number for each basis loop
can be obtained in this way, as detailed in the following.

6.3 Segment Rerouting

For each loop of H we count its number of left turns m; and right
turns m, (in ccw sense). The holonomy number along this loop in
the parametrization we will construct will be %(m 1—my) (cf. Fig. 5). If
its target holonomy number is ¢ (e.g., the cross-field turning number
along this loop), we need to reroute this loop such that this number
changes by k = %(ml -my)—t.

This is performed by rerouting the loop’s bridge segment, which
we tackle in a two-tier manner. We first attempt to find a replacement
path for the segment by an efficient field-guided method, detailed
in Section 6.3.1. As this method is not guaranteed to yield a simple
path (which, however, is needed), where necessary a guaranteed (but
less geometry aware) fallback strategy is employed, as described in
Section 6.3.2. Note that the resulting loops are not unique; many dif-
ferent equivalent signatures exhibit the desired holonomy numbers.
Due to equivalence, however, the final parametrization’s topology
is not affected by this (see Fig. 8).

Remark: Optionally, we may perform a pre-rerouting of the field-
guided loops from Section 6.1.1 already before moving on to the
connector computation. This is possible because these loops’ target
holonomy is known to be zero, regardless of how the connectors
will interact with them. This pre-rerouting is not necessary for cor-
rectness, but empirically it reduces the total amount of rerouting
required. As the g loops do not yet form a complete cut graph that
cuts the surface to a disk, one needs to take one additional precau-
tion, though, so as to ensure that a loop is rerouted homotopically.
Namely, we cut M minus the loops to a disk by additional tempo-
rary cuts (using the method of [Erickson and Whittlesey 2005]) and
perform rerouting within this disk.

6.3.1  Holonomy-Aware Dijkstra. Given abridge segment £ of G, sup-
posed to be rerouted such that the holonomy number of its unique
containing loop y from H changes by k, we employ a holonomy-
constrained Dijkstra’s algorithm, as described in [Campen et al.
2019, §5.1]. This entails the following. We compute a spanning tree
of M€ (cut by the current G), rooted on £. Indices of cone vertices are
propagated through this tree towards the root, and tree edges are
marked with the sum of indices propagated through them. By then
keeping track of the sum of these values of edges crossed during
Dijkstra’s shortest path algorithm (applied to the dual mesh), we
can read off the index sum of cones enclosed between a Dijkstra
path ¢’ and bridge segment ¢£. The algorithm terminates when a
path enclosing the desired index sum (which determines the change
to the holonomy number of y) is found.

Similar to the path construction on My described in Section 6.1,
this holonomy-constrained path search effectively occurs on an (in
this case infinite) cover of M (akin to the universal cover of M \ C).
Consequently, a non-simple path (in M) can be the result in some
cases. The following guaranteed fallback strategy takes care of such
cases.

6.3.2 Fallback Strategy. By following the rerouting construction
used in the proof of Prop. 2, a proper simple replacement path for a
bridge segment ¢ can safely be found. Let v be a vertex on a bridge
segment £ whose loop’s holonomy number needs to be increased
by k.

Assume for a moment that there is a cone vertex v* with |I(v*)| <
k. Let a be the shortest path from cone v* to v—either meeting ¢
from the right if I and k have opposite sign, or from the left in the
case of equal sign. Among all suitable cones, we choose the one
for which the path « is shortest, so as to reduce the amount of
modification.

Let the two vertices on ¢ which are directly adjacent to v be v~
and v*. Closely following the conceptual rerouting from Fig. 11 we
remove the edges v~ v and vv™ from ¢ and replace them by the path
from v~ to v* tightly along @ and around v*. Where necessary we
split edges of M to make room so that this path does not touch any
other part of G.

This changes the loop’s holonomy number by I(v*) or —I(v*),
depending on which side of ¢ the path a connects to. This procedure
can be repeated as long as the remaining difference k « k + I(v*)
is not zero yet.

While this strategy proved sufficient in all practical test cases
(cf. Section 8) (and indeed is guaranteed to work if there is at least
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one cone of index -'_-%), in general a greedy selection of reroute-cones
v* in this greedy manner is insufficient. Instead, let V be a multiset
of cones such that its index sum is k. Under the GCD-condition
(Section 5), V exists, as also exploited in the proof of Prop. 2. By
selecting the cones from V as v* in the above one after the other
(also considering multiplicity), the desired result is achieved. A suit-
able multiset V, i.e. a subset of cones and multiplicities, is easily
computed using the Extended Euclidean Algorithm. The incorpo-
ration of distances also in this general case would enable smaller
rerouting modification, but given the practical irrelevance of this
multiset-case, the effort would hardly pay off.

Remark: In practice we tentatively perform the fallback-rerouting
starting from multiple root vertices v (sampled equidistantly on the
bridge segment; we use 10 samples in our experiments) and retain
the result of shortest length to reduce the complexity of the final
cut graph.

7 SEAMLESS PARAMETRIZATION

Once the final, i.e., rerouted and possibly extended (recall the remark
in Section 6.1), cut graph G’ is available, the next step is to construct
a domain that is compatible with the cut surface M€ and suitable
to serve as parameter domain for a seamless parametrization of M.
The domain shape is derived from a conformal metric computed on
M€ with prescribed cones and prescribed boundary curvature.

7.1 Cut Graph aligned Metric

A key role in the SP method that we build on is played by a discrete
conformal metric computation on the cut mesh M. While the con-
formal metric algorithm from [Campen and Zorin 2017] that is used
in SP works adequately in most cases, it does not provide strict guar-
antees of convergence. The cut graph rerouting used in our method
can sometimes lead to rather complex cut shapes, thus boundary
shapes of M¢, implying additional metric distortion, making the
problem instances particularly challenging.

Very recently, a novel algorithm for discrete metric computation
with prescribed (boundary and cone) angles has been proposed
[Campen et al. 2021; Gillespie et al. 2021], based on mathematical in-
sights [Gu et al. 2018; Springborn 2019] that guarantee convergence.
We employ an implementation based on this work.

Using this algorithm we compute a discrete metric (i.e., edge
lengths) for M€, prescribing the angles of cone vertices and the geo-
desic curvature on the boundary, i.e., along the cut G’. Concretely,
the segments of G’ are constrained to be straight under the resulting
metric, and the corners (at branch points of G’) are constrained to
be right.

7.2 Padding

Under the computed metric the two boundary segments of M€ cor-
responding to a common segment of G” are straight, their mutual
angle is a multiple of /2 (as required for seamlessness), but their
lengths may differ. The SP method uses so-called padding, i.e., para-
metrically stretching out strips of the surface under the metric along
the boundary segments so that the boundary segments’ lengths ex-
pand to equalize the lengths of all paired segments, and this provably
is always possible.
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Fig. 9. lllustration of padding operation (in parameter domain). A thin strip
along the top straight cut segment (with no interior vertices) is stretched in
vertical direction by its required padding width. Then, vertices are shifted
horizontally to match their mates across the cut.

The following steps perform this padding, analogous to the origi-
nal SP method from [Campen et al. 2019]:

(1) Add cuts from all cones to the boundary of M¢. Make sure
each boundary segment is reached in at most one point.
Around each interior vertex the angles under the metric from
Section 7.1 now sum up to 2z, i.e. the cut surface is flat.

Lay out this flat mesh in the plane, i.e., assign (u, v)-parameters

to all vertices of the mesh, e.g., in a breadth-first traversal.

The global rotation is chosen such that the straight boundary

segments are aligned with u or v axis directions. This yields

the (non-seamless) domain Q.

(3) For each straight boundary segment, compute the amount of
padding (width w;) required to equalize parametric lengths
of the paired segments, using the equation system of the SP
method.

(4) Along each segment, determine a parametrically rectangular
strip free of cones, and make the mesh conform to this strip
by inserting the strip’s boundary line by splitting. Then apply
a stretch transformation to the (u, v)-coordinates inside the
strip, so as to shift the segment in perpendicular direction by
its padding width w; ( Fig. 9).

(5) In cases where the cut graph has cut the surface into more
than one disk, glue these together parametrically along pairs
of boundary segments by means of rigid transformations
applied to the (u, v)-coordinates to finally obtain a map F’
onto a single connected domain Q’.

—
DN
~

7.3 Optimization

As a final step, we optimize the established map for reduced distor-
tion. As objective, we employ a local cross-field (orientation and
sizing) alignment energy E4 [Bommes et al. 2009] and add (with
a small factor of s = 1073) the symmetric Dirichlet energy Ep
[Rabinovich et al. 2017], which contributes its barrier behavior to
prevent parametric inversions in the course of optimization. Linear
constraints are added to preserve seamlessness. We use a projected
Newton solver and use an explicit triangle inversion check in the
line search [Smith and Schaefer 2015], using exact predicates, to
reliably maintain local injectivity. We experimentally discovered
that using an unconstrained Newton optimizer over the set of in-
dependent variables computed using a reduced row echelon form
of the constraint matrix is numerically more stable than solving a
KKT system at each iteration, leading to faster convergence.

We emphasize that we do not aim to address map optimality
here; our focus is on constructing a topologically correct initial map,
subject to further improvement geometrically.
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Fig. 10. Comparison of seamless parametrizations on surfaces of non-trivial topology, computed by the bare SP method [Campen et al. 2019] (row b, e) and by
our method (row d, f). The used cut graphs are shown in red, the initial hole-chain used for SP (row a, e) and the rerouted version used by our method (row c,
f). Notice their topologically differing structure (i.e. they wind around some handles or cones differently), as well as the higher distortion of the results by the
bare SP method due to being unable to properly align to the underlying smooth cross-field for topological reasons. Notice that this distortion cannot be
reduced further by continuous optimization; there are topological obstacles.
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Table 1. Statistics about the number of cut segment reroutings performed.
It is further split into the numbers of field-guided and fallback reroutings.

Model Genus
twirl

robocatdeci

knot1

holes3

dancer2

sculpt

fertilitytri
rockerarm

genus3

elk

trimstar
wrench50K
bumpytorus
dancer25k

camel
dragonstandrecon
pulley

kitten

knot
mastercylinder
eight

femur

block
greeksculpture
elephant
thaistatue
oilpump

neptune0

carter

cup

botijo

chair

rollingstage
helmet

pegaso

chair
bozbezbozzel
dancingchildren
grayloc

seahorse2 8 10
raptor50K 10 12
heptoroid 22 15
gearbox 78 57
filigree 65 73
brain 57 83
vhskin 79 128
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8 EVALUATION

We apply our method to a dataset of 3D models with cross-fields
[Myles et al. 2014]. We restrict ourselves to models of genus > 0,
as on topologically trivial surfaces there are no global holonomy
aspects to account for. The method succeeds in generating a cut
graph with exactly the needed holonomy numbers in all cases. As
all cases satisfy the gcd=% condition, and all crucial operations are
combinatorial/discrete, the general success of this step is indeed to
be expected. For each model, Table 1 lists the number of rerouting
operations that our method performed.

The construction of a seamless parametrization based on this cut
then succeeds in most cases; in six, however, the initial metric distor-
tion is very high, causing subsequent steps (padding or the simple
distortion optimization approach) to get into numerical trouble. In
Figs. 1 and 10 obtained optimized seamless parametrizations for ex-
amples from the dataset are shown, matching the input cross-field
by construction. Table 2 reports the final distortion of these.
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Table 2. Residual energy (normalized by surface area) for the models from
Figs. 1 and 10. The columns “without rerouting” correspond to the direct
application of SP, without regard for global holonomy. From the last column
the advantage in terms of field alignment and distortion becomes clear.

with rerouting without rerouting
Fig. | Model Eas+sEp Ea Ea+sEp Ea ours/SP
1 cup 0.0125 0.0125 0.3288 0.2882 3.8%
9 block 0.0136 0.0136 0.1115 0.1052 12.2%
9 eight 0.0350 0.0328 0.1524 0.1432 22.9%
9 genus3 0.0221 0.0208 0.1891 0.1747 11.7%
9 oilpump 0.0296 0.0293 0.0450 0.0370 65.7%
9 rollingstage 0.0127 0.0124 0.2666 0.1163 4.8%
9 thaistatue 0.0225 0.0225 0.0272 0.0257 82.7%

8.1 Comparison

To demonstrate the importance of our contribution in the context of
guaranteed locally injective seamless parametrization construction,
we also apply the bare SP method of [Campen et al. 2019] (which
takes local holonomy (cones) but not global holonomy into account)
to these models.

While SP is able to respect the singularities of the prescribed field
by construction, whether or not its resulting map matches the cross-
field topologically is essentially a matter of chance. If the cross-field
is very smooth (as generally is the case in this data set) and the
cut graph for the map is constructed from certain shortest paths,
the chance of a match may be higher than that of any particular
mismatch. Nevertheless, we encounter a mismatch for a large num-
ber of models—in line with the fact that, as can be seen in Table 1,
our method had to employ at least one rerouting operation in the
majority of cases. In case of a mismatch, the resulting map cannot
continuously be optimized to achieve reasonable alignment between
map isolines and the field, as there is a topological obstacle. This
can be observed in Table 2, where the remaining final distortion is
significantly higher when not employing rerouting. The difference
is also illustrated in Fig. 10. Our method, in essence by adjusting
the cut graph in the described manner, ensures a topological match
between the signature induced by the cross-field and the signature
of the generated seamless parametrization.

9 CONCLUSION AND FUTURE WORK

We have explored the relation between cross-fields and seamless
surface parametrizations (and therefore quadrangulations) on a topo-
logical level. A key insight is that there are hardly any practically
important obstacles to generating a seamless parametrization (or
quadrangulation) that topologically matches a given cross-field. We
have described a method to generate such a seamless parametriza-
tion, given an input cross-field or an abstract topological specifica-
tion in form of a holonomy signature. It is based on a variation of
the SP method [Campen et al. 2019], with the main difference being:

o The initial hole chain cut graph is constructed taking cross-
field guidance into account.

o The hole chain is then modified by extracting a loop basis
and rerouting of loop segments based on our theory.

e The generation of a cut-aligned parametrization is performed
using a different, theoretically sound conformal mapping
method.
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From the SP method that we employ for the parametrization
construction we inherit the restriction to surfaces without bound-
ary. While there are no fundamental obstacles to adding boundary
support to our rerouting procedure, padding feasibility requires ad-
ditional theory in this more general context. The situation regarding
support for alignment to feature curves, which is of interest in some
use cases of seamless parametrizations, is very similar.

The algorithm stage described in Section 6, in particular the
holonomy-constrained cut graph generation using rerouting, relies
on discrete operations and therefore is not only sound theoretically,
but can be executed without the risk of numerical issues and lim-
its in practice. The algorithm stage described in Section 7 (initial
parametrization followed by constrained optimization), by contrast,
involves numerical computations, with consequent limits in practice.
While for initial parametrization a discrete approach is imaginable
[Zhou et al. 2020], at least for the final distortion optimization a
numerical approach is inevitable.

While we observe the choice of loops that form the initial cut
graph to not affect the final result conceptually (Fig. 8), the dis-
tortion of the initial parametrization, and therefore the numerical
challenges in the final optimization, can depend strongly on this
choice. By testing various random root placements for the loop
construction [Diaz-Gutierrez et al. 2009] employed in Section 6.1.1,
initial parametrizations of low distortion could be found, but a more
direct approach—or a more resilient final distortion optimization
technique—is desirable.

The GCD-condition asserts that, for any given signature, there
is an equivalent signature whose loops have any desired set of
holonomy numbers. It therefore is a sufficient condition for the
existence of a seamless parametrization that topologically matches
a given signature. It is not necessary, though. While likely of limited
practical relevance, the exploration of even tighter conditions may
be interesting.
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A PROOF OF PROPOSITION 1

Proor. We consider the case where « is a path between the right
hand sides of the two loops. If the mesh is suitably refined, there is
a topological disk D in the dual mesh that contains & and does not
contain any cones (Fig. 11 left). Without loss of generality, we may
assume that 4D intersects y along a single nontrivial path f8, and
intersects 6 along a similar path 5. We denote the endpoints of
By as fi" and ;" and the endpoints of S5 as g} and g;. We now can
define yo as the simple loop given by traversing y \ ffy (with respect
to the orientation of this loop) starting at f;', then traversing the
component of 9D (with boundary orientation) from f* to g3, then
traversing 6 \ fs, and finally by traversing D from g7 to f". We
note that we can choose D so that the boundary is arbitrarily close
to a and thus so yy is arbitrarily close to the original loops and path.

Since dD is the boundary of a topological disk that does not

contain any cones, we have that Kg = 27. In the computation of

D
K)Ifo, we have that the signed angles satisfy ay,(f*) = ay(f*) for

Fig. 11. Quasi-additivity of holonomy numbers, on the same example as in
Fig. 6. The inset on the right is a blow-up of the spot circled on the left.
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Fig. 12. Example of iteratively rerouting one loop around two singularities.

Left: initial state with given loop y; and two paths «a;, a]'. connecting to the
’
k
for the next singularity vg. Right: result after rerouting around v; and v

singularity v;. Center: reroute around singularity v; and find paths ay «

F* ey \ By andagp(f*) = —ay (f*) for f* € By \ (£ /3 } (Fig. 11
right). Furthermore, since « intersects y on the right, we must have
that the angle of f; that corresponds to ay (f;") is on the left hand
side of y, a different angle of f; corresponds to agp(f;’) and is on
the left hand side of D, and the final angle of fi corresponds to
ay, (f;") and is on the right hand side of yo. Therefore, we have that

ay(fi) +agp(fi) — ay,(f) = =,
and by a similar analysis the same result for f* is obtained. The
situation is similar for § and 9D, so we have that

Ky = Y. ay(f9)

fren
= D () D as(f+ D, aap(f)—4n
frey fresé f*edD

__F, F_
=Ky +Kg 2.

Thus, we have that
F _F  F
ky, =k, +ks - 1.
The proof where « is on the left hand side of the two loops is
analogous. ]

B PROOF OF PROPOSITION 2

Proor. We have that cutting M along y1, ..., Y2g results in a disk,
so, if the mesh is sufficiently refined, for any y; there is a path aj/a]f
(Fig. 12 left) from either side of y; to any U; such that neither path
intersects any of the other basis loops or cones. Thus, by the above,
we may reroute y; around v; clockwise or counterclockwise to
obtain a new loop y; such that H" = (H\{y;})U{y/} also cuts M into
a topological disk and such that, for any seamless parametrization
F satisfying the properties listed in the proposition, we have

F _3F (fF _1F .
ky; =ky, I, =ky, £

Since H’ still cuts M to a disk, we may still reroute any loop around
any cone with either orientation, so we may iteratively reroute the
basis loops to modify their holonomy number by integer multiples
of I;. Since % is the greatest common divisor of I, ..., I;,, we have
there are integers a; such that

1 m
7=l
i=1

Thus, we have that iteratively rerouting each loop y; around the
cone v;j |4k;aj| times, with orientation determined by the signs of
k; and aj, will give us the desired system of loops. O
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