Operations Research Letters 48 (2020) 835-839

journal homepage: www.elsevier.com/locate/orl

Contents lists available at ScienceDirect

Operations Research Letters

Operations
Research
Letters

A fully polynomial time approximation scheme for the Replenishment R

Storage problem
Dorit S. Hochbaum, Xu Rao *

Check for
updates

University of California, Department of IEOR, Etcheverry Hall, Berkeley, CA, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 29 September 2020

Received in revised form 13 October 2020
Accepted 14 October 2020

Available online 28 October 2020

Keywords: length.
Approximation algorithm

Fully polynomial time approximation

scheme

Weakly NP-hard

The Replenishment Storage problem (RSP) is to minimize the storage capacity requirement for a
deterministic demand, multi-item inventory system with specified individual reorder cycle lengths.
The reorders can only take place at integer time units. This problem was shown to be weakly NP-hard
for constant joint cycle length (the least common multiple of all individual cycle lengths). We devise
here the first known FPTAS for the RSP with different individual cycle lengths and constant joint cycle

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Replenishment Storage problem (RSP) arises in planning
a periodic replenishment schedule of multiple items so as to
minimize the storage capacity required. The input to the RSP
consists of in a multi-item inventory system where each item
has deterministic demand, a given reorder size and its own cycle
length determined by its Economic Order Quantity. Here the re-
orders can only take place at an integer time unit within the cycle.
The problem is to determine the timing of the first replenishment
of each item within its cycle so that the maximum inventory level
of all items over time is minimized.

An instance of RSP consists of n items. Each item i is associated
with an integer individual cycle length k;, and an integer reorder
size s;. Here s; is expressed in terms of the storage amount
required for the reorder quantity. The joint cycle length of the
n items is the least common multiple (Ilcm) of the lengths k;,
i=1,...,n.Weletk =lcm(ky, ..., k,). By the cyclical nature of
the problem, the total inventory levels repeat periodically every k
units of time for any reorder schedule. If all items have the same
cycle length, k, the problem is said to be single-cycle, otherwise it
is said to be multi-cycle.

The RSP is an NP-hard problem [3,4], so there is no polynomial
time algorithm unless P = NP. But a polynomial time approxima-
tion scheme may exist for the problem. An approximation scheme
is a family of (1 + ¢)-approximation algorithms for every ¢ > 0.
If the running time is polynomial in the problem size for every

* Corresponding author.
E-mail addresses: hochbaum@ieor.berkeley.edu (D.S. Hochbaum),
xrao@berkeley.edu (X. Rao).

https://doi.org/10.1016/j.0r1.2020.10.004
0167-6377/© 2020 Elsevier B.V. All rights reserved.

fixed ¢, then this scheme is a Polynomial Time Approximation
Scheme (PTAS); furthermore, if the running time is polynomial in
both the problem size and 1/e, then it is a Fully Polynomial Time
Approximation Scheme (FPTAS). Hochbaum and Rao [4] gave a
Fully Polynomial Time Approximation Scheme (FPTAS) for the
single-cycle RSP when k is a constant [4]. For the multi-cycle case
however no FPTAS has been known to date. Here, we establish
for the first time an FPTAS for the multi-cycle RSP when the joint
cycle length, k, is constant. We also observe here that the FPTAS
of Hochbaum and Rao for the single cycle RSP is fixed-parameter
tractable (FPT) and is in fact linear for a constant length of the
single cycle.

1.1. Related literature

The single-cycle RSP was shown by Hall [3] to be NP-hard,
even when the joint cycle length k = 2. Since the single-cycle RSP
is a special case of the multi-cycle RSP, it implies that the multi-
cycle RSP is also NP-hard, even when k is small. Hochbaum and
Rao [4] investigated the complexity status of the single-cycle and
the multi-cycle RSPs and showed that the problems are strongly
NP-hard when k is not a constant, but weakly NP-hard when k
is a constant. They further provided in [4] a pseudo-polynomial
algorithm for the two problems.

These complexity results imply that there is no polynomial
time algorithm for single-cycle and the multi-cycle RSPs even
when k is a constant, unless P=NP. Several approximation results
have been delivered for the single-cycle RSP. Hall [3] provided
a linear time approximation algorithm for the single-cycle RSP,
with an approximation factor of (1+ £), even for non-constant k.
Hochbaum and Rao [4] devised for the single-cycle RSP with con-
stant k an FPTAS, and for the single-cycle RSP with non-constant k

https://doi.org/10.1016/j.orl.2020.10.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2020.10.004&domain=pdf
mailto:hochbaum@ieor.berkeley.edu
mailto:xrao@berkeley.edu
https://doi.org/10.1016/j.orl.2020.10.004

D.S. Hochbaum and X. Rao

a PTAS. The complexity of the FPTAS for a (1 + €)-approximation
algorithm is O(ne—2¥), and the complexity of the PTAS for non-
constant cycle length is O((2¢ ~")! - ne ~2*=2). (We note that there
was a mistake in the proof of Theorem 6 in [4], which has been
corrected by replacing the original scaling factor €2D by kD in
the FPTAS [5]. This affected the running time by only a constant
factor, k¥, so the approximation scheme is still an FPTAS. What
is more, we observe here that the running time of this FPTAS is
fixed-parameter tractable for parameter k.)

For the multi-cycle RSP with only two items, Murthy et al. [7]
provided an optimal closed-form replenishment solution, mean-
ing that it is solved in constant time. Studies of algorithmic
results for the multi-cycle RSP with more than two items have
been focused on the development of heuristics. These include
genetic algorithms [6,9]), a smoothing procedure utilizing a Boltz-
mann function [10], local-search procedures [2], a simulated-
annealing algorithm [1] and a hybrid heuristic [1,8]. No algorithm
with guaranteed approximation bound has been known for the
multi-cycle RSP.

1.2. Contributions

A weakly NP-hard problem can have an FPTAS and it was
shown in [4] that for constant k the RSP problem is weakly NP-
hard. For constant parameter k, Hochbaum and Rao [4] devised
for the single-cycle RSP an FPTAS, which we observe here is
fixed-parameter tractable (FPT). We devise here an FPTAS for the
multi-cycle RSP with constant joint cycle length for the first time.
Unlike the case of the single-cycle (in [4]), the running time of this
FPTAS for the multi-cycle RSP is not fixed-parameter tractable for
parameter k.

A summary of the complexity results for RSP that includes our
contributions here is given in Table 1.

1.3. Paper overview

The next section, Section 2, introduces the notation, an in-
teger programming formulation as well as a pseudo-polynomial
algorithm for the RSP which is relevant to the approximation
scheme. In Section 3 we describe the new fully polynomial-
time approximation scheme (FPTAS) for the multi-cycle RSP for
constant joint cycle length k.

2. Preliminaries

Our approximation scheme utilizes a dynamic programming
algorithm for the RSP derived by Hochbaum and Rao [4]. That
dynamic programming algorithm uses an integer programming
(IP) formulation of the RSP that was introduced in [4]. Since this
algorithm and IP formulation are crucial for our FPTAS, we sketch
them here.

We first present necessary notation. For an instance of RSP,
the demand rates and inventory levels are given in terms of the
respective reorder size: for item i, the demand per unit of time
is 2, and its inventory levels at each replenishment cycle of k;
time units starting at time T, (T + 0, T+ 1,..., T + k; — 1), are
(si, "",;151-, k",fs,—, e kls,—). Recall that since k = Iem(kq, ..., k),
the iﬁventofy levels are periodic within a cycle of k time units
(repeat every k time units). It is therefore sufficient to determine
the peak storage requirement by examining a time interval of
length k. This is because each item must be reordered at least
once in such interval, and the peak storage always coincides with
the reorder timing of an item. (Note that inventory level at time
0 is the same as inventory level at time k.)

The decision variables in the integer programming formula-
tions are the assignments of time periods within the k-unit time

836

Operations Research Letters 48 (2020) 835-839

frame to the orders of all items. This assignment of timing is given
as an n x k binary matrix x where

{1
Xjj =

0
Definition 2.1. A n x k binary matrix X is said to be a valid
assignment for a given instance if and only if each item i is
replenished exactly once every k; time units. That is,

if item i is ordered at time j,
otherwise.

ki

inj=l i=1,...,n, and Xj = X (k)
=1

i=1,...,n, j=k+1,...,k

The following lists the notation for demand rates, inventory
levels, the total sum of reorder sizes at an integer time and the
optimal peak storage:

di = I% demand rate of itemifori=1,...,n.

D = Yi,d = >, ;: total demand (aggregate stock
depletion) per unit of time. '

V,(x): the inventory level at time £ according to assignment x
fore=1,..., k.

V(X) = maXeeq,.. i Ve(X): the maximum inventory level (peak
storage) of a cycle.

Qi(x) = Y I, six;: the total sum of reorder sizes at time j for
ji=1...,k

V* = miny vaiq V(X): the optimal peak inventory level.

2.1. The integer programming formulation of the RSP

The IP formulation of Hochbaum and Rao [4] is based on
three lemmas derived in their paper, which are included for the
sake of completion. Lemma 2.2 shows that valid assignments can
be restricted to those attaining peak inventory level at time k
without changing the optimal solution of the RSP. Lemma 2.3
establishes the relation between the inventory levels V,(x) for
¢ = 1,...,k and the total amount ordered at time j, Q;(x) for
j=1,...,k

Lemma 2.2 ([4]). For any valid assignment X there is a shift-
permutation of 1, ..., k, denoted by n(1), ..., m(k), such that the
valid assignment X' with xgj = Xir(j), attains peak inventory level at
time k, and this new peak inventory level equals the peak inventory

level of assignment X. That is, Vi(x') = V(X') = V(X).
Lemma 2.3 ([4]). For any valid assignment X,
¢
V() = Vi(x) — €D + ZQ_,—(X), e=1,...,k
=1

Let the following quantity, which is a constant, be denoted by
C:
(1+k)k
2

n
1
CZZ%(HIZ)/@»JF D.
i=1

Let z(x) be the following function of a valid assignment x:

n

k k
2x) =Y (k—j+ QX =D (k—j+1)) _ sxi.
A =

j=1 i=1

The next lemma shows that minimizing the inventory level of
time k, Vi (x), is equivalent to maximizing z(x).

Lemma 2.4 ([4]). For any valid assignment X, kV;(x) + z(x) = C.

D.S. Hochbaum and X. Rao

Table 1

Operations Research Letters 48 (2020) 835-839

Summary of complexity and algorithmic results for the RSP.

Problem Non-constant joint cycle Constant joint cycle

Strongly NP-hard Weakly NP-hard
Single-cycle (14 2/k)-approximation [3], (14 2/k)-approximation [3],

PTAS [4] pseudo-poly algorithm [4] & FPTAS (here FPT in k) [4]
Multi-cycle Etrongly NP-hard Weakly NP-hard

pseudo-poly algorithm [4] & FPTAS (here)

By the above lemmas, the RSP can be formulated as minimiz-
ing the inventory level at time k such that the schedule is a valid
assignment that attains peak inventory level at time k, which can
be written as Vy(x) < Vi(x) for £ = 1, ..., k. These inequalities,
according to Lemma 2.3, are equivalent to,

4
Y Q) <tpfore=1,....k (2.1)
j=1

This set of inequalities (2.1) is referred to as the cascading con-
straints. From Lemma 2.4, the integer programming formulation
below has the same optimal solution as the RSP.

k
(IP) max z(x)= Y (k—j+1)Qx)

j=1

4
subject to ZQ}‘(X) <4¢D £=1,...,k
j=1

ki
E xj=1 1i=1,...,n
j=1

Xij = Xi (j—k;) i=1,....n, j=k+1,...,k
xjbinaryfori=1,....n, j=1,... k.

2.2. The dynamic programming algorithm for the RSP

We present here the dynamic programming algorithm of
Hochbaum and Rao [4], which is associated with the integer
program (IP). For h an integer such that 0 < h < n, let x" denote
the assignment of reorders for the first h items. Let the function
fi(q1, G2, - .., qx) be the maximum of z(x") with the cumulative
reorder sizes at time ¢ being restricted to less than or equal to
qe for ¢ = 1,..., k. Here, (qi,...,qx) is an integer array with
qe € [0, ¢D]. Formally,

fl@r, gz, ... @) =
k
max > k=i + D"
=1
]Z
subject to ZQj(xh)fqg L=1,...,k

Xij = Xi(j—k;) i=1,....h, j=k+1,...,k
xjbinary fori=1,...,h, j=1,...,k,

where Qj(x") = ZL six;j. The function f4(q1, q2, . . ., qx) is set to
—oo if the above integer programming problem is infeasible. The
optimal solution being sought is f,(D, 2D, ..., kD).

The values of the function fy(q1, g2, . . ., qx) are evaluated for
every 0 < h < n and any integer array (qy, ..., qx), Where q; €
[0,jD], with a dynamic programming recursion. The boundary
conditions are fo(q1, g2, ..., qx) = 0 for any (q1, q2, ..., qk). The
recursive derivation of fy(q1, q2, ..., qx) from f,_1(-) requires to
determine the timing to replenish item h within the first k; time

837

units so as to maximize the objective Zj};](k —j+ l)Qj(x”). The

recursive equation, using the notation q,(r) = q; — L%Jsh,
is:

falqr, G - Gk)
maX,_1..k, { (@ +1- r) S
Hi1(q'1(T), - @ (T} if qy(z) > 0 for all £
—00 otherwise.
All function values are evaluated recursively for h =1, ..., n

and for all integer values of (qy, ..., qx), where each g; € [0, jD]
and g; integer. Each function evaluation is associated with a
choice of t(h), which is the timing of the replenishment of
item h within the kj, cycle. The optimal objective value is then
fa(D, 2D, ..., kD). To recover the optimal valid assignment we
record the choices of the replenishment timings within the k
cycle, for each function value evaluation.

The running time of this algorithm is O(nD*) for constant k [4],
which is pseudo-polynomial as it depends on the value D.

3. A fully polynomial-time approximation scheme for the RSP
with constant joint cycle length

As the RSP is strongly NP-hard when the joint cycle length is
not a constant, there is no fully polynomial-time approximation
scheme assuming that P#NP. However, when the joint cycle
length k is constant, it is possible to obtain a fully polynomial-
time approximation scheme for this problem. Hochbaum and
Rao [4] showed an FPTAS for the single-cycle RSP but no FP-
TAS has been known for the multi-cycle case when k is con-
stant. In this section, we establish the first known FPTAS for the
multi-cycle RSP for constant joint cycle length.

Here we derive a family of (1 + ¢’)-approximation algo-
rithms for the multi-cycle RSP for every ¢’ > 0. The (1 +
€')-approximation algorithm works by applying the dynamic pro-
gramming algorithm in Section 2.2 with scaled reorder sizes with
some scaling factor T. We show in this section that the output
of the dynamic programming algorithm using the scaled sizes
is within a factor of 1 + ¢’ of the optimal solution. The run
time of this approximation algorithm is polynomial in n and
€', and hence this family of algorithms is a fully polynomial
approximation scheme.

The approximation algorithm solves a modified integer pro-
gram of (IP), (scaled IP), in which the order sizes are scaled by
a factor T. The scaled problem is solvable using the dynamic
programming procedure of Section 2.2 and the solution of it is
a valid assignment that has objective function value close to the
optimal value of (IP).

3.1. The scaling of (IP), (scaled IP)

For any ¢ > 0, we let ¢ = ¢’/2 and we scale the reorder
sizes by the factor T % as follows. Let s; LSTlJ be the
scaled sizes of items i = 1,...,nand D' = % be the scaled
demand. Let Ojf(x) and z/(x) denote the “scaled” replenishment

sizes at time j and the objective function for the scaled sizes s:

Q) =Y sixi. j=1.....k Z(x) = Y5 (k—j+ 1)Q/(x).

D.S. Hochbaum and X. Rao

We refer to the resulting integer program by substituting
z(x) with z'(x), D with D', and Q;(x) with Q/(x) for each j. The
optimal solution for (scaled IP) is found by applying the dy-
namic programming procedure in Section 2.2 with scaled sizes
D' and s}, ..., s;. The running time of finding the optimal solu-
tion for (scaled IP) with the dynamic programming procedure, is
o(nD’*) = O(nk+1e=k).

Next we define the (e-relaxed IP) and then prove that any fea-
sible solution for (scaled IP), including X, is feasible for (e-relaxed
IP).

3.2. The e-relaxed RSP

The (e-relaxed IP) formulation allows the cascading

constraints to be violated by up to €D as follows:
k

max z(X) = Z(k —Jj+ 1Qi(x)

j=1

4
> Q) <tD+eD £=1....,

(e-relaxed IP)

subject to k
j=1
ki
le‘jzl i=1,...,n
j=1
Xij = Xi (j—k;) i=1,...,n, j=k+1,...,k
xj binary fori=1,...,n, j=1,...,k.

We refer to the constraints Zfﬂ Qi(x) < D + €D as the e-
relaxed cascading constraints. We next show that the effect of the
e-relaxed cascading constraints on the optimal solution is at most
eD.

Lemma 3.1. The peak inventory level of any feasible solution X to
(e-relaxed IP) is at most Vi(X) + €D.

Proof. Any feasible solution x for (e-relaxed IP) is a valid as-
signment, so Lemma 2.3 applies. That is, V,(x) Vi(x) +

(Zf:] Qi(x) — (D) for £ = 1,...,k The e-relaxed cascading
constraints state that Zle Qj(x) — ¢D < €D for all £. So when

X is a feasible solution of (e-relaxed IP), V,(x) < Vi(x)+ €D for all
£, and hence, V(x) = max; V,(X) < Vi(X) + €D.

The next lemma proves that any feasible solution for (scaled
IP), including X, is feasible for (e-relaxed IP).

Lemma 3.2. Any assignment X that is feasible for (scaled IP) is
feasible for (e-relaxed IP).

Proof. In both problems x is required to be a valid assign-
ment. It remains to show that X satisfies the e-relaxed cascading
constraints, that is, Z (x)<¢D+eDfort=1,...,k

By definition, s = LS'J So s; < T(s; + 1) and thus,

12 n 14 n
= ZZSiXij < ZZT(S:+ 1)Xij

j=1 i=1 j=1 i=1

4 n 4 n
=T DD sixi+D) X

j=1 i=1 j=1 i=1

(3.1)

Since X is feasible for (scaled IP) the scaled cascading con-
straints are satisfied. And as D’ = f

DD sk = Z@

j=1 i=1

)< ¢D =

¢D
- (3.2)

838

Operations Research Letters 48 (2020) 835-839
For¢=1,...,k

4 n k n
ZZXU < ZZXU < nk.

j=1 i=1 j=1 i=1

(3.3)
Hence from inequalities (3.1), (3.2) and (3.3),

ZQJ(X)<T(+nk> =¢D+eD. O

Using the relationship between reorder sizes s; and the scaled

sizes s/, we show that for any feasible solution of (scaled IP), x

the objective with original sizes z(x) = ij 1k —j 4+ 1Qi(x) is

closely approximated by the objective with scaled sizes z/(x) =
Z J(k—j+ 1)07(x), corrected for the scaling factor T:

3.3. The approximation property of the solution to (scaled IP)

Lemma 3.3. For any assignment of items X feasible for (scaled IP),
the values of the objective function with original and scaled sizes,
z(x) and z'(X) respectively, satisfy,

TZ(x) < z(X) < TZ'(X)+ €kD.

Proof. Recall that s} = [3], so Ts} <'s; < T(s; + 1). We derive
the lower bound on z(x) as follows:

k

> (k—j+ 1)QX)

j=1

Zk j+1 Zslxy

j=1

k
T. Zk j+1) stu

j=1

z(x)

=

A%

T-

Mk

(k—j+ 1DQ(x)

j=1
= TZ'(X).

The upper bound on z(X) can be derived as follows:
k
=Y (k—j+1)Qx)
j=1
k n
D k—j+ 1)) sixi
j=1 i=1
k n

(k—j+1)> (si+ 1y

i=1

k n
D k—i+ DY+ Y (k—j+1)> x
j=1 i=1

<TZ(x +Tk n
=TZ(x)+€kD. O

Lemma 3.3 leads to the following lower bound on z(X) for X
being an optimal solution of (scaled IP):

Theorem 3.4. For any feasible solution X of (IP), z(X) > z(x)— ekD.
Proof. By Lemma 3.3, we know z(X) > TZz'(X). Since any feasible

solution of (IP), X, must be also feasible for (scaled IP), we use the

D.S. Hochbaum and X. Rao

upper bound of z(x) from Lemma 3.3 to get:
TZ'(x) > z(X) — €kD.

Because X is optimal for (scaled IP), it follows that z/(X) > z/(x).
Combining the three inequalities, we get

z(X) > TZ/(X) > TZ/(x) > z(x) — €kD. O

Consequently, the optimal solution X for (scaled IP) attains
a objective value z(X) that is at least as much as the optimal
objective of (IP) minus €kD.

3.4. The (1 + €’)-approximation bound

From the discussion above, we know that the optimal solution
for (scaled IP) X is a valid assignment whose inventory levels
at time k approximates that maximum inventory level, and the
value z(X) approximates the optimal objective value of (IP). We
will prove here that X is an (1 + €’)-approximation solution for
€' = 2¢ and any € > 0.

Theorem 3.5. The optimal solution X for (scaled IP) is a (1 +
€')-approximation solution for the RSP.

Proof. Assignment X is valid as it is feasible for (scaled IP). So
we just need to prove the approximation factor for the peak
inventory level.

Let x* be an optimal solution of (IP), and V* the corresponding
peak inventory level.

As stated in Theorem 3.4, z(X) > z(x) — €kD for any x that is
feasible of (IP), including x*. From Lemma 2.4, the inventory levels
at time k for X and x* are Vi(%) = ¢ — 2% and vy(x*) = ¢ — 2
respectively. Therefore,

C z(x) C z(x% .
KTk Sk kT T VX)) FeD

From Lemma 3.1 it follows that the peak inventory level for X
satisfies V(X) < Vi(X)+ €D. Since x* is a solution of (IP), the peak
inventory level for x* is V* = V;(x*). Hence,

V(X) < Vi(X) + €D < V* + 2¢D.

. ekD
Vk(x) =

That is, for the optimum peak storage of the RSP, V*, and for
the optimal solution of (scaled IP) X, the ratio V(X)/V* is at most
1+ 2eD/V*. Observe that V* must be at least the per unit time
demand D, it follows that 2eD/V* < 2e.

Therefore, the ratio V(X)/V* is at most 1+ 2¢ = 1+ ¢’. Hence,
X is a (1 + €')-approximate solution to the RSP. O

839

Operations Research Letters 48 (2020) 835-839

The complexity of this approximation procedure is O(nk+De=*)
for constant k. As ¢’ = 2e, this complexity is polynomial in n and
¢'~!. Therefore, we indeed have an FPTAS.

4. Concluding remarks

Both the single-cycle and the multi-cycle RSPs are weakly NP-
hard but an FPTAS was known only for the single cycle RSP, in [4].
Here we devise an FPTAS for the multi-cycle RSP with constant
joint cycle length. The running time of our FPTAS here is not
fixed-parameter tractable as compared to the running time of
the FPTAS for the single-cycle case. We leave the existence of
a fixed-parameter tractable FPTAS for the multi-cycle RSP as an
open question. The question of whether there exists a PTAS for
the multi-cycle RSP when the joint cycle length is not constant
remains open as well.

Acknowledgment
The research of the authors was supported in part by NSF,
United States of America, award No. CMMI-1760102. We thank

the anonymous referees and the area editor for a number of
helpful comments and suggestions.

References

(1

[2]

E.F. Boctor, Offsetting inventory replenishment cycles to minimize storage
space, European J. Oper. Res. 203 (2) (2010) 321-325.

E. Croot, K. Huang, A class of random algorithms for inventory cycle
offsetting, Int. J. Oper. Res. 18 (2) (2013) 201-217.

N.G. Hall, A comparison of inventory replenishment heuristics for mini-
mizing maximum storage, Amer. J. Math. Management Sci. 18 (3-4) (1998)
245-258.

D.S. Hochbaum, X. Rao, The replenishment schedule to minimize peak
storage problem: The gap between the continuous and discrete versions
of the problem, Oper. Res. 67 (5) (2019) 1345-1361.

D.S. Hochbaum, X. Rao, Errata and simplification for Hochbaum and Rao
OR 2019, 2020, https://hochbaum.ieor.berkeley.edu/html/pub/RSP-errata.
pdf. (Accessed 25 September 2020).

LK. Moon, B.C. Cha, S.K. Kim, Offsetting inventory cycles using mixed
integer programming and genetic algorithm, Int.]. Ind. Eng. Theory Appl.
Pract. 15 (3) (2008) 245-256.

N.N. Murthy, W. Benton, P.A. Rubin, Offsetting inventory cycles of items
sharing storage, European]. Oper. Res. 150 (2) (2003) 304-319.

R.A. Russell, T.L. Urban, Offsetting inventory replenishment cycles,
European J. Oper. Res. 254 (1) (2016) 105-112.

M. Yao, W. Chu, A genetic algorithm for determining optimal replenish-
ment cycles to minimize maximum warehouse space requirements, Omega
36 (4) (2008) 619-631.

M. Yao, W. Chu, Y. Lin, Determination of replenishment dates for
restricted-storage, static demand, cyclic replenishment schedule, Comput.
Oper. Res. 35 (10) (2008) 3230-3242.

3]

[4

[5

[6]

[7

(8

191

[10]

http://refhub.elsevier.com/S0167-6377(20)30152-8/sb1
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb1
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb1
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb2
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb2
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb2
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb3
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb3
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb3
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb3
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb3
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb4
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb4
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb4
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb4
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb4
https://hochbaum.ieor.berkeley.edu/html/pub/RSP-errata.pdf
https://hochbaum.ieor.berkeley.edu/html/pub/RSP-errata.pdf
https://hochbaum.ieor.berkeley.edu/html/pub/RSP-errata.pdf
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb6
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb6
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb6
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb6
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb6
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb7
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb7
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb7
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb8
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb8
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb8
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb9
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb9
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb9
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb9
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb9
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb10
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb10
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb10
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb10
http://refhub.elsevier.com/S0167-6377(20)30152-8/sb10

	A fully polynomial time approximation scheme for the Replenishment Storage problem
	Introduction
	Related literature
	Contributions
	Paper overview

	Preliminaries
	The integer programming formulation of the RSP
	The dynamic programming algorithm for the RSP

	A fully polynomial-time approximation scheme for the RSP with constant joint cycle length
	The scaling of (IP), (scaled IP)
	The -relaxed RSP
	The approximation property of the solution to (scaled IP)
	The (1+')-approximation bound

	Concluding remarks
	Acknowledgment
	References

