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We introduce a code generator that converts unoptimized C++ code op-
erating on sparse data into vectorized and parallel CPU or GPU kernels.
Our approach unrolls the computation into a massive expression graph,
performs redundant expression elimination, grouping, and then generates
an architecture-specific kernel to solve the same problem, assuming that
the sparsity pattern is fixed, which is a common scenario in many appli-
cations in computer graphics and scientific computing. We show that our
approach scales to large problems and can achieve speedups of two orders
of magnitude on CPUs and three orders of magnitude on GPUs, compared
to a set of manually optimized CPU baselines. To demonstrate the practical
applicability of our approach, we employ it to optimize popular algorithms
with applications to physical simulation and interactive mesh deformation.
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1 INTRODUCTION

The optimization of numerical code using combinations of algo-
rithmic improvements and custom hardware played a core role in
advancing computer graphics, enabling the move from the early
days of rasterizing individual polygons in seconds to the modern era
of raytracing entire scenes at interactive rates. With manufacturers
building more specialized processors and increased parallelism in
hardware, the path to optimizing code for a specific processor is
becoming more complex.

In this work we focus on optimizing numerical code that is domi-
nated by sparse operations. Algorithms in computer graphics, and
geometry processing in particular, make heavy use of sparse ma-
trices or can be easily formulated as operations on them. A reason
for this fact is that we often study how global behavior of a system
emerges from local interactions, which are inherently sparse. This
observation generalizes to adjacent disciplines like finite element
analysis in engineering and computer vision.

Arithmetic operations between sparse matrices can be quite costly
and hard to optimize. In contrast to their dense counterparts, they
cannot easily benefit from highly optimized BLAS or LAPACK dense
matrix routines. Recent implementations [AMD 2020; Intel 2021;
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Nvidia 2020] of sparse matrix operations, like the sparse matrix-
matrix product, enable analyzing the sparsity structure of specific
operands and the result in order to schedule an optimized parallel
computation plan and preallocate memory. Executing this plan com-
putes these operations efficiently as long as the sparsity structure
does not change. Unfortunately, these optimized implementations
are very limited. Nvidia’s cuSparse [Nvidia 2020], for example, only
supports products of sparse matrix in row-major format and does
not allow implicitly transposing one of the factors. Sparse matrix ad-
dition is not supported directly; only accumulation of sparse matrix
products of the same structure is possible. Even more restricting is
the fact that compound operations are generally not supported. For
example, the computation pattern for the operation LML +A, where
all operators are sparse matrices, is also fixed but must be broken
down into individual operations for the pre-analysis approach.

We take the idea of pre-analysis a step further and analyze full
sparse expressions. We assume that we have a set of (sparse) input
matrices that are combined to form an output matrix. Our method
is not limited to a fixed set of arithmetic operations but allows for
arbitrary manipulations and storage formats as long as they are
implemented in C++ code. We build on ideas recently introduced
with the EGGS system [Tang et al. 2020b]. Like EGGS, we repre-
sent all values of the output matrix as expression trees encoding all
operations necessary to compute the output values from the input
values. We decompose, group, and optimize these expression trees
to generate code that efficiently evaluates all trees. Our generated
programs utilize expression unrolling, vectorization, parallelization,
and regular memory accesses, both on CPU and GPU, to achieve
1-3 orders of magnitude in performance increase.

We extend EGGS in several ways. Instead of operating on entire
output expression trees individually, we optimize complex sparse
operations by operating on subtrees of finer granularity. This allows
us to optimize a spectrum of applications where EGGS would fail
to produce faster code. Additionally, we target GPUs and introduce
several new optimization steps, including optimizing for coalesced
memory accesses and aligned memory reads.

We additionally support sparse matrix construction. Assembling
sparse matrices from individual entries can take a significant amount
of time, sometimes even dominating linear system solves in finite
element based simulations. In the context of physical simulation,
for example, the current state of a simulation is characterized by
position and velocity data. Our method can generate code that takes
these values as input and constructs the final sparse system matrix
in one step. In many cases, the sparse matrix is the Hessian of a non-
linear energy, for example when employing Newton’s method. Our
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system supports constructing the Hessian directly from an energy
formulation using symbolic automatic differentiation. We show that
code generated by automatic differentiation is as efficient as code
generated from a hand optimized implementation of the Hessian.

Storing runtime information in the form of expression trees al-
lows us to generate fine tuned code; however, this approach comes
with some disadvantages. A central limitation is the focus on static
expressions which means that we have only limited support for
branching based on non-constant numerical values. Moreover, the
memory requirements for storing all expressions can be significant.
We report peak memory usage of our code generator in Table 3 and
demonstrate that our method is still able to scale to typical mesh
resolutions. In terms of preprocessing time our system requires up
to 30 minutes in extreme cases which makes it useful only if many
instances of the code will be executed, for example in a commercial
application. We believe that an optimized and parallelized imple-
mentation of our pipeline as well as improved expression caching
can alleviate these problems. We elaborate on application areas in
Section 3.3.

We validate our approach by automatically optimizing the perfor-
mance of popular computer graphics algorithms, e.g. for mesh de-
formation [Sorkine and Alexa 2007] and physical simulation [Baraff
and Witkin 1998], by using our approach on existing code. This
automatic optimization only requires minor modifications to the
original code in order to apply our approach.

1.1 Contributions

In this paper we present several algorithmic and technical contri-
butions that improve upon EGGS [Tang et al. 2020b]. The most
important novel features are:

Expression decomposition. We introduce advanced expression
decomposition (Section 4.2). By breaking down expression trees into
smaller expressions that can be cached and reused, we address a cen-
tral problem of EGGS: the lack of scalability in terms of expression
complexity.

Memory optimization. We introduce several ways to optimize
memory accesses (Section 4.8) and demonstrate their practical utility,
especially when targeting GPUs.

Code optimization. We present new ways to optimize generated
code using expression simplification (Section 4.5) and code transfor-
mation to facilitate vectorization (Section 4.8). Moreover, we support
code generation for evaluating derivatives.

In an ablation study (Section 5.9) we demonstrate that all contri-
butions cooperatively result in the significant speedups we report.
Depending on the example and target device, the effects of individual
optimizations vary.

We will publish the code of our system to facilitate further re-
search. We consider our prototype implementation to be a proof
of concept demonstrating that it is possible to accelerate a wide
range of example programs even with limited scalability in terms
of processing time, memory and code characteristics. We discuss
those limitations (e.g. Section 3.3, Appendix F) and plan to continue
development towards software applicable in even broader scenarios.
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2 RELATED WORK

Dense & sparse matrix libraries. Libraries for dense linear alge-
bra [Anderson et al. 1999; Guennebaud et al. 2010; Intel 2021; Sander-
son 2010; Van Der Walt et al. 2011; Whaley and Dongarra 1998] have
found wide adoption due to their ability to optimize computation
using platform-specific code. One of the most popular recent pack-
ages is the BLIS [Van Zee and van de Geijn 2015] library generator,
which utilizes the combination of data movement specification and a
single kernel definition to generate optimized code for dense matrix
multiplication, using the approach by Goto and van de Geijn [2008].

Sparse matrices are increasingly important for applications, of-
ten written in languages such as MATLAB [2014], Julia [Bezanson
et al. 2012], and with libraries like Eigen [Guennebaud et al. 2010],
PETSc [Balay et al. 1997], Blaze [Iglberger et al. 2012], SciPy [Virta-
nen et al. 2020] and Boost uBLAS [Walter and Koch 2007]. Different
libraries support different sparse matrix formats for different sub-
sets of operations, with compressed sparse row/column (CSR/CSC)
and coordinate (COO) being most common. For some applications,
leveraging blocked structure within the sparse matrix can lead to
better performance, as first demonstrated by OSKI and the parallel
pOSKI libraries [Byun et al. 2012; Vuduc et al. 2005], which use the
block CSR (BCSR) format to reduce memory traffic and better utilize
registers. More recently, sparse neural networks [Liu et al. 2015]
have made libraries for sparse computations important in machine
learning. Tensorflow Sparse [Google 2017] and TorchSparse [Tang
et al. 2020a] introduce optimized sparse computations to existing
machine learning frameworks.

Sparse linear algebra compilers. Compilers targeting sparse lin-
ear algebra generate customized code based on the linear algebra
operation and data structure. Bik and Wijshoff [1993; 1994] and
the Bernoulli project [Kotlyar et al. 1997] built compilers for cer-
tain sparse operations. More recently, Venkat et al. [2016] utilize
the CHILL polyhedral framework [Venkat et al. 2015] to optimize
sparse matrix-vector operations using an inspector-executor ap-
proach and the polyhedral model [Feautrier 1988; Pugh 1991] to
tailor runtime behavior to the specific matrix. The polyhedral model
allows for compact representation and optimization of a program
without resorting to explicit loop unrolling.

The taco tensor algebra [Kjolstad et al. 2017] compiler generalized
previous approaches to sparse code generation to build a compiler
that supports a wide variety of tensor formats [Chou et al. 2018]
for generating mixed sparse and dense tensor algebra. The compiler
has been extended to support Halide-style [Ragan-Kelley et al. 2012,
2013] separation of computation from scheduling, enabling taco to
generate optimized code for both CPUs and GPUs [Senanayake et al.
2020]. The techniques we present could be used to extend taco to
support code generation tailored for specific sparsity patterns.

Sparsity-specific code generation. Prior work has applied poly-
hedral techniques to generate efficient sparsity-specific code by
finding dense substructures within sparse matrices [Augustine et al.
2019] for SpMV. In contrast, our work extends beyond sparse matrix-
vector multiplication. Sparsity-specific code generation techniques
have also been used to speed up Cholesky factorization and back-
solves [Cheshmi et al. 2018]; the technique utilized for these solves



analyzes dependencies between values in order to create an exe-
cution plan, while our technique relies on per-entry expression
trees. Finally, while we build upon the CPU-specific code generation
demonstrated by EGGS [Tang et al. 2020b], our technique extends
and generalizes their approach to support GPUs and includes new
optimizations to better utilize memory bandwidth and generate
more efficient code. RXMesh [Mahmoud et al. 2021] uses a domain-
specific strategy to partition meshes into contiguous patches, allow-
ing GPUs to better utilize coalesced memory accesses. Our strategy
optimizes memory access patterns by grouping expressions.

Domain specific languages for simulation & geometry processing.
In recent years several domain specific languages (DSLs) for phyis-
cal simulation and geometry processing have been introduced. Their
development is commonly motivated by the idea to separate the
implementation of on algorithm operating on a (mesh) graph and
its scheduling on a specific device, similar to Halide [Ragan-Kelley
et al. 2012] for image processing. Simit [Kjolstad et al. 2016] and
Ebb [Bernstein et al. 2016] provide languages that make it conve-
nient to express global energies in terms of local contributions. This
approach enables the user to focus on the actual energy formulation
and automatically generate correct, efficient code for CPUs or GPUs.
The Opt system [Devito et al. 2017] and its recent successor Thallo
[Mara et al. 2021] follow a similar route but focus on the class of
non-linear least squares problems. These methods can automatically
evaluate the required Jacobians and generate complete solvers based
on the Gauss-Newton or Levenberg-Marquardt algorithm. These
method have a different focus compared to our approach. They strive
to make the implementation of specific energies more convenient
and focus on the optimization of solvers and very specific sparse
operations. The power of these domain specific languages stems
from their high level of abstraction making them convenient to use,
at the cost of limited generality. Our approach, on the other hand, is
agnostic to the fact that there may be an underlying mesh structure,
and is potentially complementary to DSLs for specific uses of sparse
matrices. The other key difference is that we do not try to generate
efficient code for a specific type of optimization problem but rather
for a specific problem instance.

3 OVERVIEW

In this section we first provide background information about con-
cepts introduced in EGGS [Tang et al. 2020b] and used by our system.
We then give an overview of the different stages of our method and
elaborate on alternative implementation options. Finally we describe
the scope of applications that benefit from our approach the most.

3.1 Background

We take C++ code containing algebraic operations on sparse matri-
ces and their construction as input for our method. The operations
can be implemented using Eigen [Guennebaud et al. 2010] or any
other templated library in combination with custom code. We build
upon the basic principles employed in the EGGS system and rely
on the concept of expression trees to encode numerical computa-
tions. To facilitate the integration of such a system with existing
algorithms, both EGGS’ and our approach replace numerical types
(e.g., double) with a custom Symbolic class, which uses operator
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overloading to effectively build an expression tree for every output
value, deferring the computations to a later stage. As an example,
consider the following code implementing a simple function f:

Symbolic g(Symbolic a, Symbolic b) {
return a + b;

Symbolic f(Symbolic a, Symbolic b) {
return 2 * g(a, b) + sqrt(a);
}

Executing it with Symbolic arguments representing the variables
a and b will return the expression tree depicted in the inset. If the
function f is part of an existing non templated code

base, a minor change of the code is required: template

f and g to support execution with floating point as

’% well as with Symbolic arguments. Each instance is
@ @ either a constant, variable or an operation on a set of
6?’ child instances. All instances together with their par-
ent/child relationships define a directed acyclic graph

@ (DAG), a data structure commonly used in compiler
design [Aho et al. 2013]. We differentiate between the concept of
expression tree and its efficient encoding as a DAG. Executing the
function h, for example, will result in the DAG depicted to the right.

Symbolic h(Symbolic a, Symbolic b) {
Xx =a* (a+b);
return x * x;

}

Note that the leaf a and the expression x are only stored once making
it easy to identify common subexpressions. The full expression tree
is not explicitly represented and would contain individual nodes
for these expressions. While the trees of different output values
may differ, they commonly share subtrees that have the same struc-
ture in the following sense: Two trees are structurally equivalent
if they only differ by their leaves but not by the operations re-
quired to evaluate them. Consequently, we can compute the two
results using the same piece of (optimized) code which we call kernel.
& A common source for structurally similar ex-
pressions are sparse matrix operations. The in-

set shows the sparsity pattern of the Laplacian

L of a mesh with 17 vertices. In order to com-

- pute the matrix product L? = LTL efficiently,
only the non-zero values of L? are computed.

-H Computing each element of L? from the entries

I; of L means evaluating expressions of the form

Iplpy +-+1p, 1y,

where p; is an index referencing a particular entry of the input
matrix. Since the matrix inherits its structure from a mesh, the
length of these sums differ only within a certain range; in this case
n € {6,8,10,12,14, 16,18} takes on only 7 different values. Our
method will generate code for computing the matrix product by
running 7 vectorized kernels in parallel; one for each possible value
of n. For n = 6 the code for the kernel will have the following form
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Fig. 1. Overview of our code optimization technique. Starting from an existing implementation we generate code that is optimized for a specific structure of

input values. We target both, CPUs and GPUs.

x[pl7%1]1]1 = x[p[7*i+11]*x[p[7*i+2]]
+ x[p[7*i+3]1]1*x[p[7*i+41]1 + x[p[7*i+511*x[p[7*i+61];

This example does not feature any subexpressions that appear mul-
tiple times and can be efficiently handled by EGGS as well. The
computation of L3, however, is more involved and causes EGGS to
fail producing performant code (see Section 5.2) while our method
succeeds.

3.2 System overview

A CPU kernel evaluating several instances of structurally equivalent
expressions might look like the following code:

void k(double*x, double* c, int* p) {
for (int i = 0; i < 256; ++i) {
x[p[2%11] = c[i] * sqrt(x[p[2*i+111);
}
}

Each loop iteration evaluates one of the 256 expression trees mak-
ing up the group. The array p determines where the values of leaf
variables are stored and c contains the constants. Kernels can signif-
icantly benefit from vectorization and parallelization, as we describe
in Section 4.8. The goal of our method is to evaluate all expressions
of a specific program using a small number of kernels. Since we
compile fixed expression trees, our technique is limited in terms of
conditional branching if the condition depends on numeric values,
as we discuss in Section 4.7.

Transforming a given piece of code together with a set of symbolic
input and output values into an optimized program requires several
steps (Figure 1). To provide an overview, we briefly describe them
here and follow up with more details in the next section.

Symbolic execution (Section 4.7). The first step executes the code
to be compiled. After this phase, each output variable contains an
expression tree that can be used to produce the output value for
an arbitrary assignment of the input variables. Optionally, we can
compute symbolic derivatives for specific expressions (Section 4.9).

Expression decomposition (Section 4.2). After the execution
phase we end up with a set of expressions. By counting the ref-
erences to each node and analyzing their complexity we decide
which subexpressions should be evaluated independently with their
result stored in variables (intermediate expressions)

Expression grouping (Section 4.3). All outputs and intermediate
expressions are grouped based on their structure. We can evaluate all
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group members using the same template expression by substituting
the correct leaves. Kernels for each group are generated from these
expressions. In order to facilitate parallelization no group member
can depend on a result of another member. We enforce this property
by splitting groups if necessary.

Leaf harvesting (Section 4.4). The expressions within a group
differ only by their leaves. To identify the leaves, we traverse all
group members and store variables and constants in a table with
dimensions ‘number of expressions’ X ‘number of leaves’ for each

group.

Expression optimization (Section 4.5). The template expression is
hierarchically divided into subexpressions, similar to the expression
decomposition stage. Each subexpression will be simplified using a
set of algebraic simplification rules.

Code generation (Section 4.8). The last step produces code for a
specific target architecture. To this end, we determine the memory
locations to store the values of intermediate variables in order to
optimize memory access patterns. The code is optimized for vector-
ization and parallelization.

3.3 Requirements for input code

Apart from being implemented using templates on the numeric type,
an algorithm should posses a few characteristics in order to benefit
from our approach.

1. Limited conditional branching. Branching should only depend
on constant parameters such as matrix dimensions or should be
formulated as a conditional assignment (Section 4.7).

2. Overhead amortization. Since the goal of our method is to
compile code for a specific structure of input data, we will only see
a benefit for applications that run enough instances with the same
input structure to amortize the initial compilation cost.

3. Expression tree variation. The set of expression trees associ-
ated with the output values should feature a small set of unique
expression tree structures to facilitate single instruction, multiple
data (SIMD) parallelism and a small number of kernels.

Several applications in computer graphics, geometry process-
ing, and scientific computing in particular exhibit precisely these
properties. For instance, in the minimization of a non-linear energy
defined for a mesh, each step of the iterative procedure requires
the computation of the current energy value as well as derivative



information, namely the gradient and Hessian. Sufficiently smooth
energies will have gradients and Hessians expressed with minimal
conditional branching. Another common property of energies is
that they can be computed as the summations of local interactions
between mesh elements in applications like bending, shearing, or
stretching. Consequently, the Hessian is not only sparse, but the
expression trees of their numeric values produce only a limited
number of unique tree topologies based on the vertex degree. These
properties make a large class of geometric optimization algorithms
perfect candidates for our method. Even if algorithms do not qualify
our method might still be applicable. Collision handling in physical
simulation, for example, modifies system matrices locally in a way
that is unknown at compile time. However, it is in many cases pos-
sible to modify a generated system matrix in a preprocess to reflect
collision forces. In this situation our method would still optimize
the bulk of computation and leave the parts that require conditional
branching to the host code.

In Section 5 we demonstrate that our approach can be applied to
a variety of existing codebases. In the next section, we describe the
details of our system.

4 METHOD

Efficiently handling massive expression trees requires carefully de-
signed algorithms in order to maintain a sufficient degree of scal-
ability. Here we describe the core ideas necessary to implement
our method. Throughout we make use of established techiques like
directed acyclic graphs and memoization.

4.1 Efficient tree processing

We need to be able to efficiently compare expression trees in terms of
their structural and algebraic equivalence. Two trees are structurally
equivalent (Section 4.1.1) if they are identical up to their leaves,
which may contain different symbolic values or constants. Trees are
algebraically equivalent (Section 4.1.2) if they evaluate to the same
result. Structurally equivalent trees are algebraically equivalent if
their leaves are identical; algebraic equivalent trees do not have to
be structurally equivalent. To identify both types of tree equivalence,
we leverage a hashing technique that does not require tree traversal.
The idea is to compute hashes that only depend on the structure
or algebraic equivalence class and identify them uniquely. This can
be done by using hash functions generating hashes of sufficient
length, like a variant of the secure hash algorithm (SHA), to reduce
the collision probability to practically zero. The same concept is
used in universally unique identifiers (UUIDs). Our implementation
allows to optionally check for hash collisions and we did not find
any for 64-bit hashes in our experiments. For other tasks in our
pipeline, like dependency detection, tree traversals are not avoidable.
In these cases we use selective post- or pre-order tree traversals
(Section 4.1.5).

4.1.1  Structural hashing. To compute hashes identifying the struc-
ture of an expression we recursively combine subtree hashes. Al-
gorithm 1 shows an implementation of this idea. The structural
hash value of all leaf nodes is one of two fixed hash values: one for
variables and one for constants. All other nodes represent arithmetic
operations involving one or more child expressions. The function
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ALGORITHM 1: Structure Hashing

Name: structureHash(SymbolicExpression x)
Output: Structural hash value for expression x.

if hashIsvalid then
| return h
else
if Op(x) == Variable then
| h = variableHash
else if Op(x) == Constant then
| h = constantHash
else
foreach c in Childs(x) do
| h = Hash(structureHash(c), h)
end

return hash if it has been computed.

end
return Hash(Hash(Op(x)), h)
end

Hash produces a hash value based on its arguments. The structural
hash of each expression is computed and stored as soon as the ex-
pression is generated. For commutative operations structural hashes
are invariant under child permutation because we sort them by hash
during construction.

4.1.2  Algebraic hashing. Algebraic hashing works similarly to struc-
tural hashing but serves a different purpose. If algebraic hashes of
two expression trees are identical, they evaluate to the same numeric
value. To this end, we only change the way hashes are computed
for leaves. For variables, we compute a hash unique to its variable
id. The hash for integer constants is their numerical value. Details
and pseudocode can be found in Appendix A.

The hash for expressions representing multiplication or addition
are the product or sum of their operands. The special rules for com-
mutative operations and constants allow us to identify expressions
with vastly different tree structures that evaluate to the same value.
For instance, the two expressions

2(x+y)(z+w) and 2xz+ (2z+2w)y +xw + wx,

will have the same algebraic hash.

4.1.3 DAG compression. Using hashing we can implement mem-
oized constructors. To this end we maintain a map relating hashes
to expressions. Whenever a new expression is constructed we first
check if an equivalent expression already exists and reuse it if pos-
sible.

4.1.4 Expression complexity. When optimizing expression trees,
we make decisions based on expression complexity ¢. Whenever
we construct an expression, we compute ¢ by combining the com-
plexities of its children. For internal nodes, we sum the complexity
of their children and add a constant cost based on the node’s type.
These values can be adapted based on clock cycles needed for the
operations on specific devices.

4.1.5 Expression traversal. Analyzing a set of expression trees can-
not solely rely on hashing. We must traverse them to analyze de-
pendencies or to identify the set of leaves for a group of structurally

, Vol. 1, No. 1, Article . Publication date: March 2022.



6 + Philipp Herholz, Xuan Tang, Teseo Schneider, Shoaib Kamil, Daniele Panozzo, and Olga Sorkine-Hornung

+ + +
N P PN e Y P
+ + 31 a + + 27 d 2 + ¢ X1

FS S A~ P P

b b 2 a c ¢ 2 d X0 X1

Fig. 2. Two structurally equivalent trees can be evaluated using the op-
timized tree on the right. Several leafs are identical in each tree and can
therefore be encoded by the same variable x;. This enables specific simplifi-
cations. Constants can vary per instance (co) or be constant for all of them
(2) and can therfore be encoded as a constant floating point value in the
kernel template.

equivalent expressions. In principle, traversing trees can be done
in several ways. For example, evaluating a symbolic tree for spe-
cific value assignments requires a post-order traversal. Substituting
subexpressions by intermediate values, on the other hand, requires
a pre-order traversal. In both cases, we proceed in a depth-first
manner. We use memoization [Aho et al. 2013] which amounts to
caching the results of visiting each DAG node and reuse them if
possible. Without this method most of our processing steps would
be infeasible, even for small programs.

4.2 Expression decomposition

The constructed output expressions could be directly grouped and
compiled into functions. This can be an effective strategy for some
applications, as demonstrated by Tang et al. [2020b]. Their approach
analyzes each group’s template expression and stores the result of
subtrees that appear multiple times in local variables. This method is
limited in two principal ways. First, it does not decompose redundant
subtrees further to detect common subtrees of subtrees — a situation
that is actually quite common in practice. Second, subtrees shared
among different output expressions cannot be precomputed. These
two major shortcomings lead to higher computation times and result
in a potentially excessive number of kernels.

We introduce two levels of expression decomposition. On a local
level we consider the template expression of each kernel. We iden-
tify subtrees that exceed a complexity threshold and appear multiple
times in the expression. These subtrees will be evaluated only once
with their result stored in a local stack variable for further reference.
On a global level, we consider all output expressions and find sub-
trees that are shared by more than one of them potentially leading
to faster execution times. Again we perform a hierarchical decom-
position. Since these intermediates are used by different kernels
and kernel instances, we have to store intermediate results in global
memory where they can be reused by any expression referencing
the corresponding subtree. To implement the two decomposition
stages we make use of the DAG formed by the expressions.

4.2.1 Global decomposition. Intermediate expressions should have
a few properties: They should be complex enough and should be
referenced several times in order to justify the extra effort of storing
and loading their results. To find a ‘good’ partition we adopt a greedy
strategy. First we count how often each node is referenced when
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traversing the DAG starting at the output expressions. All nodes
that have been referenced a sufficient number of times t,.¢ (We use
tef = 2 in our experiments) are potential candidates to become
intermediate expressions. Many intermediate candidates will be
quite small considering that they reference other intermediates. We
solve this problem by traversing the DAG again and greedily merge
intermediates that are below a complexity threshold t.oyp1- The
DAG now induces a dependency graph among all intermediate and
output expressions which we can use to identify local intermediates.
These are nodes that are referenced several times but only within
a single output expression. In this situation we do not need to
store and load a value from global memory but can evaluate the
expression locally. We remove these intermediates and rely on the
local decomposition phase to handle them.

4.2.2  Local decomposition. Each expression belonging to a kernel
group can be evaluated using the same template expression. We
employ local decomposition to identify redundant subexpressions
similarly to the global decomposition step. Local intermediates do
not have to be stored in global memory and can be directly written to
local stack variables. The evaluation order for local intermediates is
determined by computing a topological ordering of the dependency
graph. In Section 5.9 we demonstrate that our local decomposition
can lead to significant performance improvements and exceeds the
capabilities of common compilers. Moreover, it allows for much
more compact code.

4.2.3 Example. We demonstrate both kinds of decomposition using
a toy example. We assume that we have three expressions that differ
in structure forming three groups, each with one member only. The
kernels generated from the respective template expressions are:
void k1() {out[@] = sqrt(a*atb*b)+a;}
void k2() {
out[1] = c*(atd)*sqrt(a*atb*b)+c*(a+d)+sin(a+d);}
void k3() {out[2] = a*atb*b+axb;}
Global analysis will detect that the expression sqrt(a*atb*b) oc-
curs two times and we can evaluate it separately as an intermediate
value. Moreover, the subexpression a*a+b*b appears two times as
well, once as part of the first intermediate and once as part of the
last output expression. Note that we count it only two times because
we only traverse unique subtrees. While traversing the second out-
put expression, we do not traverse the expression sqrt(a*a+b*b)
because it has been visited before. On a local level, we see that the
second expression, stored in out[1], has some redundant subtrees:
cx(a+d) as well as a+d appear multiple times. As a result we have
void i1() {r[@] = axatb*b;}
void i2() {r[1]1 = sqrt(rfel);}
void k1() {out[0] = r[1]+a;}
void k2() {
double x0 = a+d;
double x1 = c*x0;
out[1] = x1*r[1]+x1+sin(x0);
}
void k3() {out[2] = r[@]+a*b;}
For this illustrative example we did not apply a complexity threshold.
Introducing global intermediates makes it necessary to invoke the



functions in a valid order. In this case i1() needs to be called before
i2() followed by the kernels in arbitrary order.

4.2.4  Explicit intermediate tagging. Our automatic decomposition
steps consider expressions individually, however, it might make
sense to group several expressions and evaluate them within the
same kernel. A common scenario is the assembly of a sparse stiffness
matrix from dense matrices that constitute per-element contribu-
tions. The stiffness matrix in a cloth simulation, for example, is
assembled from 9 X 9 blocks for each face. Each entry of this dense
block might reuse a quantity (e.g. triangle area) that is not required
in any other computation. At runtime the intermediate value rep-
resenting triangle area has to be loaded 81 times — once for each
element of the dense matrix. To solve this issue we offer to manually
tag sets of values in the code as blocks. Tagged blocks will be con-
sidered as a compound expression and a quantity, like triangle area,
will be stored in a local stack variable by the local decomposition
stage. For all our experiments in Section 5 we explicitly state if and
how we made use of tagging. As a toy example consider the fol-
lowing decomposition including one intermediate and two kernels,
each with one instance only:

void i1() {r[@] = sqrt(a*atb*b);}
void k1() {out[@] = bxr[@]+a;}
void k2() {out[1] = a*r[@]+b;}

If the two output variables have been tagged our system generates
a single kernel:

void k() {
double y = sqgrt(a*atb*b);
out[@] = b*y+a;
out[1] = a*y+b;

}

This version avoids the costly loading and storing of a value from
global memory.

4.3 Expression grouping

After global expression decomposition, we have a set of output and
intermediate expressions. Our goal is to group them by structural
hashes so that each group member can be evaluated using the same
Kernel. Additionally, the group members need to obey the depen-
dency graph (see Section 4.2). To this end we only group expressions
if they have the same level in the dependency graph. the level of
a node in the dependency graph is the length of the shortest path
from any output expression to the node.

4.4 Leaf harvesting

The group members share the same expression tree structure and
only differ by their leaves Figure 2, left). We harvest these leaves
by traversing all trees at once, starting at the root and storing all
leaves in a table (see Appendix B for a complete example). Trees can
have millions of nodes. Therefore the implementation of the har-
vesting step makes benefits from the selective traversal introduced
in Section 4.1.5.
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4.5 Expression simplification

After identifying the leaves, we can form and optimize a template
expression that will be used to evaluate the result for all group mem-
bers. Since we identified some leaves that are always identical, we
have unique optimization opportunities that are not available when
compiling a function without any runtime information. Computing
the determinant of a matrix, for example, can be heavily optimized
if specific elements contain a zero for all group members. We imple-
mented a set of algebraic simplification transformations, including
factoring sums, reducing fractions, summand elimination and eval-
uation of constant expressions. We describe all of them in Appen-
dix D. Some of the transformations eliminate obvious redundancies,
like simplifying a squared norm, that most experienced program-
mers would try to avoid in the first place. However, optimization
opportunities are likely when expressions combine results from
independent function calls or for expressions that have been gener-
ated by symbolic automatic differentiation. The ability to simplify
these expressions allows us to compete with hand-optimized code
(Section 5.6.1). Expression transformations are guaranteed to result
in arithmetically equivalent expressions; however, this does not
mean that they are equivalent when evaluated using floating-point
arithmetic. In many cases, this effect will result in an acceptable
difference in the order of machine precision; however, it might also
introduce (or even prevent) catastrophic numerical cancellation.
To prevent the expression optimizer from introducing numerical
cancellation, it is sufficient to disable the optimization of sums.

4.6 Symbolic type

We implemented our method in C++ without any external depen-
dencies. A central challenge is memory management. Due to the
possibly high redundancy of subtrees across all expression trees,
we would like to store them only once. To store repeated expres-
sions only once (DAG), our symbolic numeric type holds a reference
counting smart pointer to a hidden datatype storing the actual ex-
pression data. Besides storing that reference, the numeric type is
responsible for overloading the required operators. This way, using
the same expression in the construction of multiple result values
uses only one instance of the expression tree. We provide a basic
implementation of our Symbolic type in Appendix E. We overload
a set of basic operations provided by C++ and its standard library. It
is straightforward to add additional operations by overloading the
corresponding function calls and introducing a unique operation
id, name, cost ¢ and differentiation rules. The smart pointer based
implementation enables a convenient implementation of memoized
constructors (see Section 4.1.3). To this end we optionally maintain a
hash map relating algebraic hashes to expressions. When construct-
ing a new expression we reuse equivalent existing expressions if
possible. This variant is more costly due to hash map lookups but
can provide a significantly lower memory footprint.

4.7 Symbolic program execution

In order to execute existing code with our symbolic type, all numeric
types that directly depend on input data have to be symbolic too.
Code that is already templated can directly be used in many cases.
This applies to most of Eigen, for example. In all other cases, the
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numeric types in the code have to be replaced by template parame-
ters (or the auto keyword). Since our method assumes that the code
path is independent of the input data, we can only handle limited
conditional branching. To this end, conditionals must be replaced by
select(x, a, b) statements that implement conditional assign-
ment. For numeric types this function template translates to the C++
statement x < @ ? a : b. The templated code can be executed with
symbolic as well as with numeric types in which case no overhead
occurs. This makes the development and debugging of algorithms
targeting GPUs and parallel CPU execution very convenient. During
algorithm design a function can be tested with basic numeric types,
finally calling the function with symbolic types allows to generate
optimized code for a desired device.

4.8 Code generation

The final step of our pipeline generates the kernel code that will be
executed on the target device. We can now exploit all the runtime
information we have about the expression groups to target the target
devices’ performance features efficiently. We compute all results of
a group using two nested loops: an outer one that is executed in
parallel and an inner one that facilitates vectorization. Additionally,
we can optimize the memory layout of constant data as well as some
variables. In the previous steps, we only identified (intermediate)
variables and constants and their dependencies but have not decided
on a specific position of this data in an array. Our method can use
these degrees of freedom to optimize memory access.

To illustrate code generation and variable placement we use a
small toy example. We consider the template expression

yo = cO * x0 * x1 + 2 * c1 * x2 * sqrt(x0 * x1)

which has been optimized based on 256 group members.

Basic code generation. The symbolic form of the expression can
be directly converted into the following kernel code
for (int i = 0; i < 256; ++i) {

double x0 = x[p[3 * ill;

double x1 = x[p[3 * i + 111;

double x2 = x[p[3 * i + 211;

double r = x@*x1;

x[1024 + i] = c[2*i]*r+2.*c[2*i+1]*x2*sqrt(r);

}

The optimizer detected the expression x0#x1 as redundant and
stores it in the temporary variable r. Access to variable data is avail-
able through the array x while constant data is handled differently.
Since constants are unique to group instances, we store them in an
array ¢ in consecutive order such that they can be easily accessed
based on the loop index i. Variable data can only be indexed indi-
rectly since it is shared among all kernels. To this end, we use an
index array p that stores these addresses. An exception to the indi-
rect addressing is the destination x[1024 + i] holding the results.
Since the variable positions for intermediate results can be arbitrary
as long as they are unique to each variable, we choose them such
that they can be written consecutively if this is possible. The array
offset 1024 is chosen by the code generator.

Exploiting address coherence. Let us assume that the group we are
considering originates from computing a per-vertex quantity based
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on three coordinates represented by xg, x1, and x,. Chances are that
their positions in memory, explicitly stored in p, are correlated. They
could, for example, be positioned at constant offsets. We analyze if
such a property holds for all group members and can simplify the
code in the following way
for (int i = @; i < 256; ++i) {

double x0 = x[p[ill;

double x1 = x[p[i] + 11;

double x2 = x[p[i] + 21;

double r = x0*x1;

x[1024 + i] = c[2*i]*r+2.*c[2*xi+1]*x2*sqrt(r);

3

Consequently, we need to access only 1/3 of all position indices,
which helps limit the use of memory bandwidth at runtime as well
as storage requirements.

Coalesced memory access. GPUs benefit tremendously from coa-
lesced memory access. This means that memory access is consec-
utive across instances. The current memory layout for constants
looks like this:

0 1 2 |3 |14 |5 |6 |7

0 0] 1] 1] .22
1% 1% 1491% 149

3
1

C C

3
0

and the command c[2*1] accesses the elements at even positions
0, 2, 4 and so on while c[2*i + 1] accesses the uneven elements.
Since we are free to choose any order we can reorder to allow for
coalesced access in the following way

0O |1 |2 |3 |---] 256|257 | 258 | 259

1 0 1 2 3
¢ 0 114

2063 ...
| % | % c

0
0

—
—

and change the code accordingly

x[1024+i] = c[i]*r+2.*c[256+i]*x2*sqrt(r);
Now the constants are accessed consecutively across loop iterations
resulting in the desired coalesced memory access. We perform the
same reordering for access of the position array p. Note that the
destination memory is already accessed in a coalesced manner in
this example.

CPU vectorization and parallelization. Finally we restructure the
loop such that the C++ compiler can optimally combine vectoriza-
tion and parallelization. To this end, we use two nested loops. The
outer loop runs in parallel, either employing Intel threading building
blocks (TBB) or OpenMP pragmas. The inner loop is automatically
vectorized if we enable AVX2 auto vectorization, which supports
256 bit registers processing blocks of 4 doubles at the same time. The
C++ compiler will not be able to verify that the data we load does
not overlap with the memory address in which we store the result.
If this were the case, the results would differ between vectorized and
non-vectorized code. However, all group members are independent
by construction, as detailed in Section 4.3, and we can safely tell the
compiler to ignore possible dependencies using a pragma statement.
For clang the final code after all optimization stages looks like this:

tbb: :parallel_for(o, 64, [&](int i) {
#pragma ivdep



for(int j = 0; j < 4; ++j) {
double x0 = x[p[4*i+j1]1;
double x1 = x[p[4*i+j] + 11;
double x2 = x[p[4*i+j] + 21;
double r = x@#*x1;
x[1024+4*i+j] = \
c[4xi+jlxr+2.%c[256+4%i+j]*x2xsqrt(r);

}
)N

We initially tried to generate vectorized code using intrinsics di-
rectly. However, we found that compilers can generate code that
is as efficient or better as long as we provide the correct pragmas.
Additionally, relying on the C++ compiler allows our technique to
automatically benefit from future or rarely supported vector instruc-
tion sets without modifying our code generator.

GPU parallelization. Since our method is based on the concept
of grouping expressions into kernels, it is relatively easy to gen-
erate GPU kernels that can be compiled with Cuda or Hip. These
compilers automatically generate a program that efficiently exploits
vectorization in the form of wavefronts and parallelization, which
makes our code generation even easier.

4.9 Symbolic differentiation

The technique of automatic differentiation has been used for decades
to evaluate differentials of values produced by existing computer
programs. The symbolic expression trees used in our system lend
themselves to be used in conjunction with this established technique.
More details on automatic differentiation can be found in the classic
textbook of Griewank and Walther [2008].

In contrast to operator overloading based forward- and reverse-
mode automatic differentiation, we can analyze derivatives in our
pipeline and do not have to rely on costly tape data structures at
runtime. Since our system systematically caches common subexpres-
sions of derivatives and function values, we automatically address
the problem of exponential expression growth. A similar approach
is employed in the Opt system [Devito et al. 2017]. To generate sym-
bolic derivatives, we follow the principle of reverse-mode automatic
differentiation since we build derivative expressions by traversing
the expression tree from its root. In Appendix C we provide pseu-
docode for our implementation.

5 EVALUATION

We evaluate our method on a variety of examples. We compare
to alternative methods including manual code optimization, EGGS
[Tang et al. 2020b], and dedicated hardware libraries for basic sparse
matrix arithmetic. We tested our generated code on different tar-
get architectures and compilers to demonstrate its versatility. For
all experiments we enable the compiler to perform optimizations
-03 and use relaxed floating point rules —ffast-math as well as
vectorization -mavx2, which allows us to attribute performance im-
provements to our method as opposed to the compiler itself. The
following setups have been used
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Intel Intel 2.3 GHz 8-Core Intel Core i9, clang with tbb
AMD AMD EPYC 1.5 GHz 32-Core, gcc with OpenMP
Vega 20  AMD Vega 20, 16 GB memory, 3840 ALUs, Hip

GTX 1080 GeForce GTX 1080, 8 GB memory, Cuda.

Our method performs consistently well on all platform/compiler
combinations listed above. In all cases, we average timings over 100
runs. For the CPU performance, we measure the reference timings
on the same machine using the same compiler settings that we use
to time the optimized program. In Appendix Section F we list code
generation timings and memory requirements. We compare against
fairly optimized research code. In general it is not easy to define
what code is considered to be optimized and in many cases there is
potentially the option to employ a even higher degree of manual
optimization. For this reason the speedups have to be considered in
relation to the original implementation which we provide for our
example applications. Our goal is to demonstrate what performance
boosts are possible on typical code bases. We hope that users of our
open source implementation will report performance boosts for a
wider set of applications to get a broader picture of the potential of
our method.

5.1 Sparse matrix operations

We compare our method with EGGS [Tang et al. 2020b] by repeating
an experiment in that paper. We generate code to evaluate three
arithmetic expressions using 32-bit floats involving sparse matrices
A,B,C € R™" for n = 100k, 500k, and 1M. All sparse matrices
are generated by randomly choosing 6 non-zero elements per row.
Both methods generate code based on operations of sparse Eigen
matrices with custom template parameters for the numeric type.
For this basic experiment, our method is very similar to EGGS
because the expressions are relatively easy, and storing intermediate
results is not necessary. All methods outperform Eigen by orders
of magnitude. Our approach is faster than EGGS in all examples
(Figure 3), which can be attributed to the optimized code generation
and memory organization.

5.2 Structured sparse products

Randomized sparse matrices are a special case. When computing a
simple sparse matrix product R = AB, almost all non-zero values
of the resulting matrix are computed by multiplying just a pair of
matrix elements, one from A and another from B. If matrices are
structured, for example based on a triangle mesh like the cotan
Laplacian, the situation is different. Each value in R will be the
sparse inner product of two vectors that share more than one non-
zero position. Consequently, more kernels will be generated by our
approach. If we now consider the triple product R = ABC, the num-
ber of kernels will be even larger due to the different combinations
these inner products can interact with elements of C. Considering
even more factors leads to combinatoric explosion. Our method cir-
cumvents this issue by identifying common subexpressions, which
will include most of the results computed while performing the
product of A and B in this example. To demonstrate this feature, we
compute the matrix power L3 of the cotan operator L for meshes
with n = 20k, 50k and 200k vertices. In all cases, our method gen-
erates only 22 kernels while EGGS generates more than 103, with
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100k 500k 1M

EGGS (1 thread) ours (1 thread)

I EGGS (16 threads) B ours (16 threads)
ours (Vega 20)
100k 500K M

(aA+B)T(BBT +C) 1s225ms 8s730ms 19s 514ms

ABC 1s803ms 11s400ms 25s 408ms
(A+B)(AB+C) 1s528ms 10s549ms 23s 938ms

Fig. 3. We compare the speedups of our method and EGGS for the evaluation
of sparse algebraic expressions. The reference timings (on AMD) of a direct
Eigen implementation are provided in the table.

101 GPU performance for structured L? |
)
E s5p 3.68 n
1.31
0.68
os0s 0 I

10k 50k 200k
I rocSPARSE (Vega 20) Il ours (Vega 20) = ours (GTX 1080)‘

Fig. 4. We compare the performance of our method on different GPUs with
the performance of a dedicated linear algebra library targeted at GPUs.

even larger numbers for n = 50k and 200k. This leads to excessive
compilation times and slow execution performance.
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103 E cotan and mass matrix construction =
10% E
10! £ E
200k (159ms) 500k (369ms) 1M (782ms)
ours (1 thread, float) ours (1 thread, double)
I ours (16 threads, float) 0 ours (16 threads, double)

I ours (Vega 20, float) ours (Vega 20, double)

Fig. 5. Speedups with respect to a standard implementation using 32- as
well as 64-bit floating-point accuracy. For meshes with many vertices, the
construction of the cotan Laplacian is computationally expensive. We report
the timings of the original code in parenthesis. CPU timings in this figure
were measured on the AMD processor.

In Figure 4 we compare the performance of computing the matrix
power L of our method on different GPUs with the performance
of a dedicated linear algebra library targeted at GPUs [AMD 2020].
The library function analyses both products L? = LL and L® = LL
in a preprocess and tries to find an optimal computation strategy
(not included in the timings). Our method is faster on the same GPU
while being far more general. All methods are orders of magnitude
faster than Eigen and CPU versions of our code. The performance
of our code is better on Vega 20 due to its higher number of ALUs.

5.3 Cotan operator construction

Constructing the cotan Laplacian is a frequent operation in geome-
try processing. For three meshes of 200k, 500k, and 1M vertices, we
generate code for the assembly of the sparse Laplacian and the cor-
responding barycentric mass matrix. We report speedups for float
and double versions of the code in Figure 5. Constructing the oper-
ator proceeds in two phases. First, contributions for each face are
computed and added to a list of (row, column, value) triplets.
This triplet list is then used to construct the final sparse matrix.
Since the final step takes up a significant amount of time, we report
reference timings for the construction of the triplet list alone.

mesh size 200k 500k M
compute triplets only 64ms 112ms 223 ms
total time 159ms 396ms 782ms

Because the structure of the sparse matrix is known at compile time
for our method, we can generate code that does not suffer from this
performance bottleneck.

5.3.1 Comparison to EGGS. For a mesh with 200k vertices we com-
pare our method to EGGS. Since EGGS can not decompose the ex-
pressions for each matrix element, the generated code will compute
a lot of redundant subtrees.



s B volumetric dual Laplace and mass matrix ]
10° £ E
2107} E
10! E I E
B | L

7k 20k 100k

I original original (values only)
ours (1 thread) 0 ours (16 threads)
ours (Vega 20)

Fig. 6. Construction of the dual volumetric Laplacian and mass matrix
[Alexa et al. 2020]. We compare to the implementation provided by the
authors both, with and without final matrix assembly. All timings in this
figure were taken on AMD.

reference EGGS ours
#threads 1 1 16 1 16
time 159ms 165ms 25ms 22ms 1.5ms

As a consquence, EGGS’ single-threaded performance is worse than
the reference implementation. Our method automatically identifies
redundant subtrees and computes them only once resulting in a 6X
speedup (100 X when using 16 threads). The difference can be even
more pronounced for more complex examples.

5.4 Volumetric Laplacian

Recently Alexa et al. [2020] investigated Laplace operators for tetra-
hedral meshes and provided code for the construction of the volu-
metric dual Laplacian. We replaced all numeric types in the provided
code and generate code for the construction of the Laplacian and
Voronoi mass matrix for several tetrahedral meshes (7k, 20k, and
200k vertices). The code contains the computation of 3 X 3 deter-
minants and dense matrix inversions which leads to more complex
expressions compared to the cotan operator example in the previous
section. We report absolute timings in milliseconds and compare
against the construction of the triplets with and without full sparse
matrix construction (Figure 6). In all cases, our method is order(s)
of magnitude faster. We observe that the GPU implementation pro-
vides performance benefits only if enough kernel instances (meshes
with >7k vertices) are executed.

5.5 As-rigid-as-possible surface modeling

As-rigid-as-possible surface modeling is an iterative method for
deforming triangle meshes [Sorkine and Alexa 2007]. The algorithm
proceeds by alternating two steps. In the local step, rotations are
estimated for each vertex which involves the singular value decom-
position (SVD) of 3 X 3 matrices. The local rotations are used to
build a dense matrix B € R™? that is subsequently used to solve
the linear system LX = B where L represents the cotan operator
of the initial mesh. Since the system matrix is fixed as long as the
boundary constraints of the deformation problem do not change, we
can precompute a factorization. The deformation loop boils down

Sparsity-Specific Code Optimization using Expression Trees « 11

[ [37ms
[ []11.5ms
[ I 26.7 ms
[ [ 136.1 ms
[ I 85.0 ms
[ | 297.9 ms

[ | 431.5 ms

ours, 1 thread

B ours, 8 threads
ours (GTX 1080)
ours (Vega 20)

original

with fast SVD
® with fast SVD/OpenMP
O linear solve (39 ms)

Fig. 7. An iteration of as-rigid-as-possible surface deformation consists of
the construction of a right hand side that is subsequently used to solve
a linear system. Optimizing code by hand can significantly improve per-
formance. We automatically generate optimized code that is even more
efficient. All experiments in this figure were conducted on Intel.

to the construction of the right-hand side B and a linear solve by
means of forward- and back substitution. We generate optimized
code for the local step, including the construction of B. Directly
translating the code poses a problem since the SVD based on Jacobi
rotations, as implemented in Eigen, contains a loop that checks for
a convergence criterion. We adopt the strategy of the heavily opti-
mized SVD implementation by McAdams et al. [2011] (fast SVD) and
fix the loop count to 4. Furthermore, we mark the input and output
of the SVD computation as explicit intermediate values (detailed
in Section 4.2.4), so that the full SVD computation is executed in a
single kernel.

In Figure 7 we compare to the original implementation as well as
to an optimized version that employs the hand-vectorized optimized
implementation of McAdams et al. [2011] and a version that has been
additionally annotated with OpenMP’s #pragma omp parallel for
to parallelize inner loops. These hand optimizations can significantly
improve performance but are still outperformed by our code. For
the experiment we used the armadillo mesh with 300k vertices. Due
to the local nature of the algorithm, the timings scale almost linearly
with mesh size. For reference, we report the time taken to perform
forward- and back substitution for the three columns of b using
Pardiso [Bollhofer et al. 2020] (8 threads, Intel MKL). By using our
method, it is possible to shift the bottleneck from the local step to the
the linear system solve. The GPU implementation is able to reduce
the computational load of this step to less than 10% of the linear
solve. The GPU timings include the memory transfer of the current
geometry to the device and the transfer of the dense matrix b back
to the host, which accounts for roughly one-third of the 3.7 ms. The
GPU is particularly useful here since the amount of computation
is relatively high compared to the amount of data transferred. Our
method enables real-time interactive shape deformation for this
relatively large mesh by increasing performance from 2.1 fps to
23.41ps.
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Eigen Taco MKL MKL{  oursf rocSparsef ours cuSPARSEf  oursf

Intel Intel 1Intel Intel Intel Vega Vega GTX GTX
AZ 36ms 1.9ms 3.1ms 1.57ms 0.62ms 0.35ms 0.17ms  0.23ms 0.28ms
A3 106ms 5.8ms 10.6ms 5.2ms 3.98ms 1.31ms 0.49ms 0.52ms 1.03ms
A4 193ms 13.4ms 21.8ms 14.7ms 13.0ms 2.23ms 0.98ms 1.54ms 2.39ms
LMLT +K 1s36ms 26lms 464ms 197ms 156ms 13.6ms 3.89ms - 16.8ms

Table 1. We compute powers of a sparse matrix A € R%*50% and evaluate the sparse expression LMLT +K with L, M, K € R3°0%*500k The matrices A and L
are mesh Laplacians, M is a mass matrix and K contains six random non-zeros per row. We compute timings using several linear algebra packages on different
devices. The 1 symbol indicates that the method uses problem specific precomputation like preallocation and scheduling (not included in the timings). Our
method is competitive even though it is not specialized to matrix-matrix products in contrast to all other presented options.

cloth simulation: system construction

«— 57
[ | [ | m

\S]
[

performance relative to factorization

100k

20k 50k

m reference
ours (GTX 1080)

m factorization linear solve
ours (1 thread) ™ ours (8 threads)
ours (Vega 20)

Fig. 8. Constructing the linear systems can dominate runtime for cloth
simulation. We report the performance of the original code and versions
generated using our system relative to the time it takes to factorize the
matrix. Our method removes the bottleneck. Timings taken on Intel.

Fig. 9. Several frames of a cloth simulation using the method of Baraff and
Witkin [1998] as implemented by Wolff et al. [2021].

5.6 Cloth simulation

The classic cloth simulation method by Baraff and Witkin [1998] has
been extended in several ways over the years and still enjoys popu-
larity today. The method defines stretching, shearing, and bending
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energies that lead to damping and direct forces. The method is im-
plicit and solves a linear system at each time step. However, the
majority of the time is spent constructing the linear system, which
poses a performance bottleneck. To demonstrate the practicality of
our system for more complex computations, we generate code for
assembling the system matrix and the right-hand side. To this end
we run a templated version of an implementation provided by Wolff
et al. [2021]. The final system has the form

A =M - h(Dgretch + Dshear + Dpend)

2
+h (Kstretch + Kshear + Kbend)

where M is the mass matrix and K and D are stiffness and damping
matrices, respectively. All matrices are constructed by combining
dense per-element contributions and we tag these blocks for the
stretch and shear energies explicitly (see Section 4.2.4). Comput-
ing the local Hessians of the stretch and shear energy takes 587ms
for a mesh with 100k vertices using our reference implementation.
Generating code without tagging improves runtime by a factor of 5
(104ms) while enabling the feature gives a factor of 40 (14.7ms) in
speedup. All three measurements have been conducted on Intel
using a single thread. In Figure 8 we compare the performance of
our method with the original implementation. All timings are mea-
sured on our Intel machine and are reported relative to the time
it takes to factor the system matrix (Pardiso, 8 threads, Intel MKL).
With increasing mesh size, the relative time spent on factorization
increases. In all cases, we can significantly improve the performance
and remove the bottleneck of system construction. The GPU tim-
ings include data transfer from and to the device; thus, the system
construction becomes a negligible part of the overall runtime.

5.6.1 Automatic differentiation of deformation energies. Several
parts of the system matrix and its right-hand side are constructed
from gradients and Hessians of deformation energies. To demon-
strate our symbolic auto differentiation feature, we focus on the
sum of stretch and shear energies and compute their gradient and
Hessian. This gives us two methods to generate code computing
derivatives for a specific mesh: (1) We can directly generate deriva-
tive expressions based on the implemented energy using automatic
differentiation or (2) we can use run the hand optimized code for
constructing gradient and Hessian using our symbolic type just
as in the previous experiment. In all cases, we achieve at least an
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Fig. 10. Our system offers two options to efficiently compute the Hessian
and gradient of a deformation energy [Baraff and Witkin 1998]: We can
either directly compile optimized code based on an existing implementation,
or employ automatic differentiation based on a symbolic representation of
the energy integrated over the mesh. Both versions are competitive and
provide significant speedups over the original implementations (reference
times in parenthesis). Timings taken on AMD.

order of magnitude performance increase. Interestingly, both ver-
sions are competitive with a slight benefit for direct compilation of
hand-optimized code when using a single thread only. However, the
differences in implementation complexity are huge since the energy
formulation is typically quite simple compared to the gradient and
Hessian.

5.7 Comparison to classic automatic differentiation

There exists a variety of automatic differentiation techniques. We
compare here with implementations of the two most prevalent tech-
niques, overloading based automatic differentiation [Jakob 2010],
also known as backpropagation, and direct source code transforma-
tion [Desai et al. 2020]. We compare using a benchmark example
provided by Desai et al. [2020] that computes local Hessians of the
symmetric Dirichlet deformation energy (Figure 11). Our method
outperforms both techniques. In contrast to Jakob [2010] we do not
have to maintain data structures to keep track of derivatives at run-
time. Storing intermediate results and optimization expressions also
gives us an advantage over direct code transformation techniques
such as Desai et al. [2020].

5.8 Comparison to linear algebra packages

Sparse matrix multiplication is supported by most linear algebra
libraries and packages. We compare our method to competing meth-
ods on three platforms in Table 1. Highly optimized implementations
of sparse matrix-matrix multiplication (spmm) can analyze a specific
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Fig. 11. We compare to overloading based automatic differentiation [Jakob
2010] and a direct code transformation strategy [Desai et al. 2020]. All
timings include the generation of Hessians and gradients per-face of a
deformation energy for a mesh with 1M vertices. Due to our expression
optimization techniques, we can outperform competing approaches even
without enabling vectorization and parallelization. For the competing meth-
ods we run implementations provided by the authors of [Desai et al. 2020].
CPU timings taken on Intel.

problem instance and try to find an optimal ordering and group-
ing of operations based on tiling strategies. These optimizations
extensively use specific properties of matrix multiplication. Our
method on the other hand is more general and is not aware of the
fact that an spmm operation is computed. All methods that use
problem specific optimizations in any form are marked with the
+ symbol (preprocessing is not included in the timings). All other
methods use general purpose spmm methods. For MKL we include
both variants: with preprocessing using the 2-stage matrix multi-
plication mk1_sparse_sp2m and without using mk1_sparse_spmm.
Our method generates code that is faster than both versions. The
taco compiler [Kjolstad et al. 2017] can generate optimized and
parallelized code from very concise descriptions of sparse linear
algebra operations. For the comparison we used a hand optimized
schedule with explicit storage of intermediate results as suggested
by the authors [Kjolstad et al. 2019]. Taco significantly improves
over Eigen’s and MKL’s performance. On Vega we are able to out-
perform AMD’s optimized sparse matrix algebra rocSparse [AMD
2020]. However, on GTX cuSPARSE [Nvidia 2020] is about 50% faster
than our method.

Apart from the timings we note that our method shares the ad-
vantage of taco that optimized code is automatically generated for
different variants of matrices and operation flavors (transposing
factors, computing only specific elements etc.). MKL, rocSparse and
cuSparse support only some of these variants using many parame-
ters. Performing spmm with cuSparse, for example, requires three
function calls with about 10 parameters each and the allocation and
management of several buffers [Nvidia 2020, 15.6.16].

5.9 Ablation study

The performance gains achieved by our method are a result of the
combination of several optimization steps (Section 4). We perform
an ablation study to investigate how much effect the individual
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+ + + + + + + +
reference explicit local global L optimize . parallelize final
group . simplify vectorize
(Intel) tagging decompose decompose memory (8 threads) speedup
Cloth Hessian, 20k vertices, float, values only
Intel 136ms 50ms 13ms 2.9ms 2.9ms 2.9ms 2.7ms 0.81ms 0.15ms 906x
Autodiff (Intel) 136ms - 18ms 4.9ms 4.9ms 4.2ms 3.9ms 0.96ms 0.18ms 755%
Vega 136ms 28ms 0.16ms  0.16ms 0.16ms 0.15ms 0.04ms - - 3400x
Autodiff (Vega)  136ms - 0.15ms  0.15ms 0.15ms 0.14ms  0.04ms - - 3400x
Cloth Hessian, 20k vertices, float, values and sparse matrix construction
Intel 200ms 50ms 18ms 7.5ms 7.5ms 7.5ms 7.1ms 5.8ms 1.4ms 142x
Autodiff (Intel) 200ms - 24ms 10ms 10ms 9.0ms 8.8ms 6.4ms 1.4ms 142x
Vega 200ms 27ms 0.35ms  0.35ms 0.35ms 0.35ms 0.24ms - - 833x
Autodiff (Vega)  200ms - 0.42ms  0.35ms 0.35ms 0.34ms  0.23ms - - 870x
Cotan Laplacian, 200k vertices, float
Intel 105ms 31ms - 31ms 15ms 14ms 13ms 13ms 3.2ms 33x
Vega 105ms 1.62ms - 1.53 0.57 0.56 0.48 - - 219x
L3, sparse, L € RSOkXSOk,ﬂoat
Intel 145ms 29ms - 28ms 12ms 12ms 12ms 11ms 4.3ms 34x
Vega 145ms 1484ms - 1479ms 0.55ms 0.55ms 0.49ms - - 296x

Table 2. We performed an ablation study to assess the influence of our optimization steps. In each column we incrementally activate a new feature. We
start with simple grouping, similar to EGGS [Tang et al. 2020b]. Next we allow for manually tagging Section 4.2.4, local (per kernel) and global expression
decomposition to precompute redundant subexpressions Section 4.2, expression simplification Section 4.5, memory optimizations as well as vectorization
and parallelization Section 4.8. We report the overall speedup over the reference implementation measured on Intel. We report timings averaged over 100
iterations both for CPUs and a GPUs. For the computation of the stretch and shear energy from [Baraff and Witkin 1998] we compare hand written code and
code generated by symbolic automatic differentiation. For timings that show less than 5% performance improvement over the last optimization step we use
the color gray. All experiments have been conducted on Intel with single precision. Speedups using double precision on AMD for the cotan and cloth Hessian

example can be found in Figure 5 and Figure 10, respectively.

features have. To this end we activate them one by one until we
arrive at the full method. The results are presented in Table 2. In all
cases, the C++ compiler producing the final program is free to use
all optimizations enabled with -03 and auto vectorization. Conse-
quently all performance improvements are due to our optimization
steps. We show timings for the cloth example as well as for the
construction of the cotan Laplacian and the computation of the
third power of a sparse matrix. For the cloth energy Hessian we
show two variants: using our method on hand optimized code and
on expressions generated using symbolic automatic differentiation
(Section 5.6.1). The experiments are conducted for the computation
of the per-element Hessians with and without sparse matrix con-
struction. The reason for showing these experiments individually
is their different performance behavior. The per-element Hessian
computation is highly parallel and compute intensive while matrix
assembly requires many memory accesses to sum up entries of the
local Hessians. In the following we elaborate on the effect individual
optimization steps.

Grouping. The most basic approach is simple grouping. This
means, we consider all output expressions as they are and sort
them into structurally equivalent groups forming kernels. Unrolling
these expressions already gives a considerable performance improve-
ment; however, in many cases this produces an excessive amount
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of kernels that have a few instances only. For the last example, the
computation of L3, basic grouping generates about 16 thousand
kernels, most of them having one member only. The generated code
files have a size of about 30 MB and need several hours to compile
using clang. Since these kernels cannot easily be parallelized, they
also do not profit from GPUs.

Explicit tagging. We use explicit tagging only for the cloth ex-
amples, where we introduce a single function call for tagging the
per-element 9 X 9 Hessian as intermediate (see Section 4.2.4). This
ensures that they are all evaluated within one kernel making opti-
mal use of local expression sharing. GPUs especially benefit from
this step since the number of kernels and memory traffic are both
greatly reduced.

Local decomposition. Using grouping with local decomposition
roughly corresponds to the method implemented in EGGS [Tang
etal. 2020b]. Caching common subexpression per kernel is especially
useful for compute bound programs running on the CPU. While C++
compilers implement similar techniques, they are not as powerful as
our algebraic decomposition method as witnessed by the speedup
generated by this step.

Global decomposition. Being able to compute subexpressions such
that they can be reused by other kernels not only saves time but



also allows for a smaller number kernels in many cases. For the
computation of L3, for example, the number of kernels is only 21
instead of 16000 without decomposition. Automatic decomposition
also enables the efficient use of GPUs int this case. We do not see a
benefit for computing the Hessian because explicit tagging of local
Hessians already decomposes the computation in a nearly optimal
way. For all other examples we see more than a factor of two in
performance difference.

Simplification. The effect of expression simplification shows only
in compute-bound scenarios. It is especially helpful for expressions
generated by symbolic automatic differentiation. Other examples
are based on code that has been optimized by hand and therefore
does not result in expressions with a lot of optimization potential.

Memory optimization. Optimizing memory access encompasses
several optimizations described in Section 4.8. One of the most effec-
tive allows for coalesced memory access when writing intermediate
values or loading position indices and constants. The GPU version of
the first example benefits the most from this method. The optimiza-
tions are not as efficient for the full Hessian matrix construction
because most memory accesses load intermediates that cannot be
optimized. The reason is that the storage locations for intermediates
have already been fixed by our system when writing their values.

Vectorization. We support vectorization by using nested loops
and blocked coalesced memory access as described in Section 4.8.
Again, compute-bound algorithms benefit the most from this feature.
Note that auto-vectorization of the C++ compiler is activated for
all tests but really makes a difference when used together with our
vectorization-friendly code and memory optimizations.

Parallelization. Since all instances of a kernel can be evaluated
independently, we can trivially employ parallelization and obtain
considerable speedups. This also helps memory-bound application
by using multiple memory controllers.

The ablation study shows that the performance boosts due to dif-
ferent optimization steps vary depending on the device and type of
algorithm. However, no optimization step decreases performance.
Combining all stages makes for a versatile code optimization tech-
nique that tries to use features of the target device as efficiently as
possible.

6 LIMITATIONS AND CONCLUDING REMARKS

We introduced a compiler for algorithms with a static execution tree
that shows that speedups of two to three orders of magnitude can be
achieved by unrolling the computational tree, and then regrouping
expressions in a hardware friendly way. Our reference implementa-
tion shows that this approach is very promising and practical. There
are, however, a few engineering aspects that would require addi-
tional work to make this method more accessible. (1) The numerical
types of the code need to be templates to be compatible with our
symbolic type. Automatically replacing types for non-templated
code would make our method even more practical. (2) The central
limitation of our method is that it is time and memory expensive.
Therefore it is useful if the code to be optimized is executed many
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times. For this paper our focus was on reducing the running time,
however, code optimization time as well as memory consumption
can likely be reduced by a significant factor by optimizing and par-
allelizing the pipeline and compressing expression trees. (3) The
current compilation process is serial and not optimized. We believe
that with more engineering the compilation time and memory re-
quirements could be dramatically reduced. (4) Finally we would
like to remove the need to automatically annotate dense blocks in
order to evaluate several expressions in a single kernel. This could
be achieved by searching all expression trees for potential dense
blocks.

We believe that the main avenue for future work, apart from
the points listed below, is to extend our approach to target mul-
tiple processors and accelerators, while taking into account the
latency in the channels connecting them. The idea is to add to the
input a description of the system (for example, a pair of GPUs in
the same machine connected via PCIExpress, or a collection of 10
workstations in a local ethernet network), and generate an optimal
execution policy that distributes the data and computation across
all the available resources by taking advantage of the knowledge
of the entire computational graph. We believe this is an exciting
direction that could dramatically lower the barrier for developing
research code on heterogeneous HPC clusters using a combination
of CPUs, GPUs, and TPUs.

6.1 Compiler pass vs. code generator

A key design decision for our tool was to build a code generator
leveraging phased compilation, rather than integrating our method-
ology into an existing compiler infrastructure such as LLVM; for
example, we could have used an approach similar to profile-guided
optimization to first compile code with instrumentation that gener-
ates traces for a second compilation step. Integrating within LLVM
would have some advantages, including implementations of sev-
eral optimization techniques we utilize. Instead of generating C++
source code, such an approach could generate LLVM IR.

Alternatively, we could have attempted a purely-static approach
that, instead of utilizing a two-phase compilation approach, used the
combination of input values and LLVM IR to interpret or otherwise
symbolically determine expression trees based on the input values
at compile-time. With this approach, we would need to either utilize
LLVM’s own interpretation framework or write our own, along with
infrastructure to read sparse values from input files.

In either alternative design, much of the the framework would
be similar to our code generator: we still would need to process
expression trees or similar data structures, and perform expression
grouping and leaf harvesting. Expression optimization could utilize
existing pieces of the LLVM framework, but we would likely need
to write our own passes as well. In addition, the alternate designs
would require generating LLVM IR rather than strings. In the end,
we rejected these alternatives due to the simple fact that they would
require writing more code than for our approach. We leave inte-
grating with LLVM or another compiler infrastructure, which could
lead to additional speedups and wider applicability, to future work.
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A ALGEBRAIC HASHING

Algorithm 2 presents pseudo code for our algebraic hashing pro-
cedure descibed in Section 4.1.2. If two expressions have the same
algebraic hash value, they will evaluate to the same value; how-
ever, there are equivalent expressions that can not be detected like
sin(x + 7/2) and cos(x).

B LEAF HARVESTING EXAMPLE

In the illustrated example (Figure 2), leaf harvesting would result in
the following array of data which contains the specific variable or
constant stored in the 6 leaves of each group member.
b h b B 4 I X0 X1 €
treel b b 2 a 31 a b a 31
tree2 ¢ ¢ 2 d 27 d c d 27
X0 X0 2 X1 co X1

From this data, we can see that leaves ly, and /5 always contain
the same variable. The same is true for I3 and Is. Leaf I3 always
contains the uniform constant 2 which can be hard-coded and leaf I4
contains a varying constant that has to be read from memory. This
analysis will reduce the use of memory bandwidth since we can
avoid redundant loads or even avoid them completely (Section 4.6).

C AUTOMATIC DIFFERENTIATION

In Algorithm 3 we outline a simple version of our reverse-mode
differentiation implementation following the concise treatment of
Baydin et al. [2018]. The listing illustrates that it is quite simple
to add symbolic differentiation capabilities based on our Symbolic
type. Moreover, adding support for additional operations is trivial
and amounts to adding a case statement that defines the deriva-
tive of an operation with respect to the operands. The algorithm
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ALGORITHM 2: Algebraic Hashing

Name: algebraicHash(SymbolicExpression x)
Output: Algebraic hash value for expression x.

if hashIsValid then

return hash if it has been computed.

| return h
else
if Op(x) == Variable then
| h = Hash(VariableIndex(x))
else if Op(x) == Constant then
if isSmalllInteger(Value(x)) then
| h = Value(x)
else
| h = Hash(Value(x))
end
else if Op(x) == Multiplication then
h =1
foreach ¢ in Childs(x) do
| h *= algebraicHash(c)
end
else if Op(x) == Addition then
h=20
foreach ¢ in Childs(x) do
| h += algebraicHash(c)
end
else
foreach ¢ in Childs(x) do
| h = Hash(algebraicHash(c), h)
end
end
h = Hash(Hash(Op(x)), h)
return h
end

traverses the derivatives from the expression tree root down to
it’s leaves motivating the name reverse-mode differentiation. The
functions left and right access the first and second child of an
expression; the operator «<— pushes elements onto the stack.

D EXPRESSION SIMPLIFICATION

We implemented the following set of transformations, and we intro-
duce each of them with a typical example.

Factorization. For every sum of products we find the largest set of
factors that is contained in as many factors as possible. This enables
the following algebraic transformation:

XYz + xwy + oxy + ux — xy(z +w+0) + ux

— x(y(z+w+0) +u).

The algorithm tries to factor out the largest expression xy first even
though it is not contained in all summands. Recursively calling the
factorization routine allows us to further simplify the expression by
factoring out x as well.
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ALGORITHM 3: Differentiation of a symbolic expression.

Name: differentiate(Symbolic x)
Output: Gradient of the expression x.

grad = (0, ..., 0)

stack «— (x, 1)

while not isEmpty(stack) do

y = pop(stack)

switch op(y[0]) do

case Add do

stack « (left(y[0l), y[11)
stack « (right(y[el), y[11)
end

ase Sub do
stack « (left(y[el), y[11)

stack « (right(y[e]), -y[11)
end

(<]

ase Mul do

stack « (left(y[e]), y[1] * right(y[el))
stack « (right(y[el), y[11 % left(y[0l))
end

o

ase Div do

stack « (left(y[@l), y[1] / right(y[01))
stack « (right(y[e]), -left(y[ol) /
(right(y[0]) * right(y[el)) * y[11)

(<]

end

case VAR do
| gradlvarId(y[@])] += y[1]
end

end

end
return grad

Reducing fractions. We analyze each subtree that contains only
multiplications and divisions. By first expanding it into a pure prod-
uct we can perform the following type of simplification:

(x +y)z% w? 1 451 zw

2
- (x+y)z Gry)

(x+y)2w7 (x +y)? w' z

In this step, we also find reciprocals of square roots, which allows
us to compute them using fast implementations like Cuda’s rsqrt
if available.

Summand elimination. By analyzing all subtrees of additions in a
similar way, we can perform the transformation

(x+x+y—-2(y+x)) = 2x+y+ (—2y) + (-2x) — —v.

All products of constants with sums are expanded to group multiples
of expressions. Negative sums are treated as the product of a sum
with the constant —1.

Square root elimination. Square roots commonly appear when
normalizing vectors or computing angles between them. We consol-
idate products and divisions of square roots in order to minimize
computational effort. We can also eliminate square roots of squares
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that would appear in a naive implementation of the squared norm

y
Constant expressions. Arithmetic hashing allows us to predict if

a complex expression will evaluate to a constant value. This gives
us a powerful tool to simplify expressions that cannot be explicitly

transformed into a simpler version but still evaluate to a constant.
The basic transformation

N2
(x-y)+xy
x2 - xy +y?

2

= \/xz +y24(x2 +y2 > \/(x2 +42)(x2 +y2) = x% + 1%

1

is only possible because the value hash of the expression evaluates
to one.

E DATA STRUCTURES

Our implementation is build around the Symbolic type that is re-
placing floating point values. A basic, unoptimized definition of this
type is presented in the following listing.

class Symbolic {

struct SData {
int opCode;
vector<Symbolic> childs;
int variable_id;
double constant;

size_t structureHash();

size_t algebraicHash();

unsigned complexity();
}

shared_ptr<SData> data;

public:
Symbolic(int opCode, vector<Symbolic>& operands);
Symbolic(double constant);
Symbolic(int variableType, int variableld);
Symbolic operator+(const Symbolic& b);
Symbolic operator+=(const Symbolic& b);

};

Symbolic operator+(const double f, Symbolic& b);
Symbolic operator+(Symbolic& b, const double f);
Symbolic operator+=(Symbolic& b, const double f);
Symbolic sqrt(Symbolic& s);

The Symbolic type itself only stores a shared pointer to the actual
data which is implemented as a nested type. The class Symbolic is
responsible for overloading the required arithmetic operators while
library functions and arithmetic operations involving floating point
values are overloaded externally. Using the shared pointers makes
memory management convenient and allows to save on memory as
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figure experiment size execute code analyze expressions generate peak Mem. compile (gcc) binary
3 numeric_0 100k 1m 21s 458ms 2m 54s 911ms 1s 472ms 7.7GB 1s 149ms 36KB
3 numeric_1 100k 2m 3s 939ms 4m 35s 377ms 2s 435ms 11.7GB 1s 122ms 36KB
3 numeric_2 100k 1m 54s 64ms 3m 30s 903ms 1s 773ms 10.1GB 1s 88ms 36KB
3 numeric_0 500k 7m 41s 301ms 14m 55s 165ms 8s 564ms 38.7GB 1s 97ms 36KB
3 numeric_1 500k 11m 40s 599ms 22m 20s 401ms 11s 797ms 58.1GB 1s 58ms 36KB
3 numeric_2 500k 10m 56s 974ms 17m 14s 999ms 9s 547ms 50.7GB 1s 75ms 36KB
3 numeric_0 1M 15m 12s 281ms 30m 5s 612ms 17s 283ms 77.4GB 1s 43ms 36KB
3 numeric_1 1M 26m 5s 690ms 47m 6s 461ms 26s 563ms 116.2GB 1s 52ms 36KB
3 numeric_2 1M 21m 58s 634ms 34m 25s 969ms 20s 128ms 99.6GB 1s 49ms 36KB
5 cotan 1M 1m 39s 345ms 11m 27s 881ms 8s 300ms 40.9GB 1s 544ms 57KB
5 cotan 500k 48s 568ms 5m 24s 992ms 4s 131ms 19.9GB 1s 490ms 57KB
5 cotan 200k 20s 607ms 2m 17s 935ms 1s 930ms 8.2GB 1s 473ms 57KB
6 dual Laplace 100k 5m 1s 537ms 42m 14s 675ms 24s 175ms 136.0GB 7s 421ms  343KB
6 dual Laplace 20k 47s 852ms 7m 15s 740ms 4s 356ms 29.6GB 7s 473ms  327KB
6 dual Laplace 7k 16s 49ms 2m 23s 564ms 1s 415ms 10.0GB 7s 503ms  258KB
10 cloth Hessian AD 100k  19m 46s 671ms 6m 37s 590ms 83ms 122.9GB 1s 509ms 57KB
10 cloth Hessian AD 50k 9m 6s 206ms 2m 25s 926ms 37ms 56.6GB 1s 603ms  57KB
10 cloth Hessian AD 20k 4m 2s 526ms 51s 499ms 17ms 25.0GB 1s516ms  57KB
10 cloth Hessian direct 100k  2m 44s 437ms 3m 5s 543ms 143ms 18.4GB 1s 515ms  61KB
10 cloth Hessian direct 50k 1m 31s 336ms 1m 12s 900ms 49ms 8.5GB 1s397ms  58KB
10 cloth Hessian direct 20k 33s 512ms 24s 217ms 25ms 3.7GB 1s 587ms  58KB
11 symmetric Dirichlet 1M 7m 0Os 371ms 8m 26s 669ms 556ms 135.2GB 1s 272ms  61KB
7 ARAP rhs 300k  5m 12s 580ms 6m 16s 664ms 506ms 34.3GB 3s 127ms  248KB
8 cloth full system 100k  4m 36s 584ms 6m 10s 303ms  6m 10s 303ms 37.0GB 4s521ms 207KB
8 cloth full system 50k 2m 7s 959ms 3m 32s 458ms  3m 32s 458ms 17.0GB 4s 543ms  135KB
8 cloth full system 20k 55s 56ms 57s 404ms 57s 404ms 7.5GB 4s521ms 131KB

Table 3. We break down system performance for different stages of our method as well as the use of resources for all our examples.

trees representing a local variable are stored only once even though
the variable might be involved in different operations.

F CODE OPTIMIZATION TIMINGS

In Table 3 we show a breakdown of the time and resources our sys-
tem needed in order to generate the final, optimized program for all
examples shown in the paper. The timings do not depend on the tar-
get architecture. The execution phase runs the original program with
symbolic types. The analysis includes expression decomposition
and grouping, leaf harvesting, and expression optimization. Code
generation writes the code file and constructs all position indices
for indirect memory access. Compilation creates the final program
based on the generated code (we use gcc in this case). Most time
is spent analyzing the expressions and their dependencies since
all subexpressions above the complexity threshold have to be con-
sidered, indexed, and eventually decomposed. Compilation times
and the final binary size are largely independent of the problem
size which is expected since the expression will decompose into
very similar sets of groups; they will just contain more instances.
A crucial limitation of our method is the high memory demand for
storing all expression trees, however, we show examples with up
to a million vertices which is, depending on the context, relatively
large. Our code is in large parts not optimized and would benefit
from parallelization and advanced memory optimization.
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