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Abstract
Understanding of the equal sign is associated with early algebraic competence in the elementary grades and equation-
solving success in middle school. Thus, it is important to find ways to build foundational understanding of the equal sign 
as a relational symbol. Past work promoted a conception of the equal sign as meaning “the same as”. However, recent work 
highlights another dimension of relational understanding—a substitutive conception, which emphasizes the idea that an 
expression can be substituted for another equivalent one. This work suggests a substitutive conception may support algebra 
performance above and beyond a sameness conception alone. In this paper, we share a subset of results from an online 
intervention designed to foster a relational understanding of the equal sign among fourth and fifth graders (n = 146). We 
compare lessons focused on a sameness conception alone and a dual sameness and substitutive conception to each other, and 
we compare both to a control condition. The lessons influenced students’ likelihood of producing and endorsing sameness 
and substitutive definitions of the equal sign. However, the impact of the lessons on students’ approaches to missing value 
equations was less clear. We discuss possible interpretations, and we argue that further research is needed to explore the 
roles of sameness and substitutive views of the equal sign in supporting structural approaches to algebraic equation solving.
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1  Introduction

Algebra serves as a “gatekeeper” in school mathematics, 
with consequences for students’ advancement in mathemat-
ics, access to higher education, and future earnings (Adel-
man, 2006; Chen, 2013; National Mathematics Advisory 
Panel, 2008). High failure rates in algebra have kept many 
students from educational, career, and economic opportuni-
ties (Kaput, 1998; Moses & Cobb, 2001; Stigler et al., 1999). 
This has led to calls to introduce students to algebraic con-
cepts earlier in their mathematics careers (e.g., Carpenter 
& Levi, 2000; Kaput, 1998; National Council of Teachers 
of Mathematics [NCTM], 2000; National Governors Asso-
ciation Center for Best Practices & Council of Chief State 
School Officers [NGA & CCSSO], 2010). These are not 
calls to shift the formalism of traditional algebra courses to 

earlier grades, but rather to “algebrafy” (Kaput, 1998) early 
mathematics by building informal thinking about structure 
and algebraic relationships into formal ways of reasoning at 
an earlier developmental point (Kaput et al., 2008; Kieran, 
2004). Structural thinking can be built by encouraging stu-
dents to use number and operation sense to reflect on math-
ematical expressions as objects rather than as arithmetic 
procedures to be carried out (Carpenter et al., 2003; Sfard, 
1991). For example, students who understand problem struc-
ture can recognize expressions such as 8(x + 3) and 8x + 24 
as equivalent without performing individual computations.

The concept of mathematical equivalence—specifically, 
the use of the equal sign to symbolically represent an equiva-
lence relation—is widely accepted as foundational to alge-
braic thinking (Baroody & Ginsburg, 1983; Carpenter et al., 
2003; NCTM, 2000; NGA & CCSSO, 2010; Stephens et al., 
2021). Deep understanding of the equal sign is connected to 
early algebraic competence in the elementary grades (e.g., 
Byrd et al., 2015; Carpenter et al., 2003; Hornburg et al., 
2022; Matthews & Fuchs, 2020) and to equation-solving 
success in the middle grades (Fyfe et al., 2018; Knuth et al., 
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2006). Further, when students are provided with problem-
solving experiences that highlight the equal sign's meaning, 
they grow in their understanding (e.g., Blanton et al., 2019; 
Stephens et al., 2021).

2 � Students’ conceptions of mathematical 
equivalence

A relational conception of the equal sign is the understand-
ing that the symbol denotes the “sameness” of two quantities 
or expressions (e.g., Baroody & Ginsburg, 1983; Behr et al., 
1980; Carpenter et al., 2003; Kieran, 1981; Knuth et al., 
2005; McNeil et al., 2011; Molina & Ambrose, 2008). Stu-
dents who hold a relational view of the equal sign interpret 
and flexibly work both (a) with equations in standard forms, 
in which operations appear to the left of the equal sign and 
the “result” to the right (e.g., 5 + 2 = 7, 6 + 3 = 9), and (b) 
with equations in nonstandard forms, in which operations 
may appear on either, neither, or both sides of the equal sign 
(e.g., 10 + 4 = __ + 7, 12 = 12, 14 = 9 + 5). When asked what 
the equal sign means, students with a relational view offer 
definitions such as “the same as” or “what is to the left and 
right of the sign mean the same thing” (Knuth et al., 2006).

Many students instead hold an operational conception 
of the equal sign, interpreting the symbol as meaning the 
“the total” or “the answer” (e.g., Baroody & Ginsburg, 
1983; Knuth et al., 2006; McNeil, 2008; McNeil & Ali-
bali, 2005; Rittle-Johnson et al., 2011). Students who hold 
an operational view tend to solve missing value equations 
by performing the given operations to the left of the equal 
sign or by performing all the given operations (e.g., for 
8 + 4 = __ + 5, writing 12 or 17 in the blank; Carpenter et al., 
2003). They also may refuse to endorse nonstandard equa-
tions, for example, rejecting 8 = 8 because it lacks an opera-
tion, or rejecting 9 = 5 + 4 because it is “backwards” (Falkner 
et al., 1999; Stephens et al., 2021, Stephens et al., 2022).

Although students’ conceptions of the equal sign have 
generally been characterized as relational or operational, 
Jones and Pratt (2012; see also Jones et al., 2012) assert 
that a complete relational understanding of the equal sign 
involves more than understanding “sameness”. They sug-
gest understanding that one expression can be substituted 
by an equivalent one is another component of a sophisti-
cated understanding—one that is distinct from the idea of 
sameness. They propose that a complete relational view 
of the equal sign includes both sameness and substitutive 
components. The substitutive conception arises from the 
transitive and symmetric properties of equivalence (Simsek 
et al., 2019) that allow equivalent expressions to replace one 
another in mathematical equations, and it sanctions inter-
pretations of the equal sign such as “the right side can be 
swapped for the left side”. For example, if 5x + 8 = 2x − 4, 

then 5x + 8 can replace 2x − 4 and vice versa. A substitutive 
view also allows one to replace 21 in the expression 21 + 9 
with 11 + 10, because 21 = 11 + 10 (Jones & Pratt, 2012).

To determine whether sameness and substitutive views 
are distinct, Jones et al. (2012) used a principal components 
analysis (PCA) to explore whether assessment items asking 
students to evaluate the “cleverness” of substitutive defi-
nitions clustered differently from items asking students to 
evaluate sameness and operational definitions of the equal 
sign. Based on data from 11- and 12-year-olds, they con-
cluded that a relational view comprises distinct substitutive 
and sameness components. They did not find consistency 
in the order in which these two views developed; rather, 
they concluded that students held a more sophisticated rela-
tional understanding of the equal sign when they explicitly 
endorsed substitutive definitions.

Other work also suggests that the sameness and substitu-
tive views of the equal sign are cognitively distinct. Jones 
and Pratt (2012) found that 9- to 12-year-old students were 
able to operate with the substitutive view independently 
of the sameness view. For example, students were able to 
use the given equations 30 + 7 = 37 and 50 + 8 = 58 as rules 
for making notational transformations to the expression 
37 + 58 without considering the “sameness” of the sides of 
the equations.

Some research has suggested that the “sameness” con-
ception develops prior to the substitutive conception. In an 
analysis of older students’ endorsements of definitions of the 
equal sign, Simsek et al. (2019) found that among students 
who accepted sameness, 56.1% rejected substitution, and 
among those who accepted substitution, only 3.5% rejected 
sameness. They also found that students who accepted both 
a sameness and a substitutive view of the equal sign were 
more successful on an algebra assessment than those who 
only accepted a sameness view.

In our prior work, we did not treat substitutive and same-
ness views as distinct, because we viewed the substitutive 
conception as a logical consequence of the sameness con-
ception: two sides of an equation can be swapped, or one 
expression can be substituted for another, because they are 
the same. However, a recent laboratory study led us to recon-
sider the implications of a substitutive view. In this study, we 
presented third- and sixth-grade children with a lesson on 
the sameness conception of the equal sign (Donovan et al., 
2019). Although the substitutive view was not presented in 
the lesson, the assessment included items in which children 
rated substitutive definitions of the equal sign as “good” or 
“not good” (see Jones et al., 2012). Third- and sixth-grade 
students who endorsed a substitutive definition (i.e., who 
rated “the two sides can be swapped” as “good”) performed 
better on items assessing equivalence understanding than 
did those who did not endorse a substitutive definition. In 
addition, sixth-grade students who endorsed a substitutive 
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definition outperformed those who did not on algebraic 
items such as identifying a function rule from a table and 
solving linear equations with variables (Szkudlarek et al., 
2021). Coupled with the findings of Simsek et al. (2019), 
these findings raised questions about the benefits of hold-
ing a dual conception—both a sameness and  a substitutive 
view—of the equal sign, rather than a sameness conception 
alone.

In the present study, we examined the impact of instruc-
tion about a sameness or a sameness and a substitutive view 
of the equal sign. Our outcome measures included oral defi-
nitions of the equal sign, endorsement of definitions, and 
strategies on missing value equations. We were interested 
in whether students would adopt structural equation-solving 
strategies for missing value equations. We use “structural” to 
describe strategies that involve “looking at expressions and 
equations in their entirety, noticing number relations among 
and within these expressions and equations” (Jacobs et al., 
2007, p. 260). Our research questions were:

1.	 Do interventions focused on either a singular concep-
tion (sameness) or a dual conception (sameness and sub-
stitutive) of the equal sign promote greater equal sign 
understanding and increased application of structural 
equation-solving strategies, compared to a control con-
dition?

2.	 Does an intervention focused on a dual conception of 
the equal sign promote greater equal sign understanding 
and increased application of structural equation-solving 
strategies, compared to an intervention focused solely on 
a sameness conception?

We hypothesized that students who received an interven-
tion promoting a relational (sameness or dual) conception 
of the equal sign would show greater gains in their equal 
sign understanding and in the sophistication of their equa-
tion-solving strategies, as compared to students who did not 
receive an intervention. We further hypothesized that stu-
dents who received an intervention promoting sameness and 
substitutive views of the equal sign would show greater gains 
in their equal sign understanding and in the sophistication of 
their strategies than students who received an intervention 
focused only on sameness.

3 � Methods

3.1 � Participants

Participants were 96 fourth- and 67 fifth-grade students 
(n = 163) recruited via Peachjar, a virtual flyer used to con-
tact families through their school districts. We sent Peachjar 
flyers to 203 schools from 44 districts in four states in the 

midwestern United States. Please see (https://​osf.​io/​gf5dc/?​
view_​only=​11dd7​53b38​4a4c6​4b334​092d9​f5a6b​ac) for par-
ticipant demographic information.

Seventeen students were excluded from the final data set 
due to attrition at the second session (n = 4), technical dif-
ficulties (n = 8), or parents helping students with assessment 
items (n = 5). The final sample consisted of 86 fourth graders 
and 60 fifth graders (n = 146).

3.2 � Data collection procedure

Data were collected during two one-on-one sessions con-
ducted via Zoom by one of five experimenters. Students 
took a pretest at the beginning of Session 1, and this pretest 
started with the experimenter asking students to orally define 
the equal sign. The remainder of the pretest was presented 
via the online platform Qualtrics and included 61 items 
addressing understanding of mathematical equivalence and 
algebraic problem solving. The assessment was divided into 
a 17-min and a 20-min section to allow for a short break. 
Students were not able to skip items and were required to 
respond to all items, even if typing “I don’t know,” to pro-
gress. The experimenter was online throughout the assess-
ment to address technical difficulties and offer general 
encouragement but did not see student responses. Parents 
were asked not to influence their children’s answers. Stu-
dents participated in Session 2 of the intervention 3 to 7 days 
after Session 1, and they completed a posttest identical to 
the pretest.

3.3 � Intervention

Participants were randomly assigned to one of three inter-
vention conditions: (1) Sameness, focused on the “same-
ness” conception of the equal sign, (2) Sameness + Substitu-
tive, focused on both sameness and substitutive conceptions, 
or (3) Control. The intervention consisted of a 7–10-min les-
son at Session 1 and a 9–12-min lesson at Session 2. Lessons 
were delivered to individual students by an experimenter 
using an animated PowerPoint presentation. Students in the 
Control condition did not receive a lesson.

Session 1 In both the Sameness and Sameness + Substi-
tutive conditions, Session 1 began with the experimenter 
asking, “What does the equal sign mean?” After the student 
gave their answer, the experimenter said, “The equal sign 
means that both sides of the equation are equal, or the same 
amount”. For students in the Sameness + Substitutive con-
dition, the experimenter then said, “Another way to think 
about the equal sign is that amounts that are the same can be 
swapped or substituted”. Animations within the PowerPoint 
lesson were used to highlight the “sameness” or “swappabil-
ity” of the sides.

https://osf.io/gf5dc/?view_only=11dd753b384a4c64b334092d9f5a6bac
https://osf.io/gf5dc/?view_only=11dd753b384a4c64b334092d9f5a6bac
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After the introduction, students engaged in a card activity 
(see Fig. 1) in which they were shown expression cards and 
asked to make true equations. To encourage students to form 
equations that were not in standard form, the experimenter 
suggested the first expression on some trials. For example, 
on one trial the experimenter put “10” on the left side of the 
equal sign, and in another trial put “0 + 8” on the right side, 
both times asking, “Can you pick a card to make this a true 
equation?” The Sameness intervention emphasized making 
sure that the equation was in fact true by checking for same-
ness of the two sides. The Sameness + Substitutive interven-
tion emphasized that when students know an equation is 
true, the sides can be swapped to find another equation that 

is also true. Students completed a total of 5 trials with stand-
ard and nonstandard forms.

Session 2 Session 2 included equations such as 
24 + 15 = 24 + __ to encourage students to notice the under-
lying structure of sameness and to help them realize they do 
not need to compute the sums on both sides of the equal sign 
to find the missing value. Equations with identical or nearly 
identical numbers on either side of the equal sign have been 
found to encourage such structural thinking (e.g., Stephens 
et al., 2013).

The  in te r ven t ions  d iverged  as  t he  equa-
tions 47 + 26 = 44 + __ and 24 + __ = 28 + 58 were intro-
duced. Students were asked how they could find the missing 
values without adding the numbers together (see Table 1). In 
both interventions, students were first asked how they would 
solve the equations. They then viewed slides narrated by 
the experimenter illustrating different strategies. The Same-
ness intervention used arrows to emphasize a compensa-
tion strategy for finding the missing values (see Fig. 2). The 
Sameness + Substitutive intervention focused on decomposi-
tion and the substitution of one expression for an equivalent 
one to reveal an underlying structure that made finding the 
missing value possible without calculating the sums on both 
sides (see Fig. 2).

The final equation posed during the lesson was 
15 + 22 = 9 + __. This was a less “obvious” equation in 
terms of the distance between the values on each side of the 
equal sign and thus might invoke a computational strategy. 
The experimenter said, “This time, none of the numbers in 
this equation are particularly close together, but we can still Fig. 1   Card activity used in the intervention conditions

Table 1   Sameness and Sameness + Substitutive lesson treatments of 24 + __ = 28 + 58

Sameness condition Sameness + Substitutive condition

When I look at this equation, I notice that 24, on the left side of the 
equation, and 28, on the right side of the equation, are almost the 
same amount. What is the difference between 28 and 24?

[Wait for student response]

When I look at this equation, I notice that 24 and 28 are almost the 
same amount. In fact, I know that 24 + 4 = 28. Can you think how we 
can use this equation to figure out what number goes in the blank in 
the top equation?

[Wait for student response]
That’s right, 28 – 4 is 24. Can you think about how we can use this 

fact to figure out what number goes in the blank to make this a true 
equation?

[Wait for student response]

We know that the equal sign means that both sides of the equation are 
the same amount. Because we know that 28 equals 24 + 4, we can 
substitute 24 + 4 for this 28 in the original equation. When I do that, 
I can see that the equation now says 24 + __ = 24 + 4 + 58. Do you 
notice anything about our equation after we did the substitution?

[Wait for student response]
Because 24 is 4 less than 28, we know that the number in the blank 

will be 4 more than 58. This will keep both sides of this equation the 
same.

Notice that after our substitution, the number 24 is on both sides of the 
equal sign! How can we use this fact to figure out what number goes 
in the blank?

 That’s right! [OR Let me show you]. Since 24 is on both sides of the 
equal sign, and we know that both sides of the equal sign must be the 
same amount, we know that the number that goes in the blank will be 
equal to 4 + 58!

What is 58 + 4?
[Wait for student response]
That’s right! 58 + 4 is equal to 62, so 62 is the number that goes in the 

blank to make this a true equation.

What is 4 + 58?
[Wait for student response]
That’s right! 4 + 58 is equal to 62, so 62 is the number that goes in the 

blank to make this a true equation
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look for the relationship between numbers to figure out what 
number goes in the blank, like before”. Students were asked 
their thoughts about how this equation could be solved with 
a focus on numerical relationships. The experimenter then 
presented either a compensation strategy (in the Sameness 
condition) or a substitution strategy (in the Sameness + Sub-
stitutive condition). Depending on whether students focused 
on the relationship between 15 and 9 or between 22 and 9 
when first asked how they would solve the problem, one of 
two differing paths of instruction and accompanying ani-
mated slides were presented.

3.4 � Assessment items and coding

We focused our coding and analysis on a subset of seven 
items. Three items addressed understanding of the equal 
sign: an equal sign definition item and two equal sign defi-
nition endorsement items (see Fig. 3). Four were missing 
value equations (see Fig. 4), with two in which the structural 
relationships were highly salient (i.e., numbers on either side 

of the equal sign were very close together), and two in which 
the structural relationships were non-salient.

3.4.1 � Equal sign items

Students were shown an equal sign and asked what it means 
and if it could mean anything else (see Fig. 3). Items requir-
ing students to produce definitions are common in studies 
exploring students’ understanding of the equal sign (e.g., 
Knuth et al., 2006; Madej, 2022; Matthews et al., 2012; 
McNeil & Alibali, 2005). Two additional items solicited 
students’ endorsements of various equal sign definitions (see 
Fig. 3). The endorsement items were modeled after those 
used in prior work (e.g., Donovan et al., 2019; Jones et al., 
2013; Matthews et al., 2012). We presented each relational 
definition (i.e., the substitutive definition and the sameness 
definition) along with an operational definition and a dis-
tractor definition. These two items (each a group of three 
definitions to evaluate) were spaced so that students did not 
see them consecutively.

Students’ oral definitions were coded in terms of whether 
they included sameness and substitutive definitions. A 
response was coded as sameness if a student expressed the 
idea that the equal sign means “the same as” and as substi-
tutive if the student expressed the idea that the equal sign 
means the two sides of an equation can be swapped or sub-
stituted for each other. Students’ responses to the definition 
endorsement items were coded for whether they endorsed 
“The equal sign means two amounts are the same” and “The 
equal sign means the two sides can be swapped” as “good” 
definitions. For the equal sign definition item, a primary 
coder coded all responses, and a reliability coder coded a 
randomly selected 20% of responses. Agreement between 
coders was 99%. The coders discussed all disagreements and 
came to consensus on final codes.

3.4.2 � Missing value equations items

The four missing value equations examined students’ use 
of the structural strategies taught during the intervention. 
The first two items included numbers on either side of the 
equal sign that were only one apart from each other (salient 
items), and the third and fourth items included numbers that 
were farther apart (non-salient items). These items offered 
opportunities for students to apply both “sameness” and 
“substitutive” ways of thinking (see Fig. 4). The scheme for 
coding students’ responses was based on prior work (e.g., 
Donovan et al., 2019; Matthews et al., 2012) and modified 
to include substitution strategies. Responses were coded for 
correctness and strategy use.

For strategy use, students’ explanations were coded as 
structural if they attended to and correctly made use of rela-
tionships between numbers across the equal sign to find the 

Fig. 2   Materials for lessons focused on sameness and dual  same-
ness and substitutive conceptions of the equal sign
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missing value. The structural strategies that students used 
were a compensation strategy and a decomposition/substitu-
tion strategy. For example, a student using compensation for 
67 + 84 = __ + 83 might notice that 84 is one more than 83 
and conclude that the number in the box must be one more 
than 67, or 68, to maintain equivalence. A student using 
decomposition/substitution might rewrite the equation as 
67 + 83 + 1 = __ + 83 and then find the value in the box by 
adding 67 + 1. In structural-incorrect strategies, students 
noticed relationships between numbers across the equal sign 
but then “compensated” in the wrong direction; for example, 

solving 67 + 84 = __ + 83 by saying, “84 is one more than 83; 
67 is one more than 66” and placing 66 in the box.

Two coders initially coded the responses to all four miss-
ing value equations for a randomly selected 20% sample of 
students. Agreement was 96%. The coders came to consen-
sus on all disagreements and clarified the meanings of the 
codes. In discussing discrepancies, a systematic disagree-
ment on one explanation type for one item was noted. The 
coders came to a consensus on this explanation type, the 
primary coder then rechecked the full dataset, and the reli-
ability coder recoded a new randomly selected 20% sample. 

Fig. 3   Equal sign definition and 
equal sign definition endorse-
ment items. In the results shared 
here, we focus on the italicized 
items

Fig. 4   Missing value equations
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Agreement between coders for this new reliability sample 
was 97%.

4 � Results

4.1 � Equal sign items

To evaluate the effects of the lesson conditions on the equal 
sign definition and endorsement items, we analyzed per-
formance at posttest, controlling for performance on the 
corresponding items at pretest. We used logistic regression 
because the variables were dichotomous (e.g., offering a 
sameness definition or not). We analyzed the effect of condi-
tion using two planned orthogonal contrasts, one comparing 
the two lesson conditions (combined) to the control con-
dition (coded − 0.67, 0.33, 0.33), and one comparing the 
Sameness condition to the Sameness + Substitutive condition 
(coded − 0.5, 0.5).

4.1.1 � Equal sign definitions

About half of the students in all conditions offered sameness 
definitions of the equal sign prior to instruction (see Fig. 5). 
Students in the lesson conditions were more likely than stu-
dents in the control condition to offer sameness definitions 
at posttest, b = 0.86, �2(1) = 4.46, p = 0.03, OR = 2.37. For 
example, a student in the Sameness condition stated “The 
equal sign means the answer” at pretest and “[The equal 
sign means] that both sides of the equation are the same” 
at posttest.

No students offered substitutive definitions before instruc-
tion, so we controlled only for grade in analyzing this out-
come. As predicted, students in the lesson conditions were 
more likely than students in the control condition to offer 
substitutive definitions at posttest, b = 3.02, �2(1) = 15.97, 
p < 0.001, OR = 20.52, and students in the Sameness + Sub-
stitutive condition were more likely to offer substitutive 

definitions than students in the Sameness condition, b = 3.16, 
�
2(1) = 39.93, p < 0.001, OR = 23.53 (see Fig. 5). For exam-

ple, a student in the Sameness + Substitutive condition stated 
“The equal sign means it like tells you the answer… for 
example 1 plus 1 equals, it tells you after the equal, it tells 
you the answer” at pretest and “[The equal sign] means that 
both sides of the equal sign is [sic] the same, you can swap 
it and it will still be the same” at posttest.

4.1.2 � Endorsement of sameness and substitutive 
definitions

Students in all conditions were highly likely to endorse the 
sameness definition, even before instruction, and there were 
no differences in endorsement of the sameness definition 
across conditions following instruction (see Fig. 6).

As predicted, students in lesson conditions were more 
likely than students in the control condition to endorse the 
substitutive definition at posttest, b = 1.83, �2(1) = 10.38, 
p = 0.001, OR = 6.26, and students in the Sameness + Sub-
stitutive condition were more likely to endorse a substitutive 
definition than students in the Sameness condition, b = 3.28, 
�
2(1) = 16.43, p < 0.001, OR = 26.61 (see Fig. 6).
Thus, as predicted, students in the Sameness + Substi-

tutive condition both generated and endorsed substitutive 
definitions of the equal sign in response to instruction that 
focused on the substitutive conception of equivalence.

4.2 � Missing value items

We next considered the missing value items. We first present 
results regarding correctness and strategy use, and we then 
consider strategy use over time.

4.2.1 � Correctness and use of structural strategies

The four missing value items were among the last items 
on the assessment, so not all students had time to complete 

Fig. 5   Percent of students offering sameness and substitutive definitions of the equal sign by condition and test
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them. We therefore present (in Table 2) the percent of stu-
dents in each condition who correctly solved each item at 
pretest and posttest, among those who completed that spe-
cific item on both pretest and posttest. Note that in some 
cases, performance declined from pretest to posttest.

Because students could have arrived at correct solutions 
via computation or via structural strategies, students’ numer-
ical solutions alone do not reflect the potential impact of the 
lessons on structural thinking about the equations. We there-
fore focused our analyses on whether students employed 
structural strategies. Table 3 provides examples of correct 
structural strategies for each of the missing value equations, 

and Fig. 7 presents the proportion of students in each condi-
tion who used correct and incorrect structural strategies at 
pretest and posttest on each of the four items.

We used a mixed-effects model to examine the likeli-
hood that students used a structural strategy (either correct 
or incorrect) as a function of test (pretest or posttest), condi-
tion, item type (salient/non-salient), and the interactions of 
these factors. As for the analysis of equal sign definitions, 
we analyzed condition in terms of two contrasts, one com-
paring the two lesson conditions (combined) to the control 
condition, and one comparing the Sameness condition to the 
Sameness + Substitutive condition. We also included pretest 

Fig. 6   Percent of students endorsing “the equal sign means two amounts are the same” and “the equal sign means the two sides can be swapped” 
by condition and test

Table 2   Percent of students 
correctly solving the missing 
value items by condition and 
test

Control Sameness Sameness + Sub-
stitutive

Pre Post Pre Post Pre Post

67 + 84 = __ + 83
(n = 134)

81% 85% 93% 90% 80% 89%

__ + 55 = 37 + 54
(n = 112)

87% 68% 75% 61% 76% 84%

60 + __ = 48 + 24
(n = 92)

68% 79% 90% 65% 91% 70%

18 + 31 + 53 = __ + 63
(n = 73)

65% 65% 56% 48% 86% 68%

Table 3   Examples of correct structural strategies on missing value equations items

Equation Example of correct structural strategy

67 + 84 = __ + 83 I saw that 83 was one less than 84 so to even it out I knew I had to add 1 onto 67 which was 68
__ + 55 = 37 + 54 54 = 55 – 1

__ + 55 = 37 + 55 – 1
55 is on both sides so subtract 37 – 1 which equals 36

60 + __ = 48 + 24 60 + 12 = 48 + 24 because if you took 12 from the 24 and added it to the 48, the 48 would turn 
into a 60, the equation would look like this 60 + 12 = 60 + 12, on both sides of the = sign are 
the same thing, 60 + 12

18 + 31 + 53 = __ + 63 53 is 10 less than 63 so take 10 from 18 to make it 8 then add 31 + 8 = 39
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equal sign definition (relational or not) and its interaction 
with test (pretest or posttest) as predictors, and we controlled 
for grade level. We included random effects (slopes and 
intercepts) within participants for test and item type.

Overall, students were more likely to use structural strat-
egies at posttest than at pretest, B = 1.435, SE = 0.587, �2

(1) = 5.968, p = 0.01, OR = 4.199. Students were also less 
likely to use structural strategies on non-salient items 
than salient items, B = -5.806, SE = 0.980, �2(1) = 35.085, 
p < 0.001, OR = 0.003 (see Fig. 7).

Students who offered a relational definition of the equal 
sign at pretest were more likely to use structural strategies 
than participants who did not, B = 3.218, SE = 0.951, �2

(1) = 11.442, p < 0.001, OR = 24.96. Students who did not 
offer a relational definition at pretest were also more likely 
to increase their use of structural strategies from pretest to 
posttest, compared to those who did offer a relational defi-
nition at pretest (see Fig. 8), yielding a significant interac-
tion of pretest definition and test, B = -4.159, SE = 1.522, �2

(1) = 7.46, p = 0.006, OR = 0.016.
For missing value items, there were no significant effects 

that involved either of the condition contrasts. There was 
no evidence for greater change in use of structural strate-
gies from pretest to posttest in the lesson conditions than in 
the control condition, B = 0.875, SE = 1.101, �2(1) = 0.631, 

p = 0.427, OR = 1.06, and no evidence for a difference 
between the Sameness and Sameness + Substitutive con-
ditions, B = -0.538, SE = 1.467, �2(1) = 0.135, p = 0.714, 
OR = 0.58. There was also no effect of grade level on use of 
structural strategies.

Given the by-item variability in use of structural strate-
gies, we also examined patterns of performance for each 
item separately (see Fig. 7). We used the same model struc-
ture as for the overall analysis, omitting item type. As in the 

Fig. 7   Percent of students using correct and incorrect structural strategies for each item by condition and test

Fig. 8   Percent of missing value items on which students used struc-
tural strategies as a function of pretest relational definition and test
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overall analysis, these problem-by-problem analyses also did 
not reveal any significant effects of the condition contrasts.

4.2.2 � Paths of change from pretest to posttest in structural 
strategy use

Finally, we examined patterns of change from pretest to post-
test for individual learners. We first identified students who 
completed at least one salient and at least one non-salient 
item at both pretest and posttest (n = 28 Control students; 
n = 31 Sameness students; n = 33 Sameness + Substitutive 
students). We then classified each student’s performance on 
the salient and non-salient items. Students were classified 
as using structural strategies for each item type at each test 
if they used a (correct or incorrect) structural strategy for at 
least one of the two items in that category. We then classi-
fied each student’s performance at each test into one of the 
following categories: (1) no use of structural strategies, (2) 
use of structural strategies on salient items only, and (3) use 
of structural strategies on both salient and non-salient items. 
In a very small number of cases (1 at pretest, 2 at posttest, 
out of 92 at each time point), a student used a structural 
strategy on non-salient items only; we classified these cases 
as structural strategies on both types of items. The number of 
participants in each condition who demonstrated each path 
from pretest to posttest is presented in Fig. 9.

Among students who did not use structural strategies 
at pretest, the percent of students who progressed to using 
structural strategies (either on salient items or on both types 
of items) was greatest in the Sameness condition (7 of 8, 
88%), followed by the Sameness + Substitutive condition (7 
of 14, 50%), followed by the Control condition (2 of 7, 29%). 
These descriptive findings suggest that the lesson conditions, 
and in particular, the Sameness condition, helped students 
who did not initially notice numerical relationships begin 
to attend to structure and use these relationships to solve 
missing value items at posttest. However, some students in 

the Control condition also began to use structural strategies, 
and the value of the lessons must be considered in that light.

Among students who used structural strategies only on 
salient items at pretest, the percent of students who pro-
gressed to using structural strategies on both types of items 
at posttest was also greatest in the Sameness condition (6 of 
9, 67%), followed by the Control condition (4 of 13, 31%), 
followed by the Sameness + Substitutive condition (2 of 10, 
20%). Thus, for students who already used structural strat-
egies on some items at pretest, the Sameness lesson was 
strikingly more beneficial than the Sameness + Substitutive 
lesson, with more than three times as many students pro-
gressing to using structural strategies on both item types at 
posttest.

Examples from one student in the Sameness condition 
classified as Neither-to-Salient and one student in the Same-
ness condition classified as Salient-to-Both are presented in 
Table 4. Corresponding examples for students in the Same-
ness + Substitutive condition are presented in Table 5. Note 
that in addition to using a computational strategy at pretest, 
Student 1 incorrectly used the equal sign to represent the 
results of calculations.

5 � Discussion

The importance of a relational view of the equal sign for 
students’ success in algebra has been well established. 
Although relational has traditionally been construed in 
terms of sameness (Carpenter et al., 2003; Kieran, 1981; 
Knuth et al., 2006; McNeil et al., 2011), recent research 
suggests that a substitutive view is a distinct aspect of a full 
relational understanding (Jones et al., 2012; Simsek et al., 
2019). Situated in this context, we investigated the impact 
of lessons focused on a sameness or a sameness and sub-
stitutive view of the equal sign on fourth- and fifth-grade 
students’ understanding.

Fig. 9   Shifts in use of structural strategies on salient and non-salient items by condition. Pretest is indicated on the left and posttest on the right. 
The lengths of the black, gray, and white bars correspond to the percent of students in each category at the relevant time point
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More students in the lesson conditions than in the Control 
condition offered a sameness definition of the equal sign at 
posttest. Further, more students in the lesson conditions than 
in the Control condition offered and endorsed a substitu-
tive definition at posttest, with more students in the Same-
ness + Substitutive condition than in the Sameness condition 
doing so. Neither lesson had a statistically significant impact 
on students’ likelihood of using structural strategies on the 
four missing value equation items. However, descriptive 
analyses of shifts in structural strategy use from pretest to 
posttest suggest that the lessons—in particular, the Same-
ness lessons—may have had some impact. We discuss shifts 
observed in students’ structural strategy use, reflect on the 
relationship between sameness and substitutive conceptions 
of the equal sign, consider our characterization of “algebraic 
structure” and “structural strategies” in the context of exist-
ing literature, and consider limitations and future directions.

5.1 � Shifts in students’ use of structural 
equation‑solving strategies

We found greater use of structural approaches on items in 
which the structural relationships in the equation were sali-
ent (e.g., __ + 55 = 37 + 54) than on items in which the struc-
tural relationships were non-salient (e.g., 60 + __ = 48 + 24), 
regardless of condition and test. This confirms findings (Car-
penter et al., 2003; Stephens et al., 2013) that number choice 

can influence students’ equation-solving strategies and 
encourage attention to structure, or “looking” before “doing” 
(Hoch & Dreyfus, 2004). We did not find a statistically sig-
nificant impact of condition on students’ likelihood of using 
structural strategies, but we did observe descriptive differ-
ences by condition when analyzing shifts in approaches to 
salient and non-salient items at the individual level (Fig. 9). 
We found that students in the lesson conditions, especially 
those in the Sameness condition, showed more movement 
towards structural strategies than Control students. Com-
pared to students in the Sameness + Substitutive and Control 
conditions, students in the Sameness condition were more 
apt to shift from not using structural strategies on either item 
type to using structural strategies on salient items or to shift 
from using structural strategies only on salient items to using 
structural strategies on both types of items. Thus, the Same-
ness lesson may have influenced students’ tendency to notice 
numerical relationships across the equal sign when solving 
problems.

Why might the Sameness lesson have been beneficial 
for encouraging the adoption of structural equation-solving 
strategies? Although the sameness and substitutive concep-
tions may both be necessary components of a full relational 
view of the equal sign (Jones et al., 2012), it may be that 
teaching both conceptions in a relatively short amount of 
time put an unreasonable cognitive demand on students. 
Adopting a sameness conception alone might have been 

Table 4   Examples from students in the Sameness condition showing the neither-to-salient and salient-to-both structural strategy paths

Equation Pretest Posttest

Student 1: neither-to-salient
67 + 84 = __ + 83 67 + 84 = 151 – 83 = 68 83 is one away from 84 so I added 67 + 1 and I got 68
60 + __ = 48 + 24 48 + 24 = 72 – 60 = 12 48 + 24 is 72

72 – 60 is 12
Student 2: salient-to-both
67 + 84 = __ + 83 It’s just 67 + 84, except the 84 is decreased by one 

and the 67 is increased by one
84 is one more than 83, so the number in the blank 

has to be one higher than 67, and that’s 68
60 + __ = 48 + 24 Since 48 + 24 equal 72, 12 + 60 = 70 too 60 is 12 numbers higher than 48, so the answer has to 

be 12 numbers lower than 24

Table 5   Examples from students in the Sameness + Substitutive condition showing the neither-to-salient and salient-to-both structural strategy 
paths

Equation Pretest Posttest

Student 3: neither-to-salient
67 + 84 = __ + 83 67 + 84 = 151 so subtract 83 from that and that leads to 

the answer. The answer is 68
83 + 1 = 84 so 67 + 1 is 68 because I substituted 1

60 + __ = 48 + 24 48 + 24 = 72 so subtract 60 from 72 and you get the 
answer which is 12

48 + 12 is 60 so 24 – 12 is 12 so adding 60 + 12 is the 
answer

Student 4: salient-to-both
67 + 84 = __ + 83 since 83 is 1 less then 84, I just added 1 to 67 83 + 1 = 84 so adding 1 to 67 makes both sides the same
60 + __ = 48 + 24 I could not find a shortcut, so I just did the addition 60 = 48 + 12 so I subtracted 12 from 24
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sufficient to support students in equation solving, whereas 
considering two conceptions at once may have been counter-
productive for some. The short time allotted to the interven-
tion may have been better spent focused on a single defini-
tion and equation-solving approaches consistent with this 
single definition than on dual conceptions of the equal sign.

5.2 � Sameness and substitutive conceptions 
of the equal sign

It may also be the case that a sameness conception of the 
equal sign is a necessary precursor that must be in place 
prior to adoption of a meaningful substitutive conception. 
Although early findings were ambiguous regarding develop-
mental ordering (e.g., Jones et al., 2012), more recent find-
ings (Simsek et al., 2019) suggest that the sameness view 
develops prior to the substitutive view. Students who held a 
substitutive view almost always simultaneously held a same-
ness view, although the reverse was not true.

This sameness-before-substitution stance is consistent 
with our initial perspective that substitution does not con-
stitute a wholly different conception of mathematical equiva-
lence but rather logically follows from the sameness concep-
tion. That is, two amounts can be swapped or substituted 
because they represent the same values. This view is also 
consistent with Kieran and Martinez-Hernández’s (2022a, 
this issue) argument that “exchanging depends on the sup-
port of sameness”. Holding a substitutive view without a 
sameness view may be possible (e.g., Lee & Pang, 2021) 
but is potentially problematic. Although one may be taught 
procedural rules for substitution, these rules can be applied 
in ways that are inconsistent with a sameness conception of 
the equal sign. For example, Jones and Pratt (2012) found 
that students were adept at substituting in the context of 
solving puzzles to find a given sum, but they rarely noticed 
when these puzzles included false equalities. This finding 
that “children…engaged with making substitutions…but 
were not engaged with the numerical sameness of statements 
or the conservation of quantity” (p. 17) illustrates that teach-
ing a substitutive view alone is not necessarily productive.

5.3 � Attending to algebraic structure and using 
“structural strategies”

At the outset of this paper, we described structural thinking 
as using number and operation sense to reflect on math-
ematical expressions as objects rather than as arithmetic 
procedures to be carried out (Carpenter et al., 2003; Sfard, 
1991), and we noted that students who think structurally 
can recognize expressions such as 8(x + 3) and 8x + 24 as 
equivalent without performing computations. This is con-
sistent with Hoch and Dreyfus’s (2004) characterization of 
“structure sense” as a set of abilities that includes seeing 

an algebraic expression as an entity, dividing an entity into 
sub-structures, recognizing connections between structures, 
and recognizing which manipulations are both possible and 
useful. We also concur with Kieran’s (2018) assertion that 
structural thinking and generalizing are closely linked. To 
identify an algebraic generality (e.g., a “give and take” strat-
egy described by a student in response to __ + 55 = 37 + 54) 
requires “identifying, lifting out, and expressing algebraic 
structure” (p. 81). Finally, our thinking about structure—
especially as evidenced in the Sameness + Substitutive condi-
tion—aligns with Kieran and Martinez-Hernández’s (2022b) 
emphasis on decomposing, composing, and recomposing as 
a “dynamic and appropriate” approach that “may be at the 
heart of students’ structuring activity in primary school” 
(p. 40).

It is important to note, however, that strategies we charac-
terized as structural in this study included both correct and 
incorrect approaches–so long as they indicated attention to 
structure. Some of the shifts illustrated in Fig. 9 (e.g., from 
no use of structural strategies to use on salient items, or from 
use of structural strategies only on salient items to use on 
both salient and non-salient items) were due in part to what 
we view as an explicit attention to structure coupled with 
an incorrect strategic attempt to account for that structure. 
What we characterized as an incorrect structural strategy 
(e.g., “84 is one more than 83; 67 is one more than 66” 
in response to 67 + 84 = __ + 83) might indicate an obser-
vation of a numerical relationship without the conceptual 
understanding necessary to guide action on the relationship, 
evoking Kirschner and Awtry’s (2004) caution against the 
“notational seductions of nonreflective visual pattern match-
ing” (p. 248).

One might argue that a student who understands the rela-
tional meaning behind the strategy would not compensate in 
the wrong direction, but we contend that this is too strict an 
interpretation. Understanding of the equivalence construct is 
continuous and can be thought of in terms of a probabilistic 
Guttman scale (Rittle-Johnson et al., 2011). This means that 
understanding need not be complete to indicate some level of 
advancement (Matthews et al., 2012). It may be that simply 
recognizing structural relationships between numbers in an 
equation is an important first step, even if differences across 
the equal sign are not yet correctly coordinated.

While students may not initially know what to do with 
the observed relationships, this noticing may be an impor-
tant step on the way to conceptual appreciation and use of 
structure. We echo calls to engage elementary and middle 
grades students in activities that encourage the identifica-
tion and use of structures with numbers and operations 
(Kieran, 2018; Schifter, 2018) and to engage older students 
in explicitly analyzing algebraic expressions and equations 
and clearly articulating transformational processes derived 
from these analyses. Such activities can support students’ 
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abilities to perform useful manipulations grounded in a deep 
understanding of structure (Kirschner & Awtry, 2004).

5.4 � Limitations

Although we observed different patterns of shifts in strategy 
use for different item types across conditions, we found that 
change from pretest to posttest in the overall likelihood of 
using structural strategies did not differ for students in the 
lesson conditions (Sameness or Sameness + Substitutive), 
relative to students in the Control condition. There are sev-
eral possible reasons for this null finding. First, the time 
spent on instruction—less than 30 min—may not have been 
enough for students in either lesson condition to become 
comfortable with the strategies and to integrate these strate-
gies with the presented conceptions of the equal sign. For 
students in the Sameness + Substitutive condition, the short 
time frame may have been even more problematic, given 
the challenge of integrating two distinct conceptions of the 
equal sign.

Second, our intervention may have been insufficiently 
responsive to students’ mathematical thinking in the 
moment. Our interdisciplinary team of psychologists and 
mathematics educators aimed to strike a balance between 
conducting a controlled experiment in which all students had 
the same experience, and one in which students shared and 
expounded upon their mathematical thinking. It is largely 
accepted that mathematics instruction should build on stu-
dents’ existing knowledge (Carpenter et al., 1996) and that 
students should have ample opportunities to ask questions, 
choose problem-solving methods, and engage in mathemati-
cal discussions (Carpenter et al., 2015; Ghousseini, 2015; 
Hiebert et al., 1997). Although our lessons included a few 
places where “next steps” depended on student responses, 
in most cases we offered students the opportunity to share 
their thinking but did not proceed in a way that hinged on 
these responses.

Finally, online data collection posed challenges. The pro-
ject was originally conceived as an in-person, school-based 
study with small student groups participating in multiple 
sessions that encouraged student interaction and discourse. 
However, COVID-19-related school closures required that 
we move the entire study online. Apart from the orally pre-
sented equal sign definition item, our assessments were 
administered via Qualtrics. This meant that participants 
responded to the prompts “show your work” and “explain 
your thinking” by typing in text boxes. Although some stu-
dents gave articulate and detailed explanations, many stu-
dents did not. Student comfort with typing, the Qualtrics 
platform, and communication via Zoom all contributed to 
the quality and detail of the responses given. Had this study 
been conducted in person, structural strategies might have 
been illustrated with drawings and arrows on paper, rather 

than in a text box with limited affordances. It is also possible 
that the requirement to type inhibited higher-order reasoning 
by preventing students from producing gestures and using 
their bodies (Nathan & Martinez, 2015).

6 � Future investigations and conclusion

In this paper, we reported findings from a subset of our 
assessment items. Future reports will examine results from 
less complex items (e.g., true/false equations and missing 
value equations with smaller numerical values) as well as 
more traditional algebra items (e.g., equation solving with 
variables, completing function tables, identifying function 
rules) by condition. We will also examine relationships 
between students’ conceptions of the equal sign and their 
success and strategy use on a variety of problem-solving 
items regardless of experimental condition.

Despite the lack of support for our hypothesis that a 
Sameness + Substitutive lesson would be most beneficial 
for developing students’ conceptions of the equal sign and 
related equation-solving strategies, we believe that the role 
of the substitutive view of the equal sign in equation solv-
ing and algebra learning is worthy of further investigation. 
Our intervention did not yield significant effects of lesson 
condition on use of structural strategies, but it does provide 
direction for future work. A longer-term intervention that 
allows for greater time on lessons and increased opportunity 
for interaction with peers around mathematical ideas might 
prove fruitful. Assessments that allow students to more fully 
explain their problem-solving strategies would also allow for 
greater insight into student thinking. If holding a substitutive 
view of the equal sign does help students integrate a new 
dimension of relational thinking about the equal sign, it is 
possible that shifts in students’ problem-solving strategies 
may follow.

In sum, we found that a short online intervention focused 
on a sameness or a dual sameness and substitutive concep-
tion of the equal sign enhanced students’ abilities to produce 
sameness and substitutive definitions of the equal sign. The 
impact of these lessons on students’ equation-solving strate-
gies was less clear. Although there was some evidence that 
a focus on the sameness conception was more supportive of 
advancing students’ attention to equation structure, further 
research is needed to investigate more thoroughly the con-
nections between students’ conceptions of equivalence and 
their use of structural equation-solving strategies.
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