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Abstract— Serious games (SGs) are a practice of growing
importance due to their high potential as an educational tool
for augmented learning. However, little effort has been devoted
to address student learning optimization in an SG from a
systematic point of view. This article tackles this challenge
by developing a learning-embedded attribute Petri net (LAPN)
model to represent game flow and student learning decision-
makings. The dynamics of learner behaviors in game are then
addressed through the incorporation of learning mechanisms (i.e.,
reinforcement learning (RL) and random forest classification)
into the Petri net model for knowledge reasoning and learning.
Finally, an algorithm based on LAPN is proposed, aiming to guide
learners to achieve a faster and better solution to problem-solving
in game. The benefit of the proposed model and algorithm is then
demonstrated in the SG Gridlock.

Index Terms— Learning optimization, Petri nets (PNs), serious
game (SG).

I. INTRODUCTION

CONSIDERABLE interest has been devoted to the pursuit
of learning and training both through and with digital

games. The so-called serious games (SGs) are “computer-
based games with a primary purpose other than entertain-
ment” [1]. Compared to traditional textbook-driven lecturing,
educational SGs offer many more benefits than just visualiza-
tion. These games are interactions within immersive virtual
worlds that promote learning and problem-solving through
authentic and engaging play [2]. Experiential consequentiality
and various rewards embedded in them motivate players to
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develop their skills at their own pace in a nonjudgmental but
competitive and fun environment [3], [4].

A perusal of current literature reveals that although SGs
contain pedagogical aspects, most of them are based on
unguided discovery [5]. While such minimal guidance might
work for self-motivated players, it can be very frustrating for
those who lack motivation and prior knowledge, resulting in
memory overwork and decreased learning [6]. A number of
studies have undertaken this issue and explored the ways of
providing scaffolding in games without disrupting engage-
ment and fun. One group examines various ways to embed
assessment directly into games [7]–[10]. The purpose of this
embedded assessment is to collect gameplay information and
infer players’ capabilities and degrees of knowledge. A second,
similar line of work focuses on the support in games for
learners’ cognitive development [11]–[13]. The guidance is
often designed generically to fit all players. From our prior
study [14], we found that such standardized guidance does not
always meet individual player’s needs. Understanding personal
differences through gameplay behaviors and offering guidance
tailored directly to their needs is emerging as a predominant
issue in the current educational SG development.

To model a player, it is necessary to predict their cognitive,
affective, and behavioral patterns. This modeling process has
been an important area of research in the game community.
Two recent and quite comprehensive reviews of the relevant
literature are provided in [15] and [16]. For the purpose of
our investigation, it is of interest to note the following from
all the works discussed in [15] and [16]: 1) while a majority
of model-based (top-down) approaches rely on social science
theories to capture students’ cognitive development, few of
them attempt to model and optimize the sequence of learning
in games and 2) while data-driven approaches using artificial
intelligence and data mining techniques have gained much
attention for player modeling in educational games, there has
yet to be any effort to break deeper learning processes down
into simpler and discrete mechanisms in games. In fact, educa-
tional games can be considered structured virtual environments
where a sequence of learning is choreographed with tasks
embodying units of domain-specific knowledge to be acquired
by players. Therefore, a hybrid method, which takes advantage
of both a formal model to characterize the in-game learning
structure and a data-driven approach to explore a potentially
large space of player interactions, is desirable to maximize
learning.
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Motivated by the above general remarks, this article
proposes a systematic approach to address the dynamics of
learner behaviors in educational games for learning optimiza-
tion and makes contributions in two areas. First, we present
a special class of Petri nets (PNs) called learning-embedded
attributed Petri nets (LAPNs), which are designed to represent
a learner’s knowledge, reasoning, and learning process. A set
of attributes are associated with tokens in LAPN to represent
the personal differences of various learners. The well-formed
formalism of PNs makes it practical to explicitly model all
possible decisions that a specific player can take in game,
along with the inputs and outputs of each action. Second,
the incorporation of learning mechanisms (i.e., reinforcement
learning (RL) and random forest (RF) classification) into the
PN allows the system to automatically infer new knowledge
and make better decisions, evolving over time. The rest of this
article is organized as follows. The core game mechanics is
presented in Section II. The LAPN that models the dynamic
gameplay flow of a learner is illustrated in Section III, based
on which the learning optimization process is conducted in
Section IV followed by a case study in Section V. Finally,
conclusions and perspectives are offered in Section VI.

II. GAME CHARACTERIZATION

As pointed out in [17], many attempts have been made to
harness the learning potential of games to deliver educational
contents and intellectually engage students to solve problems.
Such games often operate under the principle of four-step
problem-solving: 1) problem comprehension and definition;
2) solution generation; 3) plan execution; and 4) solution
revisit and improvement [18]. SGs designed with an ultimate
problem-solving goal, therefore, can be partitioned into ω
small tasks, each of which embodies a set of content knowl-
edge that is part of the overall problem solution. Such a
small task can be represented within the game environment
by a mini-game, challenge, quiz, reading materials, or other
educational or entertaining content. Regardless of a linear or
nonlinear relationship of those tasks, completing a task not
only provides learners with access to more tasks but also
moves them one step closer to the final problem-solving goal.
Consequently, as students play through this task-focused game,
they must continually achieve higher understanding of the
content to be able to progress.

As a learner plays, their performance can be easily measured
through various metrics within the game environment. These
responses to game stimuli can be quantized and recorded. For
a player X i , their responses in the ωth problem-solving task
then form a feature vector vω(Xi) = (xi1, xi2, . . . xiN ), where
|vω(Xi)| = N and N is the number of features considered in
the ωth problem-solving task that measures the performance
of Xi . A set of these vectors then serves as an input to the
player model discussed later. In this article, we consider the
following two types of player inputs as numerical elements of
our student feature vectors.

A. In-Game Stimuli

Educational games often incorporate pedagogical strategies
to elicit as many responses as possible from players during

their gameplay. For instance, timely and context-sensitive
question prompts have been proven as an important way
of stimulating learners [19]. Speed-, accuracy-, or self-
confidence-related measures of a player’s answers to those
prompts directly reflect his cognitive processes, which in turn
can affect the player’s experience or perception of the game
world.

One of the main challenges in any game is teaching a player
how to play. In educational games, the problem is further
magnified by the high knowledge demand put on players
when they are required to solve technical or educational
problems. To address this, educational games often embed
learning resources in addition to knowledge testing. Providing
timely hints/support to guide a student through his knowledge
acquisition is another viable method for this challenge.

B. External Stimuli

Games can also stimulate physiological changes within a
player, which can be reflected on his facial expression [20],
posture [21], gaze movement [22], and/or speech. These phys-
iological indicators can be connected to the player’s learning
state (e.g., focused, distracted, and lost). Such measurements
are meaningful to help understand a learner’s response when
their capacity to make decisions is compromised or sabotaged.

Combining all the aforementioned stimuli, educational
games can be designed to make decisions on how to guide
a player’s exploration through the game world (e.g., which
problem-solving tasks to tackle and in which order) and
how to scaffold player’s problem-solving processes (e.g.,
which knowledge to acquire and which help session to enter).
To maximize student learning within such an educational
game, these decisions are systematically modeled in
Section III.

III. LEARNING-EMBEDDED ATTRIBUTED PETRI NET

An SG can be viewed as a structured dynamic system where
an individual player is placed in a continuous mode of inter-
actions. As such, complex cognitive, affective, and behavioral
responses are developed over time to evolve the game world,
so to the player’s experiences. With these characteristics in
mind, this article extends a special class of Petri nets (PNs),
i.e., called learning-embedded attributed Petri nets (LAPNs),
to allow for a natural representation of players for in-game
play decision-makings: 1) players with different feature vec-
tors as attributes of tokens and 2) gameplay decisions as
input–output mapping of transitions. In addition, two types
of learning mechanisms are embedded with the model to
account for learner dynamics in game, so the parameters of the
model are adjusted by a data-driven approach through system
interaction and evolution. For clarity, Section III-A gives a
general definition of PNs. The adopted learning methods are
then briefly presented in Section III-B, followed by a tailored
LAPN definition in Section III-C.

A. Petri Nets

A PN is a graphical and mathematical tool for modeling,
formal analysis, and design of discrete-event systems [23].
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Pictorially, a PN is such a directed graph with places depicted
by circles, transitions pictured by bars, and directed arcs
connecting places to/from transitions. Each place may contain
no tokens or any positive number of tokens pictured by
small solid dots. As transitions within the PN are fired, the
tokens “flow” through the net. With this flow, the PN can
easily describe concurrent activities and keep track of limited
resources or, for example, the position of a player within an
SG in our case. Formally, a PN can be defined as follows.
Definition 1: A PN is defined as a five-tuple: PN = (P , T ,

I , O, M).

1) P = {p1, p2, . . . , pn} is a finite set of places that can
be used to represent objects, resources, or status.

2) T = {t1, t2, . . . , tm} is a finite set of transitions, P∪T �=
∅ and P ∩ T = ∅.

3) I : P × T → N is an input function that defines the set
of directed arcs from P to T , where N is a nonnegative
integer.

4) O : P×T → N is an output function that defines the set
of directed arcs from T to P , where N is a nonnegative
integer.

5) M : P → N is a marking vector. M(p) represents the
number of tokens in the p place.

Extended from this traditional definition, various PNs have
been proposed to allow for the construction of compact and
parameterized models for different aspects of the modeled
systems. For instance, time can be introduced to PNs and can
be associated with places, transitions, and/or arcs to analyze
the system performance [24], [25]. Predicate/transition nets
have arcs to specify predicate [25], [26], and colored PNs
allow tokens to carry values [25]. These extended PNs have
seen applications in manufacturing [27]–[29] due to the ability
of these nets to manage and track resources. They have even
seen use in web service discovery [30], which works on
human-centric data, similar to our approach that extends the
traditional PN to model dynamic behaviors of learners in
an SG.

B. Learning Mechanisms

The process of optimizing student learning in an educational
SG can be modeled as a sequence of decisions selected from
a set of feasible options. Starting from the initial game state,
these options, in general, are contingent upon a player’s current
condition and their perceived learning needs. The goal of the
system’s decision-making is to advance the player one step
closer to completing the game. From an operational standpoint,
the derivation of the optimal sequence of player actions is
straightforward in principle. However, much of the player
information necessary for such decision-making is not readily
available and can only be observed during the learning process,
making for a challenging optimization problem.

Any attempt to account for player interactions with complex
and uncertain environment must make use of a feedback
mechanism that allows the system to monitor and assess
players, must bring newly available “knowledge” into consid-
eration for system decisions, and must be alert constantly to
any possible changes in the underlying system environment.

Fig. 1. Basic architecture of RL.

This approach is often characterized as online learning or data-
driven approach. To that end, this article introduces two intel-
ligent computing methods into the proposed PN framework to
enable the learning capability of PN. With the augmentation,
the proposed model not only provides a solid structure to
manage the flow of play but also can learn and decide the
action most appropriate for the player to take.
1) Random Forest: A random forest (RF) classifier is an

ensemble of decision trees that provides an easy way to
handle categorical, ordered, or numerical data. Each tree is
grown from a subset of the original training data, where
k features are randomly chosen from all N features in the
training step (k � N). When training the tree, the Gini
impurity [31] is used to select the best feature by which to
split the training dataset at each node of the tree until the
tree completely grows. Typically, the Gini impurity calculates
the probability of a randomly chosen feature being incorrectly
classified, so the training process focuses on minimizing this
probability. Finally, for each data point sent into the RF, the
category with the largest number of votes is selected as the
result of classification. Considering that various types of data
exist in player modeling, RF is used to classify the player’s
performance in terms of the efficiency and effectiveness of the
player’s solution to problem-solving tasks. We refer readers
to [32] for the technical detail.
2) Reinforcement Learning: As shown in Fig. 1, reinforce-

ment learning (RL) typically involves a learning controller
called an agent that commands a sequence of actions to evolve
the environment in a discrete state space [33]. The agent
always follows a policy π and attempts to take the optimal
action in the current state to maximize both immediate and
future rewards defined as a state–action Q value function
Q(s, µ) [34]

Qπ (s, µ) = Eπ

[ ∞∑
k=0

γ kr j+k+1

∣∣s j = s, a j = µ,π

]
(1)

where is r j is a numerical reward given to the agent by the
environment after taking action µ in state s, γ ∈ [0, 1] is the
discount factor that determines the weight of future rewards,
and Eπ [·] is the expected reward that the agent will obtain
given that the agent follows policy π . Note that γ ∈ [0, 1],
meaning that the infinite sum in (1) would have a finite value
as long as the reward is bounded. When γ = 0, the agent
is nearsighted and only prioritizes immediate rewards. When
γ = 1, the agent is farsighted and attempts to maximize all
rewards. Typically, 0 < γ < 1.

Here, the policy determines the probability of an agent
selecting action µ when in state s that can be calculated using
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Max–Boltzmann exploration [34]

π(s, µ) = e
Q(s,µ)

�∑n
j=1 e

Q(s,µ j)
�

(2)

where � is the temperature parameter that determines the uni-
formity of the probability spread, with higher values leading
to a more uniform distribution. The value of � is dependent
on the rewards given in a specific environment and can often
be obtained through experimentation.

C. Learning-Embedded Attributed Petri Nets

Considering the heterogeneity of players’ mastery of
domain knowledge necessary for solving problems in game,
attributes and their classifications are introduced into the
previously defined PN model and associated with a particular
set of places as defined in the following:

a(p) = 〈∪ω{vω(p), δ(vω(p)}〉 (3)

where vω(p) is the feature vector of the player represented
by p in the ωth game stage and δ(vω(p)) is the feature
vector’s class. For a player first coming into the game system,
the attribute is initially set as 〈·〉, where 〈·〉 indicates that
measurement and classification have yet to take place.

As stated in Section I, minimally guided instructional
approaches are less effective and efficient. Desirable edu-
cational games should have mechanisms to not only elicit
but also evaluate a player’s experiences, based on which
an optimal action that best fits the player’s needs can be
recommended for them. The evaluation and decision-making
processes are modeled in LAPN as typical classification and
action transitions, respectively.

The detailed definition of an LAPN is given in the
following.
Definition 2: An LAPN is an extension of PN with seven-

tuple: LAPN = (P , T , I , O, M , A, ρ)
1) P is a nonempty set, where P = Pb ∪ Pe. The set of

places in Pb represents player flow in game, and the set
of places in Pe represents various game support.

a) Pb ∩ Pe = ∅.
b) There is a unique p ∈ Pb such that • p = ∅. This

place is usually named root.
c) ∀p ∈ P, p• = ∅, p is called a leaf.

2) T is partitioned into three subsets T = T g ∪ T h ∪ T l .
The set of transitions in T g represents the classification
based on the current player attribute, T h player actions,
and T l player following various game support.

3) A: Pb → 〈Uω{vω(p), δ(vω(p)}〉 is a mapping function
that maps p to a union of two-tuple. ∃p ∈ Pb the root
place, a(p) = 〈·〉.

4) ρ : T h ∪ T l → [0, 1] is a mapping function that maps
t to a value, indicating the probability of selecting the
action or game support transition t when the player at p,
where p ∈ •t ∩ p ∈ Pb.

As stated earlier, educational games often make use of
various stimuli to elicit players’ responses to ensure accurate
player profiles in terms of knowledge mastery or learning

preferences. To that end, the elicitation and RF classification
are used and modeled as a special class of transitions T g ,
whose firings change the attribute and its corresponding class
of their outgoing places Pb.

In the context of learning optimization in educational games,
each player’s experiences also form an episode of states
and state transitions in RL that can be directly modeled by
Pb, T h , and T l in LAPN. As a result, a set of Q values
calculated by (1) can be defined over the pairs (p, t), where
p ∈ Pb and t ∈ T h ∪T l . Furthermore, the interpretation of the
optimal Q value under a given policy in (2) is then directly
connected to ρ(t), recommending the player to always take
the action assigned the highest probability and, by extension,
the highest estimated improvement in their player profile (i.e.,
firing the transition t with the highest ρ(t)).

The transition enabling and firing rules are then defined in
Definition 3.
Definition 3: The enabling and firing rules are as follows.

1) A transition t ∈ T in LAPN is enabled if for all p ∈ •t

M(p) ≥ I (p, t).

2) Firing an enabled t ∈ T g yields

M ′(p) = M(p) − I (p, t) + O(p, t)

∀p ∈ •t ∪ Pb, ∃q ∈ t• ∩ Pb

a(q) = 〈∪ω{Update(vω(p)),

RFClassi f y(vω(p))}〉 (4)

where Update() is the function to measure the player p
feature vector and RFClassify() is the function of RF
classification [32].

3) Firing an enabled t ∈ T h ∪ T l with the highest ρ(t)
yields

M ′(p) = M(p) − I (p, t) + O(p, t)

∀p ∈ •t ∪ Pb, ∃q ∈ t• ∩ Pb

a(q) = a(p).

IV. LEARNING OPTIMIZATION

Research has found that learning is often maximized when
the learner is actively involved in the cognitive process of
problem-solving and receives timely feedback to reflect and
regulate this process. In LAPN, each player’s involvement is
tracked through the game flow, which is modeled as the token
moving through a sequence of places in Pb. The player’s
responses to various stimuli are then measured at discrete
times. As the player’s in-game behavior directly impacts the
individualized guidance recommended to them, the feature
vectors are introduced to represent player aptitudes, as are
the classifications via the RF. Thus, this combined set of
information is designed to inform the system and steer the
feedback given to the students.

At any point in time, the game system selects the best action
from an action pool to the player according to his attribute at
a certain game state. Such state–action pairs are modeled as
the pairs (p, t) in LAPN, where p ∈ Pb and t ∈ T h ∪ T l .
A probability value is then introduced to each action/support
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transition and is updated via RL policy using (2). This policy
is continually altered based on the player’s attribute and
some evaluative feedback that determines the numerical reward
given to the system. This numerical reward, in this case,
can be directly based off improvements (or declines) in the
student’s performance indicators. In other words, the game
system continuously observes player behavior and iteratively
learns the best action to take at any time.

Finally, the learning optimization algorithm is proposed
with the aim to maximize the efficiency and effectiveness
of a player’s solution in terms of less iterations and errors.
The process can be done by identifying the order of actions
(i.e., action transition firing in LAPN) that maximizes the
accumulated rewards. Based on the structure of the LAPN,
the objective is then achieved by traversing the LAPN from the
root place and selecting the action transition with the highest
probability. The detail is given in Algorithm 1. Fig. 2 summa-
rizes the overall logic of the approach.

Algorithm 1 LAPN Learning Optimization
1. SET Z = {p0}, assuming p0 is the root place for a

player to start the game
2. SET TS = ∅ (TS - action/support transition set)
3. WHILE (Z �= ∅) DO:
4. FOR each node p in Z DO:
5. SET H(p) = ∅ (H(p) - outgoing transition set of p)
6. IF ∀t ∈ p• ∩ t ∈ T g

7. Fire t , update the attribute and class of the
player’s token using Eq. 4, and deposit it into t•

8. ELSE IF ∀t ∈ p• ∩ t ∈ T h ∪ T l

9. H(p) = H (p) ∪ {t}
10. Update ρ(t)
11. Order transitions in H (p) in a descending

order of their ρ(t)
12. Select the first transaction t in H(p) to fire, and

deposit token(s) with the attribute and
class unchanged into t•

13. Z = Z ∪ {t• ∩ Pb}
14. T S = T S ∪ {t}
15. Z = Z − {p}
16. END

V. CASE STUDY

To better understand our method, this section presents a case
study, where the LAPN model and associated optimization
algorithm are applied to an existing SG called Gridlock.
Section V-A briefly describes the game logic and its LAPN
representation, whereas Section V-B details the results from
a comparison test of Gridlock with and without learning
optimization.

A. Gridlock Modeling

Gridlock is a first-person SG that positions a player in a
four-way intersection to witness a serious traffic accident due
to malfunctional traffic lights [32]. The player is then assigned
to solve the problem using his knowledge, skills, and concepts

Fig. 2. Logic of player action planning.

learned in curricular content (for this case, sequential circuit
design in digital logic design) to solve the problem. Doing this,
transformational play is designed to spark his interest and lead
to deeper engagement with the content presented.
Gridlock splits up the final design goal of a traffic light con-

troller into eight problem-solving sections, each of which tasks
students with specific concepts related to the overall goal, such
as binary logic, finite state machine design, and Verilog code
syntax. We refer these problem-solving sections as subject-
specific learning blocks. To provide a guided learning and
problem-solving experience, Gridlock integrates interventions
throughout the game to elicit the following player responses.

1) Question Prompts and Answers: A set of questions on
the related content knowledge is embedded in each
game section. The player’s answers to those questions
are evaluated based on their correctness. Other metrics
from prompts are also recorded, including time taken to
answer and a student-provided confidence level.

2) Emotion Values: A facial emotion detection engine is
integrated with the game to provide the classification of
seven standard emotions: happiness, sadness, surprise,
fear, disgust, anger, and neutral.

3) A frustration metric is measured and defined as a func-
tion of the player’s sporadic rapid mouse movements or
keyboard strokes over set periods of time.

The overall system can be visualized as a virtual game
connected with an adaptation engine. Fig. 3 shows the system
architecture of Gridlock. Within the game, the learning phase
contains the content-specific problem-solving sections that the
game directs students to. As the student plays, the adaptation
engine collects data, feeding it to the RL decision-making
component. This component computes transition probabilities
for the LAPN, which tracks and directs the student to the
various blocks and selects personalized assistance to provide
within said blocks.

Fig. 4 shows the LAPN of Gridlock. Note that the portion of
the LAPN for each subject-specific block is structurally iden-
tical. Therefore, not all blocks are shown in Fig. 4 for clarity.
Blocks 1 and ω are presented in detail, while other blocks are
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Fig. 3. Overall system architecture of Gridlock.

Fig. 4. LAPN of Gridlock.

omitted with dashed rectangles and ellipses representing their
functional positions in the LAPN model.

A player/student is initialized in pb01, indicating their starting
position in the game. A preliminary measure is then conducted
and classified via t g01, based on which the player with the
initial attributes and associated class in pb02 is guided into one
of the subject-specific blocks modeled as a set of transitions
{th11, t

h
21, . . . , thn1}, where n = 8 in Gridlock. In fact, the

Q value defined over each pair (pb02,t
h
y1), y = 1, 2, . . . , n

is calculated, which updates the corresponding probabilistic
value ρ(thy1). The transition with the highest ρ will be fired,
leading the player into the learning block that can best improve
his relevant knowledge.

In each subject-specific block (using Block 1 as the exam-
ple), there is m1 learning support {t l11, t

l
12, . . . , t

l
1m1

} for a
player to choose. A similar Q-learning process is then carried
out to guide him taking the best support. It is expected
that the chosen support will improve the player’s skill and
knowledge level. Thus, an updated set of feature vectors is
measured after the player takes the action and evaluated via t g11.
Depending on improvements in the player’s performance and
mastery of the tasks given in the block, the player can be
kept in a feedback loop (th12) of repeated assistance until they
demonstrate sufficient grasp of the concept, at which point
they are returned to the main decision state, pb02.

To exemplify the system’s decision-making process and
demonstrate the performance of the proposed approach,
a reduced version of Gridlock with three subject-specific
learning blocks is considered in a case study where three types
of measures are conducted for each subject, which are given
in the following.

1) Average quiz score on the questions related to a specific
concept in the range [0.0, 1.0] with 1.0 being a perfect
score.

2) Total time taken to answer the related questions in a
number of seconds.

3) Average confidence on their answers to the related ques-
tions in the range [1.0, 5.0] with 1 being not confident at
all and 5 being very confident. In Gridlock, these values
are obtained by a student self-rating system that asks
students to rate their own confidence in their answer
from not confident (1) to very confident (5).

When an average-performance-level student enters the
game, Algorithm 1 starts its execution through the LAPN and
the action/support sequence TS for the student is obtained.
First, the token representing this player in pb01 with 〈·〉 attribute
triggers the firing of t g01, leading a new token with the following
attribute deposited into pb02 via (4). Note that the classification
values through the RF classifier are in the range [1, 3] with
1 being a bad score and 3 being a good score

a
(
pb02

) = 〈{[0.55, 41.2, 4.0], 1},
{[1.00, 18.4, 5.0], 3}, {[1.00, 48.7, 2.5], 2}〉.

The above data show that the student had a low overall
score and a longer than average time in the first block. They
also indicated lower confidence in their answers, leading to
a classification score 1 by the system. Meanwhile, the third
block showed completely correct answers but still had a longer
than average time. Furthermore, the student was not confident
in their answers, leading to a classification score of 2.

Based on the attribute and classification, the system shows
the Q values in the following. These values are learned by
the system as it interacts with students, and they represent
the total improvement expected for the given student when
entering into each block

Q
(
a(pb02), t

h
y1

) = {8.216,−23.780, 7.739}.
As shown, the system expects that firing transition 2 is

expected to lead to a decrease in performance since the student
has already demonstrated mastery of that content. Using
those Q values and an experimentally determined temperature
value � = 9, the system updates the transition probabilities
of th11–th31 using (2)

ρ
(
th11

) = 0.621; ρ(th21) = 0.003; ρ(t h31) = 0.377.

The system prioritizes the blocks in order and focuses on
blocks the student shows low mastery in, skipping blocks that
show higher levels of mastery. In this case, transition th11 is
selected to fire and move the student into learning block 1,
even though all transitions th11–th31 are enabled. A new token
with the same attribute and classification is then deposited into
pb11, which is a(pb11) = a(pb02).
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TABLE I

MANN–WHITNEY TEST COMPARISON

In learning block 1, there are m1 = 5 possible help
actions in this case. A similar process of calculating Q
values and updating transition probabilities is conducted on
transition t l11–t l15 based on a(pb11) as shown in the following:

ρ
(
t l11

) = 0.140; ρ
(
t l12

) = 0.087; ρ
(
tl13

) = 0.428

ρ
(
t l14

) = 0.157; ρ
(
t l15

) = 0.188.

These probabilities for the help actions represent the esti-
mated improvement the student will have from each of these
actions based on the past experience. In this case, action 3 (t l13)
is selected to help this student. His attribute is then remeasured
and classified in t g11 via (4)

a
(
pb13

) = 〈{[1.00, 34.4, 4.5], 3},
{[1.00, 18.4, 5.0], 3}, {[1.00, 48.7, 2.5], 2}〉.

This process repeats a feedback loop of entering blocks,
getting help, and updating attributes and classes until all three
blocks show positive classifications that finally take the student
to finish the game.

B. Comparison Results

The first set of experiments considers three cases. In the
baseline case, a group of 53 students1 played a standard
version of Gridlock with the learning optimization schema
disabled. In this case, students were free to explore Gridlock at
their own pace and view content in any order they chose. They
also played through all subject-specific blocks, regardless of
their demonstrated proficiency. As such, students might play
through sections of content that they had already mastered.
Their recorded game performance is referred to here as the
baseline case.

The players’ responses to the game stimuli were measured
at the beginning of the game as the initial feature vectors.
The initial attributes of these 53 students were then input to
a simulated case, where the system mimics how students play
Gridlock with no guidance, referred to as the simulated case.
The third case, so-called the proposed case, is an adjusted
version of the simulated case with the same initial attributes
of the 53 students as inputs but making use of the proposed
learning optimization algorithm.

To show the difference between the three cases, the aver-
aged time taken to complete each of the subject-specific
blocks is measured and accumulated to calculate the overall
time for game completion. Fig. 5 shows the comparison of
the average game completion time between the three cases.
The simulated case provides an accurate estimate of the
baseline case, showing that the system can indeed simulate

1The study has been approved by the Rowan University IRB Board since
2019.

Fig. 5. Comparison of game completion time between the baseline and the
proposed cases.

student performance. The proposed case, meanwhile, shows an
improvement over the simulated case, indicating an effective
proof-of-concept for the proposed system.

In addition, the baseline case is compared with the simulated
and the proposed one, respectively. Mann–Whitney tests are
used to measure their differences. As shown in Table I, the
simulated case offers a statistically good approximation of
students playing Gridlock in reality as there is no signifi-
cant difference in student game completion time between the
baseline and simulated cases (p > 0.05). On the contrary,
a statistically significant difference is found when comparing
the proposed case with the baseline one (p � 0.05). The
proposed method guides a player in a way that focuses better
on the content the player has issues with while skipping over
the content that he has already mastered. In doing so, the
game focuses on improving the player’s areas of difficulty,
so they can learn to solve the problem quickly and efficiently.
Overall, players in the proposed case take less attempts to
solve problems with less mistakes, resulting in a faster and
better game experience.

To show the effectiveness of the system on different levels of
students, a subset of 40 students is then split into groups based
on their classroom performance as indicated by their grade
point average (GPA). The average game completion time is
compared between the baseline and proposed cases, as shown
in Table II. Using these data, a 95% confidence interval for
the true mean difference in average game completion time
is calculated (the value of gα/2,b = g0.0025,3 = 2.353 from a
t-distribution table) as follows:

7.115 ± 2.353 ∗ 1.942√
4

or

4.830 ≤ θ1 − θ2 ≤ 9.400.
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TABLE II

COMPARISON OF AVERAGE GAME COMPLETION TIME FOR STUDENTS AT DIFFERENT LEVELS

This 95% confidence interval lies exclusively above zero,
providing strong evidence that the students with personalized
guidance in Gridlock outperform the ones without any sup-
port in game because the average game completion time is
significantly smaller statistically.

VI. CONCLUSION

SGs are emerging as an effective way of motivating and
supporting learning. Although games are capable of tracking
players’ behavior, there are a few comprehensive studies in
exploring the relation of game states and learning processes
to maximize learning. To address this deficiency, this arti-
cle proposes an LAPN model based on PNs, RL, and RF
classification. Student learning is then represented as discrete
intervention states in LAPN where individual player’s perfor-
mance is measured and characterized as attributes. Learner
dynamics in game are tackled through the embedded learning
mechanisms, so the parameters of the model are updated
online as the system evolves. Finally, the learning optimization
algorithm is derived based on LAPN to guide the player’s
decision-making at any given time, aiming to offer a faster and
better solution to each problem-solving task in game. From the
case study, the approach is found to be effective in decreasing
game completion time.

The research can be extended in several directions. The
proposed model and algorithm are designed to be easily
adopted for any SGs. When the number of game stimuli
increases, the size of the state space grows exponentially with
each additional feature added. Methods to deal with high-
dimensional state exploration deserve research efforts. Appling
our approach to other SGs is needed to further test its validity
and practicality for continuous improvement.
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