
AvA: An Adaptive Audio Filtering Architecture for Enhancing
Mobile, Embedded, and Cyber-Physical Systems

Stephen Xia
Columbia University

stephen.xia@columbia.edu

Xiaofan Jiang
Columbia University

jiang@ee.columbia.edu

ABSTRACT
Audio is valuable in many mobile, embedded, and cyber-physical
systems. We propose AvA, an acoustic adaptive �ltering architec-
ture, con�gurable to a wide range of applications and systems. By
incorporating AvA into their own systems, developers can select
which sounds to enhance or �lter out depending on their appli-
cation needs. AvA accomplishes this by using a novel adaptive
beamforming algorithm called content-informed adaptive beam-
forming (CIBF), that directly uses detectors and sound models that
developers have created for their own applications to enhance or
�lter out sounds. CIBF uses a novel three step approach to prop-
agate gradients from a wide range of di�erent model types and
signal feature representations to learn �lter coe�cients. We apply
AvA to four scenarios and demonstrate that AvA enhances their
respective performances by up to 11.1%. We also integrate AvA
into two di�erent mobile/embedded platforms with widely di�erent
resource constraints and target sounds/noises to show the boosts in
performance and robustness these applications can see using AvA.

1 INTRODUCTION
Audio is an important signal used in many mobile, embedded, and
cyber-physical systems. The rapid growth of personal, wearable,
and intelligent devices has placed an increased importance on au-
dio as a low-energy means for intelligent systems to sense and
communicate with users and respond to their surroundings.

Acoustic intelligence has enabled many applications including
urban safety systems, sleep monitoring systems, home assistants,
and many more. In many of these systems, audio signals are ex-
amined using machine learning or deep learning classi�ers to de-
termine if a speci�c sound is present, before performing an action.
For instance, a home assistant will listen until a command phrase
is spoken, analyze the command, and perform an action. An urban
safety device listens to the surroundings and will alert a user if
it detects a dangerous vehicle approaching the person. A mobile
sleep monitoring system will record and analyze sleep sounds to
measure sleep quality throughout the night.

However, making systems robust is often more challenging than
just creating a machine learning classi�er. For instance, smart home
devices are only supposed to record and analyze audio when a com-
mand phrase is spoken. However, recent studies on recordings taken
from Google Assistant applications have shown that more than 10%
of recordings made were not authorized (i.e. they recordings lacked
the command phrase), which poses a huge privacy concern [1].
Sleep monitoring applications may target sleep sounds, but can
inadvertently record other privacy-sensitive sounds in the home
environment (i.e. speech). In urban safety, there may be other sig-
ni�cant sounds in the environment that may obscure the sound of
an approaching vehicle, such nearby construction, making vehicle

detection much more di�cult [2]. These diverse scenarios illustrate
a need for a platform that can account for a wide range of sounds,
models, and feature representations that users and developers can
customize depending on application needs.

One method to accomplish this is to use blind source separation
(BSS) to extract and keep relevant sources. BSS utilizes statistics
between microphone channels to perform separation. There are
many works that propose BSS methods, but perform poorly on
sound sources mixed in the real world, as we show in Section 5.

Instead, we propose AvA, an Adaptive Audio �ltering architec-
ture for enhancing di�erent types of sounds on a wide range of
systems. In many acoustic systems, developers create models of
sounds that need to be detected or �ltered out. For instance, a smart-
phone may have a command phrase detector to determine when a
command phrase is spoken and a model for speech to determine
what was spoken. AvA allows users to choose which sound types to
either �lter out or enhance by directly leveraging the sound models
that developers create for their speci�c application. As such, AvA
is adaptable to a wide range of di�erent sound detectors and signal
features. AvA accomplishes this by incorporating content-informed
adaptive beamforming (CIBF), a novel adaptive beamforming al-
gorithm that directly incorporates sound detectors to learn �lter
coe�cients to better detect or �lter out speci�c sounds. CIBF lever-
ages the advantages of both spatial �ltering and content-based
�ltering to outperform methods that only use either spatial �ltering
(i.e. BSS) or content-based �ltering in non-arti�cially mixed scenar-
ios. CIBF enables AvAto account for a wide range of di�erent sound
models and signal feature representations using a novel three step
approach (model adaptation, feature adaptation, and signal adapta-
tion). AvA’s adaptability to a wide range of signal features, machine
learning models, and low-resource systems allows us to more easily
embed acoustic intelligence anywhere and impact many areas such
as wearables [3–7], built environments [8–13], and health [14–20].
We make the following contributions:

• We propose AvA, a novel acoustic �ltering architecture that
adaptively �lters out or enhances di�erent sounds depend-
ing on application needs. AvA accomplishes this by directly
incorporating sound models, a developer may have already
created for an application, to �lter out or improve detection.

• We propose content-informed adaptive beamforming (CIBF),
a novel adaptive beamforming algorithm that uses a novel
three step approach (model adaptation, feature adaptation,
signal adaptation) to learn �lter coe�cients to �lter out or
improve detection based on user supplied soundmodels. AvA
leverages CIBF to be adaptable to a wide range of di�erent
sound models and signal representations.

• Wedemonstrate through four scenarios, three di�erentmodel
types, and two di�erent features the capability of AvA in

118

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00017

20
22

 2
1s

t A
CM

/IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Pr

oc
es

sin
g

in
 S

en
so

r N
et

w
or

ks
 (I

PS
N)

 |
 9

78
-1

-6
65

4-
96

24
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IP

SN
54

33
8.

20
22

.0
00

17

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

enhancing or �ltering out di�erent types of sounds in a wide
range of scenarios and con�gurations, thus highlighting the
generalizability and customizability of AvA. Across these
scenarios, we show that that AvA outperforms state-of-art
�ltering algorithms, improves target detection performance
by up to 11.1%, and reduces noise detection by up to 78.9%.

• We perform two case studies, where we integrate AvA into
two mobile/embedded platforms to show the adaptability
of AvA. We compare the performance of the AvA-enhanced
systems against existing state-of-art systems and show how
AvA can boost detection performance in real applications.

2 RELATEDWORKS
There are numerous mobile and embedded applications that lever-
age audio. Audio-based systems have been deployed for numerous
applications including, but not limited to, gunshot detection [21],
vehicle detection and localization for urban safety [22–26], activity
detection [27, 28], robotic intelligence [29], and much more [30, 31].
Many of these works focus on the design of classi�ers to achieve
the best performance [32]. [33] presents a cloud-based system for
acoustic event detection that uses user-contributed sound clips to
train acoustic detectors for speci�c mobile applications. Instead, we
take an acoustic �ltering approach to remove or enhance sounds in
the environment depending on application needs.

There are two broad categories of �ltering algorithms: spatial
�ltering and content-based �ltering. Spatial �ltering methods
use multiple observations in space by placing microphones at dif-
ferent locations to perform �ltering. Methods that fall into this
category include, but are not limited to beamforming [34–36], blind
source separation (BSS) [37, 38], and two microphone �ltering tech-
niques [39, 40]. Thesemethods do not incorporate the content or the
types of sounds present in the environment and generally require
the location of sources beforehand to perform �ltering.

Content-based �ltering methods generally require only one mi-
crophone. These methods, such as deep neural networks (DNN),
use trained models of speci�c sounds to �lter them out [41–43]. Be-
cause they are trained to deal with speci�c sounds, applying amodel
trained in one context to a di�erent application may signi�cantly
degrade our signals. In this regard, unlike spatial �ltering meth-
ods, content-based �ltering methods are not agnostic to the sound
types present in the environment. In this work, we propose content-
informed adaptive beamforming (CIBF), a novel adaptive beamform-
ing algorithm that bridges the gap between spatial and content-based
�ltering, leveraging the strengths of both types of �ltering. CIBF al-
lows AvA to be a powerful tool for enhancing or �ltering out sounds
that a developer has trained a model for (content-based �ltering),
while providing a content-agnostic way of �ltering sounds we do
not have models for (spatial �ltering).

[2] proposes an acoustic wearable system for detecting and lo-
calizing vehicles to improve construction worker safety. This work
proposes an adaptive �ltering architecture that improves vehicle
detection by �ltering out construction site sounds. However, the
architecture is speci�c to the proposed acoustic wearable, limited
to only �ltering construction sounds, and supports only a single
signal feature representation (power spectrum) and sound model
(mixture of Gaussians). In this work, we propose AvA and CIBF,

which can both enhance and �lter signals while supporting a wide
range of di�erent sound models and signal representations.

3 CONTENT-INFORMED ADAPTIVE
BEAMFORMING

We propose content-informed adaptive beamforming (CIBF), a novel
adaptive beamforming algorithm that directly incorporates acous-
tic detection and sound models to improve detection performance.
Users and applications can select di�erent sounds to either im-
prove or degrade detection performance depending on application
needs. CIBF supports a wide range of di�erent sound models, classi-
�er types, and frequency-domain signal representations. A typical
problem set up for beamforming is shown next.

argmin
w(C,5)

!(w(C, 5), x(C, 5))

w⇤ (C, 5)d(5) = 1
(1)

(·)⇤ and (·)) are the conjugate and regular transpose operators,
respectively. x(C, 5) = [G1 (C, 5), G2 (C, 5), ..., G= (C, 5)]) is the vector
of observations from each of the = microphones at time window
C and frequency 5 . G8 (C, 5) is the short-time frequency representa-
tion of the signal from microphone 8 at time step C and frequency 5 .
w(C, 5) = [F1 (C, 5),F2 (C, 5), ...,F= (C, 5)]) is the vector of �lter co-
e�cients applied to each of our = microphone observations at each
frequency and time step. d(5) = [31 (\ , 5),32 (\ , 5), ...,3= (\ , 5)])
is the steering vector that depends on the steering direction, \ .
Beamforming attempts to adapt a set of �lter coe�cients w(C, 5) to
retain signals arriving from steering direction \ , while attenuating
signals arriving from other directions. This is accomplished by the
direction constraint, w⇤ (C, 5)d(5) = 1, and the choice of loss func-
tion. In this work, we use the commonly used linearly constrained
minimum variance (LCMV) loss function shown below [35].

!(w(C, 5), x(C, 5)) = w⇤ (C, 5)⇢ [x(C, 5)x⇤ (C, 5)]w⇤ (C, 5)

⇢ [·] is the expectation operator. We see that the �ltering process
depends solely on the steering direction (i.e. sound source direction).
Although enhancing our signal in this way may improve the signal-
to-noise ratio, it is not guaranteed to improve or reduce detection.

In CIBF, we incorporate sound models and acoustic classi�ers.
In general, an acoustic detector analyzes a signal holistically and
determines that a sound of class 2 is present in environment if
%2 (� (s(C))) > 0, where s(C) = [B (C, 51), ..., B (C, 5=⌫)]) is the fre-
quency domain representation of an acoustic signal and =⌫ is the
number of frequency bins in our signal. Typically, traditional ma-
chine learning classi�ers do not operate directly on the the raw
signal, but rather on a set of extracted features. We refer to the op-
eration � (x(C)) as the set of extracted features from the raw signal,
x(C). Any detector for sound 2 evaluates a decision function %2 (·)
to determine whether the input is an instance of sound 2 . If this
function is greater than some de�ned threshold 0, then the model
will detect the presence of sound 2 .

One way to to �lter out sound 2 , or prevent 2 from becoming
detectable, is to ensure that the �ltered signal remains below the
detectable threshold, 0. That is to say, we should learn a set of
coe�cients, w(C, 5), such that %2 (� (⇡ (W⇤ (C)X(C)))) < 0. ⇡ (·) is

119

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

the diagonal operator that returns the diagonal entries of a matrix
as a vector. The matrices,, (C) and - (C), are shown next:

W(C) =
⇥
w(C, 51) ... w(C, 5=⌫)

⇤

X(C) =
⇥
x(C, 51) ... x(C, 5=⌫)

⇤

⇡ (W⇤ (C)X(C)) =
2666664

w⇤ (C, 51)x(C, 51)
...

w⇤ (C, 5=⌫)x(C, 5=⌫)

3777775
, (C) and - (C) are formed by concatenating the �lter coe�cient

vectors, w(C, 5), and signal vectors, x(C, 5), across all frequencies.
In other words, the �ltered signal, ⇡ (W⇤ (C)X(C)), is obtained by
applying each �lter coe�cient vector,w(C, 5), to the corresponding
signal vector, x(C, 5), at each frequency.

On the contrary, if wewish to "enhance" or improve our detection
rate of sound 2 , we should learn a set of coe�cients such that our
�ltered signal remains above the detectable threshold. That is to say:
%2 (� (⇡ (W⇤ (C)X(C)))) > 0. For clarity, we denote the the �ltered
signal throughout the rest of the paper as ZC = ⇡ (W⇤ (C)X(C)). The
full CIBF problem setup is shown in Equation 2.

argmin
w(C,5)

!(w(C, 5), x(C, 5))

w⇤ (C, 5)d(5) = 1

%48 (� (ZC)) > 048 , 1  8  =4

%59 (� (ZC)) < 1 59 , 1  9  =5

(2)

We refer to %48 as the decision function of sound 48 that the user
wants to enhance, while %59 refers to the the decision function of
sound 59 that the user wants to �lter out. =4 and =5 refer to the
total number of sound types a user wishes to "enhance" or "�lter
out", respectively. We summarize the constraints of CIBF next.

• Direction Constraint: w⇤ (C, 5)d(5) = 1
• Enhancement Constraints: %48 (� (ZC)) > 048
• Filtering Constraints: %59 (� (ZC)) < 1 59

We attempt to solve this problem with Lagrange multipliers (_’s),
shown in Equation 3:

!_ (w(C, 5), x(C, 5)) = !(w(C, 5), x(C, 5))
� _3 (w⇤ (C, 5)3 � 1)

�
=4’
8=1

_48 (%48 (� (ZC)) � 048)

+
=5’
9=1

_59 (%59 (� (ZC)) � 1 59)

(3)

It is di�cult to directly solve for the optimal multipliers for each
constraint, given the wide range of models and features that can
be used. As such, we take a gradient moving in the direction of the
negative gradient at each iteration, as shown in Equation 4.

w(C + 1, 5) = w(C, 5) � nOw(C,5)!_ (w(C, 5), x(C, 5)) (4)

Here, n > 0 is the step size. Due to the various con�gurations
of classi�ers and features a sound or detection model can use, it is

di�cult to choose multipliers that satisfy all of the enhancement
and �ltering constraints in Equation 2. As such we only focus on
choosing the optimal multiplier, _3 , corresponding to the direction
constraint. Applying the direction constraint to Equation 4, solving
for _3 in terms of the enhancement and �ltering multipliers (_48
and _59), and substituting this value back into Equation 4 yields
the �nal CIBF update shown in Equation 5. For clarity, we denote
w(C, 5) = w(C) and x(C, 5) = x(C), and � is the identity matrix. One
assumption present in the Equation 5 is that our system does not
have an estimate of the spatial correlation matrix, ⇢ [x(C)x⇤ (C)].
This is because the environment and types of sounds may be time-
varying and changing frequently. As such, we make the simple, but
common, estimation of ⇢ [x(C)x⇤ (C)] = x(C)x⇤ (C), and denote the
output of CIBF (i.e. the "beamformed" signal) as y(C) = w⇤ (C)x(C).

w(C + 1) = w(C) + d(d⇤d)�1 [1 � d⇤w(C)]
� n [� � d(d⇤d)�1d⇤]x(C)y(C)

� n [� � d(d⇤d)�1d⇤]
=5’
9=1

_59Ow(C)%59 (� (ZC))

+ n [� � d(d⇤d)�1d⇤]
=4’
8=1

_48Ow(C)%48 (� (ZC))

(5)

The question now is how to solve for the gradients corresponding
to the enhancement and �ltering constraints, Ow(C)%48 (� (ZC)) and
Ow(C)%59 (� (ZC)) respectively. To accomplish this, we propose the
concepts of model adaptation, feature adaptation, and signal
adaptation. The idea being that we can separate these gradients
into the three parts, each corresponding a di�erent part of the
soundmodeling and detection pipeline.We can visualize these three
components via the chain rule of derivatives shown in Equation 6,
and summarize the three phases next.

Ow(C)%2 (� (ZC)) =
m%2 (� (ZC))
m� (ZC)

· m� (ZC)
mZC

· mZC
mw(C) (6)

• Model Adaptation: m%2 (� (ZC))
m� (ZC)

• Feature Adaptation: m� (ZC)
mZC

• Signal Adaptation: mZC
mw(C)

A visualization of the three phases are shown in Figure 1. The
three typical steps for acoustic detection is highlighted in the for-
ward pass, where the raw signal is preprocessed, features are com-
puted, and the model is used to estimate the probability that the
sound is present. To compute the full gradient with respect to our �l-
ter coe�cients,Ow(C)% (� (ZC)), we take advantage of the chain rule
of derivatives to compute gradients corresponding to each of these
components for the detector (model adaptation), features (feature
adaptation), and the �ltering process (signal adaptation), as shown
in the backward pass of Figure 1. In the following subsections, we
discuss each of these components in detail.

3.0.1 Model Adaptation. In model adaptation, we compute the
gradient of the machine learning decision function. Through chain
rule, model adaptation computes the gradient of the model deci-
sion function, %2 (� (ZC)), for an acoustic detector for sound 2 , with

120

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

Figure 1: Pipeline detailing theCIBF enhancement and�lter-
ing optimization process. The forward pass shows the typi-
cal steps of evaluating the presence of a sound. The CIBF
optimization process is highlighted in red (backward pass),
highlighting the three primary steps. Each step is directly
tied to one part of the detection pipeline, where connections
are highlighted using black dashed arrows.

respect to the features computed from the processed and �ltered sig-
nal, � (ZC). In other words, we are "adapting" our �lter coe�cients
based on the output to the detector with respect to the input.

Computing this quantity is possible for many di�erent types of
sound models and detectors. In general, the inputs to the classi�er
will be some set of features (i.e. MFCCs or even the raw frequency-
domain signal) of dimension =� . As such, model adaptation results
in a row vector, m%2 (� (ZC))/m� (ZC), of dimension =� .

In this work, we use three di�erent types of sound classi�ers
to show CIBF’s versatility: support-vector machine with radial
basis function kernel (SVM RBF), random forest classi�ers (RF), and
mixture of Gaussians (GMM). The model adaptation derivations for
each of these classi�ers are shown in the Appendix (Section 10.1).

3.0.2 Feature Adaptation. The second step is feature adaptation,
which corresponds to feature computation module, where we com-
pute the gradient of the features, � (ZC), with respect to the �ltered
signal, ZC . In general, the feature generation process reduces the
dimensions of the �ltered or raw signal. If the signal has dimen-
sion =⌫ and the computed features have dimension =� , then feature
adaptation, m� (ZC)/mZC yields a gradient �eld of dimension =� ⇥=⌫ .

Since most acoustic features mainly involve binning (i.e. weight-
ing and summing bins between prede�ned frequencies), m� (ZC)/mZC
is generally simple to compute. In this paper, we utilize two di�erent
acoustic features: mel-frequency cepstral coe�cients (MFCC) and
non-uniform binned periodogram (NBIP) [22]. The feature adapta-
tion derivations for these features are shown in the Appendix. Note
the simplest case of feature extraction is using no features at all
(i.e. using the raw signal directly). In this case, feature adaptation
yields an identity matrix for the gradient.

3.0.3 Signal Adaptation. The third step, signal adaptation, com-
putes gradients of the �ltered signal, /C , with respect to the �lter
coe�cients,w(C, 5). In model adaptation, we computed m� (ZC)/mZC
of dimension =� ⇥ =⌫ , where each row corresponds to one com-
ponent of the computed feature and each column corresponds to
one frequency bin of the raw signal. Now we must compute the
gradient of with respect to each set of �lters per frequency 5 .

The ?-th column of our m� (ZC)/mZC matrix from feature adapta-
tion corresponds to the ?-th frequency bin’s gradient contribution

to each of the =� feature bins. In other words, the (;, ?) entry of this
matrix corresponds to the e�ect that only the ?-th frequency has on
the ;-th feature bin. As such, to compute gradients corresponding
to �lters of the ?-th frequency 5? , we only need to use the ?-th
column of m� (ZC)/mZC . To do this, we multiply m� (ZC)/mZC by a
column vector ⇠? , whose ?-th entry is 1 and all other entries are 0.

Acoustic detectors generally compute features based on the
power spectrum. The power spectrum of the �ltered signal is
S5 (C, 5) = w⇤ (C, 5)x(C, 5)x⇤ (C, 5)w⇤ (C, 5). The full feature adapta-
tion and signal adaptation output is shown in Equation 7. y(C, 5?) =
w⇤ (C, 5?)x(C, 5?) refers to the �ltered signal at frequency 5? .

m� (ZC)
mZC

· mZC)
mw(C, 5?)

=
m� (ZC)
mZC

·⇠? ·
mS5 (C, 5?)
mw(C, 5?)

=
m� (ZC)
mZC

·⇠? · x(C, 5?)y(C, 5?)
(7)

4 SYSTEM
We build the AvA acoustic enhancement and �ltering pipeline us-
ing CIBF as the centerpiece, allowing AvA to account for a wide
range of features and models. CIBF leverages both content-based
�ltering (pre-trained sound models), and spatial �ltering (multiple
microphones). However, beamforming requires the direction of
the source as input. In this section, we �rst introduce our localiza-
tion module that detects and localizes signi�cant sources in the
environment. Then, we introduce the full AvA architecture.

4.1 Acoustic Localization
To enable beamforming, we need to incorporate a localization mod-
ule. The localization module needs to locate all the signi�cant
sources in the environment from di�erent directions. Then, AvA
will utilize CIBF to "beamform" to the direction of the sources and
enhance/�lter detected sources speci�ed by the user or application.

There are numerous works that address multiple-source localiza-
tion. In general, most algorithms scan across all directions where
a potential source could be and compute a power response across
all directions. The number and location of signi�cant peaks in this
curve are the number and estimated location of sources respectively.
Each method di�ers in how they compute this power response
curve and how they search for peaks. Methods such as steered-
response power (SRP) or steered-response power phase transform
(SRP-PHAT) apply a time shift or phase shift and use generalized
cross correlation between microphone pairs as the power response
at each direction 3 [44]. The idea is that signals coming from direc-
tion 3 will be added constructively, while signals not aligned with
direction 3 will be destructively added (i.e. attenuated). Methods
such as MUSIC and its variants [45] use eigenspace methods to
compute a similar correlationmetric. Frequency-domain versions of
these methods generate power response curves for each frequency
and aggregate them before searching for peaks. Generating these
curves per frequency is expensive.

Instead, we utilize the method presented in [34]. This work,
rather than computing a curve across each frequency, compares
the observed phase di�erences between microphone pairs to the
expected phase di�erence we would expect to see if a source was
coming from a speci�ed direction 3 and assigns all the energy of the

121

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

Figure 2: AvA’s System Architecture.

frequency to the direction where the source is most likely arriving
from, which greatly reduces computation.

4.2 AvA Architecture
Figure 2 shows AvA’s full adaptive system architecture. The red
dotted box highlights the content-informed adaptive beamforming
module, while the green arrows and text highlights the detection
and �ltered signal outputs to AvA.

First, we sample a window from each of our =< microphones,
G< (C, 5) for 1  <  =< . Then, we apply our �lters, learned from
previous iterations, to obtain =B di�erent �ltered sources, ZBC , for
1  B  =B , at time window C . The number of sources present, =B ,
and their corresponding direction of arrivals, \BC , is estimated by
the localization module in the previous time iteration. Additionally,
the update and apply �lters module outputs the individual �ltered
microphone channels,bG< (C, 5) for 1  <  =< . We obtainbG< (C, 5)
for microphone< by applying each �lter onto each of the micro-
phone channels, to diminish all sounds we want to �lter out and
enhance all sounds we want to retain.

Afterwards, the cleaned microphone channels are used in the
localization module to estimate the number of signi�cant sources
in the environment, =B , and their location or direction of arrival,
\BC+1, that will be used to update source �lters for the next time
window, C + 1, as shown by the dotted arrow from the source de-
tection and localization module back to the update and apply �lters
module. Additionally, the �ltered sources, ZBC , are used as inputs to
the CIBF module, highlighted in the dotted red box, where sound
analysis (acoustic detection), model adaptation, feature adaptation,
and signal adaptation are performed to alter �lter coe�cients to
enhance or reduce user speci�ed sounds. These �lters are applied
at the next iteration and the cycle continues adaptively.

In the �rst iteration, AvA analyzes the raw audio channels; in
other words, AvA’s initial �lter starts o� as all-pass, similar to tra-
ditional beamforming. Additionally, AvA may experience problems
with convergence if the direction of the sound sources change too

fast or randomly, just like in traditional beamforming. However,
sound sources in most common applications generally move su�-
ciently slow. In Section 6, we demonstrate that AvA can adapt to an
application in urban safety where sound sources (vehicles) move at
tens of miles per hour.

4.3 Discussion
We note that in order to take full advantage of AvA, we require
trained detectors to perform CIBF. However, AvA can also op-
erate without any detectors or trained models. If no noise or
target sound detectors are provided, AvA will perform LCMV beam-
forming (Equation 1) and only utilize spatial �ltering.

Beamforming has often been compared to blind source sepa-
ration (BSS). The primary di�erence is that beamforming �lters
signals by "steering" to a user-speci�ed direction, whereas BSS
does not require this input. At �rst glance, it would seem that
BSS is more advantageous than beamforming in our application.
However, many applications require the location of �ltered signals
(we explore one application in Section 6). Although BSS does not
require the location or direction of sources as input, it also does
not output source directions. Moreover, phase information critical
to estimating source directions, which are present in raw signals,
are not retained once BSS has been applied. As such, we take the
beamforming-based two-step localize-then-�lter approach, detailed
in this section, to ensure we have source directions that are asso-
ciated with �ltered signals. Additionally, both beamforming and
BSS utilize source direction found, in phase information between
microphone channels, to perform �ltering. As such, if two similar
sounding sources appear from di�erent directions, both BSS and
our proposed CIBF method can di�erentiate the sources.

4.4 Integrating AvA into New Applications
A developer can integrate AvA into their own applications by pro-
viding up to three parameters. The �rst component is the relative
locations of the microphone array that are needed in the traditional
beamforming component of AvA. The second component is the
sound models (optional) to use for �ltering or enhancement, in-
cluding the models themselves (%48 and %59) and the input signal
representation, � (·). These models can be a wide range of detectors
and could be models that the application itself would leverage. If
sound models were provided for �ltering or enhancement, the de-
velopers should also supply weight parameters, _48 and _59 , which
determine how much emphasis to place on enhancing or �ltering
speci�c sounds. Setting _59 higher than _48 would guide AvA to
prioritize �ltering out sound 59 over enhancing sound 48 . To stream-
line this process, we provide developers common preset weights
that they can choose.

5 AVA EVALUATION
In this section, we evaluate the performance of AvA in various sce-
narios and con�gurations. The goal of AvA is to improve detection
or "enhance" target sounds and degrade detection or "�lter" out
other noises that users can specify.

We look at four di�erent scenarios where AvA may be useful.
Additionally, we vary the model types and signal features used in
each scenario to show the versatility of AvA. Table 1 summarizes

122

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

Table 1: Summary of evaluation scenarios and di�erent con�gurations of AvA.

Scenario Detection Model Features Comparison Methods
Target: Crying

Noise: Construction
Support vector machine

(SVM)
Mel-frequency cepstral coe�cients

(MFCC) LCMV Beamforming (AvA - LCMV) [35]

Target: Dog
Noise: Vehicle

Random Forest
(RF)

Non-uniform binned periodogram
(NBIP) Redress BSS (RBSS) [46]

Target: Piano
Noise: Speechnoise

Gaussian mixture model
(GMM) Two Step Mask Learning (TDNN) [47]

Target: Wild animals
Noise: Wind Non�ltered (NF)

the con�gurations we ran to evaluate the performance of AvA. The
scenarios in which we evaluated AvA are described next.

• Scenario 1: Baby crying enhancement in presence of
urban construction sounds. Parents need to know when
their children are crying to take care of them, but loud con-
struction noises couldmake this challenging. An audio-based
child alert system may make use of AvA to �lter out con-
struction and enhance crying.

• Scenario 2: Dog barking enhancement in presence of
oncoming vehicles. A dog barking or whimpering could
be a sign of it requiring attention, but it could be di�cult for
an application to hear it in presence of urban and vehicle
sounds. A pet care application, that uses audio to detect and
alert caretakers of pet distress sounds, could bene�t from
AvA by �ltering out urban sounds and enhancing pet sounds.

• Scenario 3: Music enhancement in presence of speech
and speechnoise. In social gatherings, there may be music
playing in the background that users may want to enjoy. An
acoustic augmented reality application could enhance the
music for the user and reduce the ambient speechnoise.

• Scenario 4: Wild animal enhancement in presence of
wind. In a wildlife environment, a person may want to ob-
serve the sounds of animals or nature. However, the envi-
ronment could be very windy and loud. A wildlife related
application could enhance wildlife sounds and �lter out wind
sounds to improve the overall acoustic experience for users.

In each of these scenarios, we train a model for the sound we
want to enhance (target) and the sound we want to �lter out (noise)
using AvA. The sound models and signal features used are also sum-
marized in Table 1. In total, we evaluate AvA using three di�erent
types of detectors (SVM RBF, RF, GMM) with two di�erent features
(MFCC, NBIP), for a total of six con�gurations per scenario. We
generate GMMs using a dirichlet process to automatically �nd the
best number of clusters to use per model [48].

We compare AvA against other types of �ltering methods, sum-
marized in Table 1. The LCMV beamforming algorithm uses spatial
di�erences between microphones to perform �ltering [35]. We de-
note LCMV beamforming as AvA - LCMV because, as mentioned
in Section 4.2, AvA directly performs LCMV beamforming if sound
models are not provided. Redress BSS (RBSS) is a state-of-art blind
source separation algorithm [46]. Two Step Mask Learning (TSML
DNN) is a state-of-art deep neural network for sound source sep-
aration [47]. For each method, we �lter our signals through the

�ltering method and evaluate detection performance using one of
the detector types and signal features listed in Table 1. AvA directly
uses these detectors to perform �ltering and detection. As a baseline,
we compare the �ltering methods against the "non�ltered" signals
(NF), where we directly pass the raw signals into the detector. We
generate the following datasets for evaluation.

• Base dataset: For each of the four scenarios, we extract 10
minutes of audio for both the sound we wish to enhance
and the sound we wish to remove (80 minutes total). We
extracted sounds from the Google Audioset dataset [49].

• Mixed testing dataset: This dataset containsmixtures of sounds
from our di�erent scenarios and is built from the base dataset.
We use a six microphone uniform circular array (UCA), with
a 15cm diameter, to record mixtures. In each scenario, we
select a random clip from our target class (i.e., crying) and a
random clip from the noise class (i.e., construction). Then,
we play both sounds from two di�erent speakers placed
at random directions from the UCA. In this way, all the
recordings are mixed in the real world rather than ar-
ti�cially, as is commonly done in many works. In total, we
generate 30 minutes of mixtures for each scenario (2 hours
total). The mean signal-to-noise ratio of the target sound for
each scenario is listed next:
– Scenario 1: -6.6 dB
– Scenario 2: -5.4 dB
– Scenario 3: -3.2 dB
– Scenario 4: -4.7 dB

• Training and testing datasets: For each scenario, we have 50
minutes of audio (base dataset + mixed dataset). We take
80% of the audio and use them to train detection classi�ers
using the features and models listed in Table 1. We take the
rest of the 20%, �lter them using AvA and the comparison
methods listed in Table 1, and use them to evaluate detection
performance (results shown in Tables 2, 3, 4, 5).

To train the TSML DNN, we take random target sound clips and
noise clips from the base dataset and arti�cially mix them together
to use as inputs. We need to arti�cially mix these sources because
DNN methods require the ground truth sources to compute loss
functions. Recording a mixture in the real-world does not give us
access to the exact ground truth sources, whereas arti�cially mixing
signals directly uses the ground truth to create training data.

Tables 2, 3, 4, 5 show the detection performance metrics for the
target sounds and noise sounds in the four scenarios after applying

123

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

Table 2: Target and noise detection performance in scenario 1 (target: crying and sobbing + noise: construction).

SVM RBF Random Forest Gaussian Mixture Model
Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.
AvA 0.821 0.180 0.153 0.101 0.924 0.115 0.129 0.122 0.771 0.185 0.082 0.091

AvA - LCMV 0.789 0.184 0.423 0.134 0.891 0.108 0.332 0.111 0.737 0.191 0.376 0.106
RBSS 0.748 0.191 0.483 0.130 0.877 0.111 0.440 0.123 0.703 0.191 0.315 0.147

M
FC

C

TSML DNN 0.723 0.182 0.276 0.105 0.844 0.121 0.369 0.098 0.698 0.179 0.277 0.124
NF 0.734 0.199 0.899 0.154 0.855 0.110 0.92 0.176 0.661 0.188 0.871 0.106
AvA 0.754 0.210 0.133 0.129 0.834 0.133 0.219 0.132 0.782 0.233 0.129 0.156

AvA - LCMV 0.735 0.230 0.376 0.110 0.823 0.146 0.544 0.121 0.744 0.240 0.293 0.143
RBSS 0.702 0.200 0.354 0.132 0.811 0.134 0.567 0.162 0.729 0.249 0.217 0.130

N
B
IP

TSML DNN 0.713 0.229 0.234 0.144 0.796 0.155 0.265 0.112 0.741 0.247 0.245 0.165
NF 0.685 0.202 0.873 0.135 0.801 0.143 0.931 0.149 0.724 0.222 0.856 0.155

Table 3: Target and noise detection performance in scenario 2 (target: dog + noise: vehicles).

SVM RBF Random Forest Gaussian Mixture Model
Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.
AvA 0.897 0.137 0.163 0.131 0.869 0.134 0.238 0.098 0.865 0.139 0.211 0.176

AvA - LCMV 0.849 0.132 0.432 0.149 0.825 0.136 0.332 0.122 0.831 0.131 0.327 0.167
RBSS 0.832 0.136 0.456 0.119 0.826 0.135 0.347 0.119 0.824 0.134 0.298 0.142

M
FC

C

TSML DNN 0.858 0.135 0.287 0.137 0.867 0.133 0.349 0.130 0.824 0.131 0.247 0.159
NF 0.812 0.133 0.909 0.113 0.809 0.139 0.878 0.102 0.796 0.138 0.810 0.160
AvA 0.911 0.132 0.123 0.112 0.853 0.145 0.209 0.139 0.862 0.149 0.166 0.121

AvA - LCMV 0.837 0.139 0.331 0.098 0.849 0.135 0.446 0.140 0.820 0.138 0.345 0.134
RBSS 0.819 0.137 0.298 0.133 0.812 0.134 0.513 0.134 0.778 0.136 0.423 0.110

N
B
IP

TSML DNN 0.869 0.140 0.178 0.121 0.819 0.139 0.213 0.156 0.805 0.144 0.190 0.099
NF 0.800 0.131 0.886 0.139 0.791 0.143 0.921 0.138 0.766 0.133 0.834 0.148

Table 4: Target and noise detection performance in scenario 3 (target: piano + noise: speechnoise).

SVM RBF Random Forest Gaussian Mixture Model
Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.
AvA 0.873 0.162 0.249 0.100 0.860 0.162 0.222 0.104 0.897 0.166 0.147 0.091

AvA - LCMV 0.849 0.159 0.417 0.098 0.839 0.167 0.544 0.129 0.850 0.160 0.388 0.087
RBSS 0.802 0.164 0.470 0.143 0.809 0.159 0.413 0.090 0.845 0.169 0.420 0.109

M
FC

C

TSML DNN 0.852 0.158 0.313 0.095 0.819 0.164 0.319 0.115 0.821 0.158 0.221 0.119
NF 0.771 0.164 0.717 0.116 0.780 0.159 0.813 0.097 0.794 0.166 0.755 0.100
AvA 0.849 0.160 0.190 0.133 0.830 0.163 0.255 0.168 0.842 0.165 0.223 0.148

AvA - LCMV 0.841 0.161 0.399 0.120 0.818 0.166 0.449 0.134 0.837 0.165 0.298 0.133
RBSS 0.808 0.161 0.387 0.119 0.777 0.159 0.409 0.155 0.805 0.163 0.327 0.125

N
B
IP

TSML DNN 0.822 0.160 0.220 0.106 0.798 0.170 0.337 0.175 0.787 0.162 0.271 0.129
NF 0.754 0.158 0.667 0.127 0.766 0.161 0.794 0.129 0.803 0.164 0.684 0.140

Table 5: Target and noise detection performance in scenario 4 (target: wild animals + noise: wind).

SVM RBF Random Forest Gaussian Mixture Model
Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.
AvA 0.738 0.238 0.287 0.148 0.702 0.242 0.214 0.134 0.711 0.240 0.248 0.157

AvA - LCMV 0.710 0.239 0.468 0.158 0.688 0.239 0.561 0.102 0.687 0.238 0.433 0.119
RBSS 0.667 0.233 0.430 0.113 0.668 0.239 0.498 0.149 0.666 0.235 0.498 0.134

M
FC

C

TSML DNN 0.683 0.240 0.310 0.154 0.656 0.242 0.314 0.130 0.661 0.234 0.358 0.141
NF 0.655 0.236 0.922 0.140 0.622 0.240 0.967 0.129 0.612 0.243 0.872 0.168
AvA 0.696 0.235 0.234 0.137 0.655 0.247 0.250 0.102 0.661 0.236 0.290 0.099

AvA - LCMV 0.671 0.238 0.344 0.133 0.639 0.247 0.387 0.156 0.659 0.233 0.460 0.086
RBSS 0.669 0.237 0.310 0.149 0.632 0.244 0.319 0.142 0.635 0.240 0.478 0.129

N
B
IP

TSML DNN 0.641 0.230 0.290 0.122 0.644 0.240 0.332 0.109 0.650 0.241 0.370 0.100
NF 0.644 0.234 0.965 0.115 0.649 0.244 0.937 0.120 0.636 0.239 0.927 0.091

124

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

one of the �ltering algorithms. For both target and noise detectors
in each scenario, we tune the detectors such that the false positive
rates are relatively equal across all �ltering methods in order to better
visualize the improvement or degradation in true positive rate. In all
scenarios, across all �ltering methods and detection models, AvA
sees the largest increase in the true positive detection rate of our
target sounds across all scenarios. Moreover, AvA also sees the
largest decrease in detection rate of the noise signal (i.e. the signal
that we want to attenuate) across all con�gurations and scenarios.
This is because AvA intelligently leverages both spatial and content
�ltering to improve detection, while other methods leverage only
one. Additionally, AvA directly optimizes over the detectors and
features a user develops or supplies for detection. We would also
like to highlight that the detection rates of the target sounds get
enhanced while the noise sounds get diminished if we incorporate
sound models (AvA) compared to only utilizing the spatial �ltering
portion of the system (AvA - LCMV). In Tables 2, 3, 4, 5, we high-
light, in red, the best performing con�guration (highest target true
positive rate) for each of the scenarios. We also highlight in blue
the con�guration that yields the best noise �ltering (lowest noise
true positive rate). These values are summarized below along with
the target sound detection rate increase and noise detection rate
decrease compared to no �ltering (NF):

• Scenario 1:
– Target: RF + MFCC (6.9% increase)
– Noise: GMM + MFCC (78.9% decrease)

• Scenario 2:
– Target: SVM RBF + NBIP (11.1% increase)
– Noise: SVM RBF + NBIP (76.3% decrease)

• Scenario 3:
– Target: GMM + MFCC (10.3% increase)
– Noise: GMM + MFCC (60.8% decrease)

• Scenario 4:
– Target: SVM RBF + MFCC (8.3% increase)
– Noise: RF + MFCC (75.3% decrease)

This shows that each type of classi�er or feature may perform
better in certain scenarios. Being adaptable to a wide range of con-
�gurations is one of AvA’s greatest strengths over existing meth-
ods. AvA outperforms the methods we compared against because
it leverages both spatial and data-driven �ltering, improving the
weaknesses of using just one type. Additionally, compared to deep
learning, AvA is extremely �exible, requires less data, and does not
require developers to dedicate large amounts of hardware and time
to create new architectures speci�c to each new sound.

In this section, we showed AvA’s versatility and capability of
improving detection for a wide range of user speci�ed sounds in a
variety of di�erent scenarios. In the following sections, we take a
deeper dive into two real application scenarios: urban safety and
audio privacy. In both applications, we integrate AvA into a real
mobile/embedded platform, and compare the performance of the
AvA-enhanced system against existing works in the respective area.

6 CASE STUDY: URBAN SAFETY
6.1 Background
Motor vehicle accidents are a growing concern. Since 2009, there has
been more than a 50% increase in pedestrian motor vehicle fatalities

in the United States, and more than 130,000 people are treated in
hospitals for vehicle accident injuries per year [50]. Additionally,
motor vehicle accidents are the �rst or second largest cause of
work-related fatalities in every industry [51].

To improve urban safety, there have been several works that
introduce acoustic wearables for detecting/localizing vehicles and
alerting users to avoid accidents. [22, 23] introduce wearables and
smartphone platforms that use an array of microphones and novel
machine learning architectures to accomplish this. However, these
works assume that vehicles will be the loudest sound in the envi-
ronment and see degraded performance in noisy environments. [2]
introduces a construction helmet wearable for construction worker
safety. Since construction sites are generally very noisy, the authors
propose an adaptive �ltering architecture to �lter out construction
sounds to improve vehicle detection. However, this work requires
the construction tool sounds to be modeled as a Gaussian mixture
model using the raw magnitude spectrum as the signal represen-
tation. Additionally, this work needs a separate vehicle detection
module later down the pipeline. AvA on the other hand can use a
wide range of di�erent sound detection models and can directly
incorporate a vehicle detector to improve vehicle detection.

6.2 Integrating AvA into Acoustic Wearables
for Urban Safety

We integrate AvA into an acoustic headset wearable that leverages
an array of microphones. The system architecture for the AvA-
enabled, real-time, urban safety wearable is shown in Figure 3. We
borrow the embedded wearable platform from [22] and insert AvA
as the preprocessing and the vehicle detection module running in
the smartphone system. If a vehicle is detected, an audio, haptic,
and visual alert is sent to the user, which also shows the direction
of the vehicle in relation to the user.

For our use case scenario, we had a user wear the AvA-enhanced
wearable next to a street in a bustling urban city while speaking to
someone on the phone. The pedestrian is focusing on his conversa-
tion through his headset and is much less likely to hear oncoming
vehicles. Additionally, the loud conversation from the pedestrian
makes it more di�cult for any acoustic wearable to detect and local-
ize vehicles over the speech. In this scenario AvA employs a vehicle
detector to enhance and a speech detector to �lter out the user’s
conversation in order to improve vehicle detection. We compare the
AvA-enhanced acoustic urban safety wearable against the PAWS
state-of-art pedestrian safety wearable [22] and the CSafe construc-
tion worker safety wearable [2]. We adapt the CSafe system to �lter
out speech rather than construction sounds. For all systems, we
adopt the PAWS random forest based vehicle detector. For CSafe
and AvA, we generate a Gaussian mixture model speech detector
through a dirichlet process by using 5 minutes of recorded speech
from the user. Using recorded speech from the user is a reason-
able way to generate a speech model since the acoustic wearable
use recordings and learn a user’s speech pattern over time during
his/her current or past phone conversations.

Table 6 shows the performance metrics of all three systems. Just
as in Section 5, we tune each system such that the true negative
rate for vehicle detection is similar for all systems we evaluate to
better visualize the improvement in the true positive rate. We see

125

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

Figure 3: AvA-enhanced urban safety wearable architecture.
The embedded hardware platform is borrowed from [22].
AvA directly uses the results from the vehicle detector to de-
termine when to alert the user.

Table 6: Performance metrics of vehicle detection of AvA
compared to other state-of-art acoustic-based urban safety
wearables, while user is having a phone conversation.

True Pos. True Neg. False Pos. False Neg. Vehicles Detected
AvA 0.866 0.974 0.026 0.134 15/15
CSafe 0.834 0.973 0.027 0.166 14/15
PAWS 0.729 0.982 0.018 0.271 11/15

Table 7: Localization error comparison between AvA and
other state-of-art acoustic-based urban safety wearables,
while user is having a phone conversation.

Avg. Error (degree) Std. Dev. Error (degree)
AvA 12.97� 11.88�

CSafe 16.62� 10.71�

PAWS 27.25� 16.39�

that the AvA-enabled system has the highest true positive rate,
followed by CSafe and PAWS. This means that the AvA-enabled
system was able to detect the most number of windows where
a vehicle is present. PAWS has the worst performance because it
does not employ any method to deal with loud non-vehicle sounds
(the phone conversation). Additionally, AvA is able to outperform
CSafe because CSafe only has a module to �lter out speech. AvA
not only reduces the e�ect of speech, but also directly uses the
vehicle detector to enhance signals and improve vehicle detection.

Table 7 shows the localization error of AvA, PAWS, and CSafe.We
see that PAWS performs much worse than AvA and CSafe because
its localization module is a�ected by the phone conversation of
the user. We see that AvA and CSafe have similar performance
because of their ability to �lter out the loud phone conversation
that adversely a�ects vehicle detection and localization. This shows
that AvA can improve other aspects of acoustic sensing, beyond
detection, by selectively enhancing or �ltering speci�c sounds.

Table 8 shows the latency breakdown and power consumption
comparisons. We note that, AvA utilizes the same hardware pipeline
as CSafe. As such, the hardware processing and power consumption
of the embedded platform are equivalent. Although the algorithms
employed by AvA requires slightly more time to execute than CSafe,
we note that the di�erence is less than 10ms, and both systems
still operate at real-time on the order of the average person’s re-
action time (242ms vs 236ms). PAWS requires much less power
because its hardware platform utilizes an application-speci�c in-
tegrated circuit (ASIC) that signi�cantly reduces power consump-
tion, whereas CSafe and AvA utilize a higher power consumption

Table 8: Power consumption and latency comparison be-
tween an AvA-enhanced wearable and other state-of-art ur-
ban safety wearables. The total latency is the time it takes
for each system to process one window of audio. The power
consumption shows the current draw from each embedded
platform powered by a 3.3V battery.

AvA CSafe PAWS
Hardware Proc. and Sampling 228ms 228ms 224ms
Algorithmic Processing 14ms 8ms 91ms
Total Latency (hardware + algorithms) 242ms 236ms 315ms
Power Consumption 69.0mA 69.0mA 18.9mA

microcontroller. In future work, we also aim to reduce power con-
sumption by integrating an ASIC. However even in its current state,
the AvA-enhanced wearable can still operate continuously for 14.5
hours o� of two standard AAA batteries with 1000mAh capacity,
which is more than enough for daily use.

7 CASE STUDY: AUDIO PRIVACY
7.1 Background
The growth of mobile devices and wearables has enabled numerous
applications that improve our daily lives. However, the readily
available sensors on our smartphones and personal devices have
also been causing a growing privacy concern. In 2019, the VRTNWS
news outlet analyzed more than 1, 000 recordings collected through
Google Assistant applications and found that more than 10% of
recordings were not prefaced with the "OK Google" command and
should never have been recorded [1]. In 2017, The New York Times
found that more than 1, 000 smartphone applications used software
that is known to collect TV viewership data by listening to TV
sounds [52]. In this section, we show howAvA can improve acoustic
privacy in mobile platforms.

First, we integrate AvA into a mobile sleep monitoring applica-
tion. Mobile sleep monitoring applications use the microphone on
the smartphone to detect, record, and analyze breathing sounds as
the user sleeps. These applications use a threshold-based detector,
which will record anything that is loud enough for a microphone
to sense, including privacy sensitive speech. In this application, we
integrate AvA into our own sleep monitoring application, where we
focus on enhancing breathing sounds to improve sleep detection
while �ltering out speech to enhance user privacy.

Second, we demonstrate how voice command applications can
incorporate AvA as a preprocessing step to �lter out speech that
may be recorded without the proper command word. In this case,
we want to "enhance" the command phrase (we use the "OK Google"
phrase for this demonstration), while �ltering out other speech.

For both systems, we create amobile systemwith the architecture
shown in Figure 4. Unlike in the urban safety application, we only
use the single microphone channel available in most smartphones.
We sample onewindow of audio (herewe use 250mswindows), pass
it through to our AvA �ltering architecture that �lters out speech
(both scenarios) and enhances either the "OK Google" command
or breathing sounds. The output in both scenarios is a saved audio
stream, which we then analyze for speech intelligibility using the
Google Speech-to-Text API [53] as a measure of privacy.

126

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

Figure 4: AvA-enhanced platform for �ltering out speech
and preserving privacy in mobile applications. Unlike in ur-
ban safety, audio privacy applications save raw breathing
sounds. In the AvA-enhanced systems, we save the �ltered
signals rather than the raw audio to preserve privacy.

In the sleep monitoring application, we compare the bene�ts
of AvA against PAMS [54]. PAMS uses models of speech to �lter
out speakers, much like AvA. However, PAMS can only run on
mobile platforms, using a single microphone channel, while AvA is
adaptable to systems with more microphones. Just as in Section 5,
we tune each system such that the true negative rate for breathing
detection is similar for all systems we evaluate for better comparisons.

7.2 Integrating AvA into Mobile Platforms for
Sleep Monitoring

We compare the AvA-enhanced sleepmonitoring system against the
PAMS-enhanced system and the Sleep as Android sleep monitoring
application [55]. We had 7 di�erent volunteers speak one of 11
passages while we recorded their voice. We used these recordings to
train our GMM speech model for both PAMS and AvA. We also use
AvA to enhance breathing and sleep sounds. To do this, we trained
a Radial Basis Function support vector machine (RBF SVM) using 5
minutes of sleeping and breathing sounds that we extracted from
Google Audioset [49]. AvA uses this detector to enhance breathing
sounds and perform breathing detection, while PAMS only uses
this detector to detect breathing.

To generate our testing set, we had the same volunteers speak 10
di�erent passages while playing one of 10 breathing and snoring
clips through a speaker. All three systems then record, process,
and save the clips. We run each saved clip through the Google
speech-to-text API to measure speech intelligibility. Table 9 shows
speech intelligibility metrics of the recorded sleep sounds, including
the percentage of words correctly identi�ed, incorrectly identi�ed,
and not detected. We see that Sleep as Android has the highest
percentage of correctly identi�ed words, which could spell a serious
breach of privacy. We see that both PAMS and the AvA-enhanced
systems have a much lower correctly identi�ed rate and much
higher incorrectly identi�ed and undetected rates, meaning they
were able to obscure and �lter out much more speech and preserve
privacy. However, even after improving privacy, the PAMS and AvA-
enhanced applications still need to perform their original goals;
that is, to detect and analyze breathing and other sleep sounds.

Table 10 shows the performancemetrics for sleep event detection.
We see that Sleep as Android has the highest true positive rate
because it uses a threshold-based detector. This means that if the
sound is loud enough, it will detect and record audio. As such, Sleep
as Android also has the highest false positive rate (i.e. if a person
speaks when there is no breathing, Sleep as Android will still detect
and record). On the other hand, we see that the false positive rate
of both PAMS and AvA-enhanced systems is much lower at only

Table 9: Proportion of words correctly identi�ed, incor-
rectly identi�ed, and undetected by Google Speech-to-Text.
A lower rate of correctly identi�ed words correlates to a
more privacy-aware system.

Correct Incorrect Not Detected
AvA 16.7% 8.3% 75.0%
PAMS 18.4% 10.2% 71.4%
Sleep as Android 92.1% 1.4% 6.5%

Table 10: Performancemetrics for sleep breathing detection.

True Pos. False Pos. True Neg. False Neg.
AvA 0.946 0.109 0.891 0.054
PAMS 0.891 0.112 0.888 0.109
Sleep as Android 0.986 0.944 0.056 0.014

a slight cost to true positive detection. Additionally, we see that
the AvA-enhanced system has a signi�cantly higher true detection
rate than the PAMS-enhanced system. This is because AvA directly
uses the sleep detector to improve the detection of sleep sounds,
whereas PAMS is unable to do so.

To process one window of audio, the AvA-enhanced system takes
36ms, while PAMS takes 31ms. Although PAMS is slightly faster,
AvA comfortably runs in real-time, taking far less time than
the sampling window to execute.

7.3 Improving Command Phrase Privacy in
Smart Audio Applications

In this section, we analyze how AvA can be applied to mobile
and smart home applications that use voice commands. Generally,
these applications listen until the command phrase is heard (i.e. "OK
Google"), and then start recording and analyzing the audio to extract
the voice command. However as mentioned at the beginning of this
section, there have been many instances where these applications
have recorded speech without the command phrase, which poses
a privacy concern. In this scenario, we con�gure AvA to "�lter"
general speech, while "enhancing" just the "OK Google" command.
If at any point the "OK Google" command is detected, then we turn
o� the AvA �ltering pipeline and record the raw un�ltered audio.
Otherwise, the �ltered audio is saved.

We used the same models for speech generated for the sleep
privacy scenario in Section 7.2. We also generated a mixture of
Gaussians model for the "OK Google" command by having each
volunteer record the phrase 10 times each. Then, we had each
volunteer speak 20 commands and recorded them with our mobile
platform. Half of the phrases contained the "OK Google" command
at the beginning, and the other half did not.

Table 11 shows the speech intelligibility metrics of the AvA-
enhanced system when the command phrase is spoken compared
to when the command phrase is not present. We see that the per-
centage of correctly identi�ed words is much higher when the
command word is spoken because the system turns o� the �ltering
process when the command phrase is detected. On the other hand,
when the command phrase is not detected, the system continuously
�lters speech, which drastically reduces speech intelligibility.

127

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

Table 11: Speech intelligibility of the AvA enhanced com-
mand phrase mobile application in scenarios where a com-
mand phrase was present and not present.

Correct Incorrect Not Detected
not present 13.6% 16.5% 69.9%
present 94.3% 0.8% 4.9%

8 FUTUREWORK
AvA allows developers to leverage their own sound models to �lter
or enhance sounds speci�c to their application. To fully leverage
the bene�ts of AvA, developers currently need to supply their own
models. We will �rst work to improve usability by removing this
requirement. To accomplish this, we envision and will work to
create an organized library of sound models that developers can
directly select and download into their applicationswithout needing
to create their own.

Second, we plan to explore more ways that AvA could be bet-
ter adapted to speci�c scenarios. AvA currently initializes �lters
based on the direction of sounds detected, just like in traditional
beamforming. However, by incorporating models of sounds an ap-
plication wants to �lter out or enhance, we should already have
prior knowledge to use to create even better initial �lters, which
we hypothesize will improve convergence. We also, plan to look
at the con�guration of microphones in the array (e.g., how many
microphones, how far apart, geometry of the array, etc.) a�ects
performance in certain applications.

Third, we plan to explore architectures for audio �ltering that
intelligently integrates the physics of audio signals (just like in
this work) with deep neural networks. In this work, we primar-
ily integrated signal-based beamforming with traditional machine
learning models. Though incorporating deep learning models is
possible with AvA, deep neural networks typically have numerous
layers and nodes that require a multitude of gradient computa-
tions, making, making it di�cult to incorporate into real-time and
low-resource systems. In this thrust, we �rst plan to explore meth-
ods that allow us to reduce the complexity of neural networks to
comfortably run in real-time. Second, we plan to explore ways we
can embed the physics of audio signals directly into deep neural
networks to reduce computation, rather than embedding data into
beamforming, which requires gradient computations.

9 CONCLUSION
We present AvA, an acoustic �ltering architecture that is easily con-
�gurable and adaptable to a wide range of scenarios and sound mod-
els to improve detection or �lter out sounds. AvA accomplishes this
by incorporating content-informed adaptive beamforming (CIBF), a
novel adaptive beamforming algorithm that �lters out or enhances
signals based on sound detectors that developers and users can
supply. CIBF utilizes a novel three step process to adapt coe�-
cients based on the detection model, the feature representation,
and signal properties. We demonstrate the generalizability of AvA
through four scenarios, using three di�erent types of sound de-
tectors and two signal features. We demonstrate that developers
and applications that utilize AvA can improve or degrade detection

performance by up to 11.1% and 78.9% respectively. Additionally,
we evaluated AvA in two case studies, where we integrated AvA
into real mobile and embedded applications with di�erent resource
constraints and goals. We show that these AvA-enhanced systems
can improve detection (urban safety) and user privacy (audio home
privacy) over existing state-of-art systems. Through these case stud-
ies and evaluation, we show that AvA is a truly general platform
for acoustic �ltering and enhancement.

ACKNOWLEDGMENTS
This research was partially supported by the National Science Foun-
dation under Grant Numbers CNS-1704899, CNS-1815274, CNS-
11943396, and CNS-1837022. The views and conclusions contained
here are those of the authors and should not be interpreted as
necessarily representing the o�cial policies or endorsements, ei-
ther expressed or implied, of Columbia University, NSF, or the U.S.
Government or any of its agencies.

10 APPENDIX
10.1 Model Adaptation Gradients
This section details the computations required for model adaptation,
m% (� (ZC))
m� (ZC) , introduced in Section 3.0.1, for three di�erent detectors:

support vector machine with radial basis function kernel (SVM
RBF), random forest (RF), and a mixture of Gaussians (GMM).

10.1.1 SVM with Radial Basis Function. For a kernelized SVM
model, the decision function, % (G), is shown in Equation 8.

% (G) =
=’
8=1

d8k(G8 ,G)

k(G8 ,G) = 4G? (�W | |G8 � G| |2)
(8)

Here, G8 refers to one of the training samples used to train the
SVM, = refers to the number of samples used to train the model,
and G is our input window feature that we wish to classify (i.e.
the features computed on our input signal, ⌧ = � (ZC)). : (·, ·) is
the RBF kernel, W is a user tunable constant for the radial basis
function, and the d8 ’s are parameters that are learned during the
training process. To perform model adaptation with an SVM RBF,
we take the gradient of the decision function, % (G), with respect
to the input, G, shown in Equation 9.

m% (G)
mG

=
=’
8=1

2d8k(G8 ,G)W (G8 � G)) (9)

10.1.2 Gaussian Mixture Model. For a Gaussian mixture sound
model, we use the probability density function as the decision
function, shown in Equation 10.

% (G) =
=’
8=1

08# (G|`8 , ⌃8) (10)

Here,= refers to the number of clusters in theGMM, and# (·|`8 , ⌃8)
refers to the Gaussian probability distribution with mean `8 and
covariance ⌃8 . 08 > 0 are weighting parameters learned during the
training phase. The model adaptation step follows in Equation 11.

128

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

m% (G)
mG

= �
=’
8=1

08# (G|`8 , ⌃8) [⌃�18 (G � `8)]) (11)

10.1.3 Random Forest. A random forest detector uses a collection
of) decision trees. Each decision tree contains a collection of nodes.
A decision tree begins at the root node, which has two children
nodes. The tree makes a decision based on the input window that
is being classi�ed. For instance, if the :-th dimension of our input
is greater than some threshold U , then it will travel down one path.
Otherwise, it will go down the other path. Eventually, it will arrive
at a node that has no children (leaf node). Each leaf has a class
associated to it (i.e. for a binary classi�er, each leaf node is labeled
a "0" if a sound 2 is not detected, or a "1" if the sound is detected).
Every input will eventually be classi�ed into one of these leaf nodes.
A random forest will have each of its) trees make a decision on
whether the sound is detected and uses a majority vote to determine
the �nal result (i.e. if more than half the trees detected the presence
of the sound, then the random forest will also detect the sound).

Because random forests performs classi�cation using explicit
rules rather than an equation, it is di�cult to compute gradients and
perform model adaptation. To create an equation-based decision
function for a random forest, we view the random forest model as
a clustering algorithm rather than as a decision tree.

For the 8-th decision tree in a random forest of) trees, there
is a collection of =18 nodes labeled "1" (detected) and a collection
of =08 nodes labeled "0" (not detected). Each node, 9 , with label : ,
has a collection of training samples, with mean 2:8, 9 , that fall within
the boundaries of the node. We can create a decision function by
�nding the distance of an input window, ⌧ , between the means,
2:8, 9 , of each node 9 in each tree 8 , as shown in Equation 12.

% (G) =
)’
8=1

266664
=0
8’

9=1
| |⌧ � 208, 9 | |22 �

=1
8’

9=1
| |⌧ � 218, 9 | |22

377775
(12)

Essentially by minimizing the distance of input ⌧ to all nodes
that belong nodes labeled "1" while maximizing the distance to
nodes labeled "0", we may be able to improve detection. The model
adaptation step, m% (G)mG , follows in Equation 13.

m% (G)
mG

=
266664
)’
8=1

266664
2

=0
8’

9=1
(⌧ � 208, 9) � 2

=1
8’

9=1
(⌧ � 218, 9)

377775
377775

)

(13)

10.2 Feature Adaptation Gradients
This section details the computations required for feature adap-
tation, m� (ZC)

mZC
, introduced in Section 3.0.2, for two di�erent fea-

ture schemes: non-uniform binned periodogram (NBIP) and mel-
frequency cepstral coe�cients (MFCC). In discussing feature adap-
tation for NBIP, we also discuss computation for general binning
schemes (i.e. summing all energies within a frequency range).

10.2.1 Non-Uniform Binned Periodogram. The NBIP feature evenly
bins all frequencies below frequency 5< into 0 bins and all frequen-
cies above 5< into 1 bins. If the frequency domain representation of
our signal has ⌫ bins and bin number< refers to frequency 5< , then

each NBIP feature at index 8 consists of summing up �; =
<
0 bins if

8  < (lower half) or �⌘ = ⌫�<
1 if 8 > < (upper half). The NBIP bin-

ning scheme, which produces a feature vector v = [E1, E2, ..., E0+1])
from the power spectrum of the input signal ZC = [I1, I2, ..., I⌫])
(we refer to this ZC as the same ZC introduced in Equation 2), is
shown in Equation 14 [22].

E: =

8>>>>>>><
>>>>>>>:

:�;’
8=(:�1)�;+1

6(I8), if 1  :  <

<+(:�0)�⌘’
8=<+(:�0�1)�⌘+1

6(I8), otherwise

6(·) = 20 log10 (·)

(14)

It follows that m� (ZC)
mZC

is a Jacobian matrix of dimension 2 ⇥ ⌫,
where 2 = 0 + 1 (Equation 15).

✓
m� (ZC)
mZC

◆
:, 9

=

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

if 1  :  <, and
(: � 1)�; + 1  9  :�;

6
0 (I 9), or

if : > <, and
(: � 0 � 1)�⌘ + 1  9 �<,

and (: � 0)�⌘ � 9 �<

0, otherwise

6
0 (G) = 20 log10 (4)

1

G

(15)

If the 9-th frequency bin is part of the sum used to generate the :-
th feature bin, then the (:, 9) entry equals the gradient of a function
6(·) on the frequency bin. Since NBIP bins the periodogram, 6(·)
converts the magnitude spectrum into the dB scale.

10.2.2 Mel-Frequency Cepstral Coe�icients. MFCCs are a common
acoustic feature, that transforms the input power spectrum, ZC , as
shown in Equation 16.

� (ZC) =
1

#
· ⇡ · log(" · ZC) (16)

refers to the number of samples in the window (i.e. the FFT
size). ⇡ is the discrete cosine transform matrix of dimensions 2 ⇥
2 , where 2 is the number of �lter banks employed in the MFCC
(typically 12 or 13). " is the 2 ⇥ ⌫ matrix of �lter banks applied
onto the input ZC . The log(·) operator applies the natural logarithm
to all entries of the input matrix. Both ⇡ and" are static matrices
that can be precomputed. The feature adaptation step for the MFCC
feature is shown in Equation 17.

m� (ZC)
mZC

=
1

#
· ⇡ · 3806 (" · ZC)�1" (17)

Here, the 3806(·) operator takes the input vector and creates
a diagonal matrix by placing all values along the diagonal. Since
" · ZC applies the �lter banks" onto our input signal ZC ," · ZC is
a 2 dimensional vector, so 3806 (" · ZC) is a 2 ⇥ 2 diagonal matrix.

129

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

AvA: An Adaptive Audio Filtering Architecture for Enhancing Mobile, Embedded, and Cyber-Physical Systems IPSN ’22, May 04–06, 2022, Milan, Italy

REFERENCES
[1] Lindsey O’Donnell. Google assistant audio privacy controls updated after outcry.

Threatpost, September 2019.
[2] Stephen Xia, Jingping Nie, and Xiaofan Jiang. Csafe: An intelligent audio wearable

platform for improving construction worker safety in urban environments. In
Proceedings of the 20th International Conference on Information Processing in Sensor
Networks (Co-Located with CPS-IoT Week 2021), IPSN ’21, page 207–221, New
York, NY, USA, 2021. Association for Computing Machinery.

[3] Shibo Zhang, Yaxuan Li, Shen Zhang, Farzad Shahabi, Stephen Xia, Yu Deng, and
Nabil Alshurafa. Deep learning in human activity recognition with wearable
sensors: A review on advances. Sensors, 22(4), 2022.

[4] Jingping Nie, Yanchen Liu, Yigong Hu, Yuanyuting Wang, Stephen Xia, Matthias
Preindl, and Xiaofan Jiang. Spiders+: A light-weight, wireless, and low-cost
glasses-based wearable platform for emotion sensing and bio-signal acquisition.
Pervasive and Mobile Computing, 75:101424, 2021.

[5] Jingping Nie, Yigong Hu, Yuanyuting Wang, Stephen Xia, and Xiaofan Jiang.
Spiders: Low-cost wireless glasses for continuous in-situ bio-signal acquisition
and emotion recognition. In 2020 IEEE/ACM Fifth International Conference on
Internet-of-Things Design and Implementation (IoTDI), pages 27–39, 2020.

[6] Yigong Hu, Jingping Nie, Yuanyuting Wang, Stephen Xia, and Xiaofan Jiang.
Demo abstract: Wireless glasses for non-contact facial expression monitoring. In
2020 19th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 367–368, 2020.

[7] Dezhi Hong, Ben Zhang, Qiang Li, Shahriar Nirjon, Robert Dickerson, Guobin
Shen, Xiaofan Jiang, and John A. Stankovic. Demo abstract: Septimu — continu-
ous in-situ human wellness monitoring and feedback using sensors embedded
in earphones. In 2012 ACM/IEEE 11th International Conference on Information
Processing in Sensor Networks (IPSN), pages 159–160, 2012.

[8] Stephen Xia, Rishikanth Chandrasekaran, Yanchen Liu, Chenye Yang, Ta-
jana Simunic Rosing, and Xiaofan Jiang. A drone-based system for intelligent
and autonomous homes. In Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’21, page 349–350, New York, NY, USA, 2021.
Association for Computing Machinery.

[9] Stephen Xia and Xiaofan Jiang. Improving acoustic detection and classi�cation
in mobile and embedded platforms: Poster abstract. In Proceedings of the 20th
International Conference on Information Processing in Sensor Networks (Co-Located
with CPS-IoT Week 2021), IPSN ’21, page 402–403, New York, NY, USA, 2021.
Association for Computing Machinery.

[10] Peter Wei, Stephen Xia, Runfeng Chen, Jingyi Qian, Chong Li, and Xiaofan Jiang.
A deep-reinforcement-learning-based recommender system for occupant-driven
energy optimization in commercial buildings. IEEE Internet of Things Journal,
7(7):6402–6413, 2020.

[11] Peter Wei, Xiaoqi Chen, Jordan Vega, Stephen Xia, Rishikanth Chandrasekaran,
and Xiaofan Jiang. A scalable system for apportionment and tracking of energy
footprints in commercial buildings. ACM Trans. Sen. Netw., 14(3–4), nov 2018.

[12] Peter Wei, Stephen Xia, and Xiaofan Jiang. Energy saving recommendations
and user location modeling in commercial buildings. In Proceedings of the 26th
Conference on User Modeling, Adaptation and Personalization, UMAP ’18, page
3–11, New York, NY, USA, 2018. Association for Computing Machinery.

[13] Peter Wei, Xiaoqi Chen, Jordan Vega, Stephen Xia, Rishikanth Chandrasekaran,
and Xiaofan Jiang. Eprints: A real-time and scalable system for fair apportionment
and tracking of personal energy footprints in commercial buildings. In Proceedings
of the 4th ACM International Conference on Systems for Energy-E�cient Built
Environments, BuildSys ’17, New York, NY, USA, 2017. Association for Computing
Machinery.

[14] Shibo Zhang, Ebrahim Nemati, Minh Dinh, Nathan Folkman, Tousif Ahmed,
Mahbubur Rahman, Jilong Kuang, Nabil Alshurafa, and Alex Gao. Coughtrigger:
Earbuds imu based cough detection activator using an energy-e�cient sensitivity-
prioritized time series classi�er, 2021.

[15] Ebrahim Nemati, Shibo Zhang, Tousif Ahmed, Md. Mahbubur Rahman, Jilong
Kuang, and Alex Gao. Coughbuddy: Multi-modal cough event detection using
earbuds platform. In 2021 IEEE 17th International Conference on Wearable and
Implantable Body Sensor Networks (BSN), pages 1–4, 2021.

[16] Ji Jia, Jinyang Yu, Raghavendra Sirigeri Hanumesh, Stephen Xia, Peter Wei,
Hyunmi Choi, and Xiaofan Jiang. Intelligent and privacy-preserving medication
adherence system. Smart Health, 9-10:250–264, 2018. CHASE 2018 Special Issue.

[17] Stephen Xia, Peter Wei, Jordan Misael Vega, and Xiaofan Jiang. Spindles+: An
adaptive and personalized system for leg shake detection. Smart Health, 9-10:204–
218, 2018. CHASE 2018 Special Issue.

[18] Stephen Xia, Yan Lu, Peter Wei, and Xiaofan Jiang. Spindles: A smartphone
platform for intelligent detection and noti�cation of leg shaking. In Proceedings
of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2017 ACM International Symposium on Wearable
Computers, UbiComp ’17, page 607–612, New York, NY, USA, 2017. Association
for Computing Machinery.

[19] Ji Jia, Chengtian Xu, Shijia Pan, Stephen Xia, Peter Wei, Hae Young Noh, Pei
Zhang, and Xiaofan Jiang. Conductive thread-based textile sensor for continuous

perspiration level monitoring. Sensors, 18(11), 2018.
[20] Ji Jia, Chengtian Xu, Shijia Pan, Stephen Xia, Peter Wei, Hae Young Noh, Pei

Zhang, and Xiaofan Jiang. Moisture based perspiration level estimation. In
Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Ubi-
Comp ’18, page 1301–1308, New York, NY, USA, 2018. Association for Computing
Machinery.

[21] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti. Scream and
gunshot detection and localization for audio-surveillance systems. In 2007 IEEE
Conference on Advanced Video and Signal Based Surveillance, pages 21–26, 2007.

[22] Stephen Xia, Daniel de Godoy Peixoto, Bashima Islam, Md Tamzeed Islam,
Shahriar Nirjon, Peter R. Kinget, and Xiaofan Jiang. Improving pedestrian safety
in cities using intelligent wearable systems. IEEE Internet of Things Journal,
6(5):7497–7514, 2019.

[23] StephenXia, Daniel de Godoy, Bashima Islam,MdTamzeed Islam, Shahriar Nirjon,
Peter R. Kinget, and Xiaofan Jiang. A smartphone-based system for improving
pedestrian safety. In 2018 IEEE Vehicular Networking Conference (VNC), pages
1–2, 2018.

[24] Daniel de Godoy, Bashima Islam, Stephen Xia, Md Tamzeed Islam, Rishikanth
Chandrasekaran, Yen-Chun Chen, Shahriar Nirjon, Peter R. Kinget, and Xiaofan
Jiang. Paws: A wearable acoustic system for pedestrian safety. In 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and Implementation
(IoTDI), pages 237–248, 2018.

[25] Daniel de Godoy, Stephen Xia, Wendy P. Fernandez, Xiaofan Jiang, and Peter
R. Kinget. Demo abstract: An ultra-low-power custom integrated circuit based
sound-source localization system. In 2018 IEEE/ACM Third International Con-
ference on Internet-of-Things Design and Implementation (IoTDI), pages 314–315,
2018.

[26] Rishikanth Chandrasekaran, Daniel de Godoy, Stephen Xia, Md Tamzeed Islam,
Bashima Islam, Shahriar Nirjon, Peter Kinget, and Xiaofan Jiang. Seus: Awearable
multi-channel acoustic headset platform to improve pedestrian safety: Demo
abstract. In Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, pages 330–331, 2016.

[27] Shumin Cao, Panlong Yang, Xiangyang Li, Mingshi Chen, and Peide Zhu. ipand:
Accurate gesture input with smart acoustic sensing on hand. In 2018 15th An-
nual IEEE International Conference on Sensing, Communication, and Networking
(SECON), pages 1–3, 2018.

[28] Ivan Miguel Pires, Gonçalo Marques, Nuno M. Garcia, Nuno Pombo, Fran-
cisco Flórez-Revuelta, Susanna Spinsante, Maria Canavarro Teixeira, and Eftim
Zdravevski. Recognition of activities of daily living and environments using
acoustic sensors embedded on mobile devices. Electronics, 8(12), 2019.

[29] J.-M. Valin, F. Michaud, J. Rouat, and D. Letourneau. Robust sound source
localization using a microphone array on a mobile robot. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), volume 2, pages 1228–1233 vol.2, 2003.

[30] Blaise Kelly, Danilo Hollosi, Philippe Cousin, Sergio Leal, Branislav Iglár, and
Andrea Cavallaro. Application of acoustic sensing technology for improving
building energy e�ciency. Procedia Computer Science, 32:661–664, 2014. The
5th International Conference on Ambient Systems, Networks and Technologies
(ANT-2014), the 4th International Conference on Sustainable Energy Information
Technology (SEIT-2014).

[31] Zhaokun Qin and Yanmin Zhu. Noisesense: A crowd sensing system for urban
noise mapping service. In 2016 IEEE 22nd International Conference on Parallel and
Distributed Systems (ICPADS), pages 80–87, 2016.

[32] Nicholas D. Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Claudio
Forlivesi, and Fahim Kawsar. Squeezing deep learning into mobile and embedded
devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[33] Shahriar Nirjon, Robert F. Dickerson, Philip Asare, Qiang Li, Dezhi Hong, John A.
Stankovic, Pan Hu, Guobin Shen, and Xiaofan Jiang. Auditeur: A mobile-cloud
service platform for acoustic event detection on smartphones. In Proceeding of
the 11th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, page 403–416, New York, NY, USA, 2013. Association for
Computing Machinery.

[34] Anastasios Alexandridis, Anthony Gri�n, and Athanasios Mouchtaris. Capturing
and reproducing spatial audio based on a circular microphone array. JECE, 2013,
January 2013.

[35] O. L. Frost. An algorithm for linearly constrained adaptive array processing.
Proceedings of the IEEE, 60(8):926–935, 1972.

[36] L. Gri�ths and C. Jim. An alternative approach to linearly constrained adaptive
beamforming. IEEE Transactions on Antennas and Propagation, 30(1):27–34, 1982.

[37] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and
applications. Neural Networks, 13(4):411 – 430, 2000.

[38] Scott Rickard. The DUET Blind Source Separation Algorithm, pages 217–241.
Springer Netherlands, Dordrecht, 2007.

[39] Ying Song, Yu Gong, and S. M. Kuo. A robust hybrid feedback active noise
cancellation headset. IEEE Transactions on Speech and Audio Processing, 13(4):607–
617, 2005.

130

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

IPSN ’22, May 04–06, 2022, Milan, Italy Xia et al.

[40] A. V. Oppenheim, E. Weinstein, K. C. Zangi, M. Feder, and D. Gauger. Single-
sensor active noise cancellation. IEEE Transactions on Speech and Audio Processing,
2(2):285–290, 1994.

[41] A. Schutz and D. Slock. Single-microphone blind audio source separation via
gaussian short+long term ar models. In 2010 4th International Symposium on
Communications, Control and Signal Processing (ISCCSP), pages 1–6, 2010.

[42] Laurent Benaroya and Frédéric Bimbot. F.: Wiener based source separation with
hmm/gmm using a single sensor. In Proc. ICA (2003) 957–961, 2003.

[43] E. M. Grais, G. Roma, A. J. R. Simpson, and M. D. Plumbley. Two-stage single-
channel audio source separation using deep neural networks. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 25(9):1773–1783, 2017.

[44] Maximo Cobos, Amparo Marti, and Jose J. Lopez. A modi�ed srp-phat functional
for robust real-time sound source localization with scalable spatial sampling.
IEEE Signal Processing Letters, 18(1):71–74, 2011.

[45] P. Gupta and S. P. Kar. Music and improved music algorithm to estimate direc-
tion of arrival. In 2015 International Conference on Communications and Signal
Processing (ICCSP), pages 0757–0761, 2015.

[46] Ruairí de Fréin. Remedying sound source separation via azimuth discrimination
and re-synthesis. In 2020 31st Irish Signals and Systems Conference (ISSC), pages
1–6, 2020.

[47] Efthymios Tzinis, Shrikant Venkataramani, Zhepei Wang, Cem Subakan, and
Paris Smaragdis. Two-step sound source separation: Training on learned latent
targets. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 31–35, 2020.
[48] Michael D. Escobar. Estimating normal means with a dirichlet process prior.

Journal of the American Statistical Association, 89(425):268–277, 1994.
[49] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade

Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set:
An ontology and human-labeled dataset for audio events. In Proc. IEEE ICASSP
2017, New Orleans, LA, 2017.

[50] Centers for Disease Control, National Center for Injury Prevention Preven-
tion, and Control. Pedestrian safety. https://www.cdc.gov/transportationsafety/
pedestrian_safety/index.html, March 2020. [Online].

[51] The National Institute for Occupational Safety and Health. Motor vehicle crash
facts. https://www.cdc.gov/niosh/motorvehicle/resources/crashdata/facts.html,
September 2019. [Online].

[52] Sapna Maheshwari. That game on your phone may be tracking what you’re
watching on tv. The New York Times, December 2017.

[53] Google Cloud. Speech-to-text. https://cloud.google.com/speech-to-text.
[54] Stephen Xia and Xiaofan Jiang. Pams: Improving privacy in audio-based mobile

systems. In Proceedings of the 2nd International Workshop on Challenges in
Arti�cial Intelligence and Machine Learning for Internet of Things, AIChallengeIoT
’20, page 41–47, New York, NY, USA, 2020. Association for Computing Machinery.

[55] Urbandroid. Sleep as android (version 20200806), 2010. [Mobile app]. Retrieved
from https://play.google.com/.

131

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 23,2022 at 21:54:17 UTC from IEEE Xplore. Restrictions apply.

