
Information Processing Letters 158 (2020) 105940

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Approximation algorithms for connected maximum coverage

problem for the discovery of mutated driver pathways in

cancer✩

Dorit S. Hochbaum1, Xu Rao ∗,1

Department of IEOR, Etcheverry Hall, Berkeley, CA 94709, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 October 2019
Received in revised form 14 February 2020
Accepted 24 February 2020
Available online 26 February 2020
Communicated by R. Lazic

Keywords:
Approximation algorithms
Connected maximum coverage
Bounded radius subgraph

This paper addresses the connected maximum coverage problem, motivated by the
detection of mutated driver pathways in cancer. The connected maximum coverage
problem is NP-hard and therefore approximation algorithms are of interest. We provide
here an approximation algorithm for the problem with an approximation bound that
strictly improves on previous results. A second approximation algorithm with faster run
time, though worse approximation factor, is presented as well. The two algorithms are
then applied to submodular maximization over a connected subgraph, with a monotone
submodular set function, delivering the same approximation bounds as for the coverage
maximization case.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

We address here the connected maximum coverage
problem. Given a collection of subsets, each associated
with a node in a graph, and an integer k, the goal is to find
up to k subsets the union of which is of largest cardinality
so that the respective nodes in the graph form a connected
subgraph. This problem generalizes the maximum cover-
age problem which is to find k subsets that jointly cover
the most elements.

The motivation for connected maximum coverage prob-
lem is the detection of mutations associated with cancer.
The search for driver mutations in cancer has accelerated
with recent advances in sequencing technologies. These
technologies enable measurements in large cohorts of can-

✩ Research supported in part by NSF award No. CMMI-1760102.

* Corresponding author.
E-mail addresses: hochbaum@ieor.berkeley.edu (D.S. Hochbaum),

xrao@berkeley.edu (X. Rao).
1 Department of Industrial Engineering and Operations Research, Uni-

versity of California, Berkeley, USA.
https://doi.org/10.1016/j.ipl.2020.105940
0020-0190/© 2020 Elsevier B.V. All rights reserved.
cer patients and identify their individual list of gene mu-
tations. Each mutation in the list is thus associated with
a subset of patients whose profiles include this mutation.
The goal is to “explain” the cancer with up to k muta-
tions, where explanation means that these mutations cover
jointly the largest possible collection of patients. These se-
lected mutations are considered to be the driver mutations
that are most associated with the specific type of cancer.
The connectivity requirement is motivated by the belief
that cancer is a disease of pathways [1]. Pathways are con-
nected subnetworks in a large gene interaction network.
Therefore, the goal is to identify mutations that not only
deliver large coverage of the set of patients, but also form
a connected subnetwork in the interaction network.

In the graph representation of the driver mutations’ de-
tection problem, each node of the graph corresponds to
a protein and its associated gene (mutation), and thus,
also associated with a subset of patients whose profiles in-
clude the mutation. The edges of the graph represent the
pairwise protein-to-protein interactions. The detection of k
driver mutations is then the maximum coverage problem
on this graph.

https://doi.org/10.1016/j.ipl.2020.105940
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2020.105940&domain=pdf
mailto:hochbaum@ieor.berkeley.edu
mailto:xrao@berkeley.edu
https://doi.org/10.1016/j.ipl.2020.105940

2 D.S. Hochbaum, X. Rao / Information Processing Letters 158 (2020) 105940
Formally, the input to an instance of the connected
maximum coverage problem is a graph G = (V , E), where
each node v ∈ V be associated with a set Sv ⊂ P (pos-
sibly empty), for P a universal set, and an integer k. The
goal is to find a subset V ′ ⊂ V of cardinality less than or
equal to k, that induces a connected subgraph in G such
that | ⋃v∈V ′ Sv | is maximized.

The connected maximum coverage problem is easily
seen to be NP-hard as it is a special case of the maximum
coverage problem [2]. The maximum coverage problem was
studied by Hochbaum and Pathria [3] who showed that the
problem is NP-hard and devised a simple greedy algorithm
with an approximation factor of 1 −1/e = 0.632121.... This
approximation factor is the best-possible attained in poly-
nomial time for maximum coverage problem under the
assumption that P �= NP [4].

Problems closely related to the connected maximum
coverage problem include the problem of finding a k-nodes
connected subgraph that maximizes the sum of weights of
the nodes. This problem was studied by Hochbaum and
Pathria in [5] who showed that this problem is in general
NP-hard, but solvable in polynomial time for a tree graph.
Seufert et al. (2010) [6] addressed this NP-hard connected
maximum sum of weights problem (on general graphs)
and provided an 1/(5(1 + ε))-approximation algorithm.

Vandin et al. [7] studied the connected maximum cov-
erage problem and provided an approximation algorithm.
Bomersbach et al. [8] formulated the connected maximum
coverage problem as an integer programming problem and
used a branch and cut algorithm to get exact solutions.
Both of these papers that address the connected maximum
coverage problem are motivated by the search for driver
mutations in cancer.

Our main contribution here is the improvement of the
approximation factor for the connected maximum cov-
erage problem, with an algorithm we call the Bounded
Radius Algorithm. The approximation factor achieved by
Vandin et al. [7] is 1/(crOPT), where c = (2e − 1)/(e − 1) =
2.581976... and rOPT is the radius of the optimal solu-
tion subnetwork. The approximation factor of our Bounded
Radius Algorithm is max{(1− 1/e) (1/rOPT − 1/k) , 1/k},
which is demonstrated to always improve on the factor
of 1/(crOPT). We also provide an alternative approximation
algorithm, the Greedy Path Algorithm, with approximation
factor max{(1− 1/e) (1/R − 1/k) , 1/k} where R is the ra-
dius of the input graph G . The Greedy Path Algorithm is
always worse than the Bounded Radius Algorithm in terms
of approximation bound, but always better in terms of run-
ning time.

Another contribution here is the generalization of the
connected maximum coverage to a connected submodu-
lar maximization problem. It is shown here that our two
approximation algorithms apply also to the connected
submodular maximization, for monotone submodular set
functions, delivering the same approximation bounds as
for the connected maximum coverage problem.

2. Preliminaries and notations

An undirected connected graph is denoted by G =
(V , E). We use the standard notation of m = |E| for the
number of edges, and n = |V | for the number of nodes in
the graph.

We let the distance between two nodes in the graph,
v1 ∈ V and v2 ∈ V be the shortest path length between
the two nodes where all the edge weights are of unit
length. We denote this distance by d(v1, v2). It is easy to
find the distance between node v1 and all other nodes in
V in O (m) time using breadth first search (BFS). The level
of each node in the BFS tree rooted in v1 is its distance
from v1. Additional details about BFS are provided in the
next subsection.

Definition 1. The eccentricity ε(v) of a node v ∈ V is the
longest distance between v and any other node in V .

The eccentricity of node v in G can be found using BFS
from v , where ε(v) is equal to the depth of the BFS tree
(the deepest level in the tree).

Definition 2. The radius of a graph is the minimum ec-
centricity among all nodes in the graph, minv∈V ε(v). The
argument of this minimum is attained for node v∗ called
the center of the graph. ε(v∗) is then the radius of the
graph.

Let the radius of graph G be denoted by R(G). Note that
the center of the graph is not necessarily unique.

It is easy to see that R(G) ≤ n/2 and that this inequality
is tight when the graph is an n node path and the number
of nodes n is even. We therefore conclude that,

Lemma 1. The radius of the optimal connected subgraph on k-
nodes, rOPT, satisfies rOPT ≤ k/2.

In order to find the radius and center of a graph we use
breadth-first-search (BFS). The procedure creates the BFS-
tree rooted at the node called “root”. The longest distance
from the root to another node is attained for a leaf node.
Hence, to find the eccentricity of node v it suffices to eval-
uate the distance from the root v of each one of the leaves
(the level of each leaf), and to take the maximum distance.
To find the radius of the graph it is sufficient to initiate BFS
from each node of the graph, compute the respective ec-
centricity and take the minimum. The complexity of BFS is
known to be O (m) and therefore, finding the radius and
the center of a graph takes at most O (nm) steps for a
graph on n nodes and m edges.

The parent of a node v in a rooted tree T is denoted by
p(v).

The algorithms presented in this paper make calls to a
subroutine that merges two sets and measure the size of
the union. There are various algorithms of different com-
plexities for finding set unions and the size of the unions,
that depend on different assumptions on how the input is
given. Here, we assume that for any v ∈ V , subset Sv is
represented by an array of ordered indexes of length |Sv |,
where i is in the array if and only if the ith element of P
is in the subset Sv . Then we can traverse the two subsets
to get their union set and measure the size of the union,
in O (N) time where N = |P |.

D.S. Hochbaum, X. Rao / Information Processing Letters 158 (2020) 105940 3
3. The approximation algorithm for the maximum
coverage problem

The maximum coverage problem differs from the con-
nected maximum coverage problem in that it does not re-
quire the connectivity of the subgraph selected. We make
use here of results for the maximum coverage problem ad-
dressed in [3]. The relevant results are reviewed here for
the sake of completeness.

Given a family F of sets, an integer k, the maximum
coverage problem is to find k sets such that the size of the
union of the selected sets is maximized. Formally, the goal
is to identify sets Si1 , Si2 , . . . , Sik ∈F , such that | ⋃k

j=1 Si j |
is maximum. The problem was shown to be NP-hard and
the following greedy algorithm of [3] delivers the state-of-
the-art approximation for the problem.

Algorithm 1 Maximum coverage greedy algorithm [3].
Input F , k.
S ← ∅, U ← ∅.
for i = 1, ..., k do

Select set Si from F \ S that maximizes |U ∪ Si |; S ← S ∪ {Si},
U ← U ∪ Si .
end for
Output The collection of k sets S .

Theorem 1 ([3]). The Maximum Coverage Greedy Algorithm is a
(1− 1/e)-approximation algorithm for the maximum coverage
problem.

The actual approximation bound proved in [3] is better
for any finite value of k: 1 − (1 − 1/k)k > 1 − 1/e.

4. Approximation algorithms for the connected
maximum coverage problem

There is a trivial 1/k-approximate solution for the con-
nected maximum coverage problem. The singleton greedy
algorithm selects a single node with the associated subset
of largest size:

Lemma 2. The singleton greedy algorithm delivers a 1/k-
approximate solution.

The proof is obvious and therefore omitted.
For small values of k the singleton greedy algorithm

gives a good approximate solution. In the following two
subsections, we present two approximation algorithms that
give better approximation factors than 1/k for large k.

First we present an approximation algorithm with an
approximation factor of (1− 1/e) (1/R − 1/k) for R =
R(G), the radius of graph G , with the assumption that
k > R . Next, the approximation bound of the first algo-
rithm is improved to (1− 1/e) (1/rOPT − 1/k), where rOPT
is the radius of the optimal subgraph. The second algo-
rithm requires k > rOPT, which is always satisfied as the
optimal subgraph have at most k nodes. Since rOPT ≤ R ,
this improvement is meaningful. We call the first algo-
rithm, the Greedy Path Algorithm, and we call the second
one, the Bounded Radius Algorithm.
4.1. Greedy path algorithm

The input to the Greedy Path Algorithm is the radius R
and the center node v∗ of graph G , subset Sv∗ , a subset of
nodes L and sets P�, A� for each � ∈ L. The subset of nodes
L is the set of leaves of a BFS tree T rooted at v∗ . For
each � ∈ L, P� is the set of nodes on the unique path on T
between v∗ and � (including � but not v∗), and A� is the
union of subsets associated to nodes in P� , A� = ∪v∈P�

Sv .
The input parameters are computed first in a prepro-

cessing step. This includes running BFS rooted at each node
in V and a dynamic programming procedure. As described
earlier, we run n BFS trees to get the center v∗ , radius R ,
and the BFS tree, T , rooted at v∗ with its set of leaves L.
Consider the BFS tree T rooted at v∗ to be directed from
parents to children. Then the BFS ordering is a topological
ordering, and we can compute P v , Av for each v in topo-
logical order with the dynamic programming procedure:

Initialize P v∗ := {v∗}, Av∗ := Sv∗ ;
the dynamic programming recursion is then:
P v = {v} ∪ P p(v), Av = Sv ∪ Ap(v) .
The algorithm maintains a set of nodes V ′ that have

been selected, as well as the union U of the subsets corre-
sponding to the nodes in V ′ , U = ∪v∈V ′ Sv .

Algorithm 2 Greedy path algorithm.
Input Integer k, center v∗ and radius R of G , Sv∗ , subset L and subsets
A�, P� for each � ∈ L.
V ′ ← {v∗}, U ← Sv∗ .
while k − |V ′| ≥ R do

Select � from L that maximizes |U ∪ A�|, V ′ ← V ′ ∪ P� , U ← U ∪
A�, L ← L \ {�}.
end while
Output V ′ .

By the definition of radius and the center, |P�| ≤ R for
any � ∈ L so in any iteration of the while loop, at most
R nodes are added to set V ′ . Therefore, output V ′ must
have a size no more than k. Since the set of nodes V ′ also
induce a connected subgraph, the output of the algorithm
is a feasible solution.

Let k′ denote the number of iterations of the while loop.

Lemma 3. The number of iterations of the while loop, k′, is at
least (k − R)/R.

Proof. The initial size of set V ′ is 1. At each iteration of
while loop, at most R new nodes are added to V ′ as |P�| ≤
R for any � ∈ L. Hence |V ′| ≤ 1 + k′R . On the other hand,
the termination condition of the while loop is |V ′| > k − R
(or equivalently, |V ′| ≥ k − R + 1). Therefore, 1 + k′R ≥ k −
R + 1, and thus, k′ ≥ (k − R)/R . �

Let the optimal solution to the connected maximum
coverage problem be the set of k nodes V ∗ . Let z∗ be the
value of the optimal solution (the size of the union of the
sets in V ∗ or the optimal coverage) and let z1 be the value
of the Greedy Path Algorithm’s solution (the size of the
union of the sets in V ′ , or the algorithm’s coverage).

Theorem 2. z1 ≥ (
1− 1) (1 − 1)

z∗ .
e R k

4 D.S. Hochbaum, X. Rao / Information Processing Letters 158 (2020) 105940
Proof. Let z′path be the optimal coverage of k′ subsets from
Fpath = {A�, � ∈ L}. We observe that V ′ can be viewed as
the output of the greedy algorithm for the maximum cov-
erage problem if restricted to select k′ sets from the family
of subsets Fpath = {A�, � ∈ L}. By Theorem 1,

z1 ≥
(
1− 1

e

)
z′path. (1)

Let z′node be the optimal coverage of k′ subsets from
Fnode = {Sv , v ∈ V }. Since for each subset S ∈ Fnode, there
is some subset A ∈ Fpath such that S ⊆ A. So the optimal
coverage of k′ subsets from Fpath is better than that from
Fnode, that is,

z′path ≥ z′node. (2)

Let znode be the optimal coverage of k subsets from
Fnode. Then z′node ≥ k′

k znode. We know k′ ≥ (k − R)/R from
Lemma 3, hence,

z′node ≥
k−R
R

k
znode =

(
1

R
− 1

k

)
znode. (3)

Since znode ≥ z∗ , with inequalities (1), (2) and (3), we de-
rive that

z1 ≥
(
1− 1

e

)
z′path ≥

(
1− 1

e

)
z′node

≥
(
1− 1

e

)(
1

R
− 1

k

)
znode

≥
(
1− 1

e

)(
1

R
− 1

k

)
z∗. �

Complexity: As discussed in the previous section, find-
ing the n BFS tress in the preprocessing step can be done
in O (nm) time. The dynamic programming procedure con-
sists of O (n) set union operations so it is O (nN). There
are k′ ≤ k iterations in greedy path algorithm, each re-
quiring O (n) set union operations and O (n) time to pick
the subset that has the largest incremental coverage. As
noted earlier, we assume the input allows us to do one
union operation and measure the size in O (N) time. The
total complexity of the Greedy Path Algorithm is then
O (n(m + kN)).

4.2. An improved approximation algorithm – the bounded
radius algorithm

We present here the Bounded Radius Algorithm, Algo-
rithm 3, which is a (1− 1/e) (1/rOPT − 1/k)-approximation
Algorithm.

Let G(v, r) be the induced subgraph of the node set
V (v, r) = {w ∈ V : d(v, w) ≤ r}, which are all the nodes
within distance r from node v . As above, let V ∗ be the
optimal solution (node set) for the connected maximum
coverage problem. Then, it follows from the definition of
the radius of the optimal solution rOPT, that there exists a
node u in V ∗ such that V ∗ ⊆ V (u, rOPT). One such node u
is the center of the graph induced by V ∗ .
If we were to apply the Greedy Path Algorithm to
G(u, rOPT), as we know that the optimal subgraph have
at most k nodes so k > rOPT. Then according to Theo-
rem (2) the output would be a (1− 1/e) (1/rOPT − 1/k)-
approximate solution. However, there is no easy way to
guess the correct node u and the value rOPT. Our improved
approximation hence relies on testing all possible combi-
nations of nodes u and radius values rOPT by applying the
Greedy Path Algorithm on subgraph G(v, r) for all v ∈ V
and r = 1, ..., R .

Here, for each selection of u ∈ V and r ∈ {1, ..., R}, the
algorithm maintains a set of nodes V ′(u, r) that have been
selected, as well as the union U of the subsets correspond-
ing to the nodes in V ′ , U = ∪v∈V ′(u,r)Sv .

Algorithm 3 Bounded radius algorithm.
Input G = (V , E), R = R(G), Sv for each v ∈ V , integer k.
for u ∈ V do

Pu ← {u}, Au ← Su .
Run BFS with root u, Vr ← set of nodes of level r and the leaves of

level less than r in the BFS tree, for r = 1, ..., k. (Vr are the set of leaves
of the subtree induced by deleting all nodes of level more than r from
the BFS tree.)

for r = 1, ..., k do
for v ∈ Vr do

if v is at level r then
Pv ← {v} ∪ P p(v) , Av ← Sv ∪ Ap(v) .

end if
end for
V ′(u, r) ← {u}, U ← Su .
while k − |V ′| ≥ R do

Select � from Vr that maximizes |U ∪ A�|, V ′(u, r) ←
V ′(u, r) ∪ P� , U ← U ∪ A�, Vr ← Vr \ {�}.

end while
z(u, r) ← |U |.

end for
end for
v∗, r∗ ← argmaxu,r z(u, r).
Output V ′(v∗, r∗).

Complexity: For each potential center u, it takes O (m)

time to run BFS. Then for each potential r, it takes
O (kNn) time to apply the loop of the Greedy Path Algo-
rithm. Therefore the total complexity is O (mn + k2Nn2) =
O (k2Nn2).

5. The approximation bounds and a comparison with the
results of Vandin et al.

We reviewed here three approximation bounds for the
connected maximum coverage problem. These are:

1. The singleton greedy algorithm is a 1/k-approximation
algorithm (Lemma 2). This algorithm provides a solu-
tion consisting of a single node, which by default is a
connected subgraph.

2. The algorithm of Vandin et al. (2011) [7] provides an
approximation bound of 1/ (crOPT). (Recall that c =
2e−1
e−1
 2.58.)

3. The Bounded Radius Algorithm which is a (1− 1/e) (1/
rOPT − 1/k)-approximation algorithm.

When k ≤ crOPT the singleton greedy approximation is
best, meaning that 1/k is the largest of the three factors.

D.S. Hochbaum, X. Rao / Information Processing Letters 158 (2020) 105940 5
In Lemma 1 we showed that k ≥ 2rOPT, hence for k in the
range [2rOPT, crOPT] the singleton approximate is the best.
This occurs when the optimal graph has a relatively large
diameter and is close to a path. The other extreme is when
the optimal subgraph is a star which has a radius of 1 re-
gardless of the value of k.

We show next, that for k ≥ crOPT the approximation fac-
tor provided by our algorithm is the best (greater than)
the approximation of [7] as well as the singleton greedy
approximation.

Lemma 4. For k ≥ crOPT,
(
1− 1

e

)
(1/rOPT − 1/k) ≥ 1/ (crOPT).

Proof. The proof relies on simple arithmetic.

(
1− 1

e

)
(1/rOPT − 1/k) ≥ (

1− 1
e

) 1
rOPT

− (
1− 1

e

) 1
crOPT= (

1− 1
e

) (
1− 1

c

) 1
rOPT

= 1
crOPT

.

The last equality follows since
(
1− 1

e

)(
1− 1

c

)
= e − 1

e

(2e − 1) − (e − 1)

2e − 1

= e − 1

2e − 1
= 1

c
. �

Hence, our results deliver the best approximation fac-
tor known for the connected maximum coverage problem,
max{(1− 1/e) (1/rOPT − 1/k) , 1/k}.

6. Generalization to maximizing monotone submodular
set function

Consider a generalization of connected maximum cov-
erage problem, which we call connected monotone sub-
modular maximization: for any monotone submodular set
function f : 2V → R where f (∅) = 0, find a subset of
nodes V ′ of cardinality k, that induces a connected sub-
graph in G , such that f (V ′) is maximized. The definition
of submodular function and monotone submodular func-
tion is given below.

Definition 3. Let � be a finite set and f : 2� →R. Then f
is submodular if for all S, T ⊆ N ,

f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T).

Furthermore, if for any T ⊆ S , f (T) ≤ f (S), then f is
monotone.

Examples of monotone submodular functions include:
linear functions, budget-additive functions, coverage func-
tions, and matroid rank functions. It is known that greedy
algorithm is an (1 −1/e)-approximate algorithm for mono-
tone submodular maximization.

Theorem 3 ([9]). The greedy algorithm for monotone sub-
modular maximization always produce an 1 − (1− 1/k)k-
approximate solution for maximizing a monotone submodular
function f (S) where f (∅) = 0, under the constraint |S| ≤ k.
In the two approximation algorithms presented above,
the Greedy Path Algorithm as well as the Bounded Radius
Algorithm, we incorporate the greedy algorithm of max-
imum coverage problem to select k′ paths from a “cen-
ter” node. Now for the monotone submodular objective,
we generalize these two algorithms by incorporating the
greedy algorithm of maximizing monotone submodular set
function to select paths. That is, instead of adding the path
which has the most increment on coverage in each step,
we add the path which has the most increment on the ob-
jective f .

Now, we are going to show that the Greedy Path Algo-
rithm and the Bounded Radius Algorithm deliver the same
approximation factors respectively as applied to connected
maximum coverage problem when applied to connected
monotone submodular maximization. Since Lemma 3 does
not depend on the objective function, providing a proof
similar to Theorem 2 is sufficient.

Let the optimal solution to connected monotone sub-
modular maximization problem be subset V ∗ . Let z∗ =
f (V ∗) be the value of the optimal solution and let z1 =
f (V ′) be the value of the Greedy Path Algorithm’s solu-
tion.

Theorem 4. z1 ≥ (
1− 1

e

) (1
R − 1

k

)
z∗ .

Proof. Let k′ to denote the number of iterations of the
while loop in the Greedy Path Algorithm. In the prepro-
cessing step, we get a subset of nodes L, and P� the set of
nodes on a path between v∗ and � for each � ∈ L. Define
a new function g : 2L → R where g(S) = f (∪�∈S P�). One
can easily verify that g is also monotone submodular with
g(∅) = 0.

Let z′g = maxS⊆L:|S|=k′ g(S). We observe that V ′ can be
viewed as the output of the greedy algorithm for maximiz-
ing monotone submodular function g with the restriction
of selecting k′ subsets from the family of subsets L. By The-
orem 3,

z1 ≥
(
1− 1

e

)
z′g . (4)

Let z′f = maxS⊆V :|S|=k′ f (S). Since each node is on some
path P� where � ∈ L, by monotonicity, we have

z′g ≥ z′f . (5)

Let z f = maxS⊆V :|S|=k f (S). Then by submodularity,
z′f ≥ k′

k z f . We know k′ ≥ (k − R)/R from Lemma 3, hence,

z′f ≥
k−R
R

k
z f =

(
1

R
− 1

k

)
z f . (6)

Since z f ≥ z∗ , with inequalities (4), (5) and (6), we derive
that

z1 ≥
(
1− 1

e

)
z′g ≥

(
1 − 1

e

)
z′f

≥
(
1− 1

)(
1 − 1

)
z f ≥

(
1− 1

)(
1 − 1

)
z∗. �
e R k e R k

6 D.S. Hochbaum, X. Rao / Information Processing Letters 158 (2020) 105940
Theorem 4 shows that the Greedy Path Algorithm is
an

(
1− 1

e

) (1
R − 1

k

)
-approximation algorithm for connected

monotone submodular maximization problem. With the
same reasoning in Section 4.2, we show the Bounded Ra-
dius Algorithm is an

(
1− 1

e

)(
1

rOPT
− 1

k

)
-approximation al-

gorithm for connected monotone submodular maximiza-
tion.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

References

[1] W.C. Hahn, R.A. Weinberg, Modelling the molecular circuitry of cancer,
Nat. Rev. Cancer 2 (5) (2002) 331, https://doi .org /10 .1038 /nrc795.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, NY, USA, 1978.

[3] D.S. Hochbaum, A. Pathria, Analysis of the greedy approach in
problems of maximum k-coverage, Nav. Res. Logist. (NRL) 45 (6)
(1998) 615–627, https://doi .org /10 .1002 /(SICI)1520 -6750(199809)45 :
6<615 ::AID -NAV5 >3 .0 .CO ;2 -5.

[4] U. Feige, A threshold of lnn for approximating set cover, J. ACM 45 (4)
(1998) 634–652, https://doi .org /10 .1145 /285055 .285059.

[5] D.S. Hochbaum, A. Pathria, Node-optimal connected k-subgraphs, UC
Berkeley, Unpublished manuscript.

[6] S. Seufert, S. Bedathur, J. Mestre, G. Weikum, Bonsai: growing inter-
esting small trees, in: 2010 IEEE International Conference on Data
Mining, IEEE, 2010, pp. 1013–1018.

[7] F. Vandin, E. Upfal, B.J. Raphael, Algorithms for detecting significantly
mutated pathways in cancer, J. Comput. Biol. 18 (3) (2011) 507–522,
https://doi .org /10 .1089 /cmb .2010 .0265.

[8] A. Bomersbach, M. Chiarandini, F. Vandin, An efficient branch and cut
algorithm to find frequently mutated subnetworks in cancer, in: Inter-
national Workshop on Algorithms in Bioinformatics, Springer, 2016,
pp. 27–39.

[9] G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of approxima-
tions for maximizing submodular set functions, Math. Program. 14 (1)
(1978) 265–294, https://doi .org /10 .1007 /BF01588971.

https://doi.org/10.1038/nrc795
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib84EB077BA375F3048297D174D1EC2EF9s1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib84EB077BA375F3048297D174D1EC2EF9s1
https://doi.org/10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
https://doi.org/10.1145/285055.285059
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib39BE4A50DDFD34756DC8D79A938266BFs1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib39BE4A50DDFD34756DC8D79A938266BFs1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib39BE4A50DDFD34756DC8D79A938266BFs1
https://doi.org/10.1089/cmb.2010.0265
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib241B6AB367DC9C7E70F9F2F5B1BDFD78s1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib241B6AB367DC9C7E70F9F2F5B1BDFD78s1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib241B6AB367DC9C7E70F9F2F5B1BDFD78s1
http://refhub.elsevier.com/S0020-0190(20)30027-2/bib241B6AB367DC9C7E70F9F2F5B1BDFD78s1
https://doi.org/10.1007/BF01588971

	Approximation algorithms for connected maximum coverage problem for the discovery of mutated driver pathways in cancer
	1 Introduction
	2 Preliminaries and notations
	3 The approximation algorithm for the maximum coverage problem
	4 Approximation algorithms for the connected maximum coverage problem
	4.1 Greedy path algorithm
	4.2 An improved approximation algorithm -- the bounded radius algorithm

	5 The approximation bounds and a comparison with the results of Vandin et al.
	6 Generalization to maximizing monotone submodular set function
	References

