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Fig. 1. (a) We leverage large collections of annotated geometric data to learn highly e�icient patch-based deep models of distance-to-feature fields for range

scan data. (b) We develop a view synthesis-based approach to combining the inference of such distance-to-feature predictions into a complete estimate

for a full 3D shape. (c) Building upon our fields, we demonstrate the usage of our distance field in a downstream application, where we extract explicit

representations of parametric feature curves from raw range scan data. (d) As a result, we deliver an accurate reconstruction of geometry and topology for

both straight and curved feature lines, as displayed by a reference CAD model.

We propose Deep Estimators of Features (DEFs), a learning-based framework

for predicting sharp geometric features in sampled 3D shapes. Di�erently

from existing data-driven methods, which reduce this problem to feature

classi�cation, we propose to regress a scalar �eld representing the distance

from point samples to the closest feature line on local patches. Our approach

is the �rst that scales to massive point clouds by fusing distance-to-feature

estimates obtained on individual patches.
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We extensively evaluate our approach against related state-of-the-art

methods on newly proposed synthetic and real-world 3D CAD model bench-

marks. Our approach not only outperforms these (with improvements in

Recall and False Positives Rates), but generalizes to real-world scans after

training our model on synthetic data and �ne-tuning it on a small dataset of

scanned data.

We demonstrate a downstream application, where we reconstruct an

explicit representation of straight and curved sharp feature lines from range

scan data.

We make code, pre-trained models, and our training and evaluation

datasets available at https://github.com/artonson/def.

CCSConcepts: •Computingmethodologies→Machine learning;Com-

puter vision; Shape modeling.

Additional Key Words and Phrases: sharp geometric features, curve extrac-

tion, deep learning
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1 INTRODUCTION

Most human-made shapes have sharp geometric features, narrow

curve-like regions with normals changing rapidly across the re-

gion. Sharp features are manually de�ned and explicitly stored in

CAD models, and they are fundamental to faithfully represent the

shape and function of CAD models. Detecting and reconstructing

sharp features from scanned data is a vital geometry processing

task: sharp feature curves can be used to improve the quality of

many algorithms, such as surface reconstruction, including approx-

imation with smooth patches, shape classi�cation, and sketch-style

rendering of surfaces.

Algorithms based on a priori analytic models of geometric fea-

tures (e.g., using curvature and its derivatives) often require per-

object manual parameter tuning to detect features on a speci�c

object (Section 2), making them di�cult to apply to large collections

of data or use as building blocks in a larger processing pipeline.

Data-driven, learning-based methods, including ours, are a natural

alternative for this task as they can leverage global information

extracted from a training dataset and automatically adapt to a par-

ticular input shape without user interaction.

Our goal is to develop a reliable feature detection algorithm for

sampled geometric data.While such data comes in a variety of forms,

we focus on point-sampled data, speci�cally of the type produced

by range scanners. Many other geometry representations (e.g., level

set meshes obtained from grid-sampled densities) can be easily

converted to this form. Some of the most important characteristics

of sampled geometric data include: (1) samples are almost never

directly on (sharp) features; (2) the number of samples can be high

(e.g., for a complex model, a large number of depth images are

typically combined into a single dataset with millions of points); (3)

the data may be noisy.

We propose Deep Estimators of Features (DEF), a new approach to

extracting sharp geometric features from sampled shapes, designed

to work with this type of data. We designed our algorithm with the

goals of capturing features without the need to sample them exactly,

scaling to complex 3D models and large, possibly noisy, point clouds

naturally, while at the same time enabling compatibility with real-

world 3D acquisition setups (see Figure 1).

Our approach is based on de�ning features implicitly, by a distance-

to-feature function; the problem we solve is a regression problem

for this scalar function sampled in input points. The advantage of

using a continuous distance-to-feature function, compared, e.g., to

a binary classi�cation of points as feature and non-feature points,

is that it is much more natural for samples not aligned with feature

and noisy samples.

To address the need of handling large and complex models, we

use local patch-based distance-to-feature prediction instead of a

single-pass global prediction on the entire shape.

As for any supervised learning method, the quality of the results

depends on the quality and size of the training dataset. Obtaining

real 3D scanned data with ground truth is di�cult, as it requires

either manual annotation of scanned models, or precise fabrication

and scanning of CAD data with annotated features; we follow the

latter approach for our real dataset. For this reason, our method uses

a two-stage training process (cf . [Gaidon et al. 2016] and [Handa

et al. 2016]): we train an initial model on a large synthetic dataset

and �ne-tune it on a smaller dataset of 3D scanned data. The former

is obtained by using a simpli�ed simulated scanning process for a

large number of models from ABC dataset [Koch et al. 2019]. For

the latter, we fabricate and scan a smaller subset of ABC models,

transferring annotations from the original CAD models.

We demonstrate that our method performs favourably on a num-

ber of metrics (RMSE, Recall, FPR) to four classical and learning-

based state-of-the-art methods: VCM [Mérigot et al. 2010], Sharp-

ness Fields [Raina et al. 2019], EC-Net [Yu et al. 2018], and PIE-

NET [Wang et al. 2020].

As a sample application using our algorithm, we show that an

explicit parametric representation of feature curves can be extracted

from the estimated distance-to-feature �elds produced by our algo-

rithm (Figure 1 (c)), producing higher quality results, both qualita-

tively and quantitatively, than recent learning-based methods [Liu

et al. 2021; Wang et al. 2020].

In summary, our contributions are:

(1) A method for estimating coherent distance-to-feature �elds

for high-resolution, high complexity sampled 3D shapes, in-

cluding localized, CNN-based initial estimation of the �eld

and global fusion of local estimates.

(2) A pipeline for constructing large simulated training datasets

with controllable noise and di�erent sampling patterns. This

pipeline is used to produce a collection of benchmarks suitable

for comparison of geometric feature detection algorithms.

(3) A process for constructing a real 3D scan dataset with ground

truth distance-to-feature annotations and a new publicly

available labelled set of range scans that can be used as a

realistic benchmark.

2 RELATED WORK

Estimation of sharp features has been studied extensively in com-

puter vision and computer graphics. We review both algorithmic

methods relying on local estimation of di�erential surface properties

and data-driven methods.

Normal Estimation, Clustering and Feature Detection on Local Sets.

A popular family of methods [Bazazian et al. 2015; Demarsin et al.

2007; Weber et al. 2010], which can be applied directly on a point

cloud or a triangle mesh, identi�es a group of samples in a small area,

computes their Gauss map using the samples’ normals, and then

performs clustering on the Gauss map to classify the neighborhood

as belonging to a feature or not. Similar ideas can be applied to point

set resampling with feature preservation [Huang et al. 2013].

A special case of such local estimators is Voronoi Covariance

Measure estimator (VCM) [Mérigot et al. 2010]. It is based on con-

structing Voronoi cells of the local neighborhoods of points and

computing covariance matrices of these cells. From these matri-

ces, normals, curvature, and feature curves can be estimated. These

methods require per-model tuning of parameters for both normal es-

timation and feature detection. In comparison, our method exploits

the availability of datasets and automatically tunes its parameters

to work on a collection of diverse shapes.

Surface Segmentation. Instead of directly detecting features, meth-

ods based on surface segmentation identify surface patches �rst
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Fig. 2. Our patch-based pipeline for generating image-based (b, d) and point-based (c, e) training datasets proceeds as follows: (a) starts with a 3D CAD model,

(b)–(c) extracts local triangulated patches and associated interior sharp feature curves, acquires ray-casted depth images and sampled point clouds, and

computes local distance-to-feature annotations. The diversity of image and point patches in our large-scale training datasets (d)–(e) enables us to train highly

e�ective sharp feature estimation models.

and then classify them as features the interface between them [Lin

et al. 2017]. Additional priors can be used to help the segmentation,

for example, for patches that are known to be developable [Lee

and Bo 2016]. Several works [Lê et al. 2021; Li et al. 2019; Sharma

et al. 2020] have attempted to �t surface patches after segmentation,

however these approaches do not use feature curves and produce a

disconnected set of surface patches with rough boundaries. These

methods inherently require the entire model and cannot be applied

to single views or incomplete models. Di�erently, our approach is

directly applicable to incomplete data.

Patch Fitting. Feature �tting methods use a prede�ned set of

primitives [Cao et al. 2016; Torrente et al. 2018] which are �tted to

large regions of the mesh. These approaches are inherently more

resilient to noise but increase the computational cost and require the

features to be contained within a set of prede�ned shapes. Typical

choices of features vary from a pair of planes sharing one edge [Lin

et al. 2015] to spline curves.

A related, but somewhat distinct method [Daniels et al. 2007;

Daniels Ii et al. 2008] relies on robust moving least squares (RMLS)

[Fleishman et al. 2005]. This approach uses the quality of the local

RMLS �t to determine the number of separate patches locally, and

computes curve feature points as surface intersections, with several

additional processing stages to obtain feature curves in the end.

As with other categories, many parameters need to be adjusted to

obtain good results.

Ground Truth and Representations. Only recently, multiple syn-

thetic large-scale datasets with annotated features have been re-

leased [Kim et al. 2020; Koch et al. 2019; Willis et al. 2020]. In this

work, we provide the �rst large-scale, objective comparison of algo-

rithms working on triangle meshes and point clouds using the ABC

dataset [Koch et al. 2019] and a real scan dataset derived from it.

Data-Driven Approaches. The identi�cation of points lying on a

sharp feature is most commonly cast as a binary classi�cation prob-

lem, using a surface neighborhood (and potentially the normals or

curvature of the neighboring points) as (learning) features. Di�erent

machine learning models were used, such as random forests [Hackel

et al. 2016; Hackel et al. 2017], pointwise MLPs [Raina et al. 2019;

Wang et al. 2020; Yu et al. 2018], or capsule networks [Bazazian and

Parés 2021]. A recent work [Himeur et al. 2021] presents a light-

weight MLP-based architecture paired with di�erential geometry-

inspired scale-space matrices that encode features discriminative for

edge detection. The methods that are closest to our work are [Liu

et al. 2021] and [Wang et al. 2020]. These approaches classify feature

and corner points and �t analytic features connecting the corner

points and approximating the detected features. We compare against
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state-of-the-art learning-based methods, discussing results and de-

tails in Section 7.2.

3 OVERVIEW

The input to our algorithm is a set of depth images (possibly with

missing data), for a given object. In the case of real scanned data,

these images are obtained directly from the scanner; in the case of

synthetic mesh data, we simulate the scanner to generate a collection

of depth images from a mesh (Section 4.2). The algorithm outputs

estimates of the truncated distance-to-feature scalar function for

each input point. Figure 1 (a)–(b) illustrates this process.

The four main components of our method are:

(1) Training Data Construction (Section 4). We generate synthetic

training data using the ABC dataset [Koch et al. 2019], ob-

taining collections ranging from 16,384 to 262,144 training

instances. To �ne-tune the model and evaluate its perfor-

mance on real scans, we introduce a fabrication, scanning,

and semi-automatic annotation pipeline to create a dataset

of 84 real-world models. Our data generation pipeline ac-

cepts a set of meshes and their associated feature annotations

(edges marked as sharp) as input and produces a set of point-

sampled local patches with point-wise distance-to-feature

labels as output (Section 4.1). We specify the details on the

implementation of our two datasets, the synthetic DEF-Sim

and the real-world DEF-Scan, in Sections 4.2–4.3.

(2) Patch-Based Deep Estimators (Section 5.1). We train a family

of deep feature estimators (DEF), which produce distance-to-

feature estimates, on patches (depth images) of the synthetic

dataset and �ne-tune on a subset of the real-world dataset.

(3) Estimation on Complete 3DModels (Section 5.2). The per-patch

distance-to-feature predictions produced by DEFs are fused

together by transferring estimates from each patch to overlap-

ping patches and combining into a coherent global estimate.

(4) Feature Fitting (Section 6). The last (optional) component

extracts explicit feature curves from the distance-to-feature

function. We show that with our distance function estimate,

simple corner detection, combined with kNN clustering and

spline �tting, produces higher quality results than state-of-

the-art methods.

In the next sections, we describe each component in detail and

provide a rationale for each algorithmic choice.

4 DATASETS WITH DISTANCE-TO-FEATURE

ANNOTATION

4.1 Dataset Design

Feature De�nition. Each CADmodel in the ABC dataset is de�ned by

a boundary representation (B-Rep), providing a partitioning of its

surface into a collection of CAD regions and associated parametric

curves. Analytically, we identify sharp features as curves at the

interface between any two regions for which the normal orientations

de�ned in either region di�er by more than a particular threshold

Unorm (we use Unorm = 18°) as was done during the construction

of ABC dataset [Koch et al. 2019]. The threshold is necessary as

CAD models commonly have smooth areas partitioned in multiple

regions, which would result in spurious features.

Directly using the original parametric representations, however,

makes it di�cult to construct a large training dataset, as B-Reps ei-

ther need to be traversed using o�-the-shelf geometric kernels [Open

CASCADE Technology OCCT 2021; Parasolid: 3D Geometric Mod-

eling Engine 2021], a software not designed for batch processing, or

require re-implementing a set of elementary operations like closest

point, which require nonlinear solvers on B-Reps. To avoid these

issues, we use the triangulated versions of the ABC models, where

CAD region and sharp feature curve labels are available for vertices

and edges in each mesh; we introduce a set of easily testable geo-

metric conditions into our data generation procedure to prevent

introducing signi�cant geometric errors when sampling B-Rep data.

We use the curve annotation provided in the ABC dataset to identify

the mesh edges which were marked as sharp to base our distance

�eld on the proximity to the corresponding mesh edge.

Patch and Feature Selection. Mesh models in ABC vary signif-

icantly in geometric complexity [Koch et al. 2019], requiring an

adaptive number of samples to represent their 3D surface geometry

(in the original dataset, meshes are sampled with 102–107 vertices),

see Figure 4. However, having variable size, high resolution 3D

shapes as input is not a good �t for training most state-of-the-art

learning algorithms, which require a �xed number of samples and

require too much memory and training time to handle hundreds

of thousands of samples [Henderson et al. 2020]. To address this

problem, we decompose each shape into a collection of patches with

a small and �xed number of samples, see Figure 2 (a)–(c); this is

di�erent from a number of existing trainable approaches [Wang

et al. 2020] that represent entire shapes with the same (�xed) number

of samples.

Selecting patches and feature curves for training has a direct

impact on performance. We distinguish between interior, contour,

and proximal exterior curves, depending on their visibility status;

we keep interior curves for annotation and exclude the latter two

types. Features appearing as a contour of a sampled region are di�-

cult to distinguish from smooth features; being adjacent to only a

single visible surface patch provides insu�cient spatial context for

inferring these from point samples. Exterior features pass within dis-

tance truncation radius Y but still outside the visible patch. Including

exterior features would lead to distance-to-feature annotations indi-

cating feature proximity; however, regressing such features from the

local patch context would be impossible due to absence of samples

covering them. In contrast, we generate the per-patch annotations

locally in each patch, using only feature curves passing through the

patch interior. Figure 3 demonstrates example annotations obtained

by varying the set of included features.

Similarly, patches with depth discontinuities and gaps repre-

sent challenging cases with many contour feature curves, see Fig-

ure 3, rows 2–3; however, these naturally occur due to shape self-

occlusions or ray misses during both ray-casting and real scanning.

We have experimentally observed that including such instances

in training improves performance, particularly at near-boundary

pixels that are regressed more accurately; we discuss their e�ect

and alternatives in our ablative experiment (Section 7.4).
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Fig. 3. The same depth data in column (a) may be annotated di�erently,

depending on which adjacent feature curves are included when computing

distances. Contour features (i.e., features adjacent to only a single visible

surface patch; shown in column (b), rows 1–3) are di�icult to distinguish

from smooth contours; exterior features in close proximity (i.e., features

passing outside patch but within distance truncation radius Y ; shown in

column (b), rows 2–4) are impossible to detect due to absence of samples

covering them. We opt to generate the per-patch annotations locally in each

patch, using only feature curves passing through the patch interior (i.e.,

both adjacent surface patches are sampled, shown in column (c), rows 1–4).

Distance-to-Feature Computation. As our focus is on sharp feature

detection, large values of the distance-to-feature function have little

impact on feature localization but require more e�ort to predict

correctly. For this reason, we de�ne a truncated distance-to-feature

�eld 3Y (?) in each location ? ∈ R3 using the proximity to a subset

of mesh edges corresponding to (sharp feature) curve segments

Γ = {W: } :=1 in R
3 as follows. We �nd for ? its closest (in Euclidean

sense) neighbor located at one of the segments in Γ, i.e. a point @(?)
such that

∥@(?) − ? ∥ = min
W: ∈Γ

inf
@∈W:

∥@ − ? ∥, (1)

and de�ne the 3Y (?) by
3Y (?) = min(∥@(?) − ? ∥, Y), (2)

where we set our truncation radius Y to a multiple of the sampling

distance A (we set Y = 50, Ahigh = 1 where Ahigh = 0.02 is a base sam-

pling step), leaving a su�ciently wide envelope where our distance

�eld may provide meaningful feature-related information.

We use Euclidean distance as opposed to the geodesic distance

along the surface. We compute distance-to-feature annotation for a

sampled point ? by associating it to the closest surface spline region

within the patch (this association accounts for sampling noise) and

only considering sharp feature curves belonging to the contour of

that surface region in the ABC feature annotation, see Figure 5. More

generally, we construct a surface region/feature curve adjacency

graph where each surface region and feature curve (two nodes)

Fig. 4. Di�erently from existing approaches, that represent all mesh models

(a) by a fixed number of samples (b) despite dramatic di�erences in their

geometric complexity (cf . rows 1 and 2), we decompose input 3D models

into variable-length sets of local patches with a fixed number of samples;

as a result, complete 3D shapes sampled using our method have variable

number of samples (c).

that share mesh vertices are connected by an edge, and perform

depth-�rst search of depth : to determine which features should

be included in the distance computation over a particular surface

region. We additionally record @(?) − ? , directions to the closest

points on the feature curves, for use in the ablation study.

Feature Size and Sampling Density. To accurately reconstruct the

distance-to-feature function, it is not safe to rely on �xed-size input

point clouds for whole objects (as it is done in recent literature [Liu

et al. 2021; Wang et al. 2020]), since many curves are left severely

undersampled, see Figure 4. Instead, we assume that most feature

curves are su�ciently densely sampled, and that the presence of

feature curves can be inferred from the positions of samples; that

leads us to have an adaptive number of point samples per object.

This assumption is motivated by a common practice in high-quality

3D data acquisition of adapting the number of points per object and

sensor placement to the geometric complexity and size of the object.

One way to reason about “su�cient” sampling is to choose a

characteristic (object-dependent) spatial size ; for each shape and

require that features of size close to ; are represented by, on average,

= samples. Formally, we require the following relation to hold:

A︸︷︷︸
sampling
distance

× =︸︷︷︸
num. samples
per feature

= ;︸︷︷︸
characteristic
spatial size

× B︸︷︷︸
scaling
factor

, (3)

where we are free to vary either the sampling step A or the object

scaling factor B to achieve the equality (in practice, for each particu-

lar dataset, we �x A and vary B). Our characteristic spatial size ; is

a linear measure set to to 25% lower quantile of the distribution of
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Graph (Ours)

S7

γ6

Adjacency-Based
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ΩPatch

Ω

CAD Shape

Ω
1

2

(b)(a) (c) (d)

Fig. 5. Extracting a patch from an example 2D CAD shape in (a) produces

a mesh fragment consisting of seven surface regions (; along with six

associated interior feature curves W: (rows 1–2 (b)). For samples ?8 ∈ (7,
naive computation of distances 3Y (?8 ) maps ?1, . . . , ?7 to the feature W5
(row 1 (c)) which is disconnected from the region (7, despite proximity in the

Euclidean sense (row 2 (c)). In contrast, we compute more natural distances,

excluding non-contour curves for each surface region (for (7, all but W6 are

excluded as in row 1 (d)) by constructing and pruning the surface/curve

adjacency graph (row 2 (d)).

sharp feature curve extents, where “extent” denotes the maximum

of three dimensions of an axis-aligned bounding-box enclosing a

curve. Figure 6 provides an illustration of this scheme.

Patch-Based Datasets. We run our patch generating algorithm on

the �rst �ve chunks of the ABC dataset (37,945 3D shapes) and obtain

three major data varieties at low, medium, and high resolution by

choosing =low = 8, =med = 2.5 × 8 = 20, and =high = 2.52 × 8 = 50

samples per curve. Each resolution corresponds to sampling distance

Alow = 0.125, Amed = 0.05, and Ahigh = 0.02, respectively. Similarly

to related methods [Wang et al. 2020; Yu et al. 2018], we model

acquisition uncertainty using additive Gaussian white noise; we

use �ve scales in the viewing direction with a standard deviation

f ∈ { A8 ,
A
4 ,
A
2 , A , 2A }, for the high-resolution data only. For each of

the mentioned variations we obtain training sets of sizes ranging

from 16,384 to 262,144 patches to assess the impact of dataset size

on performance (see Supplementary material for details).

Complete 3D Model Datasets. Complementing our patch-based

data, we constructed datasets of 3D shapes representing object-level

data samples of 3D CAD models, both synthetic and real.

We emphasize that the design principles outlined in this section

are used uniformly for both our synthetic and real-world datasets,

enabling direct �ne-tuning of our networks for the real scenario.

We have selected a diverse set of 68 distinct CAD models from

the ABC dataset. Our focus when choosing the models is to cover

a variety of qualitative properties, including (1) presence of thin

walls and (2) various types of surface regions (e.g., �at, cylindrical,

splines, and spheres), (3) curved and straight features, (4) variety of

angles incident on sharp features, and (5) presence of �llets. The

statistics of the selected models are analyzed in the Supplemental.

The models are sampled and annotated as described in this Section

to form the input complete 3D shapes.

0

n·r

2n·r

3n·r

·

·

·

N
u

m
. S

am
p

lesD
(a)

CAD Shape Curve Extents Distribution

Characteristic
spatial scale

l=n·r

(c)

Feature Curve
Decomposition

(b)

Fig. 6. For an input CAD shape in (a), we analyze the distribution of sharp

feature curve extents in (b) and relate a sampling radius A to features of

characteristic spatial size ; , sampling these with at least = points in (c) (see

Equation (3) and surrounding text).

4.2 Synthetic Datasets: DEF-Sim

Our synthetic datasets provide collections of local patches and

68 complete 3D models in varieties of low, medium, and high reso-

lution, and several noise levels.

Shape Sampling. We set up =E virtual cameras with locations

evenly distributed on a sphere around an object (we use Fibonacci

sampling [Hannay and Nye 2004]) and the I-axis pointing at its

center of mass. For each camera, we create a regular grid (image)

with 64 × 64 pixels (we specify A as the pixel size) and cast rays

from each pixel’s corner in a direction perpendicular to the grid,

obtaining patches with up to 4,096 point samples each (some may

not correspond to an object point and are set to a background value).

Knowing the camera parameters ( ,) ) where  ∈ R2×3 is an
intrinsic matrix transforming point coordinates from the camera

coordinate frame to the image plane and ) ∈ R4×4 an extrinsic

camera matrix transformation from the camera coordinate frame to

a global coordinate frame [Hartley and Zisserman 2004], sampled

points ?8 9 = (G8 9 , ~8 9 , I8 9 ) (in homogeneous coordinates) may be

identi�ed with a depth image � = (Icam8 9 ), where Icam8 9 = ( )−1?8 9 )3
denotes I-coordinate of point ?8 9 in the camera frame. We create the

distance-to-feature annotations image by computing 3 = (3Y (?8 9 ))
and record the pair (� , 3) as the training instance. We use =E = 18

and augment the dataset by rotating and o�setting the image grid

during data generation, but maintaining the same orientation of

I-axis; we discuss the e�ect of having varying number of views =E
in the ablation study (Section 7.4).

4.3 Real-World Datasets: DEF-Scan

To support generalization to real-world scanning data, we con-

structed a dataset of 84 real objects and semi-automatically an-

notated them. Figure 7 presents an overview of the steps involved

in the construction of our datasets; details on the selection of CAD

models are mentioned in Section 4.1.

Fabrication. As we sought to fabricate a multitude of arbitrary 3D

models with high geometric complexity, we opted for fabricating the

models using 3D printing, as it can easily produce shapes directly

from CAD models. We used two commodity polylactic acid (PLA)

devices (Ultimaker 3 and Ultimaker S5) and considered implications

of this choice (most importantly, its accuracy and layer thickness of

0.1mm). We choose the printed object size to allow acquisition with

our 3D scanner at a speci�c sampling density of the features while
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Fig. 7. (a) We have selected a diverse set of 84 3D CADmodels from the ABC dataset and (b) fabricated them in thermoplastic using the 3D printing technology.

(c) We further obtained 12 scans of each shape in two di�erent orientations (totalling 24 scans per object) using a commercial structured-light 3D scanner. (d)

We semi-automatically registered the 3D scans onto the original CAD model, computed distance-to-feature annotations in (e), and finally processed the scans

to obtain our patch-based datasets.

simultaneously avoiding scanning any fabrication artifacts. We pick

a sampling density value A > 0.1mm for our 3D scanner by selecting

a scanning distance (see below), and compute a scaling factor B8 a

for each fabricated model"8 individually using the relation (3). The

fabricated CAD models are displayed in Figure 8.

Scanning. Our depth acquisition process seeks to obtain a homo-

geneous set of range scan data capturing most of the surface for

the fabricated models and suitable for point-based and image-based

training. We use RangeVision Spectrum [RangeVision Spectrum

2021], a commercial structured light 3D scanner, to acquire the ge-

ometry of the fabricated objects in the form of depth images. The

scanning sequence we use captures the object from two orientations

w.r.t. the scanner, di�ering by 90°; in each orientation, we take a scan

every 30° using an automated turntable to minimize the operator

time. Our resulting scans are acquired from an average range of

2m and have the resulting sampling distance A of approximately

Fig. 8. A photo of the thermoplastic 3D CAD models fabricated for the

evaluation of our approach in a real-world se�ing.

0.5mm. In total, we have acquired 1928 depth images correspond-

ing to 166 scanning sequences of 84 unique objects. We give more

detailed statistics on our real-world dataset in the Supplemental.

Registration with the CAD Models. Our 3D scanner automatically

provides an initial alignment between the obtained 3D scans; how-

ever, we found this alignment too coarse. Hence, we manually regis-

tered all scans to their respective CAD models using the Align Tool

in MeshLab [Cignoni et al. 2008] by �rst marking 3 points on each

scan-mesh pair for rough manual alignment, followed by running

the ICP algorithm for re�nement. We �nd that manual alignment

results in signi�cantly tighter �ts.

5 DEEP ESTIMATION OF DISTANCE-TO-FEATURE

FIELDS

5.1 Learning Patch-Based Deep Estimators

We train our deep regression models by solving the standard learn-

ing task: given a set of # training instances, �nd

min
\

1

#

#∑

8

!(38 , 5 (%8 ;\ )),

where38 is the ground-truth distance-to-feature �eld for the patch %8 ,

5 (·;\ ) is the model with trainable parameters \ , and ! is the loss

function. We have considered a few options for elements in this

setup, to identify an optimal learning con�guration. We summarize

these choices below and present the qualitative comparisons of

di�erent options in Section 7.4 and their e�ect onmethod robustness

in Section 7.5.

Network Architectures and Losses. Overall, we found that CNNs

working with regularly resampled data outperform point-based

networks for our task (Table 6). We require our deep models to

generalize to many unseen targets with high geometric variability,

thus we search for network architectures with su�cient capacity.

We use the U-Net CNN model [Ronneberger et al. 2015], which has

proven e�ective for image-based dense regression [Xue et al. 2019],

and probe the ResNet family [He et al. 2016], selecting the largest
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Table 1. In our experiments, directly optimizing Histogram loss [Imani and

White 2018] significantly improves performance across di�erent quality

measures. We present results computed using the validation set of depth

images (with background), with sampling distance Ahigh = 0.02, and noise

variance f2
= 0.

Loss RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

!2 (MSE) 101.3 643 24.2 0.11

!1 (MAE) 108.7 691.2 23.5 0.06

Histogram 61.5 361.1 57.4 0.06

(ResNet-152) base network based on the quality of predictions on

the validation set. For full details on the in�uence of model size on

performance, we refer to Supplemental.

We compare three types of losses for our regression task: !1 loss,

!2 (MSE) loss, and the Histogram loss [Imani and White 2018]. The

latter one requires the model to produce a histogram of values over

a prede�ned interval; we empirically found out that histograms with

244 bins work best on the validation set. Overall, we observed that

learning with the Histogram loss considerably improves regression

quality measured by all metrics as presented in Table 1. We attribute

this to the restriction being imposed on the range of the possible

target (ground-truth) distances, allowing the network to focus on

a narrow range of targets. Our �nal setup with the Histogram loss

predicts a con�dence score for each bin in the histogram and com-

putes the �nal output as a weighted sum of bin centers multiplied

with their respective normalized predicted scores.

Additional Inputs, Supervision, and Data Volume. The second crit-

ical ingredient that we investigate is the dataset size and features

available in training datasets.

To assess the gains from additional inputs, we concatenate the

additional values to the point coordinates: we used the binary sharp

feature point segmentation labels obtained by the non-learning

algorithm VCM [Mérigot et al. 2010], ground-truth normals, as well

as both of these values, keeping distances as our only target variable.

Neither of these additional annotations resulted in performance

improvement.

To evaluate whether learning con�gurations for our task bene�t

from richer supervision compared to distances only, we introduce

additional network heads regressing either normals, normalized

directions towards the nearest sharp feature line, or both simultane-

ously. During training with these targets, we optimize a multi-task

loss consisting of our main loss and a weighted sum of MSE losses

with weights chosen to balance the magnitude of losses: 10−3 for
normals, and 10−2 for directions. None of these con�gurations led
to improved regression performance either. We also trained the net-

work on datasets of increasing size; we observed that performance

stabilizes for datasets with more than 64,000 training instances.

In summary, the best-performing choice of architecture was a

CNN U-Net with ResNet-152 backbone, trained using the Histogram

loss using the supervision from ground-truth distances 3 (?) only,
on datasets of size at least 64,000. We present detailed results of

mentioned experiments in the Supplementary material.

Fig. 9. Network responses to probe depth images sampled at di�erent rates

reveal high feature sensitivity and sampling robustness of our deep models;

in instances with su�icient samples between feature curves, our method

e�iciently relates samples to respective closest feature lines. We obtain

ground-truth data (a)–(b) by raycasting a 3D model at sampling distances

Ahigh = 0.02, Amed = 0.05, and Alow = 0.125 and produce predictions (c)–(e)

using DEFs pre-trained for regressing features at Ahigh = 0.02, Amed = 0.05,

and Alow = 0.125, respectively.

Feature Detection at Varying Sampling Distances. Each DEF net-

work, though trained on data with a speci�c sampling rate A in (3),

can detect interior features sampled at signi�cantly di�erent rates;

in Figure 9, features sampled at Alow = 0.125 are robustly regressed

by DEFs trained on 2.5× (Amed = 0.05) and 6.25× (Ahigh = 0.02) �ner

sampling, and vice versa. Importantly, when sampling distance in

inputs matches that of training datasets, DEF predicts a proper dis-

tance �eld; otherwise, DEF produces a scale-transformed proximity

�eld whose iso-contours capture true features.

5.2 Reconstructing Distance-to-Feature Fields

on Complete 3D Models

The trained deep estimators sense distance variations in the direct

vicinity of the interior curves visible in individual patches of an

input shape; predictions in any two distinct patches may diverge

substantially if feature curves are captured di�erently (e.g., a feature

appears as an interior curve in one patch but shows up as a contour

in another), see Figure 10 (c). Given a set of these partial and incon-

sistent estimates (with known camera parameters), we reconstruct

a distance-to-feature �eld de�ned globally on a complete 3D shape;

we give an overview of this fusion process in Figure 10.

Patch Extraction. (Figure 10 (a)–(b).) We convert an input 3D

model into a collection {�8 }=E8=1 of =E range images suitable for our

patch-based DEF. We assume that the input 3D shape either already

comes as range images (e.g., for range scanning) or can be resampled

(e.g., represents volumetric data). In the latter case, we obtain depth

maps of the input shape from multiple distinct directions using

raycasting. As our deep models are fully convolutional, we employ

full-object views �8 of input 3Dmodels to compute predictions, which
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Fig. 10. Our method for reconstructing distance-to-feature fields on 3D shapes is built around postprocessing distance-to-feature predictions obtained in

individual patches (or views). (a)–(b) First, we extract a collection of overlapping patches by scanning an input shape from multiple viewing directions. (c) We

process each patch using a DEF network to obtain patch-based predictions, sensitive to interior feature lines only. (d) We leverage the multiple view stereopsis

machinery to transfer distance-to-feature fields to adjacent views by reprojecting and linearly interpolating single-view predictions (warping-based view

synthesis). (e) The final estimate of our field on a complete 3D model is obtained by a robust statistical inference procedure.

we found to perform similarly to predicting on patches of the size

our network was trained on, while being more convenient.

Crucially for the completeness of the reconstruction, su�cient

number of views of the input shape must be provided to capture

most features; features not visible in at least one view are likely to

be missed. We observed that for all of the considered 3D shapes,

using =E = 128 directions is su�cient to sample more than 97%

of triangles of the corresponding meshes with at least 8 samples;

we study the in�uence of the number of input views in Section 7.5.

However, some shapes with many parts of their surfaces visible

only from narrow cone of directions, di�erent for each (e.g., with

many deep indentations) may require many additional directions.

Patch-Based Distance-to-Feature Estimation. Each patch �8 is pro-

cessed independently using our neural network (Section 5.1), yield-

ing predictions 3̂8 sensitive to interior feature curves, as shown in

Figure 10 (c).

Transfer of Predictions across Patches. The aim of this stage is to

gather predictions from multiple processed patches in each sampled

point, integrating feature-sensitive information across the complete

3D shape. The central idea is to employ a warping-based view syn-

thesis mechanism (similar to [Khot et al. 2019]): taking each pair

of source and target views, we synthesize distance signal in the

target view conditioned on the information inferred from the source

view. Computational complexity of our distance estimation method

depends on the number of sampled points in each view and (quadrat-

ically) on the number of views =E .

Let a particular pair (B, C) of source and target views be repre-

sented by depth images �B , �C , their associated intrinsic  and extrin-

sic )B ,)C matrices, and distance-to-feature estimate 3̂B available in

the source view; we seek to construct a warped signal 3̂B→C
C from this

information. For each pixel ? = (D, E) in a target image �C , we com-

pute the warped coordinates ?̂ in the source view by re-projecting

? to the image plane of �B :

?̂ =  )−1
B )C

(
�C (?) ·  −1?

)
.

To compute the warped distance-to-feature estimate 3̂B→C
C (?) at

the target pixel ? , we resample a local continuous distance �eld

obtained by bilinearly interpolating 3̂B on the grid of samples of the

source patch �B around the warped coordinates ?̂:

3̂B→C
C (?) = 3̂B (?̂) .

We additionally compute a binary visibility mask EB→C
C (?) indicat-

ing which pixels have been correctly interpolated as some pixels

have insu�cient number of neighbors to resample from (see Sup-

plementary material for details). The number of predictions for a

pixel ? is equal to the number of depth images from which the pixel

is visible. Example interpolation results are shown in Figure 10 (d).

As a result, each 3D sample ? captured by each depth image �8
is described by a set �? of valid predictions interpolated from all

views {�B }=EB=1:

�? =

{
3B |3B = 3̂B→8

8 (?) where EB→8
8 (?) = 1

}=E
B=1

. (4)

Inference of the Final Distance Field. The assembled predictions

are processed to form a �nal distance estimate by feeding the set
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�? into an inference set-function 6. We have considered a num-

ber of approaches to constructing 6 (we present an ablation study

in Section 7.4); computing a minimum over all predictions of the

distance 3̂ (?) = min
3B ∈�?

3B proved to be the most accurate among

all approaches we tried, which includes computing simple, robust,

or truncated averages, variants of weighting schemes, and �tting

a robust locally linear regression. More details on computing the

variants of the inference function are presented in the Supplemental.

6 APPLICATION: EXTRACTION OF PARAMETRIC

FEATURE CURVES

To evaluate the quality of distance-to-feature �elds reconstructed

using our method, we designed an algorithm for extracting para-

metric feature curve networks employing the estimated �elds. Our

algorithm is based on simple local classi�ers for detecting corner

vertices, heuristic graph structure analysis, and spline �tting. Mak-

ing a number of careful choices, we are able to �t signi�cantly

more accurate feature curve networks compared to recent methods

PIE-NET [Wang et al. 2020] and PC2WF [Liu et al. 2021].

A preliminary version of our method was presented in [Matveev

et al. 2021]; similarly to the method described in this section, it

uses DEF’s distance-to-feature output to produce a set of feature

curves. We keep the overall structure of the approach, re-use its

segmentation and spline �tting steps, and follow the same stages

as in the earlier work. However, we contribute an improved corner

and curve endpoint detection criteria in (5), (7); a more robust :NN-

based polyline construction stage and an optimization functional

in (9); a post-processing technique in (11), all resulting in signi�cant

performance improvements of the method. We refer the reader to

Figure 18 for qualitative demonstration of the di�erence between

the two algorithms.

Initialization. At the initial stage, given a point cloud % , we select

%sharp that consists only of points with estimated distance 3̂ less than

3sharp. To further reduce the number of points, we apply Poisson

disk sampling, leaving only 10% of points to reduce the size of the

set and make the point distribution more even.

Corner Detection. Corner detection is designed as an aggregation

procedure of several corner estimates constructed from a grid of

parameters. We sample anchor points across %sharp (we use 20% of

points in %sharp chosen by farthest point sampling) and build sets �8
of points contained in overlapping Euclidean balls of a radius 'corner
centered at the anchor points and covering %sharp.

We approximate each of these local sets by an ellipsoid by com-

puting PCA on points in the set and obtain vector of variances

(_1, _2, _3) such that _1 ⩽ _2 ⩽ _3 and
∑3
:=1

_: = 1, describing

lengths of ellipsoid axes. For each speci�c set �8 , we use these vec-

tors to compute a squared distance-normalized aggregate:

Λ8 =

3∑

:=1

∑

9 ∈N8

(
_8
:
− _ 9

:

X8 9

)2
, (5)

where N8 is a collection of indices of the sets � 9 nearest to the set

�8 , and X8 9 is a Euclidean distance between anchor points of sets

�8 and � 9 . This quantity measures how much a speci�c ellipsoid

deviates from the neighboring ones.

We decide whether a local set �8 belongs to corner cluster by

comparing Λ8 against the characteristic threshold )variance, and

mark �8 as either corner or curve type set:

Bcorner = {�8 | Λ8 > )variance},
Bcurve = {�8 | Λ8 ⩽ )variance}.

(6)

We evaluate this classi�cation for all combinations ofN8 ,)variance,
and 'corner, each varying over a small range, for a total of 60 com-

binations, and compute a probability of �8 to be a corner based on

the fraction of corner classi�cations in this set. Refer to Section 7.3

for more details.

This value is available only for the anchor points of �8 . To extend

it to the whole point cloud, we apply : nearest neighbors regressor

with : = 50, thus obtaining per-point values 0 ⩽ F (?) ⩽ 1.

The set of points near corners is obtained by thresholding weights:

%corner = {? ∈ %sharp : F (?) > )corner}.

Curve and Corner Segmentation. For curve segmentation, we con-

sider the set of corner points %corner and the set %curve = %sharp \
%corner consisting of near-sharp points not detected as corners; we

process both these sets to extract clusters de�ning individual corners

and curves, respectively. To segment points belonging to individual

curves, we construct a dense :NN graph by creating edges between

all points in %curve located within sampling distance A (3) from each

other, and cut it into connected components. We treat each con-

nected component as de�ning one of =curve curves, together they

constitute the set of point clusters corresponding to each curve:

Pcurve =
{
%2 ⊆ %curve | ∀? ∈ %2 ∃@ ∈ %2 , ? ≠ @ : ∥? − @∥ ⩽ A

}=curve
2=1

.

For corner points %corner, the procedure is similar; we extract the

�nal corner clusters Pcorner by separating connected components

of the detected corner sets.

Extraction of Curve Graph. From the segmentation, we construct

a curve graph �tted to %sharp, separately processing each set of

points corresponding to a curve. The next steps include (1) detecting

endpoints for each curve, marking curves as either open or closed

based on the detections, (2) approximating each curve with a short

path polyline, (3) connecting �tted polylines, corners, and endpoints

into a complete shape curve graph, and (4) re�ning endpoint and

corner locations.

To detect endpoints for a segmented curve cluster %2 , we con-

struct a neighborhood-based endpoint detector similar to our cor-

ner detector. We construct Euclidean neighborhoods �8 with the

radius 'endpoint centered at the anchor points ?08 sampled in %2 ,

compute their straight-line approximations (we compute PCA on

points in �8 and reduce its dimensionality to one), and parameterize

each point ? ∈ �8 by a single coordinate C (?) obtained from PCA.

To identify curve endpoints, we compute the share of points ? ∈ �8
whose parametric coordinates C (?) are greater or smaller than the

parametric coordinate C08 of the anchor ?08 :

+8 =
��� 1

|�8 |
∑

?∈�8
sign(C (?) − C08 )

���, (7)
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Fig. 11. (a) We propose a parametric curve extraction method based on an input dense point cloud with a per-point estimated distance-to-feature field. We

threshold distances to obtain a subset of samples %sharp that we use to (b) estimate corner probabilities and (c) construct curve instance segmentation (black

clusters correspond to the detected corner neighborhoods). (d) Detected corners and curves allow building and optimizing a curve graph that reflects the

curve connectivity. (e) We finally translate the curve graph into a set of accurate parametric curves that reflect feature geometry of the reference shape (f).

declaring ?08 an endpoint if +8 is greater than threshold )endpoint.

Intuitively, +8 = 0 corresponds to a fully symmetric case (equal

shares of points parameterized by coordinates with either sign)

while +8 = 1 indicates strong prevalence of points on either side of

an anchor. For a curve cluster %2 , if only one such anchor exists,

we select an anchor ?08 with the second largest value of +8 as a

second endpoint; for more than two detected endpoints, we select

the two most distant ones; if no such points are detected, the curve

is considered to be closed.

Next, we compute polyline approximations of curves. For an open

curve, we construct :NN graph by connecting all the curve anchor

points ?08 sampled in %2 within twice the average sampling distance

from each other, and initialize the polyline with a shortest path in

such graph connecting the detected endpoints.

To create a polyline for a closed curve, we sample three points

from the cluster by farthest point sampling, connect them to com-

pose a triangle, and proceed with the subdivision strategy. The

candidate subdivision points are identi�ed by computing

?split = argmax
?8 ∈%2

��3̂8 − ∥?8 −min
;
c; (?8 )∥

�� (8)

over points ?8 from the current curve cluster %2 ∈ Pcurve, where

min; c
; (?8 ) is a projection of ?8 onto the nearest polyline segment

; . To proceed with subdivision, we check an absolute di�erence

between the estimates 3̂8 and the actual distances ∥?8 − c; (?8 )∥
against the threshold)split; for candidate points ?split exceeding this

value, we subdivide the polyline by assigning ?split a new polyline

node and splitting the corresponding segment in two. This choice

of ?split aims to keep the maximum polyline approximation error

below )split for individual curves.

Finally, we substitute the detected open curve endpoints with

the respective nearest corner cluster centers, yielding a �nal curve

graph� (@, 4) de�ned by the node positions @ (corner cluster centers

and nodes of polylines) and connections 4 between them. The last

step is node position optimization:

min
@

( 1

|%sharp |
∑

?∈%sharp
|3̂ (?) −



? − c� (@,4) (?)


| −

∑

@∈; [� (@,4) ]
cos@

)
,

(9)

where c� (?) is the projection of a point ? onto the nearest edge

in the curve graph � , and
∑
@∈; [� (@,4) ] cos@ is sum of cosines of

angles between the two consecutive edges incident to the node @,

computed only for the set of nodes ; [� (@, 4)] such that they have

exactly two incident edges (hence, it is locally linear). Intuitively,

the second term represents rigidity of polylines that prevents the

acute angles between edges. Optimization helps to position graph

nodes more accurately, especially at the intersections of multiple

feature curves, and the rigidity term makes polyline segments more

straight. After this step is �nished, we can identify the �nal corner

positions as coordinates of graph nodes with more than two incident

segments.

Spline Fitting and Optimization. For spline �tting one needs to

obtain a consistent parameterization of each feature curve. We do

that by partitioning the curve graph into shortest paths between

graph nodes with degree not equal to 2, each path serving as a

proxy to a curve that de�nes parameter coordinates of points along

feature curve. For a path 6 represented as a sequence of graph nodes

@6 = {@8 } |6 |8=1 we get a set of nearest points %6 ∈ %sharp, and compute

projections c6 (?8 ), ?8 ∈ %6 and obtain values of parameters D6 =

{D8 }
|%6 |
8=1 as a cumulative sum of norms of c6 (?8 ) along the path 6.

Simultaneously, we compute knots C6 as evenly spaced parameters;

number of knots is de�ned as max
(
5,

|6 |
2

)
.

Fitting a spline B6 to the path 6 results in a set of control points

2B that de�ne the exact shape of the spline curve. Once the spline is
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Fig. 12. Visual comparison of DEF vs. competitor approaches on challenging image patch instances (synthetic image patches, = = 50, A = 0.02). Observe

that, for segmentation (le� part of gallery), VCM struggles to detect subtle features (rows 1, 3) and leads to substantial amounts of false positives when

encountering large density variations or noisy inputs (rows 2, 4); EC-Net likewise tends to miss features (rows 1–2) and yield overall unstable predictions in

presence of noise (rows 3–4). Most evidently, ShF and PIE-NET deteriorate drastically in presence of noise (see rows 3–4) while producing imperfect predictions

for clean data. Additionally, PIE-NET, EC-Net, and VCM were not designed to estimate distances to nearest sharp edges (right gallery part); the only previous

method for predicting distances, ShF, shows extreme sensitivity to sampling and noise (rows 1–4). In contrast to most competitor methods, our deep models

are able to accurately perform segmentation and robustly estimate distance-to-feature fields; DEF successfully survives non-uniform, irregular, or noisy

sampling pa�erns, remaining sensitive to less pronounced features.

�tted, we can evaluate points %B (2B ) = W (D6, %6, C6, 2B ) on the spline

curve B6 . These points, ideally, should be precisely as far away from

point cloud points %6 as a distance �eld 3̂ suggests. To enforce this

property, we optimize over control points to shape the spline to the

distance values:

min
2

|%6 |∑

8=1

(
3̂8 − ∥?8 − W (D8 , ?8 , C8 , 2)∥

)2
, (10)

where ?8 ∈ %6 , 3̂8 is a corresponding distance value, andW (D8 , ?8 , C8 , 2)
is a point corresponding to ?8 evaluated on the spline B6 . Addition-

ally, we impose constraints on the spline endpoints to match the

polyline endpoints.

The optimization problem and constraints are similar for the

closed curves: endpoints of the spline should meet at the same point,

and the tangents at the endpoint positions should be equal.

Spline Post-Processing. To improve the �nal result, we apply post-

processing procedure that helps to keep only the curves that have

a good �t. First, we compute the quality metric as an �1 score of

the Chamfer distances between sampled curves and %sharp and vice

versa, thus getting the �t quality. Second, we turn o� each curve

separately and compute themetric again. If the quality drops or stays

the same, we keep the curve in the �nal set of curves. Otherwise,

we eliminate that curve. The quality metric is given by:

CD-→. =
1

#-

∑

G ∈-
inf
~∈.

∥G − ~∥2,

�1 ()metric) =
2 · ✶(CD-→. ⩽ )metric) · ✶(CD.→- ⩽ )metric)
✶(CD-→. ⩽ )metric) + ✶(CD.→- ⩽ )metric)

,

(11)

where CD-→. is a Chamfer distance from point set - to point set

. , ✶ is an indicator function, and)metric is a threshold to convert the

real-valued distances into 0-1 hard labels. When using this metric

for post-processing, we assigned %sharp as one of the point sets, and

a discretized set of curves as another.

Finally, we apply �ltering of curves based on their length. This

includes detecting the connected sets of curves, for each set we

count the number of curves that form it and compute the total

length of all curves in it. If the set contains less than four curves

with total length smaller than 20A , we discard such set altogether.

Our method requires setting the following parameters: threshold

on distances for selection of points near feature lines 3sharp, corner

detector threshold )corner, endpoint detector radius 'endpoint, end-

point detector threshold )endpoint, polyline optimization threshold

)split. We express all of the parameters in the scale of sampling

distance A (3). We discuss the exact values of parameters in Supple-

mentary material.

For the illustration of the vectorization pipeline and the results

of our spline �tting procedure, refer to Figure 11 and Figure 17.
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Fig. 13. DEF is significantly more robust to acquisition noise, compared to other approaches (the two le� plots). Compared to the baseline approaches, DEF is

robust to feature sampling density (the two right plots).

7 EXPERIMENTS

We start our experimental study by introducing themeasures of qual-

ity and providing training details in Section 7.1. We further evaluate

our models against prior art in a variety of synthetic and real-world

settings in Section 7.2. Section 7.3 demonstrates a parametric curve

extraction application. We investigate alternative choices of model

architecture and training con�gurations in Section 7.4. We conclude

with testing the robustness of our approach w.r.t. sampling patterns

and density variations in Section 7.5.

7.1 Experimental Setup

Measures of Quality. We evaluate our feature estimation method

in terms of several quality measures (distance-to-curve regression

and segmentation, as both are relevant in our case). We compute

the following measures to assess feature estimation performance:

• RMSE: the root mean squared error between the predicted

distances 3̂ (?) and the ground-truth distance-to-feature �eld

3 (?). For a set of instances, we report the mean RMSE across

the respective items.

• RMSE-@95: the 95% quantile value of RMSE across a set of

instances captures the width of distance error distribution.

• Recall () ): we compute Recall using the predicted thresh-

olded labels B̂8 = 1(3̂8 < ) ) and the ground-truth distances

B8 = 1(38 < ) ). We use )sim = A for synthetic instances but

increase the threshold for real data to )scan = 4A to account

for scan misalignments. Recall estimates the quality of feature

line estimation in the direct proximity of the ground-truth

feature line. As before, we report the mean value of Recall

computed across test instances.

• FPR () ): we compute the False Positives Rate using the thresh-

olded predictions and report mean FPR across patches or full

models. FPR estimates the fraction of points predicted as be-

longing to a sharp feature line but located outside the direct

proximity of the ground-truth feature line.

• CD, HD and SD: We use Chamfer Distance, Hausdor� Distance

and Sinkhorn Distance, respectively, for evaluating paramet-

ric curve extraction. These measures assess the discrepancy

between the extracted and the ground-truth sets of curves.

We provide the exact formulae for our quality measures in Supple-

mentary material. Unless speci�ed otherwise, we present measure

values averaged across test instances (patches or full models).

Data and Training. We train networks on 4 nVidia Tesla V100

16Gb GPUs in parallel; we use the synchronous version of batch nor-

malization in all our architectures. All experiments were performed

using the PyTorch framework [Paszke et al. 2019], its higher-level

neural network API PyTorch Lightning [Falcon 2019], and the Hy-

dra framework [Yadan 2019] for con�guring experiments. We use

Adam optimizer [Kingma and Ba 2014] with an initial learning rate

of 0.001, multiplying it by 0.9 every epoch, and train all our models

with a total batch size of 32. We validate network performance on a

validation set of patches every epoch, stopping training when the

RMSE metric has no improvement over the ten consecutive epochs,

and select the model with the best performance on the validation

set of patches.

All training patches consist of 4096 (64 × 64) pixels. We divide

depth values in each patch by the 95% quantile value computed

among max depths for each patch across the training dataset; no

augmentations were applied to depth images. Unless speci�ed other-

wise, our training datasets consist of 65,536 patches. The validation

set and test set include approximately 32,000 patches. We observed

that increasing the size of the training set further does not lead to

signi�cant improvement in performance, and report more details in

the Supplementary material.

7.2 Comparisons

Baseline Approaches. We compare DEF against �ve state-of-the-

art methods either directly designed or adapted for extracting fea-

ture lines from sampled 3D shapes. Four of these methods are deep

learning-based, representing natural interest for comparisons [Liu

et al. 2021; Raina et al. 2019; Wang et al. 2020; Yu et al. 2018]; the

�fth method is the best-performing traditional approach based on

local set-based feature detection [Mérigot et al. 2010] (see Section 2

for more context). We brie�y review the main principles underlying

these approaches below. Most competitor methods have a num-

ber of tunable parameters, commonly adjusted to obtain the best

results for a speci�c input shape; as we aim to compare on rela-

tively large datasets, we determine �xed parameters that maximize
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method performance on the whole validation set, as explained in

the Supplemental; to obtain predictions, we run each method with

the selected set of its parameters on both local patches and complete

point-sampled 3D shapes.

Voronoi Covariance Measure (VCM) [Mérigot et al. 2010] is a non-

learning method for hard segmentation of a point cloud into sharp

and non-sharp points. For this, VCM computes the Voronoi covari-

ance measure of a point as a covariance matrix of the intersection

of an estimated Voronoi cell with a ball of radius ', where ' is a

parameter of the method; a convolution radius d is used for smooth-

ing the measure. The input points are labelled by thresholding the

ratio of the smoothed covariance matrix’s eigenvalues, with thresh-

old ) being another parameter. We have optimized the parameters

(d, ',) ) to maximize Recall(1A ) on each dataset, by a direct search,

for each data variety. VCM is expected to perform robustly across a

range of noise and sampling variations.

Sharpness Fields (ShF) [Raina et al. 2019] is a CNN for predicting

the sharpness �eld — a real-valued function with values close to 1 for

points near the feature lines and 0 in smooth areas. To this end, ShF

constructs local neighborhoods with �xed-size (30 × 30), uniformly

spaced points sampled from the underlying Moving Least Squares

proxy surface of the point cloud. The method requires normals as

an additional input, that we estimate using a neighborhood-based

method with the number of neighbors empirically set to 100. ShF

accepts a noise-free, uniformly sampled point cloud as input, thus,

we expected its performance to deteriorate for noisy inputs. We have

observed that, in most cases, predicted values do not increase mono-

tonically with distance to the feature line; however, the predicted

�eld is suitable for producing segmentation by thresholding; we

thus run a sweep to select the threshold value that would produce

the highest Recall on the training set. We also made an e�ort to

compare our distance-to-feature �eld outputs to the sharpness �elds

produced by ShF directly: to that end, we �nd the most suitable

linear transformation of our �eld on the train subset.

Edge-Aware Consolidation Network (EC-Net) [Yu et al. 2018] in-

cludes a PointNet++ [Qi et al. 2017] derived method for detection of

sharp feature lines as an auxiliary signal for point cloud upsampling.

The network predicts point locations exactly on the sharp feature

curves; we map this output to our patches by selecting one nearest

neighbor for each of the sharp points from EC-Net, resulting in a

hard segmentation-like output. In our comparisons, we use the orig-

inal pretrained model, that was trained on sampled patches with an

additive noise, possibly making it robust to noise variations of the

kind we use for evaluation.

PIE-NET [Wang et al. 2020] has a two-stage prediction pipeline

which (1) segments sharp feature curves and corner points using a

PointNet++ architecture [Qi et al. 2017] and (2) generates paramet-

ric curve proposals using a separate network, re�ning these using

an optimization approach. PIE-NET expects a noise-free, uniform

sample with 8,096 points representing a complete 3D shape, more-

over, samples are expected to land exactly on the sharp feature lines;

for these reasons, PIE-NET is unlikely to perform robustly on most

of our datasets. We use their pre-trained models to both segment

points lying in the proximity of the sharp feature curve and extract

parametric curves in the form of their point samples.

PC2WF [Liu et al. 2021] is a learning-based approach to infer para-

metric sharp feature lines, assuming only straight lines segments are

present. From an input point cloud, possibly noisy, PC2WF detects

corner points and infers edge segments connecting these corners;

the method is able to process relatively large point sets of up to

200,000 points. PC2WF was not designed to detect sharp features in

point clouds, so we compare the wireframe extraction quality only.

We use their pre-trained models.

Wireframes [Matveev et al. 2021] is an earlier version of our

parametric curve extraction pipeline. It accepts the same input as

our current vectorizationmethod, a point cloud of arbitrary size with

per-point distance-to-feature estimates from DEF neural network.

AlthoughWireframes share the overall structure with our current

method, previous approach has major �aws in its design which we

have resolved in the current method.

Patch-Based Comparison (DEF-Sim). We start with comparisons

to prior art by evaluating DEF vs. the baselines using our syn-

thetic patch datasets (DEF-Sim) to provide a direct network-to-

network comparison and eliminate the in�uence of postprocessing.

We present a statistical evaluation in Table 2, compare results visu-

ally in Figure 12, and plot dependencies of performance vs. noise

and resolution parameters for all methods in Figure 13.

Qualitatively, we observe that our method compares favorably

to all competitors (most evidently, ShF, VCM, and PIE-NET ) on less

pronounced features that have smaller normal jumps (Figure 12,

rows 1,3); while thesemethods tend to be less sensitive to such subtle

features, DEF demonstrates increased robustness when facing such

geometry. For instances with large sampling distance variations

(Figure 12, row 2), ShF and EC-Net miss features while VCM and PIE-

NET produce substantial numbers of false positive, particularly in

under-sampled regions; for VCM, this is due to the uniform surface

sampling assumed in the model; DEF remains capable of accurately

localizing feature locations. In comparison with ShF and PIE-NET,

DEF performs notably better on noisy data for noise magnitudes of

up to A/2, with a moderate decrease in Recall but almost no change

in FPR, compared to two orders of magnitude increase in FPR from

Table 2. Our local patch-based networks for distance-to-feature estimation

and feature line segmentation are more e�ective compared to competitor

methods across a variety of segmentation and regression quality measures

(evaluated on synthetic image patches, = = 50, A = 0.02).

Method RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

Evaluation using DEF-Sim datasets

VCM [Mérigot et al. 2010] — — 49.1 3.1

EC-Net [Yu et al. 2018] — — 79.2 2.9

DEF (Trained on EC data) 124.1 501.1 56.0 0.15

PIE-NET [Wang et al. 2020] — — 32.0 3.8

DEF (Trained on PIE data) 86.2 451.8 57.1 0.1

ShF [Raina et al. 2019] 18.0 95.7 80.9 0.3

DEF (Ours) 11.1 42.5 80.02 0.02

Evaluation using EC-Net datasets

DEF (Trained on EC data) 192.9 573.1 46.3 1.5

DEF (Ours) 153.0 526.1 46.4 1.3
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Fig. 14. Comparison to state-of-the-art sharp feature line estimation methods on high-resolution synthetic full shape datasets (a) and real scanned datasets

representing full 3D shapes (b). Our method is able to robustly reconstruct a pointwise distance-to-feature field and scales to 3D shapes represented by

millions of points.
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Table 3. Our method is able to reconstruct a robust estimate of a distance-

to-feature field defined for a complete 3D shape. While DEF achieves similar

Recall to VCM, it does so by truncating an accurate distance field and

demonstrates nearly 10× lower FPR.
∗ PIE-NET was invoked with 8,096 samples as input.

Method RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

VCM [Mérigot et al. 2010] — — 79.2 4.8

EC-Net [Yu et al. 2018] — — 48.5 0.2

PIE-NET∗ [Wang et al. 2020] — — 73.6 2.9

ShF [Raina et al. 2019] 623 761.4 69.8 0.3

DEF (Ours) 115.1 200.1 79.0 0.5

0.33% to 19% for ShF (Figure 13, left two plots). This leads to the

results of these methods being unusable for noisy point clouds,

see Figure 12; however, such results are expected as ShF and PIE-

NET models that we used were not optimized on noisy datasets.

For varying sampling distance values, DEF still compares favorably

according to Recall and FPR measures (Figure 13, right two plots).

We made an e�ort to train our algorithm using the datasets de-

scribed in [Wang et al. 2020; Yu et al. 2018] to ensure conformity

in terms of training sets and input-output requirements. For the

EC-Net dataset, we use the original 32mesh �les and feature anno-

tations; to create a PIE-NET-like dataset, we select meshes with up

to 30,000 vertices containing only Line, Circle, or BSpline curves;

in each case, we generate a dataset of 65,536 images for training

our method using the pipeline from Sections 4.1–4.2. We present

results in Table 2. Evaluation using DEF-Sim datasets indicate that

our method performs signi�cantly better than PIE-NET ; compared

to EC-Net, our network keeps having 10× lower FPR but delivers less

accurate distance predictions; this is likely due to a low geometric

diversity of training data: the volume of the EC-Net dataset is two

orders of magnitude lower compared to our datasets.

Complete 3D Models (DEF-Sim). To obtain results on complete

models, we use DEF-Sim, the synthetic validation set of 68 sam-

pled 3D shapes (see Section 4.1), and apply our patch-based DEF

to each view of each shape without any �ne-tuning on these data.

We further reconstruct a complete, object-level distance-to-feature

�eld using the algorithm described in Section 5.2; for our fusion,

we use =E = 128 views and perform view synthesis in orthographic

projection using 4 neighbors for each sampled point. To obtain the

�nal statistical estimate, we extract minimum value from the set of

valid interpolated predictions in (4).

We compare our approachwith competitors statistically in Table 3

and visually in Figure 14 (a). Most our complete 3D shapes include

from 106 to 107 point samples. Qualitatively, our method is able to

more robustly regress features with smaller di�erence in normal

orientations, undersampled features, or feature curves with large

density variations across the feature line, such as features in internal

cavities of a 3D shape.

In Figure 15, we additionally demonstrate an example reconstruc-

tion of a complete object-level distance �eld using DEF trained on

patches in the EC-Net dataset described above.

Table 4. Compared to the closest state-of-the-art competitor approach,

VCM, our method achieves 3× higher Recall (4A ) on noisy and incomplete

scanned data, while maintaining a moderate FPR (4A ) . �antitatively, our

method reconstructs the full distance-to-feature field with RMSE = 1.5mm

and RMSE-@95 = 2.9mm at a sampling distance of A = 0.5mm.

Method Recall (2mm), %↑ FPR (2mm), %↓

VCM [Mérigot et al. 2010] 29.5 10.2

EC-Net [Yu et al. 2018] 10.1 0.8

DEF (Ours) 91.7 20.1

Real 3D Shapes (DEF-Scan). To perform an experimental evalua-

tion of distance-to-feature prediction quality for real-world noisy

3D scans, we use our real-world dataset of complete 3D scanned

shapes with sharp feature annotations. We �rst select a DEF CNN

model pre-trained on a synthetic dataset (with sampling distance

Amed = 0.05) and �ne-tune it using the real annotated depth images.

To this end, we split the 84 scanned objects into training (42 objects,

981 scans), validation (21 shapes, 479 scans), and �nal testing (21 ob-

jects, 468 scans) subsets, and optimize our model until convergence

on the validation set. Next, we apply the optimized network to each

view of the testing dataset and reconstruct a complete distance-to-

feature �eld using our fusion algorithm (Section 5.2) using =E = 12

views available for each 3D shape; here we perform view synthesis

in perspective projection using 4 neighbors for each sampled point.

Overall, our method reconstructs the complete distance �eld with

RMSE = 1.5mm and RMSE-@95 = 2.9mm. We report performance

against competitor approaches in Table 4 using Recall (4A ) and
FPR (4A ) measures where the real-world sampling distance A =

0.4mm. Compared to VCM and EC-Net, our results suggest that DEF

systematically outperforms the competitor methods by a signi�cant

Fig. 15. Our method is able to leverage various feature-annotated training

collections. A complete object-level field then can be reconstructed from

predictions by a model pre-trained on (a) the EC-Net dataset [Yu et al. 2018]

and (b) our DEF-Sim dataset (see Section 7.2). As our data is two orders of

magnitude larger in size, predictions obtained using our model are generally

more accurate.
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Fig. 16. We use distance field estimates obtained by our method for complete, large sampled shapes (up to 107 points) to reconstruct full parametrizations of

their feature curves. We compare our inference results to PIE-NET (a) and PC2WF (b) using our validation set (rows 1–2) and on validation shapes from the

corresponding papers (rows 3–4).

margin (e.g., DEF achieves 3× higher Recall compared to the best-

performing competitor method, VCM); the methods ShF and PIE-

NET produced little to no sharpness detections for all shapes that

we have used. These observations are also re�ected in qualitative

results in Figure 14 (b).

7.3 Extracting Parametric Curves

We run our vectorization method on the complete 3D shapes sam-

pled using =E = 128 views, where predictions have been computed

by the DEF network and a complete object-level distance �eld has

been obtained in the previous steps (Section 7.2). After setting pa-

rameters, we run our method without manual intervention. The

output consists of (1) spline curve parameters and (2) endpoint co-

ordinates for straight lines, readily available for further processing.

PIE-NET [Wang et al. 2020] requires subsampling our point clouds

to 8,096 points. We applied the farthest point sampling technique

to reduce the size of the point clouds. PIE-NET parametric curves

extraction stage produces a set of points sampled along the curves.

Table 5. Compared to PIE-NET parametric feature curve extraction stage,

DEF achieves an order of magnitude more accurate reconstruction.

Method CD ↓ HD ↓ SD ↓

PIE-NET [Wang et al. 2020] 0.97 2.19 0.84

DEF (Ours) 0.04 0.55 0.05

PC2WF [Liu et al. 2021] is essentially free of point cloud size;

however, to reduce the computation time andmake sampling density

closer to the point clouds of the original paper, we subsampled our

shapes to 200,000 points each. PC2WF outputs pairs of endpoint

coordinates that represent a straight line wireframe.

Wireframes [Matveev et al. 2021] has the same input and output

as our method.

To assess the wireframe quality, we ran our pipeline on the vali-

dation set of 68 complete 3D models (DEF-Sim) along with PIE-NET

and compared the obtained results to the ground truth parametric

curves. To compute the metrics, we sampled all the predicted curves

and lines along with the ground truth set of curves into point sets

and derived distances between the closest points to calculate CD,

HD, and SD. The aggregated statistical estimation of metrics for our

method and PIE-NET are reported in Table 5. We observed a signif-

icant di�erence between one-sided CD’s for PIE-NET predictions.

Speci�cally, the average distance from ground truth to prediction is

0.9, the average distance from prediction to ground truth is 0.064.

That implies that PIE-NET misses many curve instances, but it out-

puts relatively accurate reconstructions for the detected ones. In

turn, the one-sided CD of our method is 0.024 from ground truth to

prediction and 0.02 for distance in the opposite direction. We refer

the reader to Figure 16 for the qualitative results.

Since PC2WF outputs straight lines only, we did not run it on the

whole set of validation shapes and report no statistical performance;

instead, we provide qualitative results for their method only on the

small subset of shapes presented in Figure 16.
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Fig. 17. We showcase twelve additional examples of extracted parametric representations next to the ground truth sets of curves. Row 4 includes visually

inferior examples where our method struggles to output clean and complete parametric representation.

For both PIE-NET and PC2WF, qualitative results depict the shapes

from our validation set and �gures from the respective papers that

were used to evaluate the quality of the corresponding methods.

Results indicate that our method is more �exible and robust with

respect to the shape sampling variation and geometric complexity.

Fig. 18. Our current pipeline improves corner detection (row 1) and is able

to resolve complex curves (row 2), whereasWireframes outputs imprecise

curve graphs that lead to outlier curves with extreme variation.

Compared to PIE-NET, DEF detects more curve instances, and due to

the predicted distance �eld, the �tting procedure does not rely solely

on the point positions and is free of sampling issues. Our pipeline

can �t curves of di�erent types when PC2WF has been designed for

straight lines. On the other hand, the performance of our method

is strongly conditioned by the choice of parameters when both

PIE-NET and PC2WF, as learning-based methods, are almost free

of parameter tuning. We described a simple tuning procedure that

only exploits the distance �eld estimation to mitigate that.

Additionally, we demonstrate how our current vectorization pipeline

compares to the previous version (Wireframes). We compare the

two methods in Figure 18. The improved corner detection and :NN-

based polyline construction enable our method to resolve cases of

close corners and complex curves. Curve graph topology guides the

curve �tting stage and, if imprecise, may lead to outlier curves as it

is seen in the Wireframes output.

7.4 Ablation Studies

We conducted a large number of computational experiments to

determine the optimal parameters of our method; our main conclu-

sions were outlined in Section 5; here, we summarize the results

of the studies supporting these conclusions. We present a separate

stress-test to explore the robustness of our approach in Section 7.5.

Learning Architectures. In this paper, our focus is on 3D data rep-

resented as a collection of depth images, one of the most common



DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes • 108:19

Table 6. Compared to point-based DGCNN [Wang et al. 2019], our CNN-based learning method more e�iciently regresses distance-to-feature values. For

image-sampled patches that tend to be non-uniform, adding prior sharpness estimates from VCM yields no advantage to either method.

Dataset Method RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

Regular images (no bg, reprojected to points) DGCNN + Histogram loss 11.3 55.5 80.9 3.7 × 10−2

Regular images (no bg, reprojected to points) DGCNN + Histogram loss + VCM 13.6 70.0 68.8 4.8 × 10−2

Regular images (no bg) CNN + Histogram loss (DEF) 9.7 32.5 84.6 3 × 10
−2

Regular images (no bg) CNN + Histogram loss + VCM 10.9 36.8 80.4 3.7 × 10−2

Regular images (with bg, DEF-Sim) CNN + Histogram loss (DEF) 11.1 42.5 80.0 2.2 × 10−2

types of scanned 3D data. this allows us to use standard convolu-

tional networks that take advantage of the regular sampling pattern

in the data. To quantify the advantage obtained from using this addi-

tional regularity of sampling, we consider an alternative approach,

ignoring depth image structure, and viewing the collection of im-

ages as an unstructured point set. As standard CNNs can no longer

be applied to this type of data, we use the DGCNN network [Wang

et al. 2019]; we set depth � = 6 and width, = 64 × 1.35�−3 ≈ 150.

Similarly to the CNN version, we trained the network using the

Histogram loss, studying various modi�cations, most importantly,

training the DGCNN using the ground-truth distances 3 (?) and
VCM sharpness labels as an additional input.

For highly non-uniform image-sampled patches (e.g., rays pass-

ing nearly in parallel to parts of the surface), VCM struggles to

extract feature-related information. Thus, adding VCM labels yields

no advantage for range-scan data for both the DGCNN and the CNN

DEF models. Generally, we observe DEF networks to outperform

point-based models (DGCNN trained with Histogram loss super-

vised by 3 (?) and VCM) on regularly sampled range-scan data, see

Table 6, middle rows. CNN DEF models additionally demonstrate

better noise-resistance compared to the point-based alternative, as

can be seen in Figure 13. In this experiment, we train CNN DEF

and DGCNN models on noisy sampled data, and �nd that the latter

yields lower Recall and higher FPR values across noise magnitudes.

Data Generation. We mention an additional con�guration of in-

terest, obtained by considering two versions of the range-scan data:

a �ltered version that excludes patches with depth discontinuities or

background pixels (we refer to it as no bg), and a dataset including all

types of patches (referred to as with bg); we train models separately

Fig. 19. We opt for training on instances with background and depth dis-

continuities (with bg, (c)); excluding these (no bg, (b)) yields suboptimal

predictions, particularly near patch boundaries.

on either data variety. DEF models trained on patch datasets without

background pixels perform quantitatively better for similar testing

data, see Table 6, bottom rows; however, as shown in Figure 19,

networks trained on data with background pixels yield more stable

predictions, particularly on near-boundary pixels.

Loss Type. (Section 5.1). The results of our study of loss functions

lead us to �nd the Histogram loss [Imani andWhite 2018] to perform

favorably compared to !1/!2 losses (see Table 1).

Reconstruction on Complete 3D Models. We investigate the two

crucial factors in the reconstruction of distance-to-feature �elds om

complete sampled 3D shapes: the number of views =E and the infer-

ence function applied over the set �? of interpolated predictions

Fig. 20. Our approach is able to withstand (b) high noise magnitudes and

(a), (c), (d) large variations in sampling density.
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Fig. 21. We experimentally observe our method to benefit from increasing

the number of views used during fusion. For this synthetic shape, =E = 18

projections give an approximate Recall of 90%.

in (4). To this end, we consider an order of magnitude fewer set of

=E = 18 views and two additional inference functions: truncated min

and linear �t, as well as compare against an aggregation method

applied on top of DGCNN predictions. Truncated min is computed

by removing 20% of smallest values in �? and taking min; linear �t

�ts a robust version of local linear regression [Huber et al. 1973]

to 3 (?) in each sampled point ? by extracting local patches of Eu-

clidean neighbors of size 50, and computes the �nal estimate as a

�tted value in ? .

Statistical results for our sets of 68 synthetic and 84 real scanned

models are presented in Table 7.We focus our attention on the Recall

and RMSE measures and conclude that having a su�cient number

of views is crucial to the successful reconstruction of our distance

function. Comparisons of inference functions generally lead to trun-

cated min improving over RMSE but not Recall measure compared

to min, with linear �t being inferior to both these approaches.

7.5 Robustness Study

Noise and Sampling Sensitivity. We examine the noise sensitivity

of our method by training DEF CNNs on datasets with increasing

noise levels and coarse sampling, and using these in reconstructing

distance �elds on complete 3Dmodels. We vary the noise magnitude

from 0 up to 2A , where A is sampling distance. Performance of the

networks in isolation drops moderately as noise magnitude rises,

as seen in Figure 13; the models show particular robustness to

sampling distance variations, indicating weak in�uence of sampling

on performance. Figure 20 demonstrates qualitative reconstruction

results for a number of 3D shapes sampled in a variety of ways; note

that overall prediction stays stable across various setups.

Sensitivity to Number of Views. We investigate how the perfor-

mance depends on the number of available views; for this experi-

ment, we take 1024 views following a geodesic spiral around the ob-

ject, and perform fusion using =E = 2, 4, 8, 16, 64, 128, 256 views. We

present qualitative reconstruction results in Figure 21 and demon-

strate performance dynamics in Figure 22.We observe a clear bene�t

from increasing the number of views, and achieve Recall of approx-

imately 90% with 16 views. The dynamics of RMSE and Recall/FPR

measures indicate di�erent statistical e�ects for min vs. truncated

min inference function in (4). More speci�cally, while min provides

superior Recall, it stagnates on RMSE as more data are added, not

representing correctly the true distance-to-feature �eld. In contrast,

truncated min is able to continue improving both RMSE and FPR

measures, but shows saturation of Recall as smallest values are being

cuto� from the set �? in (4).

Fig. 22. �alitatively, reconstructing distance-to-feature field on a complete

3D shape is able to detect the vast majority of features with around =E = 16

views; increasing the number of views to =E = 32, 64, or 128 refines and

stabilizes these detections.

8 CONCLUSIONS

We presented a new learning-based pipeline for automatic sharp

feature detection from sampled 3D data. Our approach is based on

training and comparing di�erent methods on a dataset annotated

with distance-to-feature information derived from the ABC dataset

of 3D CADmodels. Our method works on patches sampled from the

input shape, with predictions combined in a postprocessing step.

We demonstrate that the CNN-based model operating on reg-

ularly sampled range images, when such images are available as

an input or via resampling the input, is an e�cient predictor for

distance-to-feature �elds. The image-based CNN model is also the

most robust to input noise in our experiments. A somewhat surpris-

ing observation is that training a regression model bene�ts from

using a histogram loss. At the same time, providing additional inputs,

or including additional outputs in training, did not lead to signi�-

cant improvements in accuracy either for image- or for point-based

networks, except adding VCM as input to DGCNN.

We compared our results to recent learning-based methods and

a representative high-quality traditional method, demonstrating

quantitative and qualitative improvements over these approaches.

For instance, the proposed DEF outperforms the best-performing

approach by 4% in terms of Recall measure while o�ering an order of

magnitude improvement in false positives rate (from 0.3% to 0.03%).

Our method generalizes to real data after �ne-tuning; we are not

aware of any other feature estimation approach tested on a large

collection of real data with manually annotated ground truth. Our

approach also scales to orders of magnitude larger point clouds,

which has not been successfully shown before.

We make publicly available the two collections of datasets, the

benchmarks, the implementation of all baselines, the reference im-

plementation of our method, and our trained models to foster addi-

tional work in this direction.

9 LIMITATIONS AND FUTURE WORK

Limitations of our approach to feature estimation include

(1) Feature De�nition. Our de�nition of sharp geometric features

depends on a relatively large 18◦ normals angle threshold

(normals inner product ≈ 0.95). However, for arbitrarily-

oriented normals (e.g., the original ABC data [Koch et al.

2019]), we use the absolute of the inner product, and our

annotations do not re�ect very sharp edges (i.e., those having
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Table 7. We demonstrate quantitative results of reconstructing distance-to-feature fields on complete 3D models using variations of our approach. For both

DEF-Sim and DEF-Scan collections, we find a significantly be�er Recall being achieved by min fusion, while RMSE favors truncated min.

Dataset Method RMSE, ↓ RMSE-@95, ↓ Recall () ), %↑ FPR () ), %↓
×10−3 ×10−3 ) = 1A ) = 4A ) = 1A ) = 4A

DEF-Sim (crops) DGCNN + Histogram loss (=E = 18, min) 247.6 287.9 52.4 92.3 0.2 2

DEF-Sim DEF (=E = 18, linear �t) 255.1 351.6 0 3.1 0 0

DEF-Sim DEF (=E = 18, truncated min) 120.8 227.4 12.5 74.9 0 0.7

DEF-Sim DEF (=E = 18, min) 100.2 214.1 47.9 92.3 0.2 2

DEF-Sim DEF (=E = 128, truncated min) 62.4 157.1 31.8 90.9 0 1

DEF-Sim DEF (=E = 128, min) 115.1 200.1 79 98 0.5 5.3

Dataset Method RMSE,mm↓ RMSE-@95, mm↓ ) = 0.5mm ) = 2mm ) = 0.5mm ) = 2mm

DEF-Scan DEF (=E = 12, linear �t) 1.27 2.36 — 70.1 — 7.9

DEF-Scan DEF (=E = 12, truncated min) 1.25 2.3 — 80.9 — 9.5

DEF-Scan DEF (=E = 12, min) 1.54 2.85 — 91.7 — 20.1

normals whose inner product is larger than 0.95); this special

case remains an open issue.

(2) Data Annotation Procedure. For complex geometry (e.g., folded

shapes, shapes with rich geometric detail in internal cavities),

our distance-to-feature annotations may produce spurious

signal on �at surfaces due to feature curves that are close

in Euclidean (but not geodesic) sense; we exclude such data

from training. In such instances, using geodesic instead of

local Euclidean distances is more appropriate.

(3) Visibility and Cross-View Consistency. Dependence on feature

visibility can be viewed as a limitation of our approach; how-

ever, for common real data acquired by scanners, only visible

features are present. We eliminate inconsistency in per-view

predictions in each 3D surface point by obtaining multiple

likely distance-to-feature values, then statistically inferring a

�nal value (e.g., by taking min).

(4) Feature Ambiguity. Su�ciently dense sampling of nearby fea-

tures is a crucial requirement for our algorithm to accurately

distinguish individual features. In instances where having

enough (e.g., 8 or more) samples between feature curves is

possible, our method e�ciently relates samples to respec-

tive closest feature lines; otherwise, close feature curves may

cause incorrect clustering of points.

(5) Parametric Curve Extraction. Limitations of our vectoriza-

tion method mainly stem from the quality of the extracted

distance-to-feature �eld. For instances with varying sampling

density or unstable distance values, our method may struggle

with distinguishing close curves or concentric circles (see,

e.g., Figure 17, row 4). A partly related e�ect is gluing together

two close corners (see, e.g., Figure 16, row 4).

Future Work in the direction of our research may include

(1) Extending to Features of Multiple Types. We have used inte-

rior curves in all training examples on patches, however we

hypothesize that training with boundary (contour) curves

on whole shapes or patches with boundary, i.e., distinguishing

di�erent feature types, might be bene�cial.

(2) Reconstruction of a Complete Distance Field. Our procedure

for inferring distance-to-feature �elds on complete 3D shapes

is agnostic to the type of function that it reconstructs; at

the same time, our distance-to-feature is a non-negative,

piecewise-linear, bounded function; incorporating such forms

of explicit prior knowledge about this function can consider-

ably improve prediction accuracy.

(3) Real-World Prediction. We believe that extending our prelimi-

nary study of feature estimation in scanned 3D shapes to a

full, robust algorithm capable of vectorizing real-world scans

represents a promising research direction.
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DEF: Deep Estimation of Sharp
Geometric Features in 3D Shapes
Supplementary Material
A DETAILS ON TRAINING AND EVALUATION DATASETS

A.1 Details on Datasets Construction

Choosing Projection Planes. As outlined in the main text, our

image-based datasets consist of range-image data obtained using

a set of orthogonal projections. Each projection corresponds to a

choice of a plane and placement of the image 64 × 64 grid (a virtual

camera sensor) in the plane. The plane orientation is computed

by composing three coordinate frame transformations, that help

achieve larger degree of diversity in out datasets:

1) We pick a point on a sphere around the object and start with

the tangent plane to the sphere;

2) We translate the image in the picked plane, to capture di�er-

ent parts of the object from this view direction, by o�setting

camera frame origin by (BG 8G=G , B~
8~
=~

), where a (BG , B~) is the
object’s bounding-box extent, as seen from picked view direc-

tion, =G , =~ are number of translations performed along cam-

era x- and y-axes, respectively, and 8G,~ = −=G,~/2, . . . , =G,~/2;
3) We rotate the sample grid orientation in the plane by choosing

an uniformly distributed angle of rotation around the I-axis

of the camera.

Forming Mesh Patches. We form mesh patches and select feature

curves for each patch by extracting entire surface spline regions that

are found by association to any of the sampled points, along with

their adjacent curves, removing boundary curves (see Section 4.1 in

the main text). This helps to ensure that the mesh patch does not

have holes consisting of separate triangles not being encountered

by raycasting.
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Fig. 23. Statistically, our local patch-based datasets di�er substantially

with respect to both sampling distance A , sampling pa�ern (regular and

irregular), and data flags. We opt for range-images (with bg, lower row), as

it statistically is able to include a wider variety of sampled geometry.

Computing Annotations. We compute distance-to-feature anno-

tations between points and sharp edges in extracted mesh patches

using a fast implementation of KD-tree over axis-aligned bounding-

boxes enclosing sharp edges, enabling us to compute annotations

for millions of point samples quickly.

Data Flagging. The extremely high variability of geometry in our

datasets suggests additional data labeling using a number of data

�ags, providing indicators of speci�c traits encountered in the data.

We used the following Boolean data �ags:

• Coarse surfaces (by the number of edges): spline patches for

which triangulated versions have less than 8 edges along any

side.

• Coarse surfaces (by mesh angles): spline patches for which

triangulated versions have a median di�erence in angles of

adjacent faces exceeding 10 degrees.

• Deviating resolution: point patches where the average distance

between samples deviates bymore than A/2 from the speci�ed

sampling distance.

• Sharpness discontinuities: point patches for which di�erence

in distance annotation in any two neighboring points exceeds

the Euclidean distance between the two.

• Bad face sampling: point patches for which the average num-

ber of point sampled on each face is not in the range [A, 100A ].
• Raycasting background: set to true for images where at least

one pixel contains background values.

• Depth discontinuities: set to true for images where depth

changes by more than ) = 0.5 units in neighboring pixels.

Our �nal datasets (DEF-Sim) are formed so that all �ags are required

to be false, except for Depth discontinuities, and Raycasting back-

ground, that we allow to take arbitrary values when forming with

bg versions of our data.

A.2 Summary and Statistics of Our Datasets

We have computed a number of statistical quantities to better un-

derstand and characterize our data collections. Table 8 presents

an overview of core statistics for datasets used in this work, and

Figures 23–24 represent patch and complete model statistics for DEF-

Sim and DEF-Scan, respectively. We con�rm that we have developed
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Fig. 24. Statistically, our simulated (top row) and scanned (bo�om row)

complete 3D shape datasets vary with respect to sampling distance A , and

DEF-Scan is similar to a medium-resolution version of DEF-Sim in terms of

sampling density per feature.
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Table 8. Overview of all data collections used within this work. For complete models and DEF-Scan, we provide estimates of the percentage of sampled

faces, the sampling distance, and the number of samples. We use the following shorthands for Patch Selection and Annotation: SR: patch selection and

annotation based on local surface regions; FM: patch selection and annotation based on full 3D mesh model. We use the following shorthands for Sampling:

RC: range-images sampling obtained using raycasting; RC∗: for full models, we concatenate range scans sampled using raycasting; S: sampling pa�ern

emerging for real-world scanning. We use the following shorthands for Noise: Σ3 = {0.005, 0.02, 0.08}: the set of three noise magnitudes used for complete 3D

shapes. Σ6 = {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}: the set of six noise magnitudes used for complete 3D shapes. ∗ designates an estimate computed over the

concatenated scans; I: adding noise in the direction of I-axis of the virtual camera; I∗: for full models, we concatenate noisy range scans sampled using

raycasting; S: noise pa�ern emerging for real-world scanning.
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DEF-Sim (patch-high-0-nobg-# ) 4096 — 0.02 — 2K-256K 32K 32K SR RC SR — ✗

DEF-Sim (patch-med-0-nobg-64k) 4096 — 0.05 — 64K 32K 32K SR RC SR — ✗

DEF-Sim (patch-low-0-nobg-64k) 4096 — 0.125 — 64K 32K 32K SR RC SR — ✗

DEF-Sim (patch-high-f-nobg-64K) 4096 — 0.02 Σ6 64K 32K 32K SR RC SR I ✗

DEF-Sim (patch-high-0-wbg-# ) 2913 — 0.02 — 2K-256K 32K 32K SR RC SR — ✓

DEF-Sim (patch-med-0-wbg-64k) 1880 — 0.05 — 64K 32K 32K SR RC SR — ✓

DEF-Sim (patch-low-0-wbg-64k) 1201 — 0.125 — 64K 32K 32K SR RC SR — ✓

DEF-Sim (patch-high-f-wbg-64K) 2913 — 0.02 Σ3 64K 32K 32K SR RC SR I ✓

DEF-Sim (complete-high-0-68)∗ 8456K 98% 0.002 — — — 68 FM RC∗ SR — ✓

DEF-Sim (complete-med-0-68)∗ 225K 71% 0.013 — — — 68 FM RC∗ SR — ✓

DEF-Sim (complete-low-0-68)∗ 36k 22% 0.033 — — — 68 FM RC∗ SR — ✓

DEF-Sim (complete-high-f-68)∗ 8456K 98% 0.002 Σ3 — — 68 FM RC∗ SR I∗ ✓

DEF-Scan (patches-med)∗ 6878 — 0.5mm — 981 479 468 FM S FM S ✓

DEF-Scan (complete-med-scan)∗ 83K 36% 0.22mm 0.328mm 86 41 39 FM S FM S ✓

a variety of diverse synthetic and real-world datasets suitable for

training and testing methods of detection sharp geometric feature

curves.

B DETAILS ON RECONSTRUCTION FOR COMPLETE 3D

MODELS

Inference Functions. We infer the �nal distance-to-feature estimate

by computing the value of a inference set-function 6(·) given a set

�? = {3̂1 (?), . . . , 3̂= (?)} of predictions obtained (either directly

or by interpolation) for each sampled point ? . To process these

predictions, we have experimented with the following variants of

pointwise aggregation. Basic aggregation methods:

• averaging 6(�? ) =
1

|�? |
∑
3̂∈�?

3̂ , computing median 6 ≡
median, and extracting minimum: 6 ≡ min.

• computing truncated average and minimum, computed by

removing the largest and smallest 20% of values, then com-

puting the corresponding quantity;

• to perform inference based on predictions obtained using

segmentation methods (e.g., [Mérigot et al. 2010; Raina et al.

2019; Yu et al. 2018]), one can use the following simple scheme.

Individual predictions 3̂1 (?), . . . , 3̂= (?), with 3̂8 (?) ∈ {0, 1},
can be combined using 6(�? ) = I[),1] ( 1

|�? |
∑
3̂∈�?

3̂), i.e.

setting the fused prediction to 1 (sharp) when an average

predicted value exceeds a threshold ) .

Predictions obtained using one of the basic methods can be post-

processed to improve smoothness by:

• minimizing !2 or total-variation (TV) based functionals of

the form:

min
{3̂ (?) }

| |3̂ (?) − 3̂0 (?) | | + U
 ∑

:=1

| |3̂ (?) − 3̂ (NN: (?) | |W ,

(NN: (?) denotes the :th nearest neighbor of the point ? , we

used  = 50 and W ∈ {1, 2});
• �tting a robust version of local linear regression [Huber et al.

1973] (we extract local point patches of  = 50 neighbors

of each point, reduce their feature dimensionality to 2, �t

a outlier-robust linear regression model [Owen 2006] using

the scikit-learn implementation (HuberRegressor), and

extract predictions in the seed point).

Overall, we have found that setting 6 ≡ min produces the best

results for our test samples set.

Details on Transferring Predictions across Image Views. For a 3D

point ? , we perform interpolation and estimation of visibility ÊB→C (?)
as indicated below. To interpolate predicted distance values at the
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warped point ?̂ in the reprojected image �B , we construct a  -

neighborhood {NN: (?̂)} :=1 (we set  = 4) and compute the linear

bivariate B-spline representation of a surface [Dierckx 1995] using

this neighborhood and respective distance values in 3̂B (?̂). We have

chosen an implementation available in SciPy [Virtanen et al. 2020]

and invoke the low-level scipy.interpolate.bisplrep over the

wrapper scipy.interpolate.interp2d as the former o�ers direct

control over the smoothness of the result. We evaluate the �tted

B-spline at point ?̂ to obtain an interpolated distance value (equiva-

lently to a bilinear interpolation) and set the binary visibility mask

ÊB→C (?) to 1, or mark an interpolated value as not available when

less than  nearest neighbors exist within a Euclidean distance of

6A , where A is the sampling distance. We do not perform interpola-

tion for points on the patch boundary as we have discovered the

corresponding estimates to be unstable. In these instances, we set

the binary visibility mask ÊB→C (?) to zero. We repeat the described

process for all available pairs of images.

C DETAILS ON EXPERIMENTAL EVALUATION

C.1 Experimental Setup

Measures of Quality. For each patch %8 , our computed quality

measures are de�ned by:

RMSE8 =
1

√
#8

√ ∑

?∈%8

(
38 (?) − 3̂8 (?)

)2
,

Recall8 () ) =

∑
?∈%8

B̂8 (?)B8 (?)
∑
?∈%8

B8 (?)
,

FPR8 () ) =

∑
?∈%8

B̂8 (?) (1 − B8 (?))
∑
?∈%8

(1 − B8 (?))
,

where 38 (?) and B8 (?) are the ground-truth distances and thresh-

olded labels, respectively, 3̂8 (?), B̂8 (?) their respective estimates, and

#8 = |%8 | the number of non-background samples in the patch %8 .

For methods producing hard segmentation labels, we directly use

their predictions; for methods producing segmentation probability

labels, we compute B̂8 = ✶
(
Â8 > 0.5

)
where Â8 (?) is the estimated

probability for ? to be a sharp point. We provide RMSE-@95 for a

collection of patches {%8 } by computing the 95% quantile of respec-

tive RMSE8 values. We calculate the metrics for a set of patches by

averaging metrics obtained for individual patches.

To measure the curve extraction quality, we used metrics de�ned

by:

CD%→& =
1

|% |
∑

?∈%
inf
@∈&

∥? − @∥2,

CD = CD%→& + CD&→% ,

HD = max{sup
?∈%

inf
@∈&

∥? − @∥, sup
@∈&

inf
?∈%

∥? − @∥},

where % and & are point clouds that are compared.

Here Chamfer distance CD re�ects the average discrepancy in two

sets of curves, and Hausdor� distance HD measures the worst-case

deviation between the curves.

Our thirdmetric, Sinkhorn distance SD, is an approximation of the

Wasserstein optimal transportation. It uses blurring the transport

plan through the addition of an entropic penalty to reduce the

computational cost. SD is computed as a series of iterative updates,

for more details refer to [Feydy et al. 2019].

C.2 Parameter Choices

Voronoi Covariance Measure (VCM) [Mérigot et al. 2010] We ran a

direct grid search to obtain the set of parameters with the maximal

Recall for each sampling distance and noise level. Each of the param-

eters was varied over a grid of 11 values: {0.01, 0.05}⋃{0.18}98=1. For
each combination we ran VCM inference on the validation set, com-

puted Recall value and determined the set of parameters maximizing

the metric. The selected parameters are presented in Table 9.

Sharpness Fields (ShF) [Raina et al. 2019]

ShF outputs a real-valued �eld similar to ours, which has value 0

far from feature line and reaching 1 at the feature. In practice we

observed that this �eld is more narrow than ours, meaning that for a

fair comparisonwe needed to �nd a linear transformation to equalize

them. To do that, we implemented the following transformation

selection procedure:

min
U

√√√
1

#

#∑

8=1

( [1 − (ℎ�8 ] −max{38/U, 1})2,

where 38 is our ground truth distance-to-feature �eld of 8-th patch,

(ℎ�8 is a prediction by their network on 8-th patch, U is an equalizing

coe�cient, # is the size of validation set. Intuitively, this functional

measures RMSE between the predictions by ShF and our trans-

formed �eld. We computed these values for a range of coe�cients

U = {0.018}108=1 on validation set and selected U = 0.06 as the one

minimizing this functional.

Other competitors Edge-Aware Consolidation Network (EC-Net) [Yu

et al. 2018], PIE-NET [Wang et al. 2020], PC2WF [Liu et al. 2021]

have no parameters to tune.

C.3 Parameter Choices for Vectorization Pipeline

The sampling technique in DEF-Sim ensures that the pairwise point

distance Ahigh is 0.02 for individual images on average; we choose to

relate all parameters to this value. We observed that the parameters

with the strongest e�ect on the �nal result were the proximal points

selection threshold 3sharp and the corner detection threshold)corner.

To set these parameters, we implemented a parameter sweep over

a grid: we varied 3sharp in the range [2A, 4A ], and )corner in the

range [0.6, 0.85]. For each set of parameters, we ran the whole

Table 9. Parameters of VCM for di�erent types of data.

Sampling Noise ' d )

distance A magnitude f

Ahigh 0, A/8, A/4, A/2, A 0.05 0.1 0.3

Ahigh 2A , 4A 0.1 0.3 0.3

Amed 0 0.1 0.1 0.4

Alow 0 0.2 0.1 0.4
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vectorization procedure and computed a symmetric CD between

the sampled spline curves and a point set %sharp that consists only

of points with estimated distance 3̂ less than 3sharp, thus measuring

the goodness of �t. The resulting set of parameters is chosen by the

lowest value of CD. We found reasonable default settings for the

rest of the tunable parameters that do not a�ect the result as much.

For the endpoint detection, we choose'endpoint = 10A . The thresh-

old )endpoint = 0.6, which means there should be 60% more points

on one side from the query point compared to the other side to

consider a ball center to be the curve endpoint. Finally, the choice of

splitting threshold is )split = 4A . We want the polyline controlled by

this value to accurately re�ect the corresponding curve geometry.

Finally, we discuss parameters N8 , )variance, and 'corner used in

corner detection procedure. It is designed as aggregation of several

corner estimates, hence it doesn’t require setting the exact parameter

values. We vary 'corner in the range of 5A, . . . , 8A , the number of

neighbor sets N8 in the range 10, 20, 40, and the threshold )variance
in the range 5, 10, 15, 20, 25. With this grid of parameters we obtain

60 di�erent corner estimates, for each set of estimates we compute

the fraction of cases where a speci�c set �8 was labeled as a corner

and normalize it by 60, eventually obtaining a probability for each

set to be a corner.

C.4 More Ablative Experiments

Data volume. As a part of the ablative studies, we conduct train-

ing on datasets of increasing size. We performed training for each

dataset size (we used noise-free patch datasets with sampling dis-

tance A = Ahigh) until convergence. We present results in Table 10,

where we observe that metric values stabilize for datasets with

around 64k training patches. Not surprisingly, larger training datasets

improve performance. The subsequent experiments were performed

with 64k training patches.

Model capacity. We performed an additional experiment to iden-

tify the optimal con�guration of our backbone CNN.We instantiated

a series of ResNet [He et al. 2016] backbones with signi�cantly vary-

ing number of parameters and trained each until convergence on the

validation set. Table 11 presents results, that generally indicate some

increase in performance for larger models. We select the ResNet-152

backbone network for all subsequent studies.

Additional Inputs. We evaluated the e�ect of adding auxiliary

inputs by concatenating the VCM prior sharpness estimates, normal

vectors, and both simultaneously to the raw range images (sampling

distance A = Ahigh, no noise).We trained ResNet-152 on depth images

with additional input channels; we present statistical results in

Table 12, upper rows, where we compare these con�gurations againt

the baseline where an input range-image % is regressed onto a

distance labels 3 (?). Metric values demonstrate that no conclusive

gain in performance is observed for regression metrics, compared

to such a baseline. Hence, we further train on range-images without

additional inputs in all instances.

Additional Outputs. Similarly to the previous experiments, we

performed an ablative study to understand how the auxiliary tasks

a�ect feature line estimation performance. We experimented with

Table 10. For DEF networks trained on datasets of increasing size, per-

formance generally stabilizes for 16K–64K patches (DEF-Sim, no bg, A =

Ahigh, f = 0). We opt for 64K patches as this dataset size provide the most

diversity for training.

Train Size RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

2k 118.7 545.7 0 0

4k 138.6 609.4 0 0

8k 105.5 581.4 37.65 0.1

16k 57.5 341.8 63.4 0.18

32k 61.4 403.2 70.5 0.22

64k (Ours) 61.5 361.1 57.36 0.06

256k 85 424.9 45.01 0.07

Table 11. As image-based backbone grows in capacity, DEF results generally

improve on validation set (DEF-Sim, no bg, A = Ahigh, f = 0). We end up

selecting the largest resnet152 backbone for the remaining experiments.

Backbone RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
(# Params) ×10−3 ×10−3

resnet26 (34.4M) 9.3 37 72.47 0.02

resnet34 (30M) 9.8 34.7 83.81 0.02

resnet50 (44M) 7.3 24 82.12 0.02

resnet101 (63M) 8.2 26.5 79.85 0.02

resnet152 (78.6M) 7.2 23.1 83.39 0.02

concatenating direction-to-feature, ground-truth normals, and both

simultaneously to the distance labels 3 (?), and adding additional

heads to our network to predict these quantities. We present statis-

tical results of this experiment in Table 12, middle rows. In all cases

regressing the normals, directions towards the feature line, or both

of them at the same time did not lead to increasing the quality of

feature line extraction. Hence, we proceed further without using

any additional outputs.

C.5 More Experiments on Complete 3D Models

We have performed more experiments to investigate the limits of

robustness of our method to reduction in sampling density and

increase in noise strength. To this end, we employed =E = 18 views

of the same models in DEF-Sim dataset, but have augmented re-

spective range-images with noise acting in the camera direction,

and performed sampling to model decrease in point density as A

grows. Table 13 presents quantitative evaluation of our method with

such input data. We conclude that sparse data, at least the ones we

studied, did not result in a signi�cant degradation of our approach,

apart from the large increase in the FPR measure, indicating that

more false positives shall be identi�ed. Adding noise, in contrast,

signi�cantly impacts results, as the method tends to no longer de-

tect features, instead focusing on averaging predictions across the

shape in an attempt to reduce noise. Even so, our method remains

generally stable for noise magnitudes of up to A , all with using only
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Table 12. We perform experiments to study the e�ect of introducing addi-

tional signals at the input, and additional supervision at the output of our

networks (results obtained on DEF-Sim, no bg, A = Ahigh, f = 0). As input

in addition to depth image % , we supply ground-truth normals = (?) , prior
sharpness estimates B̂VCM (?) obtained by VCM, and their combinations.

As output in addition to distance estimates 3̂ (?) , we require our model to

predict normals =̂ (?) , 3× 1 directions Â (?) to the closest point on the sharp

feature curve, and their combinations. We end up selecting the most basic

scheme where we predict distance estimates 3̂ (?) from the input depth

image % .

Input Output RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

%, =(?) 3̂ (?) 7.2 34.1 69.31 0.02

%, B̂VCM (?) 3̂ (?) 8.6 26.8 78.09 0.03

%, =(?), B̂VCM (?) 3̂ (?) 6.2 25.9 76.53 0.02

% 3̂ (?), =̂(?) 8.1 31.8 74.69 0.01

% 3̂ (?), =̂(?), Â (?) 8.5 33.2 74.82 0.02

% 3̂ (?), Â (?) 8.3 33.9 74.09 0.02

% 3̂ (?) 7.2 23.1 83.39 0.02

18 views for reconstruction, that we have identi�ed is a modest

number of views.

We additionally investigated how our method’s performance

depends on the location of the predictions, relative to a sharp feature

curve. As can be seen in Figure 25, our method has a performance

peak at around A to 2A , which indicates that predicting distances in

locations exactly on the feature curve or far away from the curve

might be more di�cult than doing so in some proximity from the

curve.

D ALTERNATIVE POINT-BASED PIPELINE

D.1 Dataset Construction

Wedescribe an alternative procedure to obtain point-sampled patches

% with # = |% | = 4096 points with distance-to-feature annotations

3 (?), ? ∈ % .
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Fig. 25. Statistically, our method has the lowest RMSE in locations spaced

around A–2A from the sharp feature curves. This observation explains why in

particular instances our method demonstrates performance drops in Recall

(1A ) while remaining robust according to Recall (4A ) .

Dataset Design. We follow exactly the same procedure for feature

de�nition, feature selection, distance-to-feature computation, decid-

ing on feature size, and computing sampling density, as described

in the main text.

Patch and Feature Selection. We extract local patches from trian-

gulated 3D shapes by selecting all mesh faces inside or intersecting

with a sphere of radius
√
#A/2 (# = 642), centered at 128 uniformly

distributed (using PoissonDisk Sampling [Bowers et al. 2010]) points

on the model surface. Among all connected parts of the mesh inside

the sphere, if any, the largest one is selected.

Shape Sampling. We obtain point clouds using Poisson Disk Sam-

pling [Bowers et al. 2010], similar to [Wang et al. 2020] and un-

like [Yu et al. 2018] that use raycasting similarly to our image-based

datasets. If the number of samples generated on this patch with

Poisson disk sampling is larger than # , # points closest to the cen-

ter are retained; if the number of sampled points is less than # , this

particular patch is discarded.

Patch-Based Datasets. We have constructed a dataset of 65,536

patches for training, 32,000 patches for validation, and 32,000 for

testing our model.

Complete 3D Model Datasets. To construct a sampled and anno-

tated version for a complete 3D model, we �rst compute a Poisson

Disk Sampling of the complete 3D mesh. Next, to compute distance-

to-feature annotations over the complete 3D shape, we extract over-

lapping local regions in the mesh as mentioned above, associate the

sampled points to each local mesh region, and annotate these points

using our normal procedure; this results in multiple annotations

available for each point as local regions overlap. We compute a

minimum over the available annotations in each point to produce

the �nal complete annotations.

D.2 Methods

Learning Architecture. We use the DGCNN architecture [Wang

et al. 2019] and systematically vary the size of the base network, by

simultaneously increasing both width, and depth � according to

the relations, = 64× 1.35: , � = 3+: , varying : from −2 to 3. The
quantitative results suggest that for : ⩾ 1 the gains in performance

stabilize; we end up choosing : = 3, DGCNN with depth � = 6,

width, = 158. While the DGCNN model was trained using the

Histogram loss using the supervision from ground-truth distances

3 (?) only, we discovered that adding prior sharpness estimates from

VCM has the potential improve performance considerably; this is

in contrast with the e�ect VCM has on image-based data. However,

adding VCM labels requires an additional e�ort to compute these

scores before running the model on the new shapes.

Reconstruction for Complete 3D Models. To compute a distance-to-

feature �eld for an input complete 3D shape % , we �rst extract point

patches %8 with 4096 points. We use an adjacency graph of the points

based on their : nearest neighbors (we use : = 5), extracting the

largest connected component of this graph. Each patch is obtained

by a breadth-�rst search from a vertex, andwe add patches until each

point is covered by at least 10 patches. For each of these local patches
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Table 13. Results of reconstructing object-level distance-to-feature field (DEF-Sim, 68 shapes) indicate that DEF is able to perform robustly w.r.t. sampling

distance, with only FPR indicating performance degradation for lower resolution datasets. DEF is additionally resilient to noise with signal-to-noise ratios of

up to 1:1, as indicated by Recall(4A ) ; for larger noise magnitudes, performance inevitably degrades.

Sampling Noise RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓ Recall (4A ), %↑ FPR (4A ), %↓
distance A magnitude f ×10−3 ×10−3

Ahigh 0 100.2 214.1 47.9 0.2 92.3 2

Amed 0 88.4 197 38.4 0.2 94.1 4.5

Alow 0 134.7 272.1 47.3 2.1 95.5 22.7

Ahigh A/4 658.5 817 56.7 2.6 96.1 16.7

Ahigh A 651.4 786.2 6 0.3 71.8 10.5

Ahigh 4A 541.5 730.8 0 0 37.9 4.9

Table 14. Experiments using point-based DGCNN [Wang et al. 2019] demonstrate promising results for unstructured sampling pa�erns with uniform sampling;

however, image-sampled patches tend to be significantly non-uniform, impairing DGCNN performance; adding prior sharpness estimates from VCM yields no

advantage for this method.

Dataset Method RMSE ↓ RMSE-@95 ↓ Recall (1A ), %↑ FPR (1A ), %↓
×10−3 ×10−3

Unstructured points DGCNN + Histogram loss 10.0 38.1 89.5 7 × 10−2

Unstructured points DGCNN + Histogram loss + VCM 7.8 25.6 90.0 8 × 10−2

Regular images (no bg, reprojected to points) DGCNN + Histogram loss 11.3 55.5 80.9 3.7 × 10−2

Regular images (no bg, reprojected to points) DGCNN + Histogram loss + VCM 13.6 70.0 68.8 4.8 × 10−2

Fig. 26. Comparative prediction results for a DGCNN model pre-trained on a point-based collection vs. the competitor approaches ShF, VCM, EC-Net, and

PIE-NET. The DGCNN model trained on the datasets we use is able to perform competitively on sampled data.

%8 , we predict a distance-to-feature �eld 3̂8 (?) using a DGCNN

model, resulting in a set of predictions

�? =

{
3? | 3? = 3̂8 (?) = DGCNN(? |%8 ), ? ∈ %8

} |% |
?=1

(12)

for each point ? in the input point cloud (here DGCNN(? |%8 ) de-
notes DGCNN prediction in the same point ? given the context

point patch %8 ). The set �? of predictions for all patches contain-

ing ? is �ltered by excluding predictions from 20% of points in the

patch furthest away from its center of mass. Finally, we compute a

minimum over all predictions of the distance 3̂ (?) = min
3∈�?

3 . Other

possibilities described in Section B of this document can also be

applied.

D.3 Experimental Results

Training Details. All training patches consist of 4,096 points; we

applied a random 3D rotation to each patch as an augmentation.

Patch-Based Results. Table 14 contains statistical results of the

in�uence of sampling pattern and prior sharpness estimates from

VCM on performance. We note that the two datasets are not directly

comparable, even though they represent point-sampled geometry

with the same feature size distribution (sampling distance A = Ahigh).

Speci�cally, while the point-sampled geometry does contain similar

geometric patterns, the sampling pattern is more regular, which

is ensured by the Poisson Disk Sampling; in contrast, range-scans

produced by ray-casting have signi�cantly non-uniform sampling,
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where density may vary signi�cantly for surfaces on either side of a

sharp feature curve. We conclude that training a model from point-

based data bene�ts from adding prior hard sharpness estimates from

the VCM method, likely due to bene�ts o�ered by sampling; this is

not the case for image-sampled data.

We demonstrate a qualitative comparison of patch-based fea-

ture estimation performance in the same fashion as for image-

based datasets in the main text. For this experiment, competitor

approaches were optimized according to the same procedure as for

the image-based datasets (see Section C.1 of this document). Fig-

ure 26 displays a comparison of point patches where competitor

approaches are compared against a DGCNN model trained on a

patch-based dataset (see Section D.1 above). We conclude that a

point-based network pre-trained on the kind of datasets we use can

generalize well to unseen instances and present a viable alternative

to competitor approaches.

Results on Complete 3D Models. We make an e�ort to compare the

DGCNN-based method for reconstructing distance-to-feature �elds

for complete 3Dmodels (see Section D.2) on the same data collection

of 68 shapes as ourmethod, DEF, was tested on. The results in Table 7

of the main text indicate that DGCNN-based method is capable of

producing nearly the same Recall and FPR values, however it is

outperformed by a large margin (2×) according to RMSE measure.

As we require our distance �eld to be as accurate as possible (e.g.,

for the reconstruction of the set of parametric representations of

sharp feature curves), we made an eventual choice in favor of the

image-based method.
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