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Abstract

Recent large cancer studies have measured somatic alterations in an unprecedented

number of tumours. These large datasets allow the identification of cancer-related sets of

genetic alterations by identifying relevant combinatorial patterns. Among such patterns,

mutual exclusivity has been employed by several recent methods that have shown its

effectiveness in characterizing gene sets associated to cancer. Mutual exclusivity arises

because of the complementarity, at the functional level, of alterations in genes which are

part of a group (e.g., a pathway) performing a given function. The availability of quantita-

tive target profiles, from genetic perturbations or from clinical phenotypes, provides addi-

tional information that can be leveraged to improve the identification of cancer related

gene sets by discovering groups with complementary functional associations with such

targets. In this work we study the problem of finding groups of mutually exclusive alter-

ations associated with a quantitative (functional) target. We propose a combinatorial

formulation for the problem, and prove that the associated computational problem is com-

putationally hard. We design two algorithms to solve the problem and implement them in

our tool UNCOVER. We provide analytic evidence of the effectiveness of UNCOVER in

finding high-quality solutions and show experimentally that UNCOVER finds sets of alter-

ations significantly associated with functional targets in a variety of scenarios. In particular,

we show that our algorithms find sets which are better than the ones obtained by the state-

of-the-art method, even when sets are evaluated using the statistical score employed by

the latter. In addition, our algorithms are much faster than the state-of-the-art, allowing the

analysis of large datasets of thousands of target profiles from cancer cell lines. We show

that on two such datasets, one from project Achilles and one from the Genomics of Drug

Sensitivity in Cancer project, UNCOVER identifies several significant gene sets with com-

plementary functional associations with targets. Software available at: https://github.com/

VandinLab/UNCOVER.
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Author summary

Sequencing technologies allow the measurement of somatic alterations in a large number

of cancer samples. Several methods have been designed to analyze these alterations, but

the characterization of the functional effects of such alterations is still challenging. A

recent promising approach for such characterization is to combine alteration data with

quantitative profiles obtained, e.g., from genetic perturbations. The analysis of these data

is complicated by the extreme heterogeneity of alterations in cancer, with different cancer

samples exhibiting vastly different alterations. This heterogeneity is due, in part, to the

complementarity of alterations in cancer pathways, with alterations in different genes

resulting in the same alteration at the functional level. We develop UNCOVER, an effi-

cient method to identify sets of alterations displaying complementary functional associa-

tion with a quantitative profile. UNCOVER is much more efficient than the state-of-the-

art, allowing the identification of complementary cancer related alterations from genome-

scale measurements of somatic mutations and genetic perturbations.

Introduction

Recent advances in sequencing technologies now allow to collect genome-wide measurements

in large cohorts of cancer patients (e.g., [1–6]). In particular, they allow the measurement of

the entire complement of somatic (i.e., appearing during the lifetime of an individual) alter-

ations in all samples from large tumour cohorts. The study of such alterations has lead to an

unprecedented improvement in our understanding of how tumours arise and progress [7].

One of the main remaining challenges is the interpretation of such alterations, in particular

identifying alterations with functional impact or with relevance to therapy [8].

Several computational and statistical methods have been recently designed to identify driver
alterations, associated to the disease, and to distinguish them from random, passenger alter-

ations not related with the disease [9]. The identification of genes associated with cancer is

complicated by the extensive intertumour heterogeneity [10], with large (100-1000’s) and dif-

ferent collections of alterations being present in tumours from different patients and no two

tumours having the same collection of alterations [10, 11]. Two main reasons for such hetero-

geneity are that i) most mutations are passenger, random mutations, and, more importantly,

ii) driver alterations target cancer pathways, groups of interacting genes that perform given

functions in the cell and whose alteration is required to develop the disease. Several methods

have been designed to identify cancer genes using a-priori defined pathways [12] or interaction

information in the form of large interaction networks [13, 14].

Recently several methods (see Section Related work) for the de novo discovery of mutated

cancer pathways have leveraged the mutual exclusivity of alterations in cancer pathways.

Mutual exclusivity of alterations, with sets of genes displaying at most one alteration for each

patient, has been observed in various cancer types [7, 11, 15, 16]. The mutual exclusivity prop-

erty is due to the complementarity of genes in the same pathway, with alterations in different

members of a pathway resulting in a similar impact at the functional level, while mutations in

different members of the same pathway may not provide further selective advantage or may

even lead to a disadvantage for the cell (e.g., in synthetic lethality). Even if mutual exclusivity

of alterations is neither a sufficient nor a necessary property of cancer pathways, it has been

successfully used to identify cancer pathways in large cancer cohorts [15, 17, 18].

An additional source of information that can be used to identify genes with complementary

functions are quantitative measures for each samples such as: functional profiles, obtained for
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example by genomic or chemical perturbations [19–21]; clinical data describing, obtained for

example by (quantitative) indicators of response to therapy; activation measurements for

genes or sets of genes, as obtained for example by single sample scores of Gene Set Enrichment

Analysis [22, 23]. The employment of such quantitative measurements is crucial to identify

meaningful complementary alterations since one can expect mutual exclusivity to reflect in

functional properties (of altered samples) that are specific to the altered samples. For example,

consider a scenario (Fig 1) in which there are two altered molecular mechanisms: one that is

altered in almost all samples and one that is altered in much fewer samples, but is related to

the response to a given therapy (for example by interacting with a drug target). Methods that

ignore therapy response information will report the first mechanism as significantly altered,

while the second mechanisms, altered in a smaller fraction of all samples, is identified only by

considering the therapy response information.

Related work

Several recent methods have used mutual exclusivity signals to identify sets of genes important

for cancer [24]. RME [25] identifies mutually exclusive sets using a score derived from infor-

mation theory. Dendrix [26] defines a combinatorial gene set score and uses a Markov Chain

Monte Carlo (MCMC) approach for identifying mutually exclusive gene sets altered in a large

fraction of the patients. Multi-Dendrix [27] extends the score of Dendrix to multiple sets and

uses an integer linear program (ILP) based algorithm to simultaneously find multiple sets with

mutually exclusive alterations. CoMET [18] uses a generalization of Fisher exact test to higher

dimensional contingency tables to define a score to characterize mutually exclusive gene sets

altered in relatively low fractions of the samples. WExT [18] generalizes the test from CoMET

Fig 1. Identification of mutually exclusive alterations associated with a target profile. Alterations in the green set have high

mutual exclusivity but no association with the target profile (e.g., a molecular mechanism commonly altered in cancer). Alterations

in the orange set have lower mutual exclusivity but strong association with the target profile (e.g., genes in the same pathway of the

drug target). Methods that find mutually exclusive sets of alterations without considering the target profile will identify the green set

as the most important gene set.

https://doi.org/10.1371/journal.pcbi.1006802.g001
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to incorporate individual gene weights (probabilities) for each alteration in each sample.

WeSME [28] introduces a test that incorporates the alteration rates of patients and genes and

uses a fast permutation approach to assess the statistical significance of the sets. TiMEx [29]

assumes a generative model for alterations and defines a test to assess the null hypothesis that

mutual exclusivity of a gene set is due to the interplay between waiting times to alterations

and the time at which the tumor is sequenced. MEMo [17] and the method from [30] employ

mutual exclusivity to find gene sets, but use an interaction network to limit the candidate gene

sets. The method by [31] and PathTIMEx [32] introduce an additional dimension to the char-

acterization of inter-tumor heterogeneity, by reconstructing the order in which mutually

exclusive gene sets are mutated. None of these methods take quantitative targets into account

in the discovery of significant gene sets and sets showing high mutual exclusivity may not be

associated with target profiles (Fig 1).

[33] recently developed the repeated evaluation of variables conditional entropy and redun-

dancy (REVEALER) method, to identify mutually exclusive sets of alterations associated with

functional phenotypes. REVEALER uses as objective function (to score a set of alterations) a re-

scaled mutual information metric called information coefficient (IC). REVEALER employs a

greedy strategy, computing at each iteration the conditional mutual information (CIC) of the tar-

get profile and each feature, conditioned on the current solution. REVEALER can be used to find

sets of mutually exclusive alterations starting either from a user-defined seed for the solution or

from scratch, and [33] shows that REVEALER finds sets of meaningful cancer-related alterations.

Our contribution

In this paper we study the problem of finding sets of alterations with complementary func-

tional associations using alteration data and a quantitative (functional) target measure from a

collection of cancer samples. Our contributions in this regard are fivefold. First, we provide a

rigorous combinatorial formulation for the problem of finding groups of mutually exclusive

alterations associated with a quantitative target and prove that the associated computational

problem is NP-hard. Second, we develop two efficient algorithms, a greedy algorithm and an

ILP-based algorithm to identify the set of k genes with the highest association with a target;

our algorithms are implemented in our method fUNctional Complementarity of alteratiOns

discoVERy (UNCOVER). Third, we show that our algorithms identify highly significant sets

of genes in various scenarios; in particular, we compare UNCOVER with REVEALER on the

same datasets used in [33], showing that UNCOVER identifies solutions of higher quality than

REVEALER while being on average two order of magnitudes faster than REVEALER. Interest-

ingly, the solutions obtained by UNCOVER are better than the ones obtained by REVEALER

even when evaluated using the objective function (IC score) optimized by REVEALER. Fourth,

we show that the efficiency of UNCOVER enables the analysis of large datasets, and we analyze

a large dataset from Project Achilles, with thousands of genetic dependencies measurements

and tens of thousands of alterations, and a large dataset from the Genomics of Drug Sensitivity

in Cancer (GDSC) project, with hundreds of drug sensitivity measurements and tens of thou-

sands of alterations. On such datasets UNCOVER identifies several statistically significant

associations between target values and mutually exclusive alterations in genes sets, with an

enrichment in well-known cancer genes and in known cancer pathways.

Materials and methods

This section describes the problem we study and the algorithms we designed to solve it, that

are implemented in our tool UNCOVER. We also describe the data and computational envi-

ronment for our experimental evaluation.
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UNCOVER: Functional complementarity of alterations discovery

The workflow of our algorithm UNCOVER is presented in Fig 2. UNCOVER takes in input

information regarding 1. the alterations measured in a number of samples (e.g., patients or cell

lines), and 2. the value of the target measure for each patient. UNCOVER then identifies the

set of mutually exclusive alterations with the highest association to the target, and employs a

permutation test to assess the significance of the association. Details regarding the computa-

tional problem and the algorithms used by UNCOVER are described in the following sections.

The implementation of UNCOVER is available at https://github.com/VandinLab/UNCOVER.

Computational problem. Let J = {j1, . . ., jm} be the set of samples and let G = {g1, . . ., gn}
be the set of genes for which we have measured alterations in J. We are also given a target pro-
file, that is for each sample j 2 J we have a target value wj 2 R which quantitatively measures a

functional phenotype (e.g., pathway activation, drug response, etc.). For each sample j 2 J we

also have information on whether each g 2 G is altered or not in j. Let Ag be the set of patients

in which gene g 2 G is mutated. We say that a patient j 2 J is covered by gene g 2 G if j 2 Ag i.e.

if gene g is mutated in sample j. Given a set of genes S� G, we say that sample j 2 J is covered

by S if j 2 [g 2 S Ag.

The goal is to identify a set S of at most k genes, corresponding to k subsets S1, S2, . . .Sk
where for each subset Si we have that Si� J, such that the sum of the weights of the elements

covered by S is maximized. We also penalize overlaps between sets when an element is covered

more than once by S by assigning a penalty pj for each of the additional times j is covered by S.

As penalty we use the positive average of the normalized target values if the original weight of

the element was positive. If the original weight of the element was negative we assign a penalty

equal to its weight.

Let cS(j) be the number of sets in S1, . . ., Sk that cover element j 2 J. Therefore for a set S of

genes, we define its weight W(S) as:

WðSÞ ¼
X

j2[s2SAs

wj �
X

j2[s2SAs

ðcSðjÞ � 1Þpj

Fig 2. UNCOVER: Functional complementarity of alterations discovery. UNCOVER takes in input the alterations information

and a target profile for a set of samples, and identifies the set of complementary alterations with the highest association to the target

by solving the Target Associated k-Set problem and performing a permutation test.

https://doi.org/10.1371/journal.pcbi.1006802.g002
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The target associated k-set problem. Given a set J of samples, sets Ag1
; . . . ;Agn

describing

alterations of genes G = {g1, . . ., gn} in the set J, weights wj and penalties pj > 0 for each sample

j 2 J find the S of� k elements maximizing W(S).

The following result defines the computational hardness of the problem above.

Theorem 1. The Target Associated k-Set problem is NP-hard.

Proof. The proof is by reduction from the Maximum Weight Submatrix Problem (MWSP)

defined and proved to be NP-hard in [34]. The MSWP takes as input an m × n binary matrix

A and an integer k > 0 and requires to find the m × k column sub-matrix M̂ of A that maxi-

mizes the objective function |Γ(M)| − ω(M), where Γ(M) is the set of rows with at least one 1

in columns of M and ω(M) = ∑g 2 M|Γ({g})| − |Γ(M)|.

Given an instance of Maximum Weight Submatrix Problem, we define an instance of the

Target Associated k-Set as follow: the set of samples J corresponds to the rows of A, the set of

genes G corresponds to the columns of A, and the set Sg of samples covered by gene g 2 G is

the subset of the rows in which g has a 1. By setting wj = 1 and pj = 1 for all j 2 J, we have that

the objective function of MWSP corresponds to the weight W(S) for the Target Associated k-

Set therefore the optimal solution of the Target Associated k-Set corresponds to the optimal

solution of MWSP.

ILP formulation. In this subsection we provide an ILP formulation for the Target Associ-

ated k-Set problem. Let xi be a binary variable equal to 1 if set i 2 G is selected and xi = 0 other-

wise. Let zj be a binary variable equal to 1 if element j is covered and zj = 0 otherwise. Let yj
denote the number of sets in the solution covering element j. Finally, let wj be the weight of ele-

ment j and pj be the penalty for element j
In our ILP formulation, the following constraints need to be satisfied by a valid solution:

• the total number of sets in the solution is at most k: ∑i xi� k

• for each element j 2 J we have: yj ¼
P

i:j2Si
xi

• for each element j 2 J, if j is covered by the current solution then the number of times j is

covered in the solution is at least 1: yj� zj

• for each element j 2 J, if j is covered by at least one element in the current solution then j is

covered: zj� yj/k.

With the variables defined above, the score for a given solution is

zðqÞ ¼ max
Xm

j¼1

ðwj þ pjÞzj �
Xm

j¼1

pjyj: ð1Þ

z(q) constitutes the objective function of our ILP formulation.

Greedy algorithm. Since solving ILPs can be impractical for very large datasets, we also

design a k-stage greedy algorithm to solve the Target Associated k-Set problem. During each

stage the algorithm picks 1 set Ai to be part of the solution; this is done by first computing

the total weight of each subset which is defined as the sum of the weights of its elements

WðAiÞ ¼
P

j2Ai
wj. Then the algorithm finds the subset Ai of maximum positive weight and

adds it to the solution. It may be that at some stage ℓ no additional set of positive weight can be

selected, in this case, the solution obtained after stage ℓ − 1 will be our output. At the end of

the iteration the weight of every element j that belonged to the chosen set Ai is set to the nega-

tive of penalty pj, in order to penalize future selections of the same elements. The greedy algo-

rithm is described in Algorithm 1.
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Algorithm 1: GREEDY Coverage
Input: A set of elements J (samples), a class I of subsets of J
(genetic alterations) and an integer k (maximum number of alterations
in the solution). Each element j 2 J has an associated weight wj (tar-
get profile) and a penalty pj.
Output: k subsets S1, S2, . . .Sk, where each subset selected is a member
of I, such that the sum of the weights of the elements in the selected
sets is maximized and the overlap between selected sets is minimized.
for ℓ  1 to k do
for i  1 to n do WðAiÞ  

P
j2Ai

wj;
S‘  arg maxWðAiÞ>0fWðAiÞg;
for j 2 Sℓ do wj  −pj;

end
return S1. . .Sk;

We note that our greedy algorithm is analogous to the greedy algorithm for the Maximum

k-Coverage problem [35] with the difference that rather than eliminating the elements already

selected we change their weight to a penalty. Also, assuming it is acceptable to return less

than k sets, we only pick a set if it has a positive weight. The running time of the algorithm is

O(kmn) where m = number of samples and n = number of alterations.

While the greedy algorithm may not return the optimal solution, we prove that it provides

guarantees on the weight of the solution it provides.

Proposition 1. Let S� the optimal solution of the Target Associated k-Set and Ŝ be the solution
returned by the greedy algorithm. Then WðŜÞ �WðS�Þ=k.

Proof. Note that the weight of subsets in the optimal solution W(S�) can only be lower com-

pared to the original weight of the subsets, since the only weight update operation performed

is to substitute positive weights of elements selected with a negative penalty.

The first subset Ŝ1 selected by our algorithm is the set of maximum weight out of all subsets

and therefore WðŜ1Þ �WðS�
‘
Þ for ℓ = 1. . .k. By the pigeonhole principle, one of these subsets

in the optimal solution must cover at least W(S�)/k worth of elements. Thus

WðŜ1Þ �WðS�Þ=k. Therefore the first subset selected by the algorithm already gives a 1/k
approximation of the optimal solution. In subsequent iterations of the algorithm we only pick

additional sets if they have a positive weight so our approximation ratio can only improve.

We also prove that the bound above is tight.

Proposition 2. There are instances of the Target Associated k-Set such that WðŜÞ ¼WðS�Þ=k.

The proof is in S1 Appendix.

While the proposition above is based on an extreme example, our experimental analysis

shows that in practice the greedy algorithm works well and often identifies the optimal solu-

tion. We therefore analyze the greedy algorithm under a generative model in which there is a

set H of k genes with mutually exclusive alterations associated with the target, while each gene

g 2 G \ H is mutated in sample j with probability pg independently of all other events. We also

assume that the weights wj are such that ∑j 2 J wj = 0 and for each j: |wj� 1|. (In practice this is

achieved by normalizing the target values before running the algorithm, by subtracting to each

wj the average value ∑j 2 J wj/m and then dividing the result by the maximum of the absolute

values of the transformed wj’s). Note that this last condition implies that |pj|�1 for all j. We

also assume that for genes in H the following assumptions hold:

• the set H has an association with the target, i.e.: E½WðHÞ� � m
c0 for a constant c0 � 1.

• each gene of H contributes to the weight of H, i.e. for each S�H and each g 2 H \ S we have

E½WðS [ fggÞ� � E½WðSÞ� � WðHÞ
kc00

for a constant c@� 1.

Algorithms to discover alterations with complementary functional association in cancer
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The following shows that, if enough samples from the generative model are considered, the

greedy algorithm finds the set H associated with the target with high probability.

Proposition 3. If m 2 O(k2 ln(n/δ)) samples from the generative model above are provided to
the greedy algorithm, then the solution of the greedy algorithm is H with probability� δ.

The proof is in S1 Appendix.

Statistical significance. To assess the significance of the solution reported by our algo-

rithms we use a permutation test in which the dependencies among alterations in various

genes are maintained, while the association of alterations and the target is removed. In particu-

lar, a permuted dataset under the null distribution is obtained as follows: the sets Ag ; g 2 G
are the same as observed in the data; the values of the target are randomly permuted across the

samples.

To estimate the p-value for the solutions obtained by our methods we used the following

standard procedure: 1) we run an algorithm (ILP or greedy) on the real data D, obtaining a

solution with objective function oD; 2) we generate N permuted datasets as described above; 3)

we run the same algorithm on each permuted dataset; 4) the p-value is then given by (e + 1)/

(N + 1), where e is the number of permuted datasets in which our algorithm found a solution

with objective function� oD.

Data and computational environment

Alteration data. We downloaded data for the Cancer Cell Line Encyclopedia on 25th Sep-

tember, 2017 from http://www.broadinstitute.org/ccle. In particular we used the mutation

(single nucleotide variants) and copy number aberrations (CNAs) which are derived from the

original Cancer Cell Line Encyclopedia (CCLE) mutations and CNA datasets. The file we used

is CCLE_MUT_CNA_AMP_DEL_0.70_2fold.MC.gct. It consists of a binary (0/1) matrix

across 1,030 samples and 48,270 gene alterations in the form of mutations, amplifications and

deletions, with a 1 meaning that the alteration is present in a sample, and a 0 otherwise. For

the GDSC experiments [36, 37], we used the alteration provided at https://depmap.org/portal/

download/all/. We downloaded the data on July 6th 2018. In particular we used mutation data

from portal-mutation-2018-06-21.csv that includes binary entries for 18652

mutations. Additionally we considered 22746 amplifications and 22746 deletions computed

from the gene copy number data in portal-copy_number_relative-2018-06-
21.csv, with an amplification defined by a copy number above 2 and a deletion defined by a

copy number below -1.

Target data. In terms of target values we use the same datasets used by [33] to compare

the performance of UNCOVER with REVEALER. In particular we used the following files

available through the Supplementary Material of [33]: CTNBB1_transcriptional
_reporter.gct, which consists of measurements of a β-catenin reporter in 81 cell lines;

NFE2L2_activation_profile.gct, which includes NFE2L2 enrichment profiles for

182 lung cell lines; MEK_inhibitor_profile.gct, which contains MEK-inhibitor PD-

0325901 sensitivity profile in 493 cancer cell lines from the Broad Novartis CCLE14l; and

KRAS_essentiality_profile.gct, which corresponds to the feature KRAS from a

subset of 100 cell lines from the Achilles project dataset. In all these cases we considered the

same direction of association (positive or negative) between alterations and the target as in

[33]. Since our algorithm is very efficient we then decided to run it on a large dataset on

genetic dependencies from Project Achilles (https://portals.broadinstitute.org/achilles), that

uses genome-scale RNAi and CRISPR-Cas9 perturbations to silence or knockout individual

genes. In particular, we use the whole 2.4.2 Achilles dataset (Achilles_QC_v2.4.3.
rnai.Gs.gct) available from the project website. This dataset provides phenotype values

Algorithms to discover alterations with complementary functional association in cancer
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for 5711 targets, corresponding to genes silenced by shRNA. The phenotype values correspond

to ATARiS [38] gene (target) level scores, quantifying the cell viability when the target gene is

silenced by shRNA. These scores are provided for 216 cell lines [19], with 205 of them appear-

ing in CCLE. We also used UNCOVER to analyze a large datasets from the Genomics of Drug

Sensitivity in Cancer (GDSC) project (https://www.cancerrxgene.org/) which provides drug

sensitivity data generated from high-throughput screening using fluorescence-based cell via-

bility assays following 72 hours of drug treatment. In particular, we considered the area

under the curve for each experiment as target. These scores are provided in the file portal-
GDSC_AUC-2018-06-21.txt, available trough the DepMap portal (https://depmap.org)

[39] for 265 compounds and 743 cell lines, with 736 having alteration data in DepMap.

Data preprocessing. To be consistent with REVEALER we discarded features with high

or low frequency, in particular features present in less than 3 samples or more than 50 samples

were excluded from our analyses. The only exception was the MEK-inhibitor example, where

the high frequency threshold was changed to be 100 since the number of original samples was

substantially higher (i.e., 493) for this case. From the Achilles dataset we excluded targets that

have at least one missing value, in particular in this case we exclude 21 of the 5711 sets of target

scores. From the GDSC dataset, since many samples have at least one target with a missing

value, for every target we excluded samples with missing value for that target, that results in a

different number of samples for each target. The number of samples varied between 240 and

705. We filtered alterations to only have alterations with frequencies between 0.1 and 0.25,

removing in this way genes that have high alteration frequency due to genomic features not

important for to the disease (e.g., gene length) [9]. In all our experiments we normalized the

target values before running the algorithm, by subtracting to each weight wj the average value

∑j 2 J wj/m and dividing the result by the standard deviation of the (original) wj’s, in order to

have both positive and negative target values.

Simulated data. We investigated how effective UNCOVER is at finding selected alter-

ations in a controlled setting, where the ground truth is known. We generated target values

according to a normal distribution with mean 0 and standard deviation 1. We tested dataset

with 200, 600, 1000 and 10000 samples. For each dataset we considered the 38002 gene alter-

ations present in CCLE and for each of them we placed alterations in the samples indepen-

dently of all other events with the same frequencies as they appear in CCLE. To be consistent

with the preprocessing done on real data we filtered alterations to only have alterations with

frequencies between 0.1 and 0.25. We also generated a set T of 5 features to have an association

with the target values. This association was varied throughout the experiments to cover differ-

ent percentages of positive and negative targets. In particular we generated the selected features

to cover 100%, 80%, 60%, 40% of the positive target values and 5%, 10%, 15%, 20% of the nega-

tive target values respectively, choosing random subsets of samples with positive or negative

target values. We will refer to the parameter indicating the percentage of samples with positive

target values selected as P and to the parameter for the percentage of samples with negative tar-

get values selected as N. We divided the number of targets covered by each of the 5 mutations

equally.

Computing environment and solver configuration. To describe and solve an ILP we

used AMPL 20150516 and CPLEX 12.6.3. All parameters in CPLEX were left at their default

values. We implemented our greedy algorithm in Python 3.6.1. We run our experiments on

the same datasets considered by REVEALER [33] and on the Achilles project dataset on a Mac-

Book Air with 1.7 GHz Intel Core i7 processor, 8 GB RAM and 500 GB of local storage. Exper-

iments on simulated data were conducted on local nodes of a computing cluster. Each node

had the following configuration: four 2.27 GHz CPUs, 5.71 GB RAM and 241 GB of storage.

Experiments on the GDSC dataset for UNCOVER and REVEALER were conducted on an
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iMac with 3.4 GHz Intel Core i5 processor and 16 GB RAM. For the time comparison between

UNCOVER and REVEALER we run the R code provided in [33] on the same machine used

for UNCOVER, using R 3.5.1. All the parameters were left at their given values except for the

number of permutations used to calculate their p-value, which we changed in order to com-

pare the running time of the methods excluding the time needed to compute p-values.

Results and discussion

We tested UNCOVER on a number of cancer datasets in order to compare its results to the

ones obtained without using the target, to state-of-the-art algorithms, and to test whether

UNCOVER allows the analysis of large datasets. In particular, we first assessed the impact

of the target values on the results of UNCOVER. We then compared UNCOVER with

REVEALER using four datasets described in [33] as well as the GDSC project dataset described

above. We then used simulated data to asses the performance of UNCOVERin finding groups

of alterations associated with a target. We then performed a scalability test using a large dataset

from the Achilles project and alterations from the Cancer Cell Line Encyclopedia (CCLE).

Finally, we used UNCOVER to analyze a drug sensitivity dataset from the GDSC project.

Impact of target

We ran UNCOVER on the GDSC dataset for k = 3 and compared the results obtained when

the target values are not considered in the analysis, obtained running UNCOVER ILP with

k = 3 while setting the target values to 1 for all the samples considered in the analysis of a target

(S1 Table). The latter analysis corresponds to the extraction of sets with high mutual exclusiv-

ity (e.g., by [34]). As expected, the solutions obtained in the two cases are very different: the

solution obtained without considering the target values has one alteration in common with the

solution obtained by UNCOVER using either positive or negative values of the target for only

11 targets of the 265 in the GDSC dataset, and for no target the solutions share more than 1

alteration. An example of the solutions obtained target using UNCOVER and without consid-

ering the target values are shown in Fig 3. We observe that while the solutions obtained consid-

ering the target values display an association with the target profile (positive or negative), the

solution obtained when the target values are not considered, while covering a large set of sam-

ples, does not display any positive or negative association with the target profile. To asses the

association between target values and alterations more consistently we calculated the point

biserial coefficient [40] for all 265 solutions. The coefficient varies between −1 and +1 with 0

implying no correlation. The average value obtained when ignoring the target is −0.02 with

standard deviation 0.05, while the the average value obtained by UNCOVER is 0.20 with stan-

dard deviation 0.05. These results show that a mutual exclusivity analysis that disregards the

values of the target does not identify sets of mutually exclusive alterations associated with tar-

get values. In addition, the genes in solution identified by considering the drug target have a

much more significant enrichment in known cancer genes, as reported in [11], than the genes

in solution identified disregarding the values of the target (p = 3 × 10−12 vs p = 10−2).

Comparison with REVEALER

We run the greedy algorithm and the ILP from UNCOVER on the same four datasets consid-

ered by the REVEALER publication [33]. We used the same values of k used in [33], that is

k = 3 for all the datasets, except from the KRAS dataset where k = 4 was used. For each dataset

we recorded the solution reported by the greedy algorithm, the solution reported by the ILP,

the value of the objective functions for such solutions and the running time to obtain such solu-

tions. For ILP solutions, we also performed the permutation test (see Materials and methods) to
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Fig 3. Impact of the target on the results. UNCOVER results for target Palbociclib considering or ignoring target values. (a)

Solution found by UNCOVER looking for an association with samples with high target values. (b) Solution found by UNCOVER

looking for association with low target values. (c) Solution found by UNCOVER when the target values are ignored. Each panel

shows the value of the target (top row) for various samples (columns), with yellow being negative and blue being positive values. For

each gene in the solution, alterations in each sample are shown in dark blue, while samples not altered are in yellow. The last row

shows the alteration profile of the entire solution.

https://doi.org/10.1371/journal.pcbi.1006802.g003
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compute a p-value using 1000 permutations. The results are reported in Table 1, in which we

also show the results from REVEALER (without initial seeds). Fig 4 shows alteration matrices

and the association with the target for the solutions identified by UNCOVER.

We can see that the greedy algorithm identifies the same solution of the ILP based algo-

rithm in three out of four cases, and that the runtime of the ILP and the runtime of greedy

algorithm are comparable and very low (< 40 seconds) in all cases. In contrast, the running

time of REVEALER is much higher (> 1000 seconds in most cases). (We included all prepro-

cessing in the reported UNCOVER runtimes in Table 1 to ensure a fair comparison with

REVEALER; not including preprocessing our running times are all under 10 seconds). Com-

paring the alteration matrices of the solutions by UNCOVER and the ones of solutions by

REVEALER (S1 Fig) we note that alterations in solutions by UNCOVER tend to have higher

mutual exclusivity and to be more concentrated in high weight samples than alterations in

solutions by REVEALER. As expected, the value of the objective function we use is much

lower for solutions from REVEALER than for solutions from our algorithm.

We then compared the solutions obtained by our algorithms with the solutions from

REVEALER in terms of the information coefficient (IC), that is the target association score

used in [33] as a quality of the solution. Surprisingly, in two out of four datasets UNCOVER,

which does not consider the IC score, identifies solutions with IC score higher (by at least 5%)

than the solutions reported by REVEALER. For the other two cases, in one dataset the IC

Table 1. Comparison of UNCOVER with REVEALER on REVEALER’s datasets.

NFE2L2 activation MEK-inhibitor KRAS essentiality β-catenin activation

UNCOVER(ILP)

solution

KEAP1.MC MUT BRAF.V600E MUT KRAS.G12 13 MUT APC.MC MUT

ATP11B AMP KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

SPINT4 DEL NRAS MUT ATP8A2 AMP SLITRK1 AMP

C8orf22 AMP

Objective value 46.17 108.32 28.00 22.97

IC score 0.58 0.49 0.63 0.67

p-value 0.000999 0.000999 0.025974 0.1068931

Running time (s) 14 39 9 9

UNCOVER(Greedy)

solution

KEAP1.MC MUT BRAF MUT KRAS.G12 13 MUT APC.MC MUT

ATP11B AMP KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

SPINT4 DEL NRAS MUT ATP8A2 AMP SLITRK1 AMP

C8orf22 AMP

Objective value 46.17 104.29 28.00 22.97

IC score 0.58 0.5 0.63 0.67

Running time (s) 15 35 9 8

REVEALER

solution

KEAP1.MC MUT BRAF MUT KRAS.G12 13 MUT APC.MC MUT

LRP1B DEL KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

OR4F13P AMP NRAS MUT LINC00340 DEL ITGBL1 AMP

NUP153 MUT

Objective value 30.35 104.29 21.86 22.12

IC score 0.54 0.5 0.6 0.7

Running time (s) 1615 4965 1243 787

For each of the four targets (NFE2L2 activation, MEK-inhibitor, KRAS essentiality, β-catenin activation) considered in [33], the set of alterations of cardinality k
reported by our ILP algorithm, by our greedy algorithm, and by REVEALER (without seeds) is reported. k is chosen as in [33]. For each pair (algorithm, target) we also

report the (objective) value of our objective function for the solution, the value of the IC score (that is, the objective function used in [33]), and the running time of the

algorithm for the target. For solutions found by our ILP we also report the p-value computed by permutation test using 1000 permutations.

https://doi.org/10.1371/journal.pcbi.1006802.t001
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score is very similar (0.50 vs 0.49) while in the other case the IC score by REVEALER is higher

(0.7 vs 0.67) but the solution reported by REVEALER differs from the solution reported by

UNCOVER by 1 gene only. Interestingly, the latter is the only case where the solution from

the ILP has a p-value > 0.1 (p < 0.03 in all other cases), and therefore the solutions (by our

methods and by REVEALER) for such dataset may be, at least in part, due to random fluctua-

tions of the data.

In terms of biological significance, in most cases the solutions by UNCOVER and by

REVEALER are very similar, with cancer relevant genes identified by both methods. For

NFE2L2 activation, both methods identify KEAP1, a repressor of NFE2L2 activation [41]. For

MEK-inhibitor, both methods find BRAF, KRAS, and NRAS, three well known oncogenic

activators of the MAPK signaling pathway, which contains MEK as well. For KRAS essential-

ity, both methods report mutations in KRAS in the solution. For β-catenin activation, both

methods identify CTNNB1 mutations and APC mutations, that is known to be associated to

β-catenin activation [42]. These results show that UNCOVER identifies relevant biological

solutions that are better than the ones identified by REVEALER when evaluated using our

objective function and also when evaluated according to the objective function of REVEALER

with a running time that is on average two orders of magnitude smaller than required by

REVEALER. Since UNCOVER and REVEALER consider two different objective functions,

it is unclear whether the improvement in running time comes from differences in implementa-

tion choices or from a inherently different computational complexity. However, since

UNCOVER’s objective function is easier to compute than REVEALER’s objective function,

we believe that the use of our objective function plays an important role in the efficiency of

UNCOVER.

Fig 4. Results of UNCOVER on four cancer datasets from [33]. (a) Solution found by ILP and greedy for KRAS essentiality target.

(b) Solution found by ILP and greedy for β-catenin activation target. (c) Solution found by ILP for MEK inhibitor target. (d) Solution

found by greedy for MEK inhibitor target. (e) Solution found by ILP and greedy for NFE2L2 activation target. Each panel shows the

value of the target (top row) for various samples (columns), with yellow being negative and blue being positive values. For each gene

in the solution, alterations in each sample are shown in dark blue, while samples not altered are in yellow. The last row shows the

alteration profile of the entire solution.

https://doi.org/10.1371/journal.pcbi.1006802.g004
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We also compared the solutions obtained by UNCOVER and by REVEALER on the GDSC

dataset (S2 Table). For both algorithms we obtained the solutions for k = 3. For UNCOVER,

we considered the solution returned by the ILP. For REVEALER, we could only obtain solu-

tions for 246 targets, since for the other targets REVEALER terminated with an error message.

Due to the high running time of REVEALER, we only obtained sets of alterations associated

with positive values of the target (Table 2). For 33 targets the solution by UNCOVER and the

solution by REVEALER share 1 alteration, while for 33 targets the solution by UNCOVER and

the solution by REVEALER share 2 alterations; for no target UNCOVER and REVEALER

report the same solution. This shows that the two methods identify completely different solu-

tion in most (> 73%) of the cases. We compared the solutions obtained by UNCOVER and

by REVEALER using the IC score considered by REVEALER but not from UNCOVER: sur-

prisingly, in more than 50% of the cases (113 out of 208) the IC score of the solution from

UNCOVER is higher than the IC of the solution from REVEALER. On the other hand, for

all targets the solution by REVEALER is worst than the solution by UNCOVER when the

UNCOVER objective function is considered. We also compared UNCOVER and REVEALER

evaluating the association between target values and alterations in the solutions using a mea-

sure of association that is not considered by the two algorithms. In particular, we considered

the point biserial correlation coefficient [40]. In more than 95% of the cases (199 out of 208)

the point biserial correlation coefficient between the solution from UNCOVER and the

target is higher than the point biserial correlation coefficient between the solution from

REVEALER and the target, that is, the solution from UNCOVER has an higher association

with the target than the solution from REVEALER. On average, the solution from UNCOVER

has a point biserial correlation coefficient that is 37% higher than the point biserial correlation

coefficient of the solution from REVEALER. Moreover, the average effect size of solutions

from UNCOVER is more than 80% higher than the average effct size of solutions from

REVEALER (Table 2). In addition, the genes in solutions from UNCOVER have a much

higher enrichment (p = 3 × 10−13; 7-fold enrichment) for known cancer genes than solutions

from REVEALER (p = 2 × 10−4; 3-fold enrichment). Analogously, more KEGG pathways

display a significant enrichment in genes from UNCOVER solutions than from REVEALER

solutions (22 vs 11). We also compared the running time of the two methods: UNCOVER

required 3 hours to complete the analysis, while REVEALER required 9 days. Overall, these

results show that UNCOVER obtains better results than REVEALER not only in terms of the

UNCOVER objective function but also in terms of the score from REVEALER as well as in

terms of a independent measure of association, while being 70 times faster than REVEALER.

Results on simulated data

For each combination we generated 10 simulated datasets as described in Materials and meth-

ods. Each dataset contains a planted set of 5 alterations associated with the target. We used

both the greedy algorithm and the ILP from UNCOVER with k = 5 to attempt to find the 5

Table 2. Comparison of UNCOVER with REVEALER on GDSC dataset.

Number of genes Avg. effect size Cancer genes enrichment

p-value (fold enrich.)

Enriched KEGG pathways

REVEALER 570 0.11 2 × 10−4 (3) 11

UNCOVER 491 0.20 3 × 10−12 (7) 22

For each algorithm we report the distinct number of genes in its solutions, the average effect size of the algorithm’s solutions, the p-value and fold enrichment for known

cancer genes, and the number of KEGG pathways enriched for genes in the solutions by the algorithm.

https://doi.org/10.1371/journal.pcbi.1006802.t002
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correct alteration, and evaluated our algorithms both in terms of fraction of the correct (i.e.,

planted) solution reported and running time.

As shown in Fig 5, the greedy algorithm is faster than the ILP for all datasets, and the differ-

ence in running time increases as the number m of samples increases, with the runtime of the

greedy algorithm being almost two orders of magnitude smaller than the runtime of the ILP

for m = 1000 samples. In addition, for a fixed number of samples and alterations, the running

time of the greedy algorithm is constant, that is it does not depend on the properties of the

planted solution, while the running time of the ILP varies greatly depending on these parame-

ters. For m = 10, 000 samples the running time of the ILP becomes extremely high, so we

restricted to consider only two sets of parameters (p − n = 0.95 and p − n = 0.2). In this case the

ILP took between 44 minutes and 7 hours to complete, while the greedy algorithm terminates

in 5 minutes.

In terms of the quality of the solutions found, as expected the ILP outperforms the greedy

(Fig 6) but the difference among the two tends to disappear when the number of samples

is higher. In addition, since the ILP finds the optimal solution, we can see that for a limited

number of samples we may not reliably identify the planted solution with 200 samples unless

the planted solution appears almost only in positive targets and in almost all of them (p −
n = 0.95), while for m = 1000 we can reliably identify the planted solution using both the ILP

and the greedy algorithm even when the association with the target is weaker (p − n = 0.6).

When m = 10, 000, both the ILP and the greedy algorithm perform well in terms of the quality

Fig 5. Running time of UNCOVER on simulated data. The running time (expectation and standard deviation) of the greedy

algorithm and of the ILP approach are shown for different number of samples and the difference p − n between the fraction p of

samples with positive target and the fraction n of samples with negative target covered by the the correct solution.

https://doi.org/10.1371/journal.pcbi.1006802.g005
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of the solution: the ILP finds the correct alterations on every experiment and the greedy identi-

fies the whole planted solution in all experiments but one for p − n = 0.2, for which it still

reports a solution containing 4 out of 5 genes in the planted solution.

These results show that for a large number of samples the greedy algorithm reliably identi-

fies sets of alterations associated with the target, as predicted by our theoretical analysis, and is

much faster than the ILP. For smaller sample size the ILP identifies better solutions than the

greedy and has a reasonable running time.

Analysis of Achilles project data

The efficiency of UNCOVER renders the analysis of a large number of targets, such as the

ones available through the Achilles project, possible. After preprocessing the dataset included

5690 functional phenotypes as targets, and for each of these the CCLE provides alteration

information for 205 samples and 31137 alterations. In total we have therefore run 11380

instances (i.e., 5690 targets screened for positive and for negative associations) looking for

both positive and negative association with target values. Since the number of samples (205) is

relatively small, we have run only the ILP from UNCOVER on the whole Achilles dataset and

looked for solutions with k = 3 genes. The runtime of UNCOVER to find both positive and

negative associations, including preprocessing, is 24 hours. Based on the runtime required on

Fig 6. Quality of solutions of UNCOVER on simulated data. The fraction of genes in the planted (i.e., correct) solution found by

the greedy algorithm and by the ILP approach are shown for different number of samples and the difference p − n between the

fraction p of samples with positive target and the fraction n of samples with negative target covered by the the correct solution.

https://doi.org/10.1371/journal.pcbi.1006802.g006
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the instances reported in [33] (see the Section Comparison with REVEALER), running

REVEALER on this dataset would have required about 5 months of compute time.

To identify statistically significant associations with targets in the Achilles project dataset

we used a nested permutation test. We first run the permutation test with 10 permutations on

all instances (i.e., on all targets for both positive association and negative association). We then

considered all the instances with the lowest p-value (1/11) and performed a permutation test

with 100 permutations only for such instances. We the iterated such procedure once more,

selecting all the instances with lowest p-value (1/101) and performing a permutation test with

1000 permutations only for such instances. For positive association we found 60 solutions with

p-value < 0.001, and for negative association we found 102 solutions with p-value < 0.001.

The solutions with p-value < 0.001 (with 1000 permutations) are reported in S3 Table. See S2

Fig for some corresponding alteration matrices.

The genes in the solutions by UNCOVER with p-value 1/1001 are enriched (p = 2 × 10−12

by Fisher exact test; 8 fold enrichment) for well-known cancer genes. We also tested whether

genes in solutions by UNCOVER (with p-value 1/1001) are enriched for interactions, by com-

paring the number of interactions in iRefIndex [43] among genes in such solution with the

number of interactions in random sets of genes of the same cardinality. Genes in solutions by

UNCOVER are significantly enriched in interactions (p = 7 × 10−3 by permutation test; 2 fold

enrichment). In addition, the genes in solutions by UNCOVER are also enriched in genes in

well-known pathways: 12 KEGG pathways [44] have a significant (corrected p� 0.05) overlap

with genes in solutions by UNCOVER and four of these (endometrial cancer, glioma, hepato-

cellular carcinoma, EGFR tyrosine kinase inhibitor resistance) are cancer related pathways. In

addition, the targets (i.e., genes) with solutions of p-value 1/1001 are enriched (p = 5 × 10−4 by

permutation test; 6 fold enrichment) for interactions in iRefIndex and for well-known can-

cer genes (p = 2 × 10−12 by Fisher exact test; 8 fold enrichment) as reported in [11]. These

results show that UNCOVER enables the identification of groups of well known cancer genes

with significant associations to important targets in large datasets of functional target profiles.

For example, for target (i.e., silenced gene) TSG101, related to cell growth, UNCOVER identi-

fies the gene set shown in Fig 7 as associated to reduced cell viability. ERBB2 is a well known

cancer gene and CDH4 is frequently mutated in several cancer types, and both are associated

to cell growth.

Fig 7. Solution by UNCOVER for silencing of TSG101 (data from Achilles project). The alteration matrix of genes in the solution

identified by UNCOVER as associated to reduced cell viability is reported. The value of the target (top row) for various samples

(columns) is shown, with yellow being negative and blue being positive values. For each gene in the solution, alterations in each

sample are shown in dark blue, while samples not altered are in yellow. The last row shows the alteration profile of the entire

solution.

https://doi.org/10.1371/journal.pcbi.1006802.g007
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Analysis of GDSC project data

We use UNCOVER to analyze the GDSC project data, identifying sets of alterations associated

with drug sensitivity. After preprocessing, the dataset included 64144 alterations and 265 tar-

gets, and for each of these the number of cell lines with available data varied between 240 and

705. In total we have therefore run 530 instances (i.e., 265 targets screened for positive and for

negative associations) looking for both positive and negative association with target values.

We used the UNCOVER ILP for all instances to obtain solutions with k = 3 genes. For each

solution, we use 100 permutations to compute its p-value. For positive association we found 51

solutions with p-value < 0.01, and for negative association we found 41 solutions with p-value

< 0.01. We used the following procedure to focus on the most significant solutions: we run

UNCOVER with k = 4 and computed the p-values for the solutions using 100 permutations;

we then identified targets whose solution for k = 3 have p-value < 0.01 and are contained in

the solution for the same target with k = 4 and have p-value p < 0.01 for k = 4. In total, this pro-

cedure identifies 23 solutions for positive association and 22 solutions for negative associa-

tions. These solutions are reported in S4 Table.

The genes in the solutions identified as above are enriched (p = 9 × 10−10 by Fisher exact

test; 20 fold enrichment) for well-known cancer genes, as reported in [11]. We also tested

whether these genes in solutions are enriched for interactions, by comparing the number of

interactions in iRefIndex [43] among genes in such solution with the number of interac-

tions in random sets of genes of the same cardinality. Genes in solutions by UNCOVER are

significantly enriched in interactions (p = 2 × 10−2 by permutation test; 6 fold enrichment). In

addition, these genes are also enriched in genes in well-known pathways: 21 KEGG pathways

[44] have a significant (corrected p� 0.05) overlap with genes in solutions by UNCOVER and

19 of these are cancer related pathways (e.g., ErbB signaling pathway) or related to drug resis-

tance (e.g., EGFR tyrosine kinase inhibitor resistance).

For Palbociclib, UNCOVER identifies RB1 mutations, GRB7 amplifications, and RB1 dele-

tions with significant association with reduced sensitivity to drug. RB1 is a well known cancer

gene. The alterations are shown in Fig 3a. While RB1 mutations and RB1 deletions are signifi-

cantly associated when considered in isolation (the association of single alterations with drug

sensitivity and the drug targets have been obtained from https://www.cancerrxgene.org/),

GRB7 amplification is not associated with the target values when considered in isolation.

GRB7 encodes a growth factor receptor-binding protein that interacts with epidermal growth

factor receptor (EGFR). Both RB1 and EGFR are related to the cell cycle pathway, that is the

pathway target of the compound, and the drug targets (CDK4, CDK6) as well EGFR are mem-

bers of the PI3K-AKT pathway. For Sunitinib, UNCOVER identifies mutations in SETD2,

ARHGAP19, and RB1, with significant association with reduced sensitivity to drug. The alter-

ations are shown in Fig 8a. RB1 is a well known cancer gene and SETD2 has tumor suppressor

functionality. None of these alterations have significant association with drug sensitivity when

considered in isolations. RB1 and SETD2 are involved in protein localization to chromatin,

and ARHGAP19 is part of Rho mediated remodeling. For PLX-4720-2, UNCOVER identifies

mutations in BRAF, CD244, and ARSB with significant association to increased sensitivity to

drug. The alterations are shown in Fig 8b. BRAF is a well-known cancer gene; it is the target of

the compound and BRAF mutations have significant association to increased sensitivity to the

compound, while the other two alterations do not. BRAF and CD244 are part of natural killer

cell mediated cytotoxicity pathway, while ARSB is involved in the regulation of cell adhesion,

cell migration and invasion in colonic epithelium [45], and is also part of metabolism related

pathways. For VX-11e, UNCOVER identifies mutations in BRAF, KRAS, and NRAS, with sig-

nificant association to increased sensitivity to drug. The alterations are shown in Fig 8c. Only
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Fig 8. Solution by UNCOVER on GDSC drug sensitivity data data. The alteration matrix of genes in some solutions identified by

UNCOVER as associated to drug sensitivity for different targets. (a) Solution for reduced sensitivity to Sunitinib. (b) Solution for

increased sensitivity to PLX-4720-2. (c) Solution for increased sensitivity to VX-11e. Each panel shows the value of the target (top

row) for various samples (columns), with yellow being negative and blue being positive values. For each gene in the solution,

alterations in each sample are shown in dark blue, while samples not altered are in yellow. The last row shows the alteration profile of

the entire solution.

https://doi.org/10.1371/journal.pcbi.1006802.g008
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BRAF mutations have significant association with the target when considered in isolation. The

pathway target for the compound is the ERK MAPK signaling pathway, to which all three

alterations are related. All three genes have well identified roles in cancer. These results show

that UNCOVER enables the identification of groups of relevant genes, many related to cancer,

with significant associations to important targets in large datasets of drug sensitivity profiles.

Conclusion

In this work we study the problem of identifying sets of mutually exclusive alterations associ-

ated with a quantitative target profile.

We provide a combinatorial formulation for the problem, proving that the corresponding

computational problem is NP-hard. We design two efficient algorithms, a greedy algorithm

and an ILP-based algorithm, for the identification of sets of mutually exclusive alterations asso-

ciated with a target profile. We provide a formal analysis for our greedy algorithm, proving

that it returns solutions with rigorous guarantees in the worst-case as well under a reasonable

generative model for the data. We implemented our algorithms in our method UNCOVER,

and showed that it finds sets of alterations with a significant association with target profiles in

a variety of scenarios. By comparing the results of UNCOVER with the results of REVEALER

on four target profiles used in the REVEALER publication [33] and on a large dataset from the

GDSC project, we show that UNCOVER identifies better solutions than REVEALER, even

when evaluated using REVEALER objective function. Moreover, UNCOVER is much faster

than REVEALER, allowing the analysis of large datasets such as the dataset from project Achil-

les and from the GDSC project, in which UNCOVER identifies a number of associations

between functional target profiles and gene set alterations.

Our tool UNCOVER (as well as REVEALER) relies on the assumption that the mutual

exclusivity among alterations is due to functional complementarity. Another explanation for

mutual exclusivity is the fact that each cancer may comprise different subtypes, with different

subtypes being characterized by different alterations [27]. UNCOVER can be used to identify

sets of mutually exclusive alterations associated with a specific subtype whenever the subtype

information is available, by assigning high weight to samples of the subtype of interest and low

weight to samples of the other subtypes. In addition, while we consider a penalty based on

mutual exclusivity, other types of penalties may be used to identify sets of alterations associated

with a target profile. The study of the theoretical properties of the problem and the analysis of

the results with different penalties are interesting directions of future research.
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