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A B S T R A C T   

Racial segregation in public education has been declared as unconstitutional for over 60 years in the United 
States. Yet many public school districts remain largely separate and unequal. A commonly used approach to 
reduce school segregation is redelineating school attendance zones to create more racially diverse classrooms. 
However, there is a need for a school districting approach that can minimize racial or socioeconomic segregation 
at the district level. In this paper, we develop a spatial optimization model that delineates school attendance 
zones with the aim of minimizing racial segregation of school district to enable the assessment of the impacts of 
school attendance zones on the racial segregation of school district. Applications of this model to Riverside 
Unified School District (RUSD) and San Diego Unified School District (SDUSD) in California, USA show that it is 
possible to reduce racial segregation by 64% at RUSD and 56% at SDUSD, demonstrating the potential of the 
proposed model.   

1. Introduction 

The racial and ethnic diversity of public K-12 schools in the U.S. have 
increased considerably in recent years. This is partly due to various 
desegregation measures implemented by school districts across the 
nation and partly because of the continuous decrease in the proportion 
of non-Hispanic white students [1–3]. However, hundreds of school 
districts in the U.S. are still under desegregation orders, and many others 
are actively developing integration plans to remedy de facto residential 
segregation in their districts [4,5]. 

A variety of desegregation techniques have been used, including 
public school choice, magnet schools, and busing of students within 
school districts and/or across multiple school districts [6]. While the 
public school choice and magnet schools are increasingly popular across 
the nation, more than 70% of children still attend the assigned public 
school based on school attendance zone (SAZ) boundaries delineated by 
school districts [7]. Adjusting SAZ boundaries or busing hav been 
considered to be essential strategies for reducing school segregation 
since the U.S. Supreme Court strongly encouraged segregated school 
districts to redraw SAZ to improve racial diversity in the 1970’s [3, 
8–10]. 

Many school districts and scholars have developed student assign
ment approaches that take into account racial and ethnical diversity. For 

example, many school districts under desegregation orders in the 1980s 
and 1990s adopted race-based student assignment policy requiring that 
each school has a certain percentage of minority students [11]. The 
race-based assignment policy was gradually replaced with 
socioeconomic-based assignment policy requiring that each school has a 
certain percentage of socioeconomically disadvantaged students since 
the early 2000s [9,11]. A variety of optimization models that are used to 
determine assignment of students to schools were also developed to 
support the integration of these requirements [12]; Diamond and Wright 
1987; [13–17]. For example, the Generic School Districting Problem 
(GdiP) by Ref. [14] include constraints to limit the percentage of mi
nority students that can be assigned to each school. While these racial or 
socioeconomic quotas can increase racial or socioeconomic diversity of 
some individual schools, previous research shows that racial or socio
economic segregation at the district level may not be reduced on 
aggregate, as diversity decreases in one school could be offset by di
versity increases in another school of the district [9,11,18]. Currently, 
methods designed to minimize racial or socioeconomic segregation at 
the district level remain underdeveloped. Such an assignment approach 
will allow district planners and researchers to assess the impacts of 
school attendance zones on the racial or socioeconomic segregation of 
the school district. 

In this paper we propose a new method that designs SAZs with the 
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aim of minimizing racial segregation of a school district. Specifically, we 
develop a spatial optimization model that determines student assign
ment to schools in a way that minimizes racial segregation measured for 
the school district while maintaining geographic proximity of assigned 
students to schools. A comparison between the actual SAZs and the 
counterfactual SAZs generated using this model can highlight the po
tential of school districts to reduce racial segregation by adjusting SAZ 
boundaries. In the next section, we provide a review of existing school 
districting methods. This is followed by details of our proposed model. 
Finally, the proposed method is applied to the analysis of racial segre
gation of Riverside Unified School District and San Diego Unified School 
District in California, USA. 

1.1. School districting 

The problems that focus on the assignment of students to schools by 
determining SAZ boundaries are widely referred to as school districting 
[14–16]. School district planners originally relied upon student pin 
maps where each pin represents a student home location to manually 
delineate SAZ boundaries. As computing resources have become 
increasingly cheaper and powerful, a variety of optimization models and 
solution techniques have been developed to assist with school 
districting. 

Much early work focuses on formulating the school districting 
problem as network flow problems where students are treated as com
modity flow from neighborhoods to schools because of the existence of 
fast algorithms for network flow problems [14,19–23]. However, the 
network flow problem cannot capture many unique characteristics of 
school districting problems, such as flexible capacity range, racial bal
ance of schools, SAZ zone stability, and multiple competing district 
planning goals [15]. Since the 1990s, scholars have adopted a more 
general mathematical programming formulation of the school district
ing problem. Here we present the classic formulation of the Generic 
School Districting Problem (GdiP) by Ref. [14]. Consider the following 
notation: 

Parameters: 

i = index of census units (I entire set) 
j = index of schools (J entire set) 
Si = number of students in census unit i 
Ni = number of minority students in census unit i 
Cj = capacity of school j 
Dij = transport cost from census unit i to school j 
FNhigh = fractional upper bound on minority enrollment 
FNlow = fractional lower bound on minority enrollment 

Decision variables: 

xij =

{
1, if students of unit i are assigned to school j
0, otherwise 

The number of students at census unit i is denoted as Si whereas the 
minority students is represented by Ni. Each school has a prespecified 
capacity Cj. The transportation cost between census unit i and school j, 
which is usually travel distance or travel time, is precomputed and noted 
as Dij. The minority enrollment percentage at each school is specified by 
a fractional lower and upper bound (FNhigh and FNlow). Binary decision 
variables Xij are used to ensure that all students at one census unit are 
assigned to the same school because splitting neighborhoods is usually 
undesirable due to negative social and political impacts [15,16]. With 
this notation the GdiP is formulated as follows: 

min
∑

i

∑

j
DijSixij (1) 

Subject to: 

∑

j
xij = 1, ∀i ∈ I (2)  

∑

i
Sixij ≤ Cj, ∀j ∈ J (3)  

∑

i

(
FNlowSi − Ni

)
xij ≤ 0, ∀j ∈ J (4)  

∑

i

(
Ni − FNhighSi

)
xij ≤ 0, ∀j ∈ J (5)  

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (6) 

The objective (1) is to minimize the total travel costs of the students 
of each census unit to their assigned schools. Constraint (2) ensures that 
each census unit is assigned to exactly one school. Constraint (3) stip
ulates that no school violates capacity usage. Constraints (4) and (5) 
specify the minimum and the maximum minority enrollment at each 
school. Constraint (6) imposes binary integer restrictions on decision 
variables. This formulation contains |I|*|J| decision variables and 3|J| +

|I| constraints, where || indicates the number of members in the associ
ated set. 

Many research efforts have extended the GdiP to incorporate other 
districting requirements and objectives. For example, geographical 
compactness of SAZ is integrated in Refs. [24,25]; multiple grades are 
taken into account in Refs. [15–17]; school opening and closure are 
considered in Refs. [17,26,27]; test score distributions are incorporated 
in Ref. [28]; geographical contiguity of SAZ is imposed in Refs. [25,29]. 
As the GdiP and its extensions are NP-hard in nature (Cohen 1979), 
various solution algorithms have also been used or developed for the 
school districting models. While some work uses existing 
integer-programming (IP) solution algorithms in commercial or 
open-source solvers to get optimal or near-optimal solutions of the 
models [17], a majority of literature relies upon customized heuristic 
algorithms to solve the models efficiently. Examples of these approaches 
include an implicit enumeration algorithm by Ref. [30]; a hybrid heu
ristic by Ref. [14]; a local search algorithm by Ref. [28]; a multi-stage 
regionalization algorithm by Ref. [25]; a spatially-constrained clus
tering algorithm by Ref. [29] and others. In addition, open-source 
spatial decision support systems (SDSS) integrating school districting 
optimization models have also been developed to allow district planners 
to interactively determine school attendance zones based on both 
modeling results and other policy considerations [16,31]. 

As the literature makes plain, school districting is an important and 
well-studied problem. However, none of the previously developed 
methods assigns students to schools in a way that minimizes racial or 
socioeconomic segregation of the school district, despite the fact that it 
remains among the major goals that school districts wish to achieve. 
This paper aims to fill this research gap by developing a new school 
districting model that can minimize racial segregation at the district 
level. 

1.2. School districting to minimize segregation 

While there is a lack of school districting methods that explicitly 
minimize racial/ethnic segregation of school districts, a large literature 
has measured racial/ethnic segregation patterns of public schools using 
various segregation indices. For instance, Farley et al. (1980), [32,33]; 
and [34] used the dissimilarity index to examine the racial/ethnical 
segregation of schools. [35] used the Gini index to measure school 
segregation and compare it with residential segregation patterns. [18, 
36] used the entropy index to assess school district racial/ethnic 
segregation. 

Here we calculate the racial segregation of school district using the 
dissimilarity index given that it is the mostly widely used segregation 
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measure and it is easy to interpret [37,38]. Specifically, the dissimilarity 
index of a school district, D, represents the percentage of the minority 
students that would have to change their schools for the two social 
groups to be evenly distributed across the entire school district. 
Following the previous notation the D can be defined as: 

D =
1
2

∑

j

⃒
⃒
⃒
⃒

∑
ixijNi

N
−

∑
ixijWi

W

⃒
⃒
⃒
⃒ (7)  

where the Wi represents the number of white students at census unit i, 
and N and W is the total number of non-white and white students in the 
school district, respectively. As xij is a binary variable indicating 
whether students at i is assigned to j, 

∑

i
xijWi and 

∑

i
xijNi represents the 

number of white and non-white students assigned to school j, respec
tively. The D varies from 0.0 to 1.0, with larger values indicating higher 
levels of segregation. 

With the definition of D our school districting model to minimize 
racial segregation is formulated as follows: 

minD (8) 

Subject to: 
∑

j
xij = 1, ∀i ∈ I (9)  

∑

i
Sixij ≤

(
1 + FChigh

j
)
Cj, ∀j ∈ J (10)  

∑

i
Sixij ≥

(
1 − FClow

j

)
Cj, ∀j ∈ J (11)  

Dijxij ≤ Tj, ∀i ∈ I, j ∈ J (12)  

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (13)  

where Tj = maximum transport cost allowed for students assigned to 
school j, FChigh

j = fractional upper bound on capacity usage at school j, 
and FClow

j = fractional lower bound on capacity usage at school j. 
Objective (8) is to minimize racial segregation among schools in the 

school district. Constraints (9) ensure that each census unit is assigned to 
exactly one school. Constraints (10) and (11) stipulate that no school 
violates capacity usage lower bound and upper bound. Constraints (12) 
specifies the maximum travel cost allowed for a school assignment. 
Constraints (13) impose binary integer restrictions on decision 
variables. 

There are several important differences between this new model and 
the GdiP. First, this model has the objective of minimize the racial 
segregation among schools but GdiP focuses on minimizing the trans
portation cost. Second, this model sets a capacity range requirement for 
each school by using FChigh and FClow rather than a simple capacity 
constraint in GdiP. This allows for the consideration of the potential of 
expanding existing schools and the utilization balance among all 
schools. For example, if FChigh = FClow = 20%, each school could 
accommodate as many students as 120% of current capacity and as few 
students as 80% of current capacity. Third, the geographic proximity 
between students and assigned schools are maintained by ensuring that 
no student will travel further than Tj to get to the assigned school. Such 
constraints, equation (12) could also encourage geographic compactness 

of the identified SAZs. 
While the dissimilarity index, D, has an absolute value operator, it 

can be linearized by introducing additional variables and constraints 
[39]. Specifically, we introduce auxiliary variable, zj, to linearize the 
objective function, and the model can be reformulated as follows:   

Subject to: 

constraints (9) − (13)

∑

i
(NiW − WiN)xij ≤ zj, ∀j ∈ J (15)  

∑

i
(WiN − NiW)xij ≤ zj, ∀j ∈ J (16) 

This linearized model has (|I| +1)*|J| decision variables and 
(|I| +4)*|J| + |I| constraints, which is larger in size compared with the 
original GdiP. As a result, this new model can be solved using existing IP 
solvers, although solving this model optimally might be computationally 
demanding as are the GdiP and other school districting models in this 
class. 

1.3. Case studies 

We apply the proposed model to evaluate the racial segregation of 
San Diego Unified School District (SDUSD) and Riverside Unified School 
District (RUSD) in California, USA. We obtain the 2015–2016 public 
school data from the National Center for Education Statistics Common 
Core of Data (NCES CCD). The NCES CCD reports the school location and 
number of enrolled students for each grade offered and classify them 
into seven racial/ethnic categories: Hispanic, non-Hispanic American 
Indian/Alaska Native, non-Hispanic Asian, non-Hispanic Black, non- 
Hispanic White, non-Hispanic Hawaiian Native/Pacific Islander, and 
non-Hispanic Two or More races. Here non-Hispanic White is considered 
as the majority and all other racial/ethnic categories are considered as 
the minority. All elementary schools that offer 1st grade are included in 
the study. Since most racial diversity requirements are imposed for the 
base year, we calculate racial segregation for school district using only 
1st grade students [15]. In addition to the NCES CCD school data, the 
number of non-Hispanic White and minority students for 1st grade at 
each census block group is obtained from the 2014–2018 American 
Community Survey (ACS) school enrollment data to determine student 
assignment using the proposed model. The block group is the smallest 
unit for which the Census reports school enrollment by race. 

The 2015–2016 NCES CCD shows that there are 30 elementary 
schools at RUSD that offer 1st grade. The total number of enrolled stu
dents for 1st grade is 2,890, with 625 non-Hispanic White students and 
2265 students of minorities. Table 1 shows the number of the current 
enrollment from the NCES CCD. The column “NCESSCH” is the unique 
school ID from the NCES CCD. While the district student enrollment is 
19% non-Hispanic White students in RUSD, five out of 30 schools have 
more than 40% non-Hispanic White students. Fig. 1 depicts the existing 
student assignments to each school based on the SAZs delineated by the 
RUSD. As it shows, these five schools, including Tomas Rivera 
Elementary, Benjamin Franklin Elementary, Woodcrest Elementary, 

min
1
2

∑

j

⃒
⃒
⃒
⃒

∑
ixijNi

N
−

∑
ixijWi

W

⃒
⃒
⃒
⃒ = min

1
2NW

∑

j

⃒
⃒
⃒
⃒
⃒

∑

i
(NiW − WiN)xij

⃒
⃒
⃒
⃒
⃒
= min

1
2NW

∑

j
zj (14)   
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John F. Kennedy Elementary, and Lake Mathews Elementary, are all 
sited in south Riverside where most residents are non-Hispanic White. 
While many SAZs are contiguous, ten out of 30 schools are fragmented, 
such as Victoria Elementary and Jefferson Elementary. It is also 
important to note that the actual SAZ might split block groups because 
the school district may not define the SAZs according to block group 
boundaries. As the NCES CCD enrollment data do not specify where the 
students at each school are coming from, we assign a block group to a 
school if its centroids fall inside of the SAZ to assess the students’ travel 

time. We calculated the travel time between block group centroids and 
schools using ESRI StreetMap Premium. The average travel time for the 
students is 3.88 min. 

We first use the index of dissimilarity to measure the actual racial 
segregation of RUSD based on the NCES CCD enrollment. The results 
show that the Dissimilarity index in RUSD, according to the currently- 
drawn school attendance zones is 0.33, indicating that 33% of either 
group must move to a different school for the two groups to be equally 
distributed. [34]. indicated that a score of 60 or above is considered very 
high, a score of 40–50 represents moderate levels of segregation, and a 
score of 30 or less is considered low. The question, then, is whether it is 
possible to further reduce the racial segregation of RUSD by reallocating 
students within RUSD. If so, how much racial segregation could be 
potentially reduced? 

We then apply the proposed school districting model to address these 
questions. The 2014–2018 ACS shows that there are 153 block groups 
within RUSD. These block groups have 3299 1st grade students, with 
623 non-Hispanic White students and 2676 students of minorities. 
Compared with the NCES CCD enrollment, these block groups have 
14.15% more students, 0.32% less non-Hispanic white students, and 
18.15% more students of minorities. These differences could be attrib
uted to private school enrollment and survey collection period differ
ences. As the NCES CCD does not report school capacity, we use the total 
number of enrolled students as a proxy for the school capacity (Cj). The 
fractional lower and upper bound on capacity usage, FClow

j andFChigh
j , are 

both set as 0.3 across all the schools for simplicity to ensure that the 
maximum number of students assigned to each school is 1.3 times of 
current enrollment and the minimum number of students assigned is 0.7 
times of current enrollment. The travel time between block group cen
troids and schools are pre-calculated using ESRI StreetMap Premium and 
the maximum transport cost Tj is set as 30 min. 

The school districting model is structured using Python, and subse
quently solved using a commercial IP solver, Gurobi. Computational 
processing was carried out on a MS Windows-based, Intel Core i-9 CPU 
(2.30 GHz) computer with 32 GB of RAM. It takes 101 s to solve the 
model optimally. The results show that the minimum level of racial 
segregation we could achieve at RUSD by reallocating students is 0.12, 
which is a 64% reduction compared with the current Dissimilarity value 
of 0.33. Table 2 shows the number of non-Hispanic White and minority 
students allocated to each school by the model. The student assignment 
identified from the model clearly reaches a much more evenly distrib
uted racial diversity across these schools. The maximum share of non- 
Hispanic White students is 31% at Washington Elementary. The share 
of non-Hispanic White students in these five schools that have more than 
40% of non-Hispanic White enrolled students are now significantly 
reduced under the model-determined assignment. For example, the 
student body at Tomas Rivera Elementary will be only 9% non-Hispanic 
White compared with current enrollment at 44%; The student body at 
Woodcrest Elementary will be only 11% non-Hispanic White compared 
with the current share of 46%. The model-determined student assign
ments are shown in Fig. 2. Compared with the existing assignments 
(Fig. 1), the model-determined assignments clearly result in greater 
travel time for students and more fragmented and irregular attendance 
zone boundaries, albeit with greatly reduced racial/ethnic segregation. 
The average travel time for the students becomes 12.57 min. In addition, 
as many as 3224 students (97%) will need to change school based on this 
segregation minimization assignment. The average compactness, 
measured as the ratio of the delineated zone’s area and the area of its 
bounding circle, decreases from 0.31 for Figs. 1 to 0.10 for Fig. 2. 

We also use the proposed model to evaluate the racial segregation of 
SDUSD. The 2015–2016 NCES CCD shows that there are 149 elementary 
schools at SDUSD that offer 1st grade. The total number of enrolled 
students for 1st grade is 9,856, with 2341 non-Hispanic White students 
and 7515 students of minorities. The results show that the current 
Dissimilarity index in SDUSD is 0.54. According to the 2014–2018 ACS, 

Table 1 
The current 1st grade student enrollment at RUSD.  

School Total current 
enrollment 

Non-Hispanic White 
student current 
enrollment 

Minority student 
current 
enrollment 

Tomas Rivera 
Elementary 

95 42 (44%) 53 (56%) 

Adams 
Elementary 

73 13 (18%) 60 (82%) 

Alcott Elementary 99 27 (27%) 72 (73%) 
Bryant 

Elementary 
59 13 (22%) 46 (78%) 

Castle View 
Elementary 

87 19 (22%) 68 (78%) 

Emerson 
Elementary 

100 10 (10%) 90 (90%) 

Fremont 
Elementary 

73 4 (5%) 69 (95%) 

Harrison 
Elementary 

71 18 (25%) 53 (75%) 

Hawthorne 
Elementary 

109 17 (16%) 92 (84%) 

Highgrove 
Elementary 

82 3 (4%) 79 (96%) 

Highland 
Elementary 

86 14 (16%) 72 (84%) 

Jackson 
Elementary 

87 8 (9%) 79 (91%) 

Jefferson 
Elementary 

138 17 (12%) 121 (88%) 

Liberty 
Elementary 

91 8 (9%) 83 (91%) 

Longfellow 
Elementary 

111 3 (3%) 108 (97%) 

Madison 
Elementary 

92 9 (10%) 83 (90%) 

Magnolia 
Elementary 

74 15 (20%) 59 (80%) 

Monroe 
Elementary 

100 11 (11%) 89 (89%) 

Mountain View 
Elementary 

101 11 (11%) 90 (89%) 

Pachappa 
Elementary 

109 27 (25%) 82 (75%) 

Victoria 
Elementary 

83 12 (14%) 71 (86%) 

Washington 
Elementary 

124 28 (23%) 96 (77%) 

Woodcrest 
Elementary 

81 37 (46%) 44 (54%) 

William Howard 
Taft Elementary 

102 23 (23%) 79 (77%) 

Benjamin Franklin 
Elementary 

97 40 (41%) 57 (59%) 

John F. Kennedy 
Elementary 

134 60 (45%) 74 (55%) 

Lake Mathews 
Elementary 

109 55 (50%) 54 (50%) 

Mark Twain 
Elementary 

154 56 (36%) 98 (64%) 

Patricia Beatty 
Elementary 

83 7 (8%) 76 (92%) 

REACH 
Leadership 
Academy 

86 18 (21%) 68 (79%) 

Total 2890 625 (22%) 2265 (78%)  

R. Wei et al.                                                                                                                                                                                                                                     



Socio-Economic Planning Sciences xxx (xxxx) xxx

5

there are 688 block groups within SDUSD. These block groups have 
9731 1st grade students, with 2480 non-Hispanic White students and 
7251 students of minorities. Compared with the NCES CCD enrollment, 
these block groups have 1.27% less students, 5.94% more non-Hispanic 
white students, and 3.51% less students of minorities. We use the same 
parameters in the model as the RUSD and it takes Gurobi 17 s to identify 
the optimal solution. The results show that the minimum Dissimilarity 
value we could achieve at SDUSD by reallocating students is 0.24. This is 
a 56% reduction compared with the current segregation score of 0.54. 
The existing student assignments to each school based on the SAZs 
delineated by the SDUSD are depicted in Fig. 3, whereas the model- 
determined student assignments are shown in Fig. 4. Similar to the 
RUSD, the model-determined assignments also result in longer travel 

time and more fragmented and uneven attendance zone boundaries. The 
average travel time for the students based on existing assignments is 
2.77 min but that based on model assignments is 16.86 min. In addition, 
as many as 9680 students (99%) will need to change school based on this 
segregation minimization assignment. The average compactness of the 
delineated zones varies more at SDUSD, 0.42 for existing and 0.05 for 
model-determined student assignments. 

2. Discussion 

The results from our two case studies make clear that school segre
gation by race can be reduced substantially in both San Diego and 
Riverside (while maintaining low commute costs) by redrawing school 

Fig. 1. Existing student assignments at RUSD (Only block groups with nonzero student population are shown here).  
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attendance zones. Despite these encouraging results, there are several 
issues in both the modeling framework and its application to urban 
policy objectives that warrant further discussion. Focusing first on the 
optimization model, our results point to potential extensions or addi
tional considerations that could be useful in further work. As we 
demonstrate in the case studies, while the student assignment plans 
identified by the proposed model minimize racial segregation, they also 
lead to more fragmented and uneven attendance zone boundaries 
compared with existing SAZs. To avoid generating fragmented districts, 
it may be necessary to incorporate compactness and/or contiguity 
constraints into the optimization procedure, if fragmentation leads to 
increases in costs elsewhere in the education system (e.g., the designa
tion of efficient bus routes that optimize driving time, student safety, 

and fleet availability). 
In addition, the case studies also show that the minimization of 

district segregation could lead to substantial increase of student travel 
time even with geographic proximity constraints. The proposed model 
could account for geographic proximity by integrating an additional 
objective of minimizing total travel cost as in equation (1) instead of 
strict travel cost threshold constraints as in equation (12). A variety of 
travel cost thresholds, including 10 min, 15 min, 20 min, 25 min, and 30 
min, are tested. For RUSD the same optimal solutions are obtained for 
20 min, 25 min and 30min whereas no feasible solution can be obtained 
for 10 min and 15 min. However, for SDUSD only 30 min yields feasible 
solutions whereas the model becomes infeasible for all other travel cost 
thresholds. Given the high percentage of students who need to change 
schools, it might be necessary to incorporate another school stability 
objective that minimizes student school changes as shown in Ref. [15]. It 
is also possible to allow partial assignment of census units to schools, 
although some literature indicates that it is usually not desirable to split 
neighborhoods [16]; Also notable is the model solution time. While the 
model is solved optimally for RUSD and SDUSD, the problem is NP-hard, 
and could require a customized heuristic solution algorithm to enable its 
application to large-scale school districts. 

Toward the goal of policy development and analysis, we argue the 
results from our case studies provide a unique way of conceptualizing a 
policy agenda focused on social justice. Redrawing school districts is a 
costly, time-consuming, and (potentially) politically contentious pro
cess. Historically, when school districts have sought to use their own 
resources to facilitate school integration, bussing students across district 
boundaries has been the policy vehicle of choice. This is no surprise, 
given the large costs associated with redistricting and the relative flex
ibility with which bus routes can be altered. The results in this paper, 
however, demonstrate that in addition to achieving better integration in 
practice, rezoning procedures can be ethically transparent and value 
neutral. While we postulate that a low level of racial segregation is a 
socially-desirable goal, the modeling framework is flexible to examine 
other goals such as reducing class segregation or minimizing commute 
distances to reduce energy. As [40] has extensively documented, there 
has been much heterogeneity in the particular demographic and polit
ical conditions that impinge on district formation, policy, and func
tioning across the US. 

We argue that our modeling framework offers a reproducible 
approach to addressing school segregation issues that can foster a much 
needed standardization across the educational landscape. 

One potential criticism of our proposed redistricting solution is that 
in many cases students are not assigned to their “closest” school but 
sometimes a few miles away. Thus, at first blush, this assignment may 
seem politically infeasible, first because local pushback from parents 
might prohibit a district’s willingness to adopt the proposed solution, 
and second because certain logistics may make the solution too costly to 
implement in practice. For example, Riverside County often relies on 
shifting resources from local transit agencies rather than a dedicated 
bussing system for students, in which case the increased travel times 
incurred in our solution may be too costly. Toward the first issue we 
believe it is counterproductive to argue about the potential of political 
feasibility regarding a redistricting procedure that respects a set of 
resource constraints. Even if some localities find the proposed solution 
unpalatable, there may well be districts somewhere in the country that 
are willing to partake in a conversation about redistricting and what 
values a solution should embody; optimization models such as the one 
presented in this paper open the door for such an exploration. Toward 
the second issue, we argue that the tradeoff between transportation costs 
and social equity is precisely the kind of conversation these kinds of 
models are designed to produce. While it may be too costly right now to 
implement the redistricting procedure we outline above, that simple fact 
can trigger discussions regarding the optimal use of public budgets and 
the best ways to prioritize local development. If it is true that school 
segregation has consequences for student achievement in the long-run 

Table 2 
Model determined 1st grade student assignment.  

School Total number of 
students allocated 

Non-Hispanic 
White students 
allocated 

Minority 
students 
allocated 

Tomas Rivera 
Elementary 

123 11 (9%) 112 (91%) 

Adams Elementary 87 14 (16%) 73 (84%) 
Alcott Elementary 123 23 (19%) 100 (81%) 
Bryant Elementary 55 10 (18%) 45 (82%) 
Castle View 

Elementary 
70 7 (10%) 63 (90%) 

Emerson 
Elementary 

110 20 (18%) 90 (82%) 

Fremont 
Elementary 

88 10 (11%) 78 (89%) 

Harrison 
Elementary 

88 12 (14%) 76 (86%) 

Hawthorne 
Elementary 

134 25 (19%) 109 (81%) 

Highgrove 
Elementary 

92 17 (18%) 75 (82%) 

Highland 
Elementary 

104 17 (16%) 87 (84%) 

Jackson 
Elementary 

96 18 (19%) 78 (81%) 

Jefferson 
Elementary 

179 47 (26%) 132 (74%) 

Liberty Elementary 96 18 (19%) 78 (81%) 
Longfellow 

Elementary 
144 27 (19%) 117 (81%) 

Madison 
Elementary 

114 20 (18%) 94 (82%) 

Magnolia 
Elementary 

83 14 (17%) 69 (83%) 

Monroe Elementary 128 24 (19%) 104 (81%) 
Mountain View 

Elementary 
103 19 (18%) 84 (82%) 

Pachappa 
Elementary 

85 15 (18%) 70 (82%) 

Victoria 
Elementary 

59 7 (12%) 52 (88%) 

Washington 
Elementary 

161 50 (31%) 111 (69%) 

Woodcrest 
Elementary 

70 8 (11%) 62 (89%) 

William Howard 
Taft Elementary 

115 19 (17%) 96 (83%) 

Benjamin Franklin 
Elementary 

121 22 (18%) 99 (82%) 

John F. Kennedy 
Elementary 

174 50 (29%) 124 (71%) 

Lake Mathews 
Elementary 

141 37 (26%) 104 (74%) 

Mark Twain 
Elementary 

199 33 (17%) 166 (83%) 

Patricia Beatty 
Elementary 

69 13 (19%) 56 (81%) 

REACH Leadership 
Academy 

88 16 (18%) 72 (82%) 

Total 3299 623 (19%) 2676 (81%)  
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[41], then it is conceivable that some communities may be willing to pay 
for that public good [42,43]. 

What is unique about optimization modeling as a method for 
defining school attendance zones is that it lays bare the assumptions, 
values, and tradeoffs associated with different zoning schemes. Rather 
than relying on consulting firms or purely political processes, optimi
zation models require that objectives be stated up-front, and that po
tential costs and benefits be stipulated as formal model constraints. If 
nothing else, the formalization of objectives and constraints forces both 
analysts and local residents to consider what values they bring to the 
table during school zoning procedures, and can help facilitate a dis
cussion. Although school segregation by race appears relatively low in 
both San Diego and Riverside, our model shows that it can be lowered 

dramatically by adjusting the zoning procedure. While such zoning 
adjustment may not be realistic to implement because of the increased 
student travel time and fragmented zone boundaries given budget and 
policy constraints, it can serve as a benchmark for school district plan
ners and decision makers to work towards the goal of reducing segre
gation at the school district level. 

3. Conclusion 

In this article we propose a new approach to estimate the effect of 
SAZs on racial segregation of school district. Specifically, we develop a 
school districting optimization model that assigns students to schools in 
a way that minimizes racial segregation of school district while 

Fig. 2. Model determined student assignments at RUSD (Only block groups with nonzero student population are shown here).  
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maintaining geographic proximity of assigned students to schools. Then 
we compare the actual SAZs with the counterfactual SAZs generated 
using this model to enable the assessment of racial segregation at the 
level of school district. The applications of this method to RUSD and 
SDUSD highlight the potential of both school districts to reduce racial 
segregation by adjusting SAZ boundaries. These two case studies 
demonstrate that our proposed model can identify a student assignment 
plan that can minimize racial segregation of school district while 
maintaining geographic proximity of assigned students to schools and 
conforming with capacity limits. By comparing these counterfactual 
student assignment plans with the existing SAZs, we show that both 
RUSD and SDUSD can significantly reduce racial segregation by 
adjusting SAZ boundaries. 

In addition, we show that using spatial optimization modeling as a 
method for developing urban policy is a modern solution to a histori
cally challenging problem. Our model runs on consumer hardware, 
achieves optimality in only a few minutes, and can be extended to 
incorporate other social or topographical considerations. Thus, in 
addition to the pro-social outcomes suggested by our case studies, 
adopting spatial optimization modeling as a common framework can be 
a major boon for urban planning and infrastructure provision. In many 
jurisdictions across the United States, planning for adequate school ca
pacity is mandatory and regulated through adequate public facilities 
ordinances (APFOs) or through the assessment of impact fees (as is the 
case in both case study cities of San Diego and Riverside) [44,45]. The 
model we present in this paper shows that San Diego and Riverside could 

Fig. 3. Existing student assignments at SDUSD (Only block groups with nonzero student population are shown here).  
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reduce their racial segregation by redrawing school attendance zones, 
but the same model could also be used to reallocate students according 
to travel costs or existing capacity constraints. Thus, while our example 
is focused on the specific goal of school integration, the framework 
provides general utility for a wide variety of urban planning and policy 
applications. 

Further, and perhaps more importantly, our work here demonstrates 
the value of open-source analysis for public policy decision making. 
School districting is a politically contentious process, with cascading 
implications for property values, educational opportunity, and racial 
and socioeconomic inequality. For that reason, the use of racially- 
explicit goals in determining primary school attendance is a complex 
issue, as demonstrated by PARENTS INVOLVED IN COMMUNITY 

SCHOOLS v. SEATTLE SCHOOL DIST (2007), in which the U.S. Supreme 
Court held that the use of racial quotas was unconstitutional but that 
race could still be a factor in helping guide attendance decisions. More 
recently, one of the country’s leading school districts is making head
lines for its consideration of racial integration as a redistricting goal 
[46]. In these latter cases, the work we present in this paper can be 
particularly useful, because the open-source code lays bare the as
sumptions, objectives, and approaches built into the model at its outset. 
If nothing else, exposing these parameters helps elucidate the underly
ing intentions of the redistricting exercise (in this case, to maximize 
school-level segregation—without compromising reasonable 
commuting times for each individual student). 

Thus, apart from the substantive results presented above, we believe 

Fig. 4. Model determined student assignments at SDUSD (Only block groups with nonzero student population are shown here).  
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that the codification of a school redistricting exercise into a spatial 
optimization problem helps chart a defensible course through conten
tious territory. From a legal perspective, the formal application of ob
jectives and constraints in the model can be mapped onto the legal 
doctrines from prior case law (e.g. the stipulation that racially-oriented 
objectives be limited in scope) to ensure that goals designed for ethical 
outcomes conform to legal precedent. From a practical perspective, 
adopting a spatial optimization model can help a school district provide 
transparency into its decision-making process, rather than obscuring 
analytical details behind a consultant’s shield. Further, by codifying 
these methods in open-source software, the technical burden is reduced 
for lower-resource school districts seeking to adopt similar goals in their 
redistricting approaches. Since these are the very issues being addressed 
in school districts throughout the country [46], the time is ripe to 
expand and refine the methods presented in this paper so that they might 
be used for maximum effect in local education systems. 
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[13] Ferland JA, Guénette G. Decision support system for the school districting problem. 
Oper Res 1990;38(1):15–21. 

[14] Schoepfle OB, Church RL. A new network representation of a “classic” school 
districting problem. Soc Econ Plann Sci 1991;25(3):189–97. 

[15] Lemberg DS, Church RL. The school boundary stability problem over time. Soc 
Econ Plann Sci 2000;34(3):159–76. 

[16] Caro F, Shirabe T, Guignard M, Weintraub A. School redistricting: embedding GIS 
tools with integer programming. J Oper Res Soc 2004;55(8):836–49. 

[17] Delmelle EM, Thill JC, Peeters D, Thomas I. A multi-period capacitated school 
location problem with modular equipment and closest assignment considerations. 
J Geogr Syst 2014;16(3):263–86. 

[18] Richards MP. The gerrymandering of school attendance zones and the segregation 
of public schools: a geospatial analysis. Am Educ Res J 2014;51(6):1119–57. 

[19] Yeates M. Hinterland delimitation: a distance minimizing approach. Prof Geogr 
1963;15(6):7–10. 

[20] Belford PC, Ratliff HD. A network-flow model for racially balancing schools. Oper 
Res 1972;20(3):619–28. 

[21] Maxfield DW. Spatial planning of school districts. Ann Assoc Am Geogr 1972;62(4): 
582–90. 

[22] Jennergren LP, Obel B. A study in the use of linear programming for school 
planning in Odense. J Oper Res Soc 1980;31(9):791–9. 

[23] Woodall M, Cromley RG, Semple RK, Green MB. The elimination of racially 
identifiable schools. Prof Geogr 1980;32(4):412–20. 

[24] Church RL, Murray AT. Modeling school utilization and consolidation. J Urban 
Plann Dev 1993;119(1):23–38. 

[25] Biswas S, Chen F, Chen Z, Sistrunk A, Self N, Lu CT, Ramakrishnan N. REGAL: a 
Regionalization framework for school boundaries. In: Proceedings of the 27th ACM 
SIGSPATIAL international Conference on Advances in geographic information systems; 
2019, November. p. 544–7. 

[26] Greenleaf NE, Harrison TP. A mathematical programming approach to elementary 
school facility decisions. Soc Econ Plann Sci 1987;21(6):395–401. 

[27] Teixeira J, Antunes A, Peeters D. An optimization-based study on the redeployment 
of a secondary school network. Environ Plann Plann Des 2007;34(2):296–315. 

[28] desJardins M, Bulka B, Carr R, Jordan E, Rheingans P. Heuristic search and 
information visualization methods for school redistricting. AI Mag 2007;28(3). 59- 
59. 

[29] Biswas S, Chen F, Sistrunk A, Muthiah S, Chen Z, Self N, Ramakrishnan N. 
Geospatial clustering for balanced and proximal schools. No. 09. In: Proceedings of 
the AAAI conference on artificial intelligence, vol. 34; 2020, April. p. 13358–65. 

[30] Liggett RS. The application of an implicit enumeration algorithm to the school 
desegregation problem. Manag Sci 1973;20(2):159–68. 

[31] Chen M, Thill JC, Delmelle E. iGLASS: an open source SDSS for public school 
location-allocation. In: GeoComputational analysis and modeling of regional 
systems. Cham: Springer; 2018. p. 325–53. 

[32] Wilson FD. The impact of school desegregation programs on white public-school 
enrollment, 1968-1976. Sociology of Education; 1985. p. 137–53. 

[33] Logan JR, Oakley D. The continuing legacy of the Brown decision: Court action and 
school segregation, 1960-2000. Albany: University at Albany, State University of 
New York, Lewis Mumford Center for Comparative Urban and Regional Research; 
2004. 

[34] Logan JR, Oakley D, Stowell J. School segregation in metropolitan regions, 
1970–2000: the impacts of policy choices on public education. Am J Sociol 2008; 
113(6):1611–44. 

[35] Rivkin SG. Residential segregation and school integration. Sociol Educ 1994: 
279–92. 

[36] Reardon SF, Yun JT, Eitle TM. The changing structure of school segregation: 
measurement and evidence of multiracial metropolitan-area school segregation, 
1989–1995. Demography 2000;37(3):351–64. 

[37] Duncan OD, Duncan B. A methodological analysis of segregation indexes. Am Socio 
Rev 1955;20(2):210–7. 

[38] Massey DS, Denton NA. The dimensions of residential segregation. Soc Forces 
1988;67(2):281–315. 

[39] McCarl BA, Spreen TH. Applied mathematical programming using algebraic 
systems. 1997. Cambridge, MA. 

[40] Fischel WA. Making the grade: the economic evolution of American school 
districts. The University of Chicago Press; 1990. 

[41] Shores K, Reardon S, Kalagrides D. The Geography of racial/ethnic test score gaps, 
vol. 16; 2018. CEPA Working Paper. 

[42] Dawkins CJ. Tiebout choice and residential segregation by race in US metropolitan 
areas, 1980–2000. Reg Sci Urban Econ 2005;35(6):734–55. https://doi.org/ 
10.1016/j.regsciurbeco.2005.01.002. 

[43] Tiebout CM. A pure theory of local expenditures. J Polit Econ 1956;64(5):416–24. 
https://doi.org/10.1086/257839. 

[44] Pelham TG. Adequate public facilities requirements: reflectoins on Florida’s 
concurrency system for managing growth. Fla State Univ Law Rev 1992;19(4): 
973–1052. 

[45] Read DC. The impact of an adequate public facilities ordinance on the sale price of 
single-family housing in Cabarrus County, North Carolina. Hous Soc 2015;42(2): 
148–61. https://doi.org/10.1080/08882746.2015.1076131. 

[46] St George D. Boundary struggles: a Maryland school system looks for more 
diversity. 2018, September 25. The Washington Post, https://www.washingtonpos 
t.com/local/education/boundary-struggles-a-maryland-school-system-looks-fo 
r-more-diversity/2018/09/25/90436774-c05a-11e8-be77-516336a26305_story. 
html. 

Dr. Ran Wei is currently an Associate Professor in the School of Public Policy and a 
founding member of the Center for Geospatial Sciences at the University of California, 
Riverside. Her areas of emphasis include GIScience, urban and regional analysis, spatial 
analysis, optimization, geovisualization, high performance computing and location anal
ysis. Substantively, she has focused on a range of national and international issues, 
including urban/regional growth, transportation, public health, crime, housing mobility, 
energy infrastructure, and environmental sustainability. 

Dr. Xin Feng is an Assistant Professor in the Department of Geography and Environmental 
Sustainability at the University of Oklahoma. She earned her Ph.D. degree from the 
department of Geography at the University of California, Santa Barbara. Besides, she holds 

R. Wei et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0038-0121(22)00216-6/sref1
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref1
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref2
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref2
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref3
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref3
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref3
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref4
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref4
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref5
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref5
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref6
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref6
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref7
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref7
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref8
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref8
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref9
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref9
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref9
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref10
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref10
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref11
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref11
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref11
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref12
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref12
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref13
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref13
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref14
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref14
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref15
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref15
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref16
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref16
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref17
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref17
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref17
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref18
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref18
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref19
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref19
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref20
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref20
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref21
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref21
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref22
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref22
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref23
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref23
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref24
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref24
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref25
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref25
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref25
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref25
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref26
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref26
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref27
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref27
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref28
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref28
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref28
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref29
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref29
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref29
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref30
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref30
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref31
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref31
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref31
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref32
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref32
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref33
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref33
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref33
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref33
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref34
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref34
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref34
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref35
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref35
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref36
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref36
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref36
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref37
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref37
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref38
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref38
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref39
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref39
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref40
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref40
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref41
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref41
https://doi.org/10.1016/j.regsciurbeco.2005.01.002
https://doi.org/10.1016/j.regsciurbeco.2005.01.002
https://doi.org/10.1086/257839
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref44
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref44
http://refhub.elsevier.com/S0038-0121(22)00216-6/sref44
https://doi.org/10.1080/08882746.2015.1076131
https://www.washingtonpost.com/local/education/boundary-struggles-a-maryland-school-system-looks-for-more-diversity/2018/09/25/90436774-c05a-11e8-be77-516336a26305_story.html
https://www.washingtonpost.com/local/education/boundary-struggles-a-maryland-school-system-looks-for-more-diversity/2018/09/25/90436774-c05a-11e8-be77-516336a26305_story.html
https://www.washingtonpost.com/local/education/boundary-struggles-a-maryland-school-system-looks-for-more-diversity/2018/09/25/90436774-c05a-11e8-be77-516336a26305_story.html
https://www.washingtonpost.com/local/education/boundary-struggles-a-maryland-school-system-looks-for-more-diversity/2018/09/25/90436774-c05a-11e8-be77-516336a26305_story.html


Socio-Economic Planning Sciences xxx (xxxx) xxx

11

a B.S. degree in Cartography and GIS at Wuhan University, China, a M.S. degree in Remote 
Sensing and GIS at Peking University, China, and another M.A. degree at Arizona State 
University. Her research interests include geographical information science, spatial opti
mization, and geospatial data science. She has addressed important and interesting urban 
and regional planning issues, such as travel planning, growth and development, nighttime 
lighting, social equity, medical response, and aspects of efficiency associated with the 
shared economy. 

Dr. Sergio Rey is Professor in the School of Public Policy and Founding Director of the 
Center for Geospatial Sciences at the University of California, Riverside. Rey’s research 
interests focus on the development, implementation, and application of advanced methods 

of spatial and space-time data analysis. His substantive foci include regional inequality, 
convergence and growth dynamics as well as neighborhood change, segregation dynamics, 
spatial criminology and industrial networks. Rey is the creator and lead developer of the 
open source package STARS: Space-Time Analysis of Regional Systems as well as co- 
founder and lead developer of PySAL: A Python Library for Spatial Analysis. 

Dr. Elijah Knaap is the Associate Director of the Center for Geospatial Sciences at the 
University of California, Riverside. His research focuses on social inequality and spatial 
structure in neighborhoods, cities, and regions. His work informs urban policy and plan
ning with applied spatial data science and open-source software development. 

R. Wei et al.                                                                                                                                                                                                                                     


	Reducing racial segregation of public school districts
	1 Introduction
	1.1 School districting
	1.2 School districting to minimize segregation
	1.3 Case studies

	2 Discussion
	3 Conclusion
	Author statement
	Acknowledgement
	References


