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Abstract

Understanding of the equal sign is associated with early algebraic competence in the elementary grades and equation-
solving success in middle school. Thus, it is important to find ways to build foundational understanding of the equal sign
as a relational symbol. Past work promoted a conception of the equal sign as meaning “the same as”. However, recent work
highlights another dimension of relational understanding—a substitutive conception, which emphasizes the idea that an
expression can be substituted for another equivalent one. This work suggests a substitutive conception may support algebra
performance above and beyond a sameness conception alone. In this paper, we share a subset of results from an online
intervention designed to foster a relational understanding of the equal sign among fourth and fifth graders (n=146). We
compare lessons focused on a sameness conception alone and a dual sameness and substitutive conception to each other, and
we compare both to a control condition. The lessons influenced students’ likelihood of producing and endorsing sameness
and substitutive definitions of the equal sign. However, the impact of the lessons on students’ approaches to missing value
equations was less clear. We discuss possible interpretations, and we argue that further research is needed to explore the
roles of sameness and substitutive views of the equal sign in supporting structural approaches to algebraic equation solving.

Keywords Algebra - Algebraic thinking - Equal sign - Mathematical equivalence - Sameness - Substitution

1 Introduction

Algebra serves as a “gatekeeper” in school mathematics,
with consequences for students’ advancement in mathemat-
ics, access to higher education, and future earnings (Adel-
man, 2006; Chen, 2013; National Mathematics Advisory
Panel, 2008). High failure rates in algebra have kept many
students from educational, career, and economic opportuni-
ties (Kaput, 1998; Moses & Cobb, 2001; Stigler et al., 1999).
This has led to calls to introduce students to algebraic con-
cepts earlier in their mathematics careers (e.g., Carpenter
& Levi, 2000; Kaput, 1998; National Council of Teachers
of Mathematics [NCTM], 2000; National Governors Asso-
ciation Center for Best Practices & Council of Chief State
School Officers [NGA & CCSSO], 2010). These are not
calls to shift the formalism of traditional algebra courses to
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earlier grades, but rather to “algebrafy” (Kaput, 1998) early
mathematics by building informal thinking about structure
and algebraic relationships into formal ways of reasoning at
an earlier developmental point (Kaput et al., 2008; Kieran,
2004). Structural thinking can be built by encouraging stu-
dents to use number and operation sense to reflect on math-
ematical expressions as objects rather than as arithmetic
procedures to be carried out (Carpenter et al., 2003; Sfard,
1991). For example, students who understand problem struc-
ture can recognize expressions such as 8(x+ 3) and 8x+24
as equivalent without performing individual computations.

The concept of mathematical equivalence—specifically,
the use of the equal sign to symbolically represent an equiva-
lence relation—is widely accepted as foundational to alge-
braic thinking (Baroody & Ginsburg, 1983; Carpenter et al.,
2003; NCTM, 2000; NGA & CCSSO, 2010; Stephens et al.,
2021). Deep understanding of the equal sign is connected to
early algebraic competence in the elementary grades (e.g.,
Byrd et al., 2015; Carpenter et al., 2003; Hornburg et al.,
2022; Matthews & Fuchs, 2020) and to equation-solving
success in the middle grades (Fyfe et al., 2018; Knuth et al.,
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2006). Further, when students are provided with problem-
solving experiences that highlight the equal sign's meaning,
they grow in their understanding (e.g., Blanton et al., 2019;
Stephens et al., 2021).

2 Students’ conceptions of mathematical
equivalence

A relational conception of the equal sign is the understand-
ing that the symbol denotes the “sameness” of two quantities
or expressions (e.g., Baroody & Ginsburg, 1983; Behr et al.,
1980; Carpenter et al., 2003; Kieran, 1981; Knuth et al.,
2005; McNeil et al., 2011; Molina & Ambrose, 2008). Stu-
dents who hold a relational view of the equal sign interpret
and flexibly work both (a) with equations in standard forms,
in which operations appear to the left of the equal sign and
the “result” to the right (e.g., 5+2=7, 6+3=9), and (b)
with equations in nonstandard forms, in which operations
may appear on either, neither, or both sides of the equal sign
(e.g.,10+4=__+7,12=12,14=9+5). When asked what
the equal sign means, students with a relational view offer
definitions such as “the same as” or “what is to the left and
right of the sign mean the same thing” (Knuth et al., 2006).
Many students instead hold an operational conception
of the equal sign, interpreting the symbol as meaning the
“the total” or “the answer” (e.g., Baroody & Ginsburg,
1983; Knuth et al., 2006; McNeil, 2008; McNeil & Ali-
bali, 2005; Rittle-Johnson et al., 2011). Students who hold
an operational view tend to solve missing value equations
by performing the given operations to the left of the equal
sign or by performing all the given operations (e.g., for
8+4=__+5, writing 12 or 17 in the blank; Carpenter et al.,
2003). They also may refuse to endorse nonstandard equa-
tions, for example, rejecting 8 =8 because it lacks an opera-
tion, or rejecting 9=5+4 because it is “backwards” (Falkner
et al., 1999; Stephens et al., 2021, Stephens et al., 2022).
Although students’ conceptions of the equal sign have
generally been characterized as relational or operational,
Jones and Pratt (2012; see also Jones et al., 2012) assert
that a complete relational understanding of the equal sign
involves more than understanding “sameness”. They sug-
gest understanding that one expression can be substituted
by an equivalent one is another component of a sophisti-
cated understanding—one that is distinct from the idea of
sameness. They propose that a complete relational view
of the equal sign includes both sameness and substitutive
components. The substitutive conception arises from the
transitive and symmetric properties of equivalence (Simsek
et al., 2019) that allow equivalent expressions to replace one
another in mathematical equations, and it sanctions inter-
pretations of the equal sign such as “the right side can be
swapped for the left side”. For example, if 5Sx+8=2x — 4,
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then 5x+ 8 can replace 2x — 4 and vice versa. A substitutive
view also allows one to replace 21 in the expression 21 +9
with 11410, because 21 =11+ 10 (Jones & Pratt, 2012).

To determine whether sameness and substitutive views
are distinct, Jones et al. (2012) used a principal components
analysis (PCA) to explore whether assessment items asking
students to evaluate the “cleverness” of substitutive defi-
nitions clustered differently from items asking students to
evaluate sameness and operational definitions of the equal
sign. Based on data from 11- and 12-year-olds, they con-
cluded that a relational view comprises distinct substitutive
and sameness components. They did not find consistency
in the order in which these two views developed; rather,
they concluded that students held a more sophisticated rela-
tional understanding of the equal sign when they explicitly
endorsed substitutive definitions.

Other work also suggests that the sameness and substitu-
tive views of the equal sign are cognitively distinct. Jones
and Pratt (2012) found that 9- to 12-year-old students were
able to operate with the substitutive view independently
of the sameness view. For example, students were able to
use the given equations 30+ 7 =37 and 50+ 8 =58 as rules
for making notational transformations to the expression
37 + 58 without considering the “sameness” of the sides of
the equations.

Some research has suggested that the “sameness” con-
ception develops prior to the substitutive conception. In an
analysis of older students’ endorsements of definitions of the
equal sign, Simsek et al. (2019) found that among students
who accepted sameness, 56.1% rejected substitution, and
among those who accepted substitution, only 3.5% rejected
sameness. They also found that students who accepted both
a sameness and a substitutive view of the equal sign were
more successful on an algebra assessment than those who
only accepted a sameness view.

In our prior work, we did not treat substitutive and same-
ness views as distinct, because we viewed the substitutive
conception as a logical consequence of the sameness con-
ception: two sides of an equation can be swapped, or one
expression can be substituted for another, because they are
the same. However, a recent laboratory study led us to recon-
sider the implications of a substitutive view. In this study, we
presented third- and sixth-grade children with a lesson on
the sameness conception of the equal sign (Donovan et al.,
2019). Although the substitutive view was not presented in
the lesson, the assessment included items in which children
rated substitutive definitions of the equal sign as “good” or
“not good” (see Jones et al., 2012). Third- and sixth-grade
students who endorsed a substitutive definition (i.e., who
rated “the two sides can be swapped” as “good”) performed
better on items assessing equivalence understanding than
did those who did not endorse a substitutive definition. In
addition, sixth-grade students who endorsed a substitutive
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definition outperformed those who did not on algebraic
items such as identifying a function rule from a table and
solving linear equations with variables (Szkudlarek et al.,
2021). Coupled with the findings of Simsek et al. (2019),
these findings raised questions about the benefits of hold-
ing a dual conception—both a sameness and a substitutive
view—of the equal sign, rather than a sameness conception
alone.

In the present study, we examined the impact of instruc-
tion about a sameness or a sameness and a substitutive view
of the equal sign. Our outcome measures included oral defi-
nitions of the equal sign, endorsement of definitions, and
strategies on missing value equations. We were interested
in whether students would adopt structural equation-solving
strategies for missing value equations. We use “structural” to
describe strategies that involve “looking at expressions and
equations in their entirety, noticing number relations among
and within these expressions and equations” (Jacobs et al.,
2007, p. 260). Our research questions were:

1. Do interventions focused on either a singular concep-
tion (sameness) or a dual conception (sameness and sub-
stitutive) of the equal sign promote greater equal sign
understanding and increased application of structural
equation-solving strategies, compared to a control con-
dition?

2. Does an intervention focused on a dual conception of
the equal sign promote greater equal sign understanding
and increased application of structural equation-solving
strategies, compared to an intervention focused solely on
a sameness conception?

We hypothesized that students who received an interven-
tion promoting a relational (sameness or dual) conception
of the equal sign would show greater gains in their equal
sign understanding and in the sophistication of their equa-
tion-solving strategies, as compared to students who did not
receive an intervention. We further hypothesized that stu-
dents who received an intervention promoting sameness and
substitutive views of the equal sign would show greater gains
in their equal sign understanding and in the sophistication of
their strategies than students who received an intervention
focused only on sameness.

3 Methods
3.1 Participants

Participants were 96 fourth- and 67 fifth-grade students
(n=163) recruited via Peachjar, a virtual flyer used to con-
tact families through their school districts. We sent Peachjar
flyers to 203 schools from 44 districts in four states in the

midwestern United States. Please see (https://osf.io/gf5dc/?
view_only=11dd753b384a4c64b334092d9f5abbac) for par-
ticipant demographic information.

Seventeen students were excluded from the final data set
due to attrition at the second session (n=4), technical dif-
ficulties (n=38), or parents helping students with assessment
items (n=>5). The final sample consisted of 86 fourth graders
and 60 fifth graders (n=146).

3.2 Data collection procedure

Data were collected during two one-on-one sessions con-
ducted via Zoom by one of five experimenters. Students
took a pretest at the beginning of Session 1, and this pretest
started with the experimenter asking students to orally define
the equal sign. The remainder of the pretest was presented
via the online platform Qualtrics and included 61 items
addressing understanding of mathematical equivalence and
algebraic problem solving. The assessment was divided into
a 17-min and a 20-min section to allow for a short break.
Students were not able to skip items and were required to
respond to all items, even if typing “I don’t know,” to pro-
gress. The experimenter was online throughout the assess-
ment to address technical difficulties and offer general
encouragement but did not see student responses. Parents
were asked not to influence their children’s answers. Stu-
dents participated in Session 2 of the intervention 3 to 7 days
after Session 1, and they completed a posttest identical to
the pretest.

3.3 Intervention

Participants were randomly assigned to one of three inter-
vention conditions: (1) Sameness, focused on the “same-
ness” conception of the equal sign, (2) Sameness + Substitu-
tive, focused on both sameness and substitutive conceptions,
or (3) Control. The intervention consisted of a 7-10-min les-
son at Session 1 and a 9-12-min lesson at Session 2. Lessons
were delivered to individual students by an experimenter
using an animated PowerPoint presentation. Students in the
Control condition did not receive a lesson.

Session I In both the Sameness and Sameness + Substi-
tutive conditions, Session 1 began with the experimenter
asking, “What does the equal sign mean?”” After the student
gave their answer, the experimenter said, “The equal sign
means that both sides of the equation are equal, or the same
amount”. For students in the Sameness + Substitutive con-
dition, the experimenter then said, “Another way to think
about the equal sign is that amounts that are the same can be
swapped or substituted”. Animations within the PowerPoint
lesson were used to highlight the “sameness” or “swappabil-
ity” of the sides.
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After the introduction, students engaged in a card activity
(see Fig. 1) in which they were shown expression cards and
asked to make true equations. To encourage students to form
equations that were not in standard form, the experimenter
suggested the first expression on some trials. For example,
on one trial the experimenter put “10” on the left side of the
equal sign, and in another trial put “0+ 8” on the right side,
both times asking, “Can you pick a card to make this a true
equation?” The Sameness intervention emphasized making
sure that the equation was in fact true by checking for same-
ness of the two sides. The Sameness + Substitutive interven-
tion emphasized that when students know an equation is
true, the sides can be swapped to find another equation that

10

8+2

10+0

Fig. 1 Card activity used in the intervention conditions

is also true. Students completed a total of 5 trials with stand-
ard and nonstandard forms.

Session 2 Session 2 included equations such as
24+ 15=24+__ to encourage students to notice the under-
lying structure of sameness and to help them realize they do
not need to compute the sums on both sides of the equal sign
to find the missing value. Equations with identical or nearly
identical numbers on either side of the equal sign have been
found to encourage such structural thinking (e.g., Stephens
et al., 2013).

The interventions diverged as the equa-
tions 47 +26=444__ and 244 __ =284 58 were intro-
duced. Students were asked how they could find the missing
values without adding the numbers together (see Table 1). In
both interventions, students were first asked how they would
solve the equations. They then viewed slides narrated by
the experimenter illustrating different strategies. The Same-
ness intervention used arrows to emphasize a compensa-
tion strategy for finding the missing values (see Fig. 2). The
Sameness + Substitutive intervention focused on decomposi-
tion and the substitution of one expression for an equivalent
one to reveal an underlying structure that made finding the
missing value possible without calculating the sums on both
sides (see Fig. 2).

The final equation posed during the lesson was
154+22=9+__. This was a less “obvious” equation in
terms of the distance between the values on each side of the
equal sign and thus might invoke a computational strategy.
The experimenter said, “This time, none of the numbers in
this equation are particularly close together, but we can still

Table 1 Sameness and Sameness + Substitutive lesson treatments of 24+ _ =28+ 58

Sameness condition

Sameness + Substitutive condition

When I look at this equation, I notice that 24, on the left side of the
equation, and 28, on the right side of the equation, are almost the
same amount. What is the difference between 28 and 24?

[Wait for student response]

That’s right, 28 — 4 is 24. Can you think about how we can use this
fact to figure out what number goes in the blank to make this a true
equation?

[Wait for student response]

Because 24 is 4 less than 28, we know that the number in the blank
will be 4 more than 58. This will keep both sides of this equation the
same.

What is 58 +4?

[Wait for student response]

That’s right! 58 +4 is equal to 62, so 62 is the number that goes in the
blank to make this a true equation.

When I look at this equation, I notice that 24 and 28 are almost the
same amount. In fact, I know that 24 +4=28. Can you think how we
can use this equation to figure out what number goes in the blank in
the top equation?

[Wait for student response]

We know that the equal sign means that both sides of the equation are
the same amount. Because we know that 28 equals 24 + 4, we can
substitute 24 +4 for this 28 in the original equation. When I do that,
I can see that the equation now says 24+ __=24+44+58. Do you
notice anything about our equation after we did the substitution?

[Wait for student response]

Notice that after our substitution, the number 24 is on both sides of the
equal sign! How can we use this fact to figure out what number goes
in the blank?

That’s right! [OR Let me show you]. Since 24 is on both sides of the
equal sign, and we know that both sides of the equal sign must be the
same amount, we know that the number that goes in the blank will be
equal to 44 58!

What is 4+ 58?

[Wait for student response]

That’s right! 4+ 58 is equal to 62, so 62 is the number that goes in the
blank to make this a true equation
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24+ =28+ 58

| Sameness | | Sameness + Substitutive |

24+ =28+ 58

24+ =28+58
24+4 =28

24+ =28+58

24+ =28+ 58
‘ 24+4 =28

, 24 +__=24+4+58
24 +62 = 28 + 58

24 +62 =24 + 4+ 58

Fig.2 Materials for lessons focused on sameness and dual same-
ness and substitutive conceptions of the equal sign

look for the relationship between numbers to figure out what
number goes in the blank, like before”. Students were asked
their thoughts about how this equation could be solved with
a focus on numerical relationships. The experimenter then
presented either a compensation strategy (in the Sameness
condition) or a substitution strategy (in the Sameness + Sub-
stitutive condition). Depending on whether students focused
on the relationship between 15 and 9 or between 22 and 9
when first asked how they would solve the problem, one of
two differing paths of instruction and accompanying ani-
mated slides were presented.

3.4 Assessment items and coding

We focused our coding and analysis on a subset of seven
items. Three items addressed understanding of the equal
sign: an equal sign definition item and two equal sign defi-
nition endorsement items (see Fig. 3). Four were missing
value equations (see Fig. 4), with two in which the structural
relationships were highly salient (i.e., numbers on either side

of the equal sign were very close together), and two in which
the structural relationships were non-salient.

3.4.1 Equal signitems

Students were shown an equal sign and asked what it means
and if it could mean anything else (see Fig. 3). Items requir-
ing students to produce definitions are common in studies
exploring students’ understanding of the equal sign (e.g.,
Knuth et al., 2006; Madej, 2022; Matthews et al., 2012;
McNeil & Alibali, 2005). Two additional items solicited
students’ endorsements of various equal sign definitions (see
Fig. 3). The endorsement items were modeled after those
used in prior work (e.g., Donovan et al., 2019; Jones et al.,
2013; Matthews et al., 2012). We presented each relational
definition (i.e., the substitutive definition and the sameness
definition) along with an operational definition and a dis-
tractor definition. These two items (each a group of three
definitions to evaluate) were spaced so that students did not
see them consecutively.

Students’ oral definitions were coded in terms of whether
they included sameness and substitutive definitions. A
response was coded as sameness if a student expressed the
idea that the equal sign means “the same as” and as substi-
tutive if the student expressed the idea that the equal sign
means the two sides of an equation can be swapped or sub-
stituted for each other. Students’ responses to the definition
endorsement items were coded for whether they endorsed
“The equal sign means two amounts are the same” and “The
equal sign means the two sides can be swapped” as “good”
definitions. For the equal sign definition item, a primary
coder coded all responses, and a reliability coder coded a
randomly selected 20% of responses. Agreement between
coders was 99%. The coders discussed all disagreements and
came to consensus on final codes.

3.4.2 Missing value equations items

The four missing value equations examined students’ use
of the structural strategies taught during the intervention.
The first two items included numbers on either side of the
equal sign that were only one apart from each other (salient
items), and the third and fourth items included numbers that
were farther apart (non-salient items). These items offered
opportunities for students to apply both “sameness” and
“substitutive” ways of thinking (see Fig. 4). The scheme for
coding students’ responses was based on prior work (e.g.,
Donovan et al., 2019; Matthews et al., 2012) and modified
to include substitution strategies. Responses were coded for
correctness and strategy use.

For strategy use, students’ explanations were coded as
structural if they attended to and correctly made use of rela-
tionships between numbers across the equal sign to find the
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Fig.3 Equal sign definition and
equal sign definition endorse-
ment items. In the results shared
here, we focus on the italicized
items

Equal sign definition

[Student is shown “=" on the screen]
What does the equal sign mean?
Can it mean anything else?

Equal sign definition endorsement
Is this a good definition of the equal sign? Circle good or not good.
The equal sign means two amounts are the same
The equal sign means count higher

The equal sign means the total

Is this a good definition of the equal sign? Circle good or not good.
The equal sign means the two sides can be swapped Good
The equal sign means add

The equal sign means the answer to the problem

Good Not good
Good Not good
Good Not good

Not good
Good Not good
Good Not good

Fig.4 Missing value equations . R
Missing value equations

67+84=__ +83
_ +55=37+54
60+ =48+24

18+31+53=__ +63

Find the number that goes in each blank. You can try to find a short cut so you don’t have to
do all the adding. Show your thinking and write your answer in the blank.

missing value. The structural strategies that students used
were a compensation strategy and a decomposition/substitu-
tion strategy. For example, a student using compensation for
67+ 84 =__+ 83 might notice that 84 is one more than 83
and conclude that the number in the box must be one more
than 67, or 68, to maintain equivalence. A student using
decomposition/substitution might rewrite the equation as
67+83+1=__+83 and then find the value in the box by
adding 67 + 1. In structural-incorrect strategies, students
noticed relationships between numbers across the equal sign
but then “compensated” in the wrong direction; for example,
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solving 67+ 84 =__+ 83 by saying, “84 is one more than 83;
67 is one more than 66” and placing 66 in the box.

Two coders initially coded the responses to all four miss-
ing value equations for a randomly selected 20% sample of
students. Agreement was 96%. The coders came to consen-
sus on all disagreements and clarified the meanings of the
codes. In discussing discrepancies, a systematic disagree-
ment on one explanation type for one item was noted. The
coders came to a consensus on this explanation type, the
primary coder then rechecked the full dataset, and the reli-
ability coder recoded a new randomly selected 20% sample.
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Agreement between coders for this new reliability sample
was 97%.

4 Results
4.1 Equal sign items

To evaluate the effects of the lesson conditions on the equal
sign definition and endorsement items, we analyzed per-
formance at posttest, controlling for performance on the
corresponding items at pretest. We used logistic regression
because the variables were dichotomous (e.g., offering a
sameness definition or not). We analyzed the effect of condi-
tion using two planned orthogonal contrasts, one comparing
the two lesson conditions (combined) to the control con-
dition (coded — 0.67, 0.33, 0.33), and one comparing the
Sameness condition to the Sameness + Substitutive condition
(coded — 0.5, 0.5).

4.1.1 Equal sign definitions

About half of the students in all conditions offered sameness
definitions of the equal sign prior to instruction (see Fig. 5).
Students in the lesson conditions were more likely than stu-
dents in the control condition to offer sameness definitions
at posttest, b=0.86, )(2(1) =4.46, p=0.03, OR=2.37. For
example, a student in the Sameness condition stated “The
equal sign means the answer” at pretest and “[The equal
sign means] that both sides of the equation are the same”
at posttest.

No students offered substitutive definitions before instruc-
tion, so we controlled only for grade in analyzing this out-
come. As predicted, students in the lesson conditions were
more likely than students in the control condition to offer
substitutive definitions at posttest, b =3.02, 7X(1)=15.97,
p<0.001, OR=20.52, and students in the Sameness + Sub-
stitutive condition were more likely to offer substitutive

Sameness Definition of Equal Sign

100
2 80
[0}
E
5 60
k]
e 40
(9]
<4
& 20
0
Control Sameness Sameness +
Substitutive

mPretest mPosttest

definitions than students in the Sameness condition, b=3.16,
72(1)=39.93, p<0.001, OR=23.53 (see Fig. 5). For exam-
ple, a student in the Sameness + Substitutive condition stated
“The equal sign means it like tells you the answer... for
example 1 plus 1 equals, it tells you after the equal, it tells
you the answer” at pretest and “[The equal sign] means that
both sides of the equal sign is [sic] the same, you can swap
it and it will still be the same” at posttest.

4.1.2 Endorsement of sameness and substitutive
definitions

Students in all conditions were highly likely to endorse the
sameness definition, even before instruction, and there were
no differences in endorsement of the sameness definition
across conditions following instruction (see Fig. 6).

As predicted, students in lesson conditions were more
likely than students in the control condition to endorse the
substitutive definition at posttest, b=1.83, )(2(1) =10.38,
p=0.001, OR=6.26, and students in the Sameness + Sub-
stitutive condition were more likely to endorse a substitutive
definition than students in the Sameness condition, b=3.28,
72(1)=16.43, p<0.001, OR=26.61 (see Fig. 6).

Thus, as predicted, students in the Sameness + Substi-
tutive condition both generated and endorsed substitutive
definitions of the equal sign in response to instruction that
focused on the substitutive conception of equivalence.

4.2 Missing value items

We next considered the missing value items. We first present
results regarding correctness and strategy use, and we then
consider strategy use over time.

4.2.1 Correctness and use of structural strategies

The four missing value items were among the last items
on the assessment, so not all students had time to complete

Substitutive Definition of Equal Sign
100

80
60
40

20
0 — [

Control

Percent of Students

Sameness +
Substitutive

Sameness

DPretest mPosttest

Fig.5 Percent of students offering sameness and substitutive definitions of the equal sign by condition and test
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them. We therefore present (in Table 2) the percent of stu-
dents in each condition who correctly solved each item at
pretest and posttest, among those who completed that spe-
cific item on both pretest and posttest. Note that in some
cases, performance declined from pretest to posttest.
Because students could have arrived at correct solutions
via computation or via structural strategies, students’ numer-
ical solutions alone do not reflect the potential impact of the
lessons on structural thinking about the equations. We there-
fore focused our analyses on whether students employed
structural strategies. Table 3 provides examples of correct
structural strategies for each of the missing value equations,

Endorsement of Sameness Definition
100 —

80
60
40

20

Percent of Students

Sameness +
Substitutive

Control Sameness

DPretest mPosttest

and Fig. 7 presents the proportion of students in each condi-
tion who used correct and incorrect structural strategies at
pretest and posttest on each of the four items.

We used a mixed-effects model to examine the likeli-
hood that students used a structural strategy (either correct
or incorrect) as a function of test (pretest or posttest), condi-
tion, item type (salient/non-salient), and the interactions of
these factors. As for the analysis of equal sign definitions,
we analyzed condition in terms of two contrasts, one com-
paring the two lesson conditions (combined) to the control
condition, and one comparing the Sameness condition to the
Sameness + Substitutive condition. We also included pretest

Endorsement of Substitutive Definition
100

2 80
[}
E
5 60
k]
€ 40
[}
o
2 20
0
Control Sameness Sameness +
Substitutive

DPretest mPosttest

Fig.6 Percent of students endorsing “the equal sign means two amounts are the same” and “the equal sign means the two sides can be swapped”

by condition and test

Table 2 Percent of students

” A Control Sameness Sameness + Sub-

correctly solving the missing stitutive

value items by condition and

test Pre Post Pre Post Pre Post
67+84=__+83 81% 85% 93% 90% 80% 89%
(n=134)
__ +55=37+54 87% 68% 75% 61% 76% 84%
(n=112)
60+__ =48+24 68% 79% 90% 65% 91% 70%
(n=92)
18+31+53=__+63 65% 65% 56% 48% 86% 68%
(n=173)

Table 3 Examples of correct structural strategies on missing value equations items

Equation Example of correct structural strategy
67+84=__+83 I saw that 83 was one less than 84 so to even it out I knew I had to add 1 onto 67 which was 68
__+55=37+54 54=55-1
_ +55=37+55-1
55 is on both sides so subtract 37 — 1 which equals 36
60+_ =48+24 60+ 12=48 +24 because if you took 12 from the 24 and added it to the 48, the 48 would turn

184+31+53=__+63

into a 60, the equation would look like this 60+ 12=60+ 12, on both sides of the =sign are
the same thing, 60+ 12

53 is 10 less than 63 so take 10 from 18 to make it 8 then add 31 +8=39
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Fig. 7 Percent of students using correct and incorrect structural strategies for each item by condition and test

equal sign definition (relational or not) and its interaction
with test (pretest or posttest) as predictors, and we controlled
for grade level. We included random effects (slopes and
intercepts) within participants for test and item type.

Overall, students were more likely to use structural strat-
egies at posttest than at pretest, B=1.435, SE=0.587, 12
(1)=5.968, p=0.01, OR=4.199. Students were also less
likely to use structural strategies on non-salient items
than salient items, B=-5.806, SE=0.980, y%(1)=35.085,
p<0.001, OR=0.003 (see Fig. 7).

Students who offered a relational definition of the equal
sign at pretest were more likely to use structural strategies
than participants who did not, B=3.218, SE=0.951, y?
(1)=11.442, p<0.001, OR=24.96. Students who did not
offer a relational definition at pretest were also more likely
to increase their use of structural strategies from pretest to
posttest, compared to those who did offer a relational defi-
nition at pretest (see Fig. 8), yielding a significant interac-
tion of pretest definition and test, B=-4.159, SE=1.522, ;(2
(1)=17.46, p=0.006, OR=0.016.

For missing value items, there were no significant effects
that involved either of the condition contrasts. There was
no evidence for greater change in use of structural strate-
gies from pretest to posttest in the lesson conditions than in
the control condition, B=0.875, SE=1.101, y%(1)=0.631,

100
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9
g 80
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5 I
gg 60
5 3
o 40 i
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o=
oo 20
(5}
=
&
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Non-Relational Relational

mPretest mPosttest

Fig.8 Percent of missing value items on which students used struc-
tural strategies as a function of pretest relational definition and test

p=0.427, OR=1.06, and no evidence for a difference
between the Sameness and Sameness + Substitutive con-
ditions, B=-0.538, SE=1.467, y*(1)=0.135, p=0.714,
OR=0.58. There was also no effect of grade level on use of
structural strategies.

Given the by-item variability in use of structural strate-
gies, we also examined patterns of performance for each
item separately (see Fig. 7). We used the same model struc-
ture as for the overall analysis, omitting item type. As in the
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overall analysis, these problem-by-problem analyses also did
not reveal any significant effects of the condition contrasts.

4.2.2 Paths of change from pretest to posttest in structural
strategy use

Finally, we examined patterns of change from pretest to post-
test for individual learners. We first identified students who
completed at least one salient and at least one non-salient
item at both pretest and posttest (n =28 Control students;
n=31 Sameness students; n =33 Sameness + Substitutive
students). We then classified each student’s performance on
the salient and non-salient items. Students were classified
as using structural strategies for each item type at each test
if they used a (correct or incorrect) structural strategy for at
least one of the two items in that category. We then classi-
fied each student’s performance at each test into one of the
following categories: (1) no use of structural strategies, (2)
use of structural strategies on salient items only, and (3) use
of structural strategies on both salient and non-salient items.
In a very small number of cases (1 at pretest, 2 at posttest,
out of 92 at each time point), a student used a structural
strategy on non-salient items only; we classified these cases
as structural strategies on both types of items. The number of
participants in each condition who demonstrated each path
from pretest to posttest is presented in Fig. 9.

Among students who did not use structural strategies
at pretest, the percent of students who progressed to using
structural strategies (either on salient items or on both types
of items) was greatest in the Sameness condition (7 of 8,
88%), followed by the Sameness + Substitutive condition (7
of 14, 50%), followed by the Control condition (2 of 7, 29%).
These descriptive findings suggest that the lesson conditions,
and in particular, the Sameness condition, helped students
who did not initially notice numerical relationships begin
to attend to structure and use these relationships to solve
missing value items at posttest. However, some students in

Both Both
Both
Salient
i
Sallent I I Salient

Neither Neither

Neither

Control

Sameness

the Control condition also began to use structural strategies,
and the value of the lessons must be considered in that light.

Among students who used structural strategies only on
salient items at pretest, the percent of students who pro-
gressed to using structural strategies on both types of items
at posttest was also greatest in the Sameness condition (6 of
9, 67%), followed by the Control condition (4 of 13, 31%),
followed by the Sameness + Substitutive condition (2 of 10,
20%). Thus, for students who already used structural strat-
egies on some items at pretest, the Sameness lesson was
strikingly more beneficial than the Sameness + Substitutive
lesson, with more than three times as many students pro-
gressing to using structural strategies on both item types at
posttest.

Examples from one student in the Sameness condition
classified as Neither-to-Salient and one student in the Same-
ness condition classified as Salient-to-Both are presented in
Table 4. Corresponding examples for students in the Same-
ness + Substitutive condition are presented in Table 5. Note
that in addition to using a computational strategy at pretest,
Student 1 incorrectly used the equal sign to represent the
results of calculations.

5 Discussion

The importance of a relational view of the equal sign for
students’ success in algebra has been well established.
Although relational has traditionally been construed in
terms of sameness (Carpenter et al., 2003; Kieran, 1981;
Knuth et al., 2006; McNeil et al., 2011), recent research
suggests that a substitutive view is a distinct aspect of a full
relational understanding (Jones et al., 2012; Simsek et al.,
2019). Situated in this context, we investigated the impact
of lessons focused on a sameness or a sameness and sub-
stitutive view of the equal sign on fourth- and fifth-grade
students’ understanding.

Both Both
Both
I Salient

Neither

Salient

Salient

Neither
Neither

Sameness +
Substitutive

Fig.9 Shifts in use of structural strategies on salient and non-salient items by condition. Pretest is indicated on the left and posttest on the right.
The lengths of the black, gray, and white bars correspond to the percent of students in each category at the relevant time point
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Table 4 Examples from students in the Sameness condition showing the neither-to-salient and salient-to-both structural strategy paths

Equation Pretest

Posttest

Student 1: neither-to-salient
67+84=__+83
60+__ =48+24

67+84=151-83=068
484+24=72-60=12

Student 2: salient-to-both
674+84=__+83

and the 67 is increased by one
60+__=48+24

Since 48 +24 equal 72, 12+ 60="70 too

83 is one away from 84 so I added 67+ 1 and I got 68

48+241is 72
72 -601is 12

It’s just 67 + 84, except the 84 is decreased by one 84 is one more than 83, so the number in the blank

has to be one higher than 67, and that’s 68

60 is 12 numbers higher than 48, so the answer has to
be 12 numbers lower than 24

Table 5 Examples from students in the Sameness + Substitutive condition showing the neither-to-salient and salient-to-both structural strategy

paths

Equation Pretest

Posttest

Student 3: neither-to-salient

67+84=__+83 67+ 84 =151 so subtract 83 from that and that leads to
the answer. The answer is 68
60+__ =48+24 48424 =72 so subtract 60 from 72 and you get the

answer which is 12
Student 4: salient-to-both
67+84=__+83
60+__ =48+24

since 83 is 1 less then 84, I just added 1 to 67
I could not find a shortcut, so I just did the addition

83+ 1=284s0 67+ 1 is 68 because I substituted 1

48+12is 60 so 24 — 12 is 12 so adding 60+ 12 is the
answer

834 1=284 so adding 1 to 67 makes both sides the same
60=48+ 12 so I subtracted 12 from 24

More students in the lesson conditions than in the Control
condition offered a sameness definition of the equal sign at
posttest. Further, more students in the lesson conditions than
in the Control condition offered and endorsed a substitu-
tive definition at posttest, with more students in the Same-
ness + Substitutive condition than in the Sameness condition
doing so. Neither lesson had a statistically significant impact
on students’ likelihood of using structural strategies on the
four missing value equation items. However, descriptive
analyses of shifts in structural strategy use from pretest to
posttest suggest that the lessons—in particular, the Same-
ness lessons—may have had some impact. We discuss shifts
observed in students’ structural strategy use, reflect on the
relationship between sameness and substitutive conceptions
of the equal sign, consider our characterization of “algebraic
structure” and “‘structural strategies” in the context of exist-
ing literature, and consider limitations and future directions.

5.1 Shifts in students’ use of structural
equation-solving strategies

We found greater use of structural approaches on items in
which the structural relationships in the equation were sali-
ent (e.g., __+55=37+54) than on items in which the struc-
tural relationships were non-salient (e.g., 60+__=48+24),
regardless of condition and test. This confirms findings (Car-
penter et al., 2003; Stephens et al., 2013) that number choice

can influence students’ equation-solving strategies and
encourage attention to structure, or “looking” before “doing”
(Hoch & Dreyfus, 2004). We did not find a statistically sig-
nificant impact of condition on students’ likelihood of using
structural strategies, but we did observe descriptive differ-
ences by condition when analyzing shifts in approaches to
salient and non-salient items at the individual level (Fig. 9).
We found that students in the lesson conditions, especially
those in the Sameness condition, showed more movement
towards structural strategies than Control students. Com-
pared to students in the Sameness + Substitutive and Control
conditions, students in the Sameness condition were more
apt to shift from not using structural strategies on either item
type to using structural strategies on salient items or to shift
from using structural strategies only on salient items to using
structural strategies on both types of items. Thus, the Same-
ness lesson may have influenced students’ tendency to notice
numerical relationships across the equal sign when solving
problems.

Why might the Sameness lesson have been beneficial
for encouraging the adoption of structural equation-solving
strategies? Although the sameness and substitutive concep-
tions may both be necessary components of a full relational
view of the equal sign (Jones et al., 2012), it may be that
teaching both conceptions in a relatively short amount of
time put an unreasonable cognitive demand on students.
Adopting a sameness conception alone might have been
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sufficient to support students in equation solving, whereas
considering two conceptions at once may have been counter-
productive for some. The short time allotted to the interven-
tion may have been better spent focused on a single defini-
tion and equation-solving approaches consistent with this
single definition than on dual conceptions of the equal sign.

5.2 Sameness and substitutive conceptions
of the equal sign

It may also be the case that a sameness conception of the
equal sign is a necessary precursor that must be in place
prior to adoption of a meaningful substitutive conception.
Although early findings were ambiguous regarding develop-
mental ordering (e.g., Jones et al., 2012), more recent find-
ings (Simsek et al., 2019) suggest that the sameness view
develops prior to the substitutive view. Students who held a
substitutive view almost always simultaneously held a same-
ness view, although the reverse was not true.

This sameness-before-substitution stance is consistent
with our initial perspective that substitution does not con-
stitute a wholly different conception of mathematical equiva-
lence but rather logically follows from the sameness concep-
tion. That is, two amounts can be swapped or substituted
because they represent the same values. This view is also
consistent with Kieran and Martinez-Hernandez’s (2022a,
this issue) argument that “exchanging depends on the sup-
port of sameness”. Holding a substitutive view without a
sameness view may be possible (e.g., Lee & Pang, 2021)
but is potentially problematic. Although one may be taught
procedural rules for substitution, these rules can be applied
in ways that are inconsistent with a sameness conception of
the equal sign. For example, Jones and Pratt (2012) found
that students were adept at substituting in the context of
solving puzzles to find a given sum, but they rarely noticed
when these puzzles included false equalities. This finding
that “children...engaged with making substitutions...but
were not engaged with the numerical sameness of statements
or the conservation of quantity” (p. 17) illustrates that teach-
ing a substitutive view alone is not necessarily productive.

5.3 Attending to algebraic structure and using
“structural strategies”

At the outset of this paper, we described structural thinking
as using number and operation sense to reflect on math-
ematical expressions as objects rather than as arithmetic
procedures to be carried out (Carpenter et al., 2003; Sfard,
1991), and we noted that students who think structurally
can recognize expressions such as 8(x+ 3) and 8x+24 as
equivalent without performing computations. This is con-
sistent with Hoch and Dreyfus’s (2004) characterization of
“structure sense” as a set of abilities that includes seeing
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an algebraic expression as an entity, dividing an entity into
sub-structures, recognizing connections between structures,
and recognizing which manipulations are both possible and
useful. We also concur with Kieran’s (2018) assertion that
structural thinking and generalizing are closely linked. To
identify an algebraic generality (e.g., a “give and take” strat-
egy described by a student in response to __+55=37+54)
requires “identifying, lifting out, and expressing algebraic
structure” (p. 81). Finally, our thinking about structure—
especially as evidenced in the Sameness + Substitutive condi-
tion—aligns with Kieran and Martinez-Hernandez’s (2022b)
emphasis on decomposing, composing, and recomposing as
a “dynamic and appropriate” approach that “may be at the
heart of students’ structuring activity in primary school”
(p. 40).

It is important to note, however, that strategies we charac-
terized as structural in this study included both correct and
incorrect approaches—so long as they indicated attention to
structure. Some of the shifts illustrated in Fig. 9 (e.g., from
no use of structural strategies to use on salient items, or from
use of structural strategies only on salient items to use on
both salient and non-salient items) were due in part to what
we view as an explicit attention to structure coupled with
an incorrect strategic attempt to account for that structure.
What we characterized as an incorrect structural strategy
(e.g., “84 is one more than 83; 67 is one more than 66”
in response to 67 + 84 =__+ 83) might indicate an obser-
vation of a numerical relationship without the conceptual
understanding necessary to guide action on the relationship,
evoking Kirschner and Awtry’s (2004) caution against the
“notational seductions of nonreflective visual pattern match-
ing” (p. 248).

One might argue that a student who understands the rela-
tional meaning behind the strategy would not compensate in
the wrong direction, but we contend that this is too strict an
interpretation. Understanding of the equivalence construct is
continuous and can be thought of in terms of a probabilistic
Guttman scale (Rittle-Johnson et al., 2011). This means that
understanding need not be complete to indicate some level of
advancement (Matthews et al., 2012). It may be that simply
recognizing structural relationships between numbers in an
equation is an important first step, even if differences across
the equal sign are not yet correctly coordinated.

While students may not initially know what to do with
the observed relationships, this noticing may be an impor-
tant step on the way to conceptual appreciation and use of
structure. We echo calls to engage elementary and middle
grades students in activities that encourage the identifica-
tion and use of structures with numbers and operations
(Kieran, 2018; Schifter, 2018) and to engage older students
in explicitly analyzing algebraic expressions and equations
and clearly articulating transformational processes derived
from these analyses. Such activities can support students’
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abilities to perform useful manipulations grounded in a deep
understanding of structure (Kirschner & Awtry, 2004).

5.4 Limitations

Although we observed different patterns of shifts in strategy
use for different item types across conditions, we found that
change from pretest to posttest in the overall likelihood of
using structural strategies did not differ for students in the
lesson conditions (Sameness or Sameness + Substitutive),
relative to students in the Control condition. There are sev-
eral possible reasons for this null finding. First, the time
spent on instruction—Iess than 30 min—may not have been
enough for students in either lesson condition to become
comfortable with the strategies and to integrate these strate-
gies with the presented conceptions of the equal sign. For
students in the Sameness + Substitutive condition, the short
time frame may have been even more problematic, given
the challenge of integrating two distinct conceptions of the
equal sign.

Second, our intervention may have been insufficiently
responsive to students’ mathematical thinking in the
moment. Our interdisciplinary team of psychologists and
mathematics educators aimed to strike a balance between
conducting a controlled experiment in which all students had
the same experience, and one in which students shared and
expounded upon their mathematical thinking. It is largely
accepted that mathematics instruction should build on stu-
dents’ existing knowledge (Carpenter et al., 1996) and that
students should have ample opportunities to ask questions,
choose problem-solving methods, and engage in mathemati-
cal discussions (Carpenter et al., 2015; Ghousseini, 2015;
Hiebert et al., 1997). Although our lessons included a few
places where “next steps” depended on student responses,
in most cases we offered students the opportunity to share
their thinking but did not proceed in a way that hinged on
these responses.

Finally, online data collection posed challenges. The pro-
ject was originally conceived as an in-person, school-based
study with small student groups participating in multiple
sessions that encouraged student interaction and discourse.
However, COVID-19-related school closures required that
we move the entire study online. Apart from the orally pre-
sented equal sign definition item, our assessments were
administered via Qualtrics. This meant that participants
responded to the prompts “show your work” and “explain
your thinking” by typing in text boxes. Although some stu-
dents gave articulate and detailed explanations, many stu-
dents did not. Student comfort with typing, the Qualtrics
platform, and communication via Zoom all contributed to
the quality and detail of the responses given. Had this study
been conducted in person, structural strategies might have
been illustrated with drawings and arrows on paper, rather

than in a text box with limited affordances. It is also possible
that the requirement to type inhibited higher-order reasoning
by preventing students from producing gestures and using
their bodies (Nathan & Martinez, 2015).

6 Future investigations and conclusion

In this paper, we reported findings from a subset of our
assessment items. Future reports will examine results from
less complex items (e.g., true/false equations and missing
value equations with smaller numerical values) as well as
more traditional algebra items (e.g., equation solving with
variables, completing function tables, identifying function
rules) by condition. We will also examine relationships
between students’ conceptions of the equal sign and their
success and strategy use on a variety of problem-solving
items regardless of experimental condition.

Despite the lack of support for our hypothesis that a
Sameness + Substitutive lesson would be most beneficial
for developing students’ conceptions of the equal sign and
related equation-solving strategies, we believe that the role
of the substitutive view of the equal sign in equation solv-
ing and algebra learning is worthy of further investigation.
Our intervention did not yield significant effects of lesson
condition on use of structural strategies, but it does provide
direction for future work. A longer-term intervention that
allows for greater time on lessons and increased opportunity
for interaction with peers around mathematical ideas might
prove fruitful. Assessments that allow students to more fully
explain their problem-solving strategies would also allow for
greater insight into student thinking. If holding a substitutive
view of the equal sign does help students integrate a new
dimension of relational thinking about the equal sign, it is
possible that shifts in students’ problem-solving strategies
may follow.

In sum, we found that a short online intervention focused
on a sameness or a dual sameness and substitutive concep-
tion of the equal sign enhanced students’ abilities to produce
sameness and substitutive definitions of the equal sign. The
impact of these lessons on students’ equation-solving strate-
gies was less clear. Although there was some evidence that
a focus on the sameness conception was more supportive of
advancing students’ attention to equation structure, further
research is needed to investigate more thoroughly the con-
nections between students’ conceptions of equivalence and
their use of structural equation-solving strategies.
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