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Abstract

We consider the problem of learning action models for plan-
ning in stochastic, unknown, environments, that can be de-
fined using the Probabilistic Planning Domain Description
Language (PPDDL). As input, we are given set of previously
executed trajectories, and the main challenge is to learn an
action model that has a similar goal achievement probability
to the policies used to create these trajectories. To this end,
we introduce a variant of PPDDL in which there is uncer-
tainty about the transition probabilities, specified by an in-
terval for each factor that contains the respective true transi-
tion probabilities. Then, we present SAM+, an algorithm that
learns such an imprecise-PPDDL environment model. SAM+
has a polynomial time and sample complexity, and guaran-
tees that with high probability, the true environment is indeed
captured by the defined intervals. We prove that the action
model SAM+ outputs has a goal achievement probability that
is almost as good or better than that of the policies used to
produced the training trajectories. Then, we show how to pro-
duce a PPDDL model based on this imprecise-PPDDL that
has similar properties.

Introduction
Domain-independent planning is a long-standing goal of Ar-
tificial Intelligence (AI) research. The input to a domain-
independent planning algorithm traditionally includes a de-
scription of the domain in which we wish to plan. This do-
main description is usually specified in a formal language
and includes an action model, which specifies which actions
can be in a plan and how they work. In a simple planning
languages such as STRIPS (Fikes and Nilsson 1971), this
action model consists of the set of effects of the actions
on the world state, and the set of preconditions that must
hold in order for each action to be taken. Action models are
notoriously hard to formally specify, even in such a simple
planning language. This has motivated work on a number of
methods for automatically learning these action models from
examples (Yang, Wu, and Jiang 2007; Cresswell and Gre-
gory 2011; Cresswell, McCluskey, and West 2013; Zhuo and
Kambhampati 2013; Stern and Juba 2017; Aineto, Celorrio,
and Onaindia 2019; Juba, Le, and Stern 2021).

*These authors contributed equally.
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Intelligence (www.aaai.org). All rights reserved.

The challenge of specifying a domain model is only more
acute in richer classes of action models. In this work, we
consider domains in which the effects of actions are ran-
domly determined each time an action is taken. Therefore,
action models in such domains specify a distribution on ef-
fects for each action. Specifying such an action model by
hand is extremely difficult: small errors in the probabilities
may accumulate over the course of an execution, leading to
wildly inaccurate estimates of the effects of a plan in the
real world. It is therefore essential to use data about the real
world to inform the model.

We follow an offline approach to permit safe learning.
But, in order to establish that our model generalizes across
goals, we consider a different learning paradigm. Following
a recent approach to learning deterministic action models
(Stern and Juba 2017; Juba, Le, and Stern 2021), we sup-
pose that problems for a domain are sampled from a fixed
distribution, and we are given a training set of trajectories
executing policies aiming to solve those problems in the do-
main. We seek an action model that captures enough of the
domain faithfully to ensure that
(i) policies that can be executed in the model behave simi-

larly in the real world (solution safety) and
(ii) policies that attain similar rates of success on the prob-

lem distribution as the training policy distribution can be
executed in the model (solution completeness).

Such a guarantee is similar to that provided by imitation
learning (Osa et al. 2018; Khardon 1999), with the differ-
ence again (similar to the distinction with RL) that rather
than seeking to match a human teacher’s performance at
a single objective, we would like our model to generalize
across many possible goals.

We introduce an extension of PPDDL that captures a re-
laxed class of domain models in which there is uncertainty
about the effects. Instead of giving a probability of an ef-
fect occurring, an interval is specified such that the actual
probability lies somewhere in the interval—that is, specify-
ing a MDP with Imprecise Probabilities (Satia and Lave Jr
1973). Then, we give an algorithm for learning such uncer-
tain PPDDL models with the following guarantee: with high
probability over both the training data and policy execution,
the encountered transition distributions are consistent with
the learned model. The learned model also satisfies an anal-
ogous completeness property, that ensures that there is a pol-



icy that the model guarantees to have a success rate that is
similar to the policies used to generate the examples. Be-
cause probability bounds obtained in the model are guaran-
teed to hold for the real domain, such a model can be used
for safe planning. Our model relies on having a transition
distribution in which for a given pre-state, the fluents in the
post-state are independent. This is in line with recent work
on model-based RL. Without such an assumption, in general
each action on each of the 2|F | states yields a distribution
over the 2|F | possible states, where such a model requires
|A|2|F |(2|F | − 1) parameters to specify,1 which is clearly
infeasible. Finally, we show how to create a model repre-
sented in Probabilistic Planning Domain Description Lan-
guage (PPDDL) (Younes and Littman 2004), that has similar
properties.

Background and Problem Definition
In this work, we assume the domain can be described using
the Probabilistic Planning Domain Description (PPDDL)
language. PPDDL is a formal language for specifying fac-
tored stochastic shortest path problems. We provide a brief
desription of PPDDL below. For simplicity, we focus on the
grounded version of PPDDL, and consider action costs to be
unit for all actions.

A fluent f is a fact that may or may not be true in the
domain. A state s in PPDDL is an assignment of values –
true or false – to the set of fluents F in the domain, spec-
ifying which fluents are true in s. We refer to a state as a
set, each element of which is an assignment to a single flu-
ent. Let s(f) be the value assigned to a fluent f ∈ F in a
state s. We refer to the assignments s(f) = 1 and s(f) = 0
(equiv., s(¬f) = 1) as literals. A partial state is an assign-
ment of values to only a subset of the fluents in F . A partial
state s′ is consistent with a state s if the fluents specified by
s′ take the same values in s, i.e., s′ ⊆ s. Let A be the set
of actions that may be in a plan. An action model M for A
specifies preconditions and effects for each action a ∈ A,
denoted preM (a) and effM (a), respectively. The precondi-
tions of an action is a partial state. An action a is applicable
in a state s iff its preconditions are consistent with s. The
effects of an action is a set of the form {〈ei, pi〉}i, where ei
is a partial state and pi is the probability that it will occur.
An effect 〈ei, pi〉 occurring means that after applying an ac-
tion a at a state s we reach a state s′ that is consistent with
ei even if ei was not consistent with s. In this simple model,
only the fluents in ei may change from s to s′. We denote by
PrM [s′|a, s] the probability, according to the action model
M , that applying a in state s will result in reaching s′.

PPDDL supports advanced features such as recursive
probabilistic effects and conditional effects, which we do not
consider here. In addition, for most of this paper we limit the
scope of our discussion to action models in which the effects
are partial assignments of a set of literals whose distributions
are independent. Formally, for every action a there is a set
of literals Ea, and each literal ` ∈ Ea is associated with a
marginal probability (factor) Pr[s′(`)|a, s(¬`)]. Every sub-
set of literals E′a ⊂ Ea is an effect of a that occurs with

1Probability distributions must sum to 1.

probability∏
`∈E′a

Pr[s′(`)|a, s(¬`)] ·
∏

`∈Ea\E′a

1−Pr[s′(`)|a, s(¬`)] (1)

We refer to this assumption about effects as the independent
effects assumption, and discuss how to relax it in the future
work section .

A PPDDL planning domain is defined by a tuple D =
〈F,A,M〉 where F is the set of fluents, A is the set of ac-
tions, andM is the action model for these actions. A PPDDL
planning problem is defined by a tuple 〈D, sI , G〉 where D
is a PPDDL domain; sI is the start state, i.e., the state of the
world before planning; and G is a partial state that define
when a goal state has been found. A solution to a PPDDL
problem Π = 〈D, sI , G〉 is a policy π : 2F → A, map-
ping a state that may be encountered to an action. Executing
a policy π on a problem Π means starting at sI , applying
the action π(sI), sampling a new state s′, and continuing
to apply actions according to π and the current state until
some pre-defined stopping condition is met.2 The resulting
sequence of states and actions is called a trajectory.

Definition 1 (Trajectory). A trajectory is an alter-
nating sequence of states and actions of the form
(s0, a0, s1, a1, . . . , an, sn).

A single execution of a policy yields a trajectory where
s0 = sI and sn is the last state reached in that execution.
The length of a trajectory T , denoted |T |, is the number
of actions in it. In the literature on learning action mod-
els (Wang 1994, 1995; Walsh and Littman 2008; Stern and
Juba 2017; Arora et al. 2018, among others), it is common
to represent a trajectory T =

〈
s0, a1, . . . , a|T |, s|T |

〉
as a

set of triples
{
〈si−1, ai, si〉

}|T |
i=1

. Each triple 〈si−1, ai, si〉
is called an action triplet. The probability of observing T as-
suming an action model M , denoted PrM,π[T ], is the prod-
uct of the probabilities of T ’s constituent action triplets, i.e.,
PrM,π[T ] =

∏
(s,π(s),s′)∈T PrM [s′|π(s), s].

To evaluate a policy for a given problem, we consider the
set of trajectories that can be reached when following that
policy, starting from the initial state. We denote this set of
trajectories by T (π, s), and denote by TG(π, s) its subset
that includes only trajectories that reach the goal G. Com-
mon metrics include the expected number of actions in per-
formed until a goal state is reached, and the goal-achieving
probability. We mainly consider the latter option, denote by
PrM,π[G|s] and given by

∑
T∈TG(π,s) PrM,π[T ].

Safe Planning Without an Action Model
We consider the setting where the planning agent is tasked
to find a policy for a PPDDL problem Π = 〈D, sI , G〉 but it
has only a partial knowledge of the domain D. Specifically,
the planner does not know the action model of the domain
D. Instead, it is given a set of trajectories T = {T1, . . . , Tm}
created by executing policies designed to solve problems

2This stopping condition can be any property of the trajectory
to that point, e.g., either reaching a goal state or performing a fixed
number of actions, after which the agent gives up.



{Π1, . . . ,Πm} in the same PPDDL domain, and in partic-
ular, all having the same action model.

Standard online RL setups approach this model-free set-
ting by allowing the agent to perform exploratory actions,
learning over time which policies are more effective than
others. We focus on offline learning, where the objective is
to learn an action model M ′ with which we can generate
policies for a range of problems in the domain D. The main
problem we address in this paper is to learn an action model
that satisfies the following desirable properties:
1. Safety. Policies created using M ′ will also be applicable

and effective for problems in the domain D.
2. Completeness. Policies that are effective in D will also

be applicable and effective in the learned model M ′.
We refer to the action model of D as the real action model,
and denote the latter by M∗.

SAM Learning
The Safe Action Model (SAM) learning algorithm (Juba, Le,
and Stern 2021; Stern and Juba 2017) has safety and com-
pleteness guarantees similar to those specified above. How-
ever, it is designed for classical planning, where states are
fully observable and actions have deterministic effects. Clas-
sical planning is significantly simpler than our setting, where
actions can have stochastic effects, Nevertheless, our work
builds on SAM learning, so we describe it here briefly for
completeness.

SAM learning, when applied to grounded domains, is
based on the following simple rules, which apply for every
observed action triplet (s, a, s′) ∈ T with T ∈ T .
1. Rule 1 [not a precondition]. ∀l /∈ s : l /∈ pre(a)
2. Rule 2 [not an effect]. ∀l /∈ s′ : l /∈ eff(a)
3. Rule 3 [must be an effect]. ∀l ∈ s′ \ s : l ∈ eff(a)
where pre(a) and eff(a) are the preconditions and effects of
a according to real action model M∗. We refer to these rules
as the SAM learning rules. SAM learning works by initially
assuming every action has all the literals as preconditions
and none of the literals as effects, and then applying rules
1 and 3 above to remove preconditions and add effects as
needed. In a classical planning setting where all actions are
grounded, Juba et al. (2021) proved that the action model
MSAM created by SAM learning is: (1) safe, in the sense that
every plan consistent withMSAM is also consistent in the real
action model, (2) probably complete, in the sense that with
high probability, for most solvable problems there exists a
plan that solves them and is consistent with MSAM, given
a number of trajectories that is polynomial in the number
of fluents and actions. They also extended SAM learning to
learn lifted action models and provided similar safety and
completeness guarantees.

SAM+: SAM Learning for stochastic domains
We now introduce our method for learning action models for
stochastic domains. It is an extension of SAM learning. The
first SAM learning rule (“not a precondition”) applies in our
setting, since for every ` ∈ pre(a), we must have ` ∈ s for
every s in which a is applied. The last SAM learning rule
(“must be an effect”) also applies to our setting, due to the

standard frame axioms (i.e., state only changes due to ac-
tions of the agent). The second rule (“not an effect”), how-
ever, does not: a literal `may be an effect of an action a even
if there exists an action triplet (s, a, s′) where ` /∈ s′. This
may occur if ` is an effect of a but the probability of this ef-
fect occurring is not 1.0. This rule is crucial for SAM learn-
ing’s safety guarantee, since it asserts that no unexpected ef-
fects will occur.3 Thus, a strict form of safety as achieved for
deterministic domains cannot be achieved in our setting. In-
stead, the SAM+ algorithm outputs an action model yielding
a probabilistic form of safety, using the extension of PPDDL
below, that we call PPDDL with Imprecise Probabilities.

PPDDL with Imprecise Probabilities
Markov Decision Processes with Imprecise Probabilities
(MDP-IP) (Satia and Lave Jr 1973) are a representation of
a set of MDPs. Instead of a transition function, an MDP-
IP specifies a set of constraints over the transition function.
In detail, an MDP-IP model MIP defines a transition credal
set, often denoted byKMIP(s′|s, a), which maps state-action
pairs to a set of constraints over the probability of reach-
ing s′ after performing action a in state s. MIP represents
every MDP M for which PrM [s′|s, a] is consistent with
KMIP(s′|s, a) for all triplets (s, a, s′). The MDP-IP repre-
sentation captures the uncertainty about the real transition
probabilities that arises when models are estimated from em-
pirical observations.

Planners for MDP-IPs have been proposed, e.g., by Del-
gado, Sanner, and De Barros (2011). These planners seek
policies that maximize some pessimistic objective—for ex-
ample, for the reachability objective corresponding to a clas-
sical planning goal, we seek a policy that maximizes the
minimum probability, over all MDPs consistent with the
MDP-IP, of the policy reaching the goal. We will refer to
this as the maximin success probability. An approximation
to this objective that suffices for us assigns each distinct tra-
jectory reaching the goal a “probability” equal to the prod-
ucts of the lower bounds of each transition. The sum of these
values over the trajectories is a lower bound on the maximin
success probability.

Inspired by MDP-IP, we propose the PPDDL with Im-
precise Probabilities (PPDDL-IP) formalism. In a PPDDL-
IP model, preconditions are defined identically to standard
PPDDL models. But, each effect e in a PPDDL-IP model
is defined with an interval KM [e|s, a] ⊆ [0, 1], specifying
that the probability e occurs when performing a at state
s is within that interval. For our independent effects as-
sumption, we specify an interval for each factor `, denoted
KM [s′(`)|a, s(¬`)].

Analogously to the relationship between MDP and MDP-
IP, a PPDDL-IP domain specifies a set of PPDDL domains,
for each assignment of probabilities to effects that satisfies
the given interval constraints. We say that a PPDDL-IP ac-
tion model MIP is safe w.r.t. a PPDDL action model M
if for every event e and possible action triplets (s, a, s′),
PrM [e|s, a] ∈ KMIP

(e|s, a). For example, if the credal sets
are all [0, 1], then MIP is safe for any M (but useless).

3See proof by Stern et al.(2017).



The SAM+ Action Model
The SAM+ algorithm takes a set of trajectories T and a pa-
rameter δ > 0, and outputs a PPDDL-IP action model de-
noted Mδ . We describe the preconditions and effects of Mδ

below.
Preconditions. Let T (a) be all the action triplets for action
a. States s and s′ are said to be a pre- and post-state of a,
respectively, if there is an action triplet 〈s, a, s′〉 ∈ T (a).
SAM+ sets the preconditions of an action a to be intersection
over all the literals that were true in a pre-state of a.

preMδ
(a) =

⋂
〈s,a,s′〉∈T (a)

s (2)

Effects. Note that we cannot distinguish whether or not `
was an effect of action a if ` ∈ s, as it holds in s′ in either
case. We thus restrict attention to triplets where ` /∈ s to
estimate the credal set for `: Let #a(` ∈ s′ \ s) and #a(` /∈
s) be the number of action triplets in T (a) in which ` is
in the post-state and not the pre-state (|{〈s, a, s′〉 ∈ T (a) :
` ∈ s′ \ s}|), and the number of action triplets in which
` was not in the pre-state (|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}|),
respectively. SAM+ denotes the intervalsKMδ

[s′(`)|a, s(`)]
by Kδ(s

′(`)|a, s(¬`)), and computes them as follows.
1. If ` ∈

⋃
〈s,a,s′〉∈T (a) s

′ \ s and ` ∈
⋂
〈s,a,s′〉∈T (a):`∈s s

′,
then

Kδ(s
′(`)|a, s(¬`)) =

[
1− ln(1/δ)

#a(` /∈ s)
, 1

]
(3)

2. If ` ∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s and ` /∈
⋂
〈s,a,s′〉∈T (a):`∈s s

′,
then

Kδ(s
′(`)|a, s(¬`)) =

#a(` ∈ s′ \ s)
#a(` /∈ s)

±

√
ln(2/δ)

2#a(` /∈ s)
(4)

3. If ` /∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s, then

Kδ(s
′(`)|a, s(¬`)) =

[
0,

ln(1/δ)

#a(` /∈ s)

]
(5)

If #a(` /∈ s) = 0, then Kδ(s
′(`)|a, s(¬`)) = [0, 1]. (In any

case, we cap the credal sets at 0 and 1.) We remark that while
the second interval is always valid, the first and third are
smaller – i.e., more accurate – hence preferable for literals
that appear deterministic.

An example of SAM+ executed on a simplified version of
the Coffee domain of Dearden and Boutilier (1997) is avail-
able (Juba and Stern 2022). SAM+ has several attractive the-
oretical properties.
Theorem 1 (Efficiency). The SAM+ action model form ac-
tion triplets can be computed in time O((m+ |A|)|F |).

Proof. We can compute the SAM+ action model in a sin-
gle pass over the m triplets, taking time O(m|F |): as in the
deterministic SAM learning algorithms, we apply Rule 1 to
each observed triplet to obtain the preconditions. We also
compute counts #a(` ∈ s′ \s) and #a(` /∈ s). These counts
then may be used to produce the intervals given by Equa-
tions 4 and 5 for the effects in time O(|A||F |).

SAM+ is Probably Safe
The δ parameter is designed to represent the confidence that
the learned model Mδ is correct w.r.t. the real action model
M∗, i.e., that the range Kδ(s

′(`)|a, s(¬`)) indeed includes
the probability that ` will occur (PrM∗ [s

′(`)|a, s(¬`)]).
Thus, increasing δ increases the range Kδ(s

′(`)|a, s(¬`)).
On the other hand, having more trajectories to learn from
should yield a smaller rangeKδ(s

′(`)|a, s(¬`)) for a fixed δ.
We now formalize this relation between Kδ(s

′(`)|a, s(¬`))
and Pr[s′(`)|a, s(`)], and more generally Mδ and M∗.
Theorem 2 (Safety). For any δ′ ≥ 0, any action applicable
according to Mδ′ is applicable in M∗. In addition, for δ′ =

δ
2|F ||A| , Mδ′ is correct for M∗ with probability 1− δ.

Proof. The first part of Theorem 2 follows from prior work
on SAM learning: since SAM+ assumes as preconditions a
superset of the preconditions in the real action model, then
if ` ∈ pre(a) for any action a, ` is also in a precondition for
a in Mδ . Thus, if s satisfies the SAM+ precondition, s also
satisfies pre(a).

Next, we prove the second part of Theorem 2. Con-
sider first any ` ∈

⋃
〈s,a,s′〉∈T (a) s

′ \ s. As trajectories
are sampled from D, when a is taken in state s, ` ∈ s′

with probability PrM∗ [s
′(`)|a, s]. Consider the indicator

random variables for ` ∈ s′ for each of these events;
note that if we subtract off their expectation (equal to
PrM∗ [s

′(`)|a, s]), the sum of these differences is a martin-
gale sequence with differences bounded by 1, and the to-
tal number of such events in each trajectory, being deter-
mined by the policy in M∗, is a valid stopping time. So,

for γ =
√

ln(2/δ)
2|{〈s,a,s′〉∈T (a):`/∈s}| the Azuma-Hoeffding in-

equality (Azuma 1967; Hoeffding 1963) gives that for our
#a(` /∈ s) such random variables, the fraction that take
value 1, i.e., the empirical fraction #a(`∈s′\s)

#a(`/∈s) is within γ

of its expectation, PrM∗ [s
′(`)|a, s], with probability at least

1− 2e−2γ2#a(`/∈s) = 1− δ′. Thus, with probability 1− δ′,
PrM∗ [s

′(`)|a, s] ∈ Kδ′(s
′(`)|a, s(¬`)).

Similarly, for ` /∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s, we observe that
if PrM∗ [s

′(`)|a, s] ≥ ε then since each s′ is generated
independently conditioned on s, the probability that ` /∈⋃
〈s,a,s′〉∈T (a) s

′ \ s is at most (1 − ε)#a(`/∈s). So, tak-

ing ε = ln(1/δ′)
#a(`/∈s) we find that the probability is at most

(1− ε)ln(1/δ′)/ε ≤ e−ε ln(1/δ′)/ε = δ′.
The case for ` ∈

⋃
〈s,a,s′〉∈T (a) s

′ \ s such that ` ∈⋂
〈s,a,s′〉∈T (a):`∈s s

′ is essentially identical: the probability
that ` ∈

⋂
〈s,a,s′〉∈T (a):`∈s s

′ if PrM∗ [` /∈ s′|a, s] ≥ ε is at

most (1− ε)#a(`/∈s). Thus again for ε = ln(1/δ′)
#a(`/∈s) , the prob-

ability of obtaining such an set of trajectories is at most δ′.
By a union bound over all 2|F | literals and |A| actions,

we find that all PrM∗ [s
′(`)|a, s] ∈ Kδ′(s

′(`)|a, s(¬`)) (so
the action model is safe) with probability at least 1− δ.

SAM+ is Approximately Complete
Above we showed that the SAM+ action model can be
learned efficiently and is safe w.r.t. to the real action model



M∗ with high probability. Now, we show that it can be used
to find policies that achieve the goal with high probability.
To this end, we need to make some assumptions about how
the given trajectories T were generated, and about the dis-
tribution of future problems we aim to solve in the domain.

Let D be a distribution over problems in the domain D,
and let P be a (possibly probabilistic) planner that gener-
ates policies in this domain. We assume that the given set
of trajectories T was created by sampling a planning prob-
lem Π fromD and executing a policy π created by P for this
problem. We say that an action model is approximately com-
plete if the policy used in the sampling distribution achieves
the goal of the sampled problem with probability p, then the
SAM+ model produces policies that solve the sampled prob-
lems with probability at least p− ε in D. We stress that this
probability is both over the stochastic transitions of the MDP
and the sampling of a problem fromD: for example, a D for
which the goal cannot be achieved with probability 1/2, and
otherwise a policy succeeds with probability 2p, yields an
overall probability p of solving the problem.
Theorem 3 (Approximate completeness). Fix a distribu-
tion on policies such that for the distribution D over prob-
lems in the PPDDL domain D, the policies solve the prob-
lems with probability p and runs for L steps in expec-
tation, the draw from D, and draw of the policy. Given
m ≥ 4096|A|2|F |3L2

(1−ε)4ε4 ln 4|F ||A|
δ trajectories independently

drawn from the policies for problems from D, with proba-
bility 1 − 2δ, the expected maximin success probability in
the SAM+ action model, over problems Π sampled from D,
is at least p− ε. In particular, if we execute a policy that has
a maximum lower bound of solving Π in the SAM+ model,
Π is solved with probability at least p−ε over both the draw
of Π and execution in D.

To prove Theorem 3, we first observe that we can afford to
ignore actions that are seldom used in the examples to solve
problems drawn fromD; that is, we can restrict our attention
to useful actions in the following sense:
Definition 2. An action a is said to be ε-useful with respect
to a domain D, a planner P , and a distribution on problems
D, if with probability at least 1−ε, a appears in a trajectory
sampled by executing in D a policy obtained by giving P a
problem drawn from D.
Indeed, with high probability, problems drawn from D can
be solved by policies that only use useful actions.
Lemma 1. Suppose trajectories sampled as in Definition 2
solve the sampled problem Π with probability p. Then prob-
lems sampled fromD can be solved by policies that only use
ε/|A|-useful actions with probability at least p− ε.

Proof. Suppose we sample Π from D and run the planner
on Π to obtain a policy π. Now, we consider the policy π̃
obtained by modifying π by replacing all actions that are not
ε/|A|-useful with termination. We observe that conditioned
on π only producing useful actions, π̃ is identical to π. By a
union bound over the inadequate actions, the probability that
π uses any action that is not ε/|A|-useful is at most ε. Thus,
π̃ solves the random problem Π with probability at least p−
ε, and only uses ε/|A|-useful actions, as needed.

Moreover, we can guarantee that we will observe each of the
useful actions many times:

Lemma 2. Among m ≥ 8|A| ln 2|A|
δ

1
ε trajectories, each

ε/|A|-useful action occurs in at least m′ ≥ ε
2|A|m of the

trajectories with probability at least 1− δ/2

Proof. Consider any ε/|A|-useful action a. For each of the
m trajectories, we define an indicator random variable in-
dicating whether or not a is used in that trajectory. Since
a is ε/|A|-useful, these random variables all have expected
value at least ε/|A|. Since each of the trajectories are sam-
pled independently, these random variables are mutually in-
dependent, and by a Chernoff bound, the probability that a
appears in fewer than ε

2|A|m of the trajectories is at most

e−
1

2·22
m ε
|A| ≤ δ

2|A| Now, taking a union bound over the
ε/|A|-useful actions, we find that they all appear at least
ε

2|A|m times with probability at least 1−δ/2, as needed.

In particular, the widths of the intervalsKδ[s
′(`)|a, s(¬`)]

in the SAM+ model shrink as we observe the actions more
frequently; this enables us to ensure that the SAM+ model
is adequate for accurate planning in the following sense:

Definition 3. We say that the the SAM+ action model Mδ is
(ε1, ε2)-adequate for action a if with probability 1− ε1 over
trajectories sampled as in Definition 2, when a is used in a
state s of the trajectory,
1. the preconditions of a in Mδ are satisfied for s
2. for all ` the width of the interval Kδ′(s

′(`)|a, s(¬`)) is
at most ε2.

Lemma 3. If T (a) contains at least m′ ≥ 16|A||F |
ε1ε22

ln 2
δ′

triplets, then the SAM+ action model for a is ( ε1|A| , ε2)-
adequate with probability 1− δ/2|A|.

Proof. For the first condition, observe that if a literal ` is
not in pre(a) and occurs in some state s of a sampled tra-
jectory with probability greater than ε1

4|A||F | , then the prob-
ability that ` is in the SAM+ precondition for a is at most
(1 − ε1

4|A||F | )
m′ ≤ δ

8|A||F | Thus, taking a union bound over
all 2|F | literals, we find that with probability 1 − δ/8|A|,
no such literals are present in the SAM+ preconditions of a
(i.e., in preMδ

(a)). Now, moreover, also by a union bound
over the literals not in pre(a), the probability that any of the
literals ` not in pre(a) that occur in some state s of a sam-
pled trajectory with probability greater than ε1

4|A||F | actually
occur in a state s where a is used in a sampled trajectory is
at most ε1/2|A|.

For the second condition, we observe that for each
literal `, the width of the interval for a is at most√

2 ln(2/δ′)
|{〈s,a,s′〉∈T (a):`/∈s}| . In particular, consider any ` that is

is not in pre(a) such that ` does not occur in some state s
of a sampled trajectory with probability greater than ε1

4|A||F | .
If we consider the indicator random variable for whether a
sampled trajectory contains a triplet in which a is taken in
some state s such that ` /∈ s, we see that these are indepen-
dent random variables with expected value at least ε1

4|A||F | .



So, by a Chernoff bound, with probability 1− δ
8|A||F | , at least

ε1
8|A||F |m

′ = 2
ε22

ln 2
δ′ out of the m′ triplets have s such that

` /∈ s. Hence, the width of the interval Kδ[s
′(`)|a, s(¬`)] is

at most
√

2 ln(2/δ′)
2 ln(2/δ′)/ε22

= ε2 as needed. In turn, by a union
bound over the literals that occur with probability less than
ε1

4|A||F | when a is taken, the probability that any of these oc-
cur in any state of a sampled trajectory where a is taken is at
most ε1

2|A| . Thus, with probability 1− ε1
2|A| , all of the intervals

have width at most ε2.
By union bounds over the two cases, with probability

1 − δ
2|A| , we obtain a SAM+ action model such that for

a sampled trajectory, each condition holds with probability
ε1

2|A| ; by another union bound over the conditions, both si-
multaneously hold in the trajectory with probability ε1

|A| .

Adequate action models include solutions to problems from
D with success rates similar to the training distribution:

Lemma 4. Suppose that the SAM+ action model is
( ε1|A| , ε2)-adequate for all ε3

|A| -useful actions. Then with
probability 1−δ, if the sampling distribution solves the prob-
lems fromD with probability pwhile takingL steps in expec-
tation, the SAM+ action model yields an expected maximin
success probability of at least p− (ε1 + ε2·L·|F |

(1−ε1)(1−ε3) + ε3).
Moreover, there exist policies attaining this probability that
only take actions for which the width of the intervals for all
literals is at most ε2 for the states in which they are invoked.

Proof. We start by extending Lemma 1: for the policies π
produced by the planner for problems sampled from D, we
consider π̃ that executes π until it would either take an ac-
tion that is not ε3

|A| -useful, or would invoke an action in a
state for which some literal has a credal set of width greater
than ε2, and terminates in either of these conditions. We ob-
serve that π̃ has trajectories that are no longer than π in any
sample. Moreover, by a union bound over the actions that
are not ε3

|A| -useful, the original distribution over trajectories
only produces a trajectory that uses any of these actions with
probability at most ε3. Since by hypothesis, the action model
is ( ε1|A| , ε2)-adequate for all the useful actions, the probabil-
ity that π would take one of these actions in a state where the
credal sets are wider than ε2 for any literal is at most ε1

|A| ; by
a union bound over the useful actions, we find thus that with
probability 1−(ε1+ε3), neither of these events occurs and π
produces an execution that is identical to that produced by π̃.
In particular, for a maximin π, π̃ must also solve the problem
Π sampled from D with probability at least p− (ε1 + ε3).

Since by construction, π̃ only takes actions for which the
width of the interval is at most ε2, we can bound the expected
maximin success probability p̃ of the SAM+ action model

using π̃ as follows.

p̃ ≥
∑
Π,π

Pr
D,P

[Π, π]
∑

trajectories T
of π̃ solving Π

Pr
π̃,M

[T |Π]

=
∑
Π,π

Pr
D,P

[Π, π]
∞∑
k=0

∑
trajectories T
of π̃ solving
Π in k steps

k∏
i=1

Pr
π̃,M

[Ti|Ti−1]

≥
∑
Π,π

Pr
D,P

[Π, π]
∞∑
k=0

∑
trajectories T
of π̃ solving
Π in k steps

(1− kε2|F |) Pr
π̃,M∗

[T |Π]

≥ p− L

(1− ε1)(1− ε3)
ε2|F | − (ε1 + ε3)

Since by Theorem 2 the SAM+ action model is safe with
probability 1 − δ, the policies obtained from executing the
planner on the SAM+ action model indeed obtain a proba-
bility of success that is at least the expected lower bound on
π̃, p− (ε1 + ε2·L·|F |

(1−ε1)(1−ε3) + ε3) with probability 1− δ.

By the above reasoning, we obtain Theorem 3. Formally:

Proof of Theorem 3. We first note that the quoted number of
actions is sufficient to obtain that by Lemma 2, for ε3 = ε/4,
each of the ε3/|A|-useful actions occurs in at least m′ ≥
512|A||F |2L2

(1−ε)2ε3 log 4|F ||A|
δ of the traces with probability at least

1 − δ/2. In turn, by Lemma 3, for each of these actions,
for ε1 = ε/4 and ε2 = ε(1−ε)2

2|F |L , the ε3/|A|-useful actions
have (ε1/|A|, ε2)-adequate action models with probability
1 − δ/2|A| each; a union bound over these actions gives
that overall, they are simultaneously adequate with proba-
bility 1− δ/2, and hence with probability 1− δ overall, we
have an adequate action model for all of the ε3/|A|-useful
actions. So finally, by Lemma 4, with probability 1 − 2δ
overall, problems drawn from D have an expected maximin
success probability at least p − ε under the SAM+ action
model, as claimed.

SAM+ with PPDDL Planners
Actually, Lemma 4 gives us slightly more than needed for
Theorem 3: the policy only needs to consider actions for
which the intervals Kδ[s

′(`)|a, s] are narrow. So, we can
take the midpoint of these intervals as an estimate of the
probability in a standard PPDDL encoding, if we include
preconditions that prevent a solution from executing ac-
tions that would lead to intervals that are too wide for any
of the factors. In more detail: First, let us suppose L′ is
an upper bound on the lengths of plans we consider. For
` ∈

⋃
〈s,a,s′〉∈T (a) s

′ \ s with ` /∈
⋂
〈s,a,s′〉∈T (a):`∈s s

′,
` ∈ pre(a) iff

|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}| < 8|F |2L′2

(1− ε)4ε2
ln

4|F ||A|
δ

,



and otherwise (` /∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s or ` ∈⋂
〈s,a,s′〉∈T (a):`∈s s

′), ` ∈ pre(a) iff

|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}| < 2|F |L′

ε(1− ε)2
ln

2|F ||A|
δ

.

We note that the original preconditions correspond to the set
of literals ` such that |{〈s, a, s′〉 ∈ T (a) : ` /∈ s}| = 0, so
this is a superset, i.e., a stricter precondition. Moreover, for
these literals, we indeed have respectively that the widths
of the confidence intervals for literals not included in the
precondition are at most ε(1−ε)

2

2|F |L′ = ε2.

Now, instead of the intervals, we use the following factors
for the transition probabilities: For ` ∈

⋃
〈s,a,s′〉∈T (a) s

′ \
s with ` /∈

⋂
〈s,a,s′〉∈T (a):`∈s s

′, the transition probability
factor for ` given ` /∈ s and a is an empirical estimate of the
probability:

Pr[s′(`)|a, s(¬`)] =
|{〈s, a, s′〉 ∈ T (a) : ` ∈ s′ \ s}|
|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}|

(6)

for ` ∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s with ` ∈
⋂
〈s,a,s′〉∈T (a):`∈s s

′ it
is

Pr[s′(`)|a, s(¬`)] = 1− ln(2|F ||A|/δ)
2|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}|

(7)

and otherwise (i.e., for ` /∈
⋃
〈s,a,s′〉∈T (a) s

′ \ s),

Pr[s′(`)|a, s(¬`)] =
ln(2|F ||A|/δ)

2|{〈s, a, s′〉 ∈ T (a) : ` /∈ s}|
(8)

i.e., the midpoints of our previous intervals.
Whereas the intervals contained the true transition prob-

abilities with high probability, we now only have that our
point estimates of these transition probabilities are ε2/2-
close to the true probabilities on each transition. We can thus
(only) guarantee an approximate form of safety:

Theorem 4 (Approximate safety—PPDDL). With probabil-
ity 1 − δ, the SAM+ PPDDL action model satisfies the fol-
lowing: the probability any plan of length at most L′ suc-
ceeds in the SAM+ PPDDL model is at most (1 + ε) times
greater than under the true model M∗. In particular, all ac-
tions that are applicable in a plan under the SAM+ PPDDL
model are applicable in M∗.

Proof. We recall that by Theorem 2, the PDDL-IP model
created by SAM+ is correct w.r.t M∗. The midpoints of its
intervals are, by construction, at most ε2/2-far from the true
probability for each factor. Thus, our estimated probability

of success p̂ for the policy π for the problem Π is at most

p̂ ≤
L′∑
k=0

∑
trajectories T
of π solving
Π in k steps

k∏
i=1

Pr
π,M

[Ti|Ti−1]

≤
L′∑
k=0

∑
trajectories T
of π solving
Π in k steps

(1 + |F |ε2/2)k
k∏
i=1

Pr
π,M∗

[Ti|Ti−1]

≤
L′∑
k=0

∑
trajectories T
of π solving
Π in k steps

(1 + k|F |ε2/2 +

(
k|F |ε2

2

)2

) Pr
π,M∗

[T |Π]

≤ (1 + ε)p

where the second to last line used 1 + x ≤ ex ≤ 1 + x+ x2

for all x ≤ 1; note here that we have chosen ε2 = ε
L′|F |

so that k|F |ε2 ≤ ε < 1 for all k ≤ L′, so we can invoke
this inequality, and (ε/2)2 < ε/2. The moreover part fol-
lows directly from Theorem 2 and the fact that the PPDDL
preconditions are only stronger than the original.

In turn, we obtain the following guarantee for complete-
ness, essentially analogously to the original argument:
Theorem 5 (Approximate completeness—PPDDL). Fix a
planner, and suppose that for the distribution D over prob-
lems in a domain D, the planner produces a policy that
solves the problems with probability p and runs for L steps
in expectation, the draw from D, and the planner itself.
Given m ≥ 4096|A|2|F |3L2

(1−ε)4ε4 ln 4|F ||A|
δ trajectories indepen-

dently drawn from the planner on problems from D, with
probability 1 − 2δ, the SAM+ action model satisfies the
following: when a problem Π is sampled from D and we
execute a policy of length at most 1

εL that maximizes the
probability of solving Π in the SAM+ PPDDL model with
L′ = 1

εL, Π is solved with probability at least p − 3ε (over
both the draw of Π and execution in M∗).

Proof. We first note that by Markov’s inequality, that if π̃
runs for L steps in expectation, then with probability 1 − ε
it runs for at most 1

εL steps. Theorem 4 guarantees that p
is overestimated by at most ε on all policies that execute
for at most 1

εL steps. In turn, the success probability of an
optimal policy is underestimated by at most ε, following the
original proof of Theorem 3. All together, we find that with
probability p − ε, the optimal policy solves the problem Π
in at most 1

εL steps, and achieves an estimated probability
under M that is at most ε smaller. Hence, the optimal policy
under M that overestimates by at most ε is succeeding with
probability at least p− 3ε, as claimed.

Related Work
There has been work on learning noisy STRIPS opera-
tors from incomplete observations (Pasula, Zettlemoyer, and
Kaelbling 2007; Mourao et al. 2012; Rodrigues, Gerard,
and Rouveirol 2011; Ng and Petrick 2019). They propose



methods for learning PPDDL representations from incom-
plete observations, a more demanding setting than ours. But,
they do not provide any theoretical guarantees. Similarly,
Martı́nez et al. (2017) consider learning richer probabilistic
domain models that also incorporate exogenous effects; but,
they do not have time or sample complexity guarantees, nor
do they connect the objective they optimize to the quality of
the model.

This problem of learning an action model is related to Re-
inforcement Learning (RL), with the crucial difference that
RL typically assumes that we only wish to design a policy
for a single, fixed, learned reward function, whereas here
we wish to use the same domain model for various goals
given as input. Nevertheless, the central challenges limiting
the state-of-the-art in RL apply here as well. In particular, we
would like methods for learning domain models with guar-
antees of efficiency and correctness. Ideally, we would of
course like an algorithm that finds a domain model that is
close to the true domain and, if states are described by a
set of (Boolean) fluents |F |, has both time complexity and
sample complexity bounded by a polynomial in |F |. Unfor-
tunately, in general this is too much to hope for, since there
are 2|F | states. Concretely, along the lines of Kakade (2003),
domains that capture a simple “combination lock” require
Ω(2|F ||A|) trials to solve, if the combination is described by
the fluents and A is the set of actions. Consequently, algo-
rithms with theoretical guarantees for learning optimal poli-
cies in a general RL setting seek to observe every action
in every state, and this is optimal (Strehl et al. 2006). This
may be viewed as a difficulty with “exploring” the environ-
ment (the state with the open lock is hard to reach) or a dif-
ficulty with “generalizing” across states (an action suddenly
opens the lock in the state where the correct combination is
entered). The methods for circumventing such problems in
RL frequently involve assuming some kind of linear struc-
ture on the reward or value function (Osband and Van Roy
2014; Osband, Roy, and Wen 2016; Jin et al. 2020; Yang and
Wang 2019), which prevents them from capturing STRIPS-
style goals, which are given by a possibly large conjunction
of the fluent settings. By contrast, work on Model-Based RL
(MBRL) (Kearns and Koller 1999; Koller and Parr 2000;
Strehl, Diuk, and Littman 2007; Diuk, Li, and Leffler 2009),
attempts to fit the environment dynamics to a specific model
class; classically, these were based on Dynamic Bayesian
Network models (Dean and Kanazawa 1989) of the transi-
tion distribution, which may be much more compact, by as-
suming that the various factors are generated independently.

A problem with even MBRL algorithms – and in particu-
lar, for the aforementioned methods for MBRL – is that they
still incentivize an agent to visit unexplored portions of the
state space (w.r.t. the conditional probability tables), which
may be unsafe. This has posed an obstacle to the adoption
of RL in practice; in turn, it has motivated recent work on
offline RL (Levine et al. 2020; Kidambi et al. 2020; Yu et al.
2020), which seeks to learn policies, in particular safe poli-
cies, using a training set of trajectories collected in the do-
main. These trajectories might, for example, be provided by
a human demonstrating good behavior. Safety here generally
means that we guarantee with high probability that the pol-

icy will remain in some set of “safe” states (Thomas 2015;
Thomas et al. 2019). These methods are cast in a traditional
RL, discounted-reward setting, and simply charge a penalty
for uncertainty, which is not a good match to the reachability
goals we consider. Moreover, how and when can we hope to
guarantee that the model transfers to other goals?

Conclusion and Future Work
We have shown how to safely and efficiently acquire models
of stochastic domains that nevertheless generalize to goals
beyond those for which solutions were previously demon-
strated. Supposing that we have an agent with a fixed set of
actions and we have determined a set of fluents that the agent
can observe, we collect a set of trajectories demonstrating
how to solve problems in the domain—for example, these
may be collected by a human operator, or by an inefficient
algorithm. The demonstrations need not always achieve the
goal, and indeed need not follow a fixed or known policy.
When we provide these trajectories to SAM+, it produces an
action model in which the optimal policy’s success probabil-
ity at least matches the success rate of the demonstrations.

Although the style of domain model we used here is a rel-
atively limited fragment of PPDDL that uses propositional
fluents and assumes all fluents transition independently, the
technique is not inherently limited to such models. It is
straightforward to extend this algorithm using the approach
of Juba, Le, and Stern (2021) to learn lifted domain mod-
els, at least when the “injective binding assumption” holds,
i.e., when two parameters of the same type are not bound
to the same object in the example trajectories. We believe it
should be possible to extend this further to handle the kind
of “deictic” references considered by Pasula, Zettlemoyer,
and Kaelbling (2007). It is also straightforward to extend to
domains in which the transitions depend on a constant-size
set of attributes in the previous state, using the technique of
Strehl, Diuk, and Littman (2007). This captures a family of
conditional effects, in which any given fluent only has con-
ditional effects depending on a small family of other fluents.
Or, indeed, it may similarly be extended to domains in which
the fluents take values from a larger discrete set. In turn, this
allows us to consider domains in which there are dependen-
cies among small sets of fluents, by treating the entire block
as a vector-valued fluent.

There are, of course, limits to how far we may extend
the approach: learning arbitrary graphical model represen-
tations with unknown structures is known to be hard in var-
ious senses (Chickering 1996; Chickering, Heckerman, and
Meek 2004). But, concretely, it is still not clear how rich a
fragment of PPDDL we can learn efficiently: Can we learn
products of arbitrary small-support distributions? Can we
learn exogenous effects? What about models of domains
with continuous state spaces? We leave these to future work.
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