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The materials’ consolidation, especially ceramics, is very important in advanced research
development and industrial technologies. Science of sintering with all incoming novelties
is the base of all these processes. A very important question in all of this is how to get the

more precise structure parameters within the morphology of different ceramic materials.
In that sense, the advanced procedure in collecting precise data in submicro-processes is

also in direction of advanced miniaturization. Our research, based on different electro-

physical parameters, like relative capacitance, breakdown voltage, and tgδ, has been used
in neural networks and graph theory successful applications. We extended furthermore

our neural network back propagation (BP) on sintering parameters’ data. Prognosed

mapping we can succeed if we use the coefficients, implemented by the training proce-
dure. In this paper, we continue to apply the novelty from the previous research, where

the error is calculated as a difference between the designed and actual network out-

put. So, the weight coefficients contribute in error generation. We used the experimental
data of sintered materials’ density, measured and calculated in the bulk, and developed

possibility to calculate the materials’ density inside of consolidated structures. The BP

procedure here is like a tool to come down between the layers, with much more precise

¶Corresponding author.
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materials’ density, in the points on morphology, which are interesting for different mi-

crostructure developments and applications. We practically replaced the errors’ network
by density values, from ceramic consolidation. Our neural networks’ application novelty

is successfully applied within the experimental ceramic material density ρ = 5.4 × 103

[kg/m3], confirming the direction way to implement this procedure in other density
cases. There are many different mathematical tools or tools from the field of artificial

intelligence that can be used in such or similar applications. We choose to use artificial

neural networks because of their simplicity and their self-improvement process, through
BP error control. All of this contributes to the great improvement in the whole research

and science of sintering technology, which is important for collecting more efficient and

faster results.

Keywords: Ceramics; sintering; neural network; error; density.

1. Introduction

This paper deals with ceramic material samples, consolidated by the sintering data

obtained in the analyzed experiment. For this purpose, back propagation (BP)

neural networks are used. This type of neural network is practically input–output

data mapping due to a large set of adjustable coefficients, called weights. By setting

the coefficients to appropriate values, it is possible to achieve a desired mapping.

Such a procedure is called the training of neural networks. If we start with random

values of weights, the training process input–output training data are set to a

network and the desired mapping is known.

If the weight values are inappropriate, then mapping will be performed with

errors, i.e. the difference between the desired and actual output. Each of the weight

coefficients has a significant contribution to the error. By changing the coefficients,

through the process of neural network training, the error decreases and the network

mapping will be satisfactory for any new input data set, because the network is

trained. The training process is over when all input–output data are mapped within

a predefined error. This process is called error BP, since it performs output to

input.1–4

This paper extends the application of neural networks on the sintering and

calculation of various parameters, within different sintering temperatures’ intervals.

The process of consolidation of the ceramic materials at different thermal conditions

is very important for density. The neural networks (shown on Fig. 1) are an efficient

tool for the calculation of different physical parameters of ceramic materials. From

the experimental point of view, because if applied to measurement results, it fits

Fig. 1. (Color online) An example of neural network.

2150549-2



January 19, 2022 15:16 MPLB S0217984921505497 page 3

A new neural network approach to density calculation

Table 1. Extract of experimental results.

Sample type P [MPa] r [kg/m3]

BaTiO3 — ceramics with basic mixture 86 5.4 × 103

BaTiO3 — ceramics: composition 0.1%CeO2+0.14%MnCO3 86 3.2 × 10
BaTiO3 — ceramics: composition 0.1%CeO2+0.14%MnCO3 86 3.4 × 10

extended experimental intervals. There are many different mathematical tools or

tools from the field of artificial intelligence that can be used in such or similar

applications. We choose to use artificial neural networks because of their simplicity

and their self-improvement process, through BP error control. It is interesting to

use some other techniques or other tools for modeling and to compare it with the

results obtained with the artificial neural network approach. Any signal measured

on the material surface could be propagated through the whole structrure of the

neural network, which is analyzed in Refs. 5–7. Relative capacitance, measured on

a sample surface, was propagated through the ceramic structure assuming that the

ceramic structure can be presented by a neural network. One of the experimentally

obtained parameters is the density of the sintering material, measured on a surface.

In order to investigate a possibility to calculate the density of a sintered material

within a sintered structure, we used the neural networks, as in Refs. 8–11. The BP

training procedure is used as a tool to spread the values measured on a sample

surface density. In this research, the network errors are replaced with the density

values obtained in the sintering process (Table 1, first row, r = 5.4 × 103 [kg/m3]).

2. Experimental Results and Methods

There were four steps in the ceramic powder preparation process (for sintering con-

solidation of BaTiO3 ceramic samples): (a) measuring and forming starting pow-

ders’ mixture, (b) wet mixing and spraying, (c) molding and process control and

(d) preparation, samples’ sintering and process control. The whole the process is

applied to a high purity commercial BaTiO3 Murata powder,12 with a mean grain

size of < 2 µm and 99.9% purity. The duration of homogenization of organic binders

in the powder mixture is about 48 h. Processed into a mill with balls and water, the

mass was transferred by a membrane pump and dried, so desired powder granula-

tion was obtained. The material density was tested every hour by a special vessel

and after that we applied vibrating sieve. The diameters of roughly shaped powder

particles were 10–130 µm.

Various sintering temperatures (1190–1370◦C), the length of time (2–3 h) and

the impact of different additives (CeO2, MnCO3, Bi2O3, and Fe2O3) are analyzed,

but in this analysis we were focused on the relation with pressures of 86 MPa and

density.

In further analysis and theoretical experiment, we will use just particular data

r = 5.4 × 103 [kg/m3], from the first row of the Table 1.
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3. Theoretical Experiment and Neural Network Method

Application

We will develop several different two-layer neural networks, with n = 1, 2, 3, 4, 5

neurons in the first hidden layer and m = 1, 2, 3, 4, 5 neurons in the second hidden

layer. For each case, we will discuss the density ρ in the hidden layers and the errors

calculated during the training process:

• For a neural network with one neuron in each of the two hidden layers (Fig. 2),

the density ρ and errors calculated in the training process are given in Table 2.

Fig. 2. (Color online) Neural network with one neuron in each hidden layer.

Table 2. Neural network with two neurons in first and one neuron in second hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 2200 4300 5400 0.076786 0.141702 0.185405

For a neural network with two neurons in the first hidden layer and one neuron in

the second hidden layer (Fig. 3), the density ρ and errors calculated in the training

process are given in Table 3.

Fig. 3. (Color online) Neural network with two neurons in first hidden layer and one neuron in
second hidden layer.

Table 3. Neural network with two neurons in first and one neuron in second hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 273.9 1900 5400 0.023776 0.314802 0.887293

2 144.6 0.045009
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For a neural network with two neurons in each of the two hidden layers (Fig. 4),

the density ρ and errors calculated in the training process are given in Table 4.

Fig. 4. (Color online) Neural network with two neurons in each hidden layer.

Table 4. Neural network with two neurons in first and one neuron in second hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 349 314 5400 −0.0654 −0.2297 0.903708
2 391 1372 −0.05848 −0.05259

For a neural network with three neurons in the first hidden layer and one neuron

in the second hidden layer (Fig. 5), the density ρ and errors calculated in the training

process are given in Table 5.

Fig. 5. (Color online) Neural network with three neurons in first hidden layer and one neuron in
second hidden layer.

Table 5. Neural network with three neurons in first and one neuron in second hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output
Neuron layer layer neuron layer layer neuron

1 66 762 5400 −0.027 −0.15122 1.071798
2 148 −0.02943

3 136 −0.01321
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For a neural network with three neurons in the first hidden layer and two neurons

in the second hidden layer (Fig. 6), the density ρ and errors calculated in the training

process are given in Table 6.

Fig. 6. (Color online) Neural network with three neurons in first hidden layer and two neurons
in second hidden layer.

Table 6. Neural network with three neurons in first and two neurons in second hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 247 1360 5400 −0.04998 −0.10846 0.668582

2 518 876 −0.06411 −0.16845

3 404 −0.03064

For a neural network with three neurons in each hidden layer (Fig. 7), the

density ρ and errors calculated in the training process are given in Table 7.

Fig. 7. (Color online) Neural network with three neurons in each hidden layer.

Table 7. Neural network with three neurons in each hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output
Neuron layer layer neuron layer layer neuron

1 358 1400 5400 −0.01989 −0.0306 0.79636
2 345 490 −0.05095 −0.07231
3 135 207 −0.05281 −0.20538
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For a neural network with four neurons in the first hidden layer and one neuron

in the second hidden layer (Fig. 8), the density ρ and errors calculated in the

training process are given in Table 8.

Fig. 8. (Color online) Neural network with four neurons in first hidden layer and one neuron in

second hidden layer.

Table 8. Neural network with four neurons in first hidden layer and one neuron in second hidden
layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 503 1869 5400 −0.02634 −0.08973 0.259293

2 452 −0.01514

3 315 −0.02169
4 548 −0.02417

For a neural network with four neurons in the first hidden layer and two neurons

in the second hidden layer (Fig. 9), the density ρ and errors calculated in the training

process are given in Table 9.

Fig. 9. (Color online) Neural network with four neurons in first hidden layer and two neurons in
second hidden layer.
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Table 9. Neural network with four neurons in first hidden layer and two neurons in second

hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 53 772 5400 −0.01908 −0.10664 1.039886

2 175 553 −0.01047 −0.14868

3 54 −0.03368

4 99 −0.01037

For a neural network with four neurons in the first hidden layer and three

neurons in the second hidden layer (Fig. 10), the density ρ and errors calculated in

the training process are given in Table 10.

Fig. 10. (Color online) Neural network with four neurons in first hidden layer and three neurons
in second hidden layer.

Table 10. Neural network with four neurons in first hidden layer and three neurons in second
hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 116 950 5400 0.013531 0.172603 0.878841

2 46 38 0.02245 −0.0062

3 138 1060 0.007609 0.154566

4 83 0.018908

For a neural network with five neurons in the first hidden layer and one neuron

in the second hidden layer (Fig. 11), the density ρ and errors calculated in the

training process are given in Table 11.
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Fig. 11. (Color online) Neural network with five neurons in first hidden layer and one neuron in

second hidden layer.

Table 11. Neural network with five neurons in first hidden layer and one neuron in second hidden

layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 9 1211 5400 −0.00089 −0.11623 0.518313

2 233 −0.02236
3 96 −0.00919

4 260 −0.02501

5 215 −0.02066

For a neural network with five neurons in the first hidden layer and two neurons

in the second hidden layer (Fig. 12), the density ρ and errors calculated in the

training process are given in Table 12.

Fig. 12. (Color online) Neural network with five neurons in first hidden layer and two neurons

in second hidden layer.
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Table 12. Neural network with five neurons in first hidden layer and two neurons in second

hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output
Neuron layer layer neuron layer layer neuron

1 176 594 5400 −0.02195 −0.07423 0.674391
2 288 1242 −0.03592 −0.1551

3 320 −0.03993

4 101 −0.0126
5 207 −0.02588

For a neural network with five neurons in the first hidden layer and three neurons

in the second hidden layer (Fig. 13), the density ρ and errors calculated in the

training process are given in Table 13.

Fig. 13. (Color online) Neural network with five neurons in first hidden layer and three neurons
in second hidden layer.

Table 13. Neural network with five neurons in first hidden layer and three neurons in second
hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 114 257 5400 −0.01928 −0.0434 0.911351

2 102 399 −0.01715 −0.06731

3 120 195 −0.02023 −0.03293
4 173 −0.02913

5 66 −0.01118

For a neural network with five neurons in the first hidden layer and four neurons

in the second hidden layer (Fig. 14), the density ρ and errors calculated in the

training process are given in Table 14.
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Fig. 14. (Color online) Neural network with five neurons in first hidden layer and four neurons
in second hidden layer.

Table 14. Neural network with five neurons in first hidden layer and four neurons in second

hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output
Neuron layer layer neuron layer layer neuron

1 114 62 5400 0.018772 0.010128 0.886153
2 53 368 0.008703 0.060393

3 150 105 0.024637 −0.01725

4 91 −536 0.014993 0.088012
5 193 0.031704

For a neural network with five neurons in each hidden layer (Fig. 15), the density

ρ and errors calculated in the training process are given in Table 15.

Fig. 15. (Color online) Neural network with five neurons in each hidden layer.
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Table 15. Neural network with five neurons in each hidden layer.

Density ρ Errors calculated

First hidden Second hidden Output First hidden Second hidden Output

Neuron layer layer neuron layer layer neuron

1 146 312 5400 0.022114 0.047203 0.817271

2 153 1300 0.023216 −0.00021
3 107 154 0.016272 0.023368

4 170 356 0.025807 0.053826

5 186 325 0.028239 0.049232

Based on the neural networks’ application (shown in Figs. 2–15), this original

novelty in getting the samples’ surface density, based on a theoretical experiment

and neural networks’ calculations, was sucessfully performed. Collecting the ceramic

materials’ densities, from the sample surfaces, based on the neural networks is an

advantage in this methodology.13–20

4. Outlook

In further researches, we are planning to construct and use neural networks for

error calculation and density, where the neural networks are with more neurons in

each hidden level, up to 10. This will be the topic of some future research papers.

5. Conclusion

In this paper, we explained the neural network method and its application on the

experimental results of bulk density. This novelty is demonstrated on bulk den-

sity ρ = 5.4 × 103 [kg/m3]. Density values within the different ceramic sample mi-

crostructure levels are presented. Instead of an already known stochastic mathemat-

ical approach for the calculation of a desired material density, using this approach,

we open new frontiers in science of sintering ceramic processing and technology to

get the densities within the whole morphology. This advancement is very important

when we would like to get exact, precise parameters’ values on the level between

the grains and pores, which is important for modern miniaturization demands.

New directions for predicting and designing within the ceramic structure are

opened, and we formed the projective structures on quite a precise way. Further-

more, we can also show how this approach21 could be applied for other parameters’

various calculations in a similar manner.
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14. V. V. Mitić et al., Ferroelectrics 570 (2021) 145.
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