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ABSTRACT
Breath monitoring is important for monitoring illnesses, such as
sleep apnea, for people of all ages. One cause of concern for parents
is sudden infant death syndrome (SIDS), where an infant suddenly
passes away during sleep, usually due to complications in breathing.
There are a variety of works and products on the market for moni-
toring breathing, especially for children and infants. Many of these
are wearables that require you to attach an accessory onto the child
or person, which can be uncomfortable. Other solutions utilize a
camera, which can be privacy-intrusive and function poorly during
the night, when lighting is poor. In this work, we introduce BuMA,
an audio-based, non-intrusive, and contactless, breathing monitor-
ing system. BuMA utilizes a microphone array, beamforming, and
audio �ltering to enhance the sounds of breathing by �ltering out
several common noises in or near home environments, such as
construction, speech, and music, that could make detection di�cult.
We show that BuMA improves breathing detection accuracy by up
to 12%, within 30cm from a person, over existing audio �ltering
algorithms or platforms that do not leverage �ltering.

CCS CONCEPTS
• Computer systems organization ! Sensor networks; Em-
bedded systems.
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1 INTRODUCTION
Millions of people su�er from sleep apnea, where the person stops
breathing for long periods of time during sleep. This is a serious
disorder that has detrimental e�ects on a person’s overall quality of
life. Numerous studies link severe sleep apnea to an increased risk of
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death. Over the course of �ve years, researchers [1] discovered that
people with sleep apnea had a considerably elevated risk of sudden
cardiac death. The danger was most signi�cant for those aged 60
and older with moderate to severe sleep apnea (20 episodes an hour).
When their oxygen saturation levels fell below 78%, the risk rose
by an additional 80%. Additionally, those with severe sleep apnea
have a two to fourfold increased risk of irregular cardiac rhythms
compared to individuals without sleep apnea. Other researchers[2]
found that some people with sleep apnea are more than 2.5 times
more likely to pass away due to a heart attack between 12 a.m. and
6 a.m. than those without sleep apnea.

Sleep apnea also commonly occurs in infants. Small preterm
infants are most likely to have infant sleep apnea. It sometimes
occurs in larger preterm or full-term infants. During the �rst month
after birth, sleep apnea occurs in 25% of infants who weigh less
than 5.5 pounds. The risk increases to 84% for infants who weigh
less than 2.2 pounds. One particular cause of concern for parents is
sudden infant death syndrome (SIDS), where an infant passes away
during sleep due to defects in the brain that controls breathing and
waking up from sleep [3].

A system that can detect long episodes where no breathing oc-
curs could potentially help. For example, such a system could alert
parents of children who stop breathing while sleeping for long peri-
ods of time. There are several di�erent technologies that have been
developed for monitoring breathing and sleeping. The �rst tech-
nology is touch sensing, which detects body movement through
vibration sensors and is used by many existing products to detect
long periods where no breathing occurs. To improve detection accu-
racy, many of these products require the user to directly attach them
to the body, which can cause uncomfort and a�ect sleep quality.
Camera-based methods are another set of technologies, which ana-
lyzes video streams to infer movement, respiration rate, and other
vital signs. Camera-based methods are generally very accurate, but
are not as privacy-sensitive as a lower �delity sensing modality like
vibration. Additionally, camera-based methods generally require
good lighting, which is usually not satis�ed at night when most
people are sleeping.

In this work, we present BuMA, an audio-based, non-contact,
and real-time breathing monitoring system using microphone ar-
ray, built on top of the Raspberry Pi ecosystem. We do not claim
nor show that our system is an accurate system for detecting or
curing sleep apnea; rather, BuMA is a system for detecting periods
where breathing is not occurring. BuMA can be placed in a variety
of di�erent places to monitor breathing while sleeping, including
on a nearby table, clipped onto a baby crib, or hanging o� of a
dream catcher. We take an audio-based approach because audio
does not require good lighting, is more privacy-sensitive, and does
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not require a device to be in contact with the user. However, normal
breathing sounds tend to be soft and low-energy, and there can be
many noises in the home or nearby environment that could over-
power that of breathing, such as passing vehicles, loud construction
sounds, or speech.

BuMA is an improved version of AvA, an audio �ltering platform
to both enhance breathing sounds while �ltering out noises from
the environment that may overpower breathing sounds. AvA is an
audio �ltering platform that allows developers to supplymodels and
detectors of speci�c sounds they want to enhance (e.g., breathing)
or �lter out. However, there could be a wide range of di�erent
noises in the environment that could overpower breathing sounds;
AvA requires users to manually specify di�erent sounds to �lter out.
To address this challenge BuMA incorporates a multi-class noise
detector to dynamically select di�erent noises currently present in
the environment for AvA to �lter out. We evaluate BuMA in a case
study and show that BuMA outperforms other state-of-art �ltering
schemes for improving breathing detection by up to 12%.

We make the following contributions:
• We introduce BuMA, an audio-based system that detects
and monitors breathing. BuMA consists of a edge processing
unit that utilizes a six element microphone array to better
detect breathing by enhancing breathing sounds and �lter-
ing out common noises in or near the home environment,
including construction, speech, and music. BuMA accom-
plishes this in real-time by leveraging both spatial �ltering
(e.g., beamforming) and data-driven �ltering.

• We create a cloud-based system for dynamically selecting
noises in the environment to �lter out. This system utilizes
a multi-class noise detector to periodically detect the com-
position of overpowering noises in the environment and
leverages speci�c sound models of the detected noises to
�lter them out.

• We conduct a study and �nd that BuMA can detect breathing
with up to 12% more accuracy than using other methods of
audio �ltering, or using no �ltering at all.

2 RELATEDWORKS
2.1 Sleep and Breathing Monitor Platforms
There are a variety of breathing monitoring products and appli-
cations commercially available, especially for monitoring infants.
Sense-U Baby Breathing Monitor [4] is wearable system that tracks
a baby’s breathing, movement, temperature, rollover and sleeping
position and alerts parents when there are any alarming signs (e.g.,
the baby stops breathing for long periods of time). This system is
contact-based and needs to be clipped onto the diaper to perform
its full range of functions.

A second class of commercial products are monitoring systems
that use cameras. Miku is one such product that uses a camera to
monitor breathing and baby movements [5]. Though this device
does not require contact, it costs hundreds of dollars and is more
privacy intrusive because of its use of video. Another popular prod-
uct is Cloud BabyMonitor, which is a mobile application that allows
both parents and children to see each other simultaneously through
a mobile device [6]. This product also utilizes audio to allow parents
to speak with their children, but does not perform audio processing

to measure or monitor the child. Vision-based methods have two
major weaknesses. First, it is di�cult to accurately monitor the
state of the child at night when the room is dark. Second, these de-
vices are privacy intrusive because there is a camera continuously
watching the child while the parent is away.

Breathing monitoring is also a major research topic of inter-
est. Researchers have explored breathing detection and monitoring
using a wide range of sensing modalities. Methods that utilize vi-
bration sensors [7, 8] require the sensor to be installed into the
mattress or on the ground where the person sleeps. Though not
directly in contact with the person, the vibration sensors are still in
very close proximity to the person and cannot easily be moved to
another room, space, or bed. There are also a variety of vision-based
methods, including video [9], RFID [10], and radar [11]. As men-
tioned previously, vision-based methods provide rich information
about the environment and are more privacy intrusive. In this work,
we take an audio-based approach because it allows us to develop a
remote sensing solution, while also preserving more privacy.

There are sound-based platforms for sensing breathing [12–14],
but many of them require very close proximity (e.g. almost touching
the mouth) or need the sensor to be attached to the body. Micro-
phones, although more privacy-sensitive than cameras, can still
observe non-breathing sounds occurring in other parts of the home
or room. Unlike previous works, we take an audio �ltering ap-
proach to �lter out other potentially privacy-sensitive sounds in
the environment, while retaining breathing sounds.

2.2 Audio Filtering
In many applications, other overpowering noises in the environ-
ment may greatly impact the detection of the sounds of interest.
For example, sounds of nearby construction, passing vehicles, and
music can easily be louder than the soft breathing sounds we are
interested in observing. Additionally, microphones can record other
non-breathing sounds in the environment that could be personal or
private, such as speech and conversations. To help improve the de-
tection of breathing and reduce the presence of other non-breathing
and potentially privacy-sensitive sounds, we take an audio �ltering
approach. There are several works that have taken advantage of
audio �ltering to improve the detection of target sounds in noisy
environments [15], such as improving the detection of vehicles for
urban safety applications [16] and reducing the detection of privacy
sensitive signals, like speech [17].

There are two broad categories of audio �ltering works: spatial
�ltering and content-based �ltering. Spatial �ltering techniques in-
corporate di�erent observations in space by installing microphones
in various locations. This category includes beamforming [18–20],
blind source separation (BSS) [21–23], and adaptive �ltering tech-
niques [24–26]. Thesemethods do not take into account the environ-
ment’s content or sound types, and often require prior knowledge
of source locations. If the location of sources are not available in
advance, systems that leverage spatial �ltering will need to incor-
porate sound source localization algorithms to detect and localize
sounds of interest. On the other hand, content-based �ltering often
requires only one microphone. These methods, such as deep neural
networks (DNN) [27–29], use trained models of speci�c sounds to
�lter them out. Because they are trained on speci�c sounds, it is
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Figure 1: BuMA’s system architecture.

di�cult to train a single low-power model that can account for
all of the possible noises that could exist in our application. To
leverage the strengths of both classes of work, while minimizing
their weaknesses, we leverage both strategies of �ltering.

3 SYSTEM DESIGN
In this section, we introduce the system design of BuMA. Figure 1
shows the system architecture of BuMA, which is made up of two
major components: an embedded edge and a cloud component.

First, we introduce the embedded processing unit, which consists
of an array of microphones attached to a processing unit that users
can place near the sleeping person or clip onto the crib of a baby
to monitor breathing. Because sounds of normal breathing are
generally soft and low in energy, there are a wide range of other
sounds, such as music, speech, or construction sounds, that could
overpower the sound of breathing, making detection much more
di�cult. As such, to perform robust breathing detection on this
embedded edge processing unit, we integrate AvA [30], a �ltering
platform that combines both spatial �ltering with content-driven
�ltering. AvA allows applications and users to select speci�c sounds
in the environment to enhance and noises to �lter out using sound
models that developers may have created for their own applications.

However, there could be a wide range of noises in the environ-
ment, and it may not be enough to �lter out one type of sound in the
environment. For instance, at one point there could be construction
noises in the background, and in the next instance, the construction
may stop, but someone could be having a very personal conversa-
tion nearby. AvA does not inherently have a mechanism to change
which type of sound to �lter. To address this challenge, we incor-
porate a cloud processing component that periodically detects the
presence of di�erent types of noises in the environment. Then,
the cloud processing component downloads and installs di�erent
models onto the edge processing unit to �lter out present noises in
the environment.

3.1 Edge Processing
Figure 2 shows the full breathing detection pipeline. First, we sample
a window of audio from the microphone array. To perform robust
breathing detection, we aim to �lter out speci�c noises from the
environment that could overpower the sounds of breathing, while

also enhancing breathing sounds. To accomplish this, we incorpo-
rate the AvA platform [30]. AvA jointly performs spatial �ltering
and data-driven �ltering by combining traditional adaptive beam-
forming to enhance sounds coming from speci�c directions, while
utilizing data-driven sound detectors and models to enhance spe-
ci�c sounds and �lter out speci�c noises from the environment. AvA
accomplishes this utilizing an algorithm called content-informed
beamforming (CIBF).

To perform the spatial �ltering component of CIBF, which beam-
forms to a speci�c direction, AvA also incorporates a localization
module that localizes signi�cant sources in the environment and
utilizes these directions to enhance sounds arriving from a speci�c
direction. To perform the data-driven �ltering component of CIBF,
developers can supply their own models and detectors of sounds to
enhance or noises to �lter out.

After �ltering out noises and enhancing breathing sounds, we
need to detect if breathing sounds are present. We directly utilize
the breathing detector we supply to AvA to perform breathing
enhancement and noise �ltering. To perform breathing detection,
we extractedmel-frequency cepstral coe�cients (MFCC), a common
feature used in many audio applications. These features are then
input into a Support Vector Classi�er (SVC) with RBF kernel. To
train this model, we extract 96 10-second clips of breathing sounds
from the Google Audioset dataset [31], and 92 10-second random
clips of non-breathing sounds. We use the same parameters and
model type (SVC) to train sound detectors for each of three noises
(construction, speech, and music).

We build our edge processing unit on a Raspberry Pi 3B+ and use
the ReSpeaker Circular Array as our microphone array [32]. This
microphone array is a 6 element circular array. All components of
our breathing detection pipeline are run on this platform.

One of the shortcomings of AvA is that developers need to select
the speci�c noise to �lter out by specifying a model of a sound to
detect, but there is no automatic method to switch between di�erent
noise models. There could be a wide range of di�erent types of
sounds in the environment that could overpower breathing sounds.
To account for this challenge, we incorporate a mechanism for
dynamically swapping noise models, described in the next section.

3.2 Cloud Processing
Ideally, BuMA should use sound models and detectors of speci�c
noises currently present in the environment to �lter them out using
AvA. Because loud noises currently present in the environment
could change over time, there needs to be a mechanism to select
which noises to �lter out. To accomplish this, we use a multi-class
sound detector to detect what noises are present in the environ-
ment at regular intervals. Whenever a new noise is detected in the
environment, then the sound model of the newly detected noise is
used to �lter it out.

Our multi-class sound detector is a gradient boosting classi�er
that classi�es input sounds into 3 classes of potentially di�erent
noises that could be commonly found in or near a home environ-
ment: speech, music and construction. We extract mel-frequency
cepstral coe�cients (MFCC) to use as input features. We train our
multi-class sound detector to dynamically swap out noise models
using audio clips extracted from Google Audioset [31]. For each
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Figure 2: BuMA’s breathing detection pipeline.

Figure 3: Confusion Matrix of multi-class sound detector

noise/sound class, we use 600 10-second clips extracted from Au-
dioset, which totals 5 hours of audio. The confusion matrix of our
multi-class sound detector on the test set is shown in Fig. 3. The
total accuracy of our multi-class sound detector is 93%.

We realize that there could be many other noises in the envi-
ronment, beyond the classes mentioned in this work, and that this
multi-class sound detector can be substituted by any multi-class
sound detection method, such as [33], to dynamically determine
what noises are present in the environment.

Because this multi-class detector is more complex and requires
more computation than models and detectors of speci�c sounds, we
move this detector to the cloud, rather than running it at the edge,
as shown in the bottom half of Figure 2. We transmit one window of
audio every 5 seconds from the edge to the cloud to analyze for the
presence of noises. If a new sound is detected, the cloud processing
unit alerts the edge processing unit to switch noise models.

We only transmit audio from the edge to the cloud periodically
to reduce the amount of data being transmitted. Because much of
this audio could be very privacy sensitive, by reducing the amount
of data we transmit, we improve the overall privacy of the system
by keeping most of the data and computation at the edge.

4 EVALUATION
To evaluate BuMA, we recruited 3 volunteers and compared BuMA
against several �ltering schemes. Figure 4 shows our set up for
collecting samples of breathing from our volunteers. Each volun-
teer laid down on a mattress in the supine position. We collected
breathing samples from each volunteer when BuMA was at the side
of the mattress and when BuMA was hanging above the mattress,
level with the head of the volunteer. Having BuMA hang above
the mattress simulates the case where we may want to embed our
platform onto a dream catcher, which are commonly hung above
baby cribs for children to play with. We also vary the distance
BuMA is away from the volunteer’s head from 5 cm to 30 cm. At
each position, we played a random clip from Google Audioset [31],
that is one of the 3 classes of sounds (construction, music, speech)
our multi-class sound classi�er detects to dynamically select noise
models. At regular intervals of 10 seconds (each clip we played from
Audioset is 10 seconds), we randomly play another clip from one
of the other classes of noises. We play these clips 150 cm away and
at a random angle \ from the person’s head, as shown in Figure 4.
We varied \ from �45 to 45 degrees.

4.1 Breathing Detection
Figure 5 shows the accuracy of breathing detection versus the
distance of the microphone array from the person’s head when
the microphone array is above the mattress and to the side of the
mattress. We plot the accuracy of BuMA compared to existing
�ltering algorithms, including LCMV beamforming [19] and the
AvA �ltering platform. We list the average signal-to-noise ratio
(SNR) at each con�guration. The noise model we select for AvA
is the model of the class of the noise that is initially playing. For
example, if a clip of construction sound is �rst playing, then the
sound model we use to perform noise �ltering is the model of
construction noises. Though not explicitly shown, we tune the
detectors such that the false positive rate is the same across all
comparison methods, meaning all di�erences in accuracy between
the methods is due to di�erences in the true positive detection rate.

We see that BuMA has the highest accuracy when the micro-
phone array is within 20 cm when the array is at the side of the
mattress, and when the microphone array is within 30 cm when the
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Figure 4: Data collection set up. We placed BuMA either to
the side or above the mattress, next to where a person would
sleep. Then, we played an interfering noise (construction,
speech, or music) from a speaker. In this �gure, the distance
between speaker and the person’s head is 150 cm, and BuMA
is 30 cm away right above the person lying down on the
mattress in the supine position.

array is above the mattress. Past these points, the SNR is too low for
our localization and �ltering algorithms to signi�cantly detect and
enhance breathing. For example, when BuMA is placed to the side
of the mattress at 30 cm, �ltering does not signi�cantly improve
the accuracy of the system. The SNR when the microphone array
is above the mattress is higher because the mouth and nose are
directly pointing at the array, so the microphones are in the direct
path of breathing. BuMA outperforms just normally applying AvA
because AvA does not have a mechanism to dynamically switch
noise models on the �y. BuMA outperforms the rest of the �ltering
algorithms because it incorporates both spatial and data-driven
�ltering, while other methods utilize one or the other.

When BuMA is 10 cm away and above the mattress, BuMA
achieves a 73% accuracy, while not applying any �ltering results in
a 66%, which is a 12% improvement.

4.2 Latency
BuMA samples 500ms windows of audio with 250ms overlap from
its microphone array that is attached to the edge processing unit.
The full breathing detection pipeline runs on the edge processing
unit in 21 ms, which is much less than 250ms.

At the cloud, we receive one window of audio every 5 seconds to
determine if new noises are in the environment and that the edge
processing unit needs to switch noise models. The cloud processing
unit runs its multi-class noise detector to make this determination
in an average of 9.44 ms and noti�es the edge processing unit. The
latency between when the edge processing unit begins to trans-
mit audio windows to the cloud and when the edge processing
unit receives a response from the cloud unit (including process-
ing the multi-class noise detector) is on average 18.35ms, which is

(a) Accuracy vs. distance when BuMA is above the mattress.

(b) Accuracy vs. distance when BuMA is to the side of the
mattress.

Figure 5: Accuracy vs. distance BuMA is away from the head
of the person. The average SNR is listed above each distance.

much lower than 250ms, the amount of time between processing
successive windows.

5 DISCUSSION AND FUTUREWORK
Improving breathing detection: Although we improved the de-
tection of breathing by integrating audio �ltering and dynamically
selecting noises to �lter out, we still could not achieve robust detec-
tion accuracy (e.g. > 90%). AvA, the �ltering platform we incorpo-
rated, is a general platform for �ltering out and enhancing a wide
range of di�erent sounds. We plan to explore more speci�c methods
that take into consideration the salient features of breathing and
other common home noises.
Miniaturizing edge processing unit: In this work, we imple-
mented BuMA based on a Raspberry Pi 3b+, which has high rel-
atively high computation capabilities, but relatively high power
consumption. In the future, we plan to miniaturize our platform
and implement BuMA on a lower power and battery-powered em-
bedded platform or application-speci�c integrated circuit (ASIC).
Expanding library of noises: We integrated a multi-class noise
detector to periodically detect the presence of noises in the envi-
ronment. Currently, we distinguish between three di�erent classes
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of noises, and we plan to expand this number. Additionally, we
envision a large library of noise sound models that can allow BuMA
to �lter and account for numerous potential noises that could occur
in the environment.
Breathing monitoring for infants in real environments: Sleep
apnea commonly occurs in babies, where they stop breathing for
periods of time and potentially passing away (SIDS). We plan to
explore how BuMA can be used to monitor the breathing of babies
in real environments and alert parents if their child has stopped
breathing for long periods of time.

6 CONCLUSION
We present BuMA, a non-contact platform for breathing monitor-
ing. Unlike existing products and works for monitoring breathing,
which require devices to be mounted on the person sleeping, or
onto the mattress, BuMA can be placed at distance to monitor
breathing remotely, without the using cameras that are more pri-
vacy intrusive and require su�cient lighting to function properly.
BuMA utilizes spatial �ltering, beamforming, and data-driven mod-
els to �lter out overpowering noises commonly found in or near
home environments that make breathing detection di�cult. We
incorporate a mechanism for dynamically selecting noise models
to �lter out speci�c noises in the environment and intelligently
partition computation between the edge and cloud. We demonstrate
that BuMA can improve breathing detection accuracy by up to 12%
within 30cm. BuMA is a �rst step towards robust, contactless, and
privacy-sensitive breathing monitoring.
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