
Penelope: Peer-to-peer Power Management

Tapan Srivastava
University of Chicago

Chicago, IL, USA
tapansriv@uchicago.edu

Huazhe Zhang
Meta

Freemont, CA, USA
huazhe@fb.com

Henry Hoffmann
University of Chicago

Chicago, IL, USA
hankhoffmann@uchicago.edu

ABSTRACT

Large scale distributed computing setups rely on power manage-
ment systems to enforce tight power budgets. Existing systems use
a central authority that redistributes excess power to power-hungry
nodes. This central authority, however, is both a single point of
failure and a critical bottleneckÐespecially at large scale. To address
these limitations we propose Penelope, a distributed power manage-
ment system which shifts power through peer-to-peer transactions,
ensuring that it remains robust in faulty environments and at large
scale. We implement Penelope and compare its achieved perfor-
mance to SLURM, a centralized power manager, under a variety
of power budgets. We find that under normal conditions SLURM
and Penelope achieve almost equivalent performance; however in
faulty environments, Penelope achieves 8ś15% mean application
performance gains over SLURM. At large scale and with increas-
ing frequency of messages, Penelope maintains its performance
in contrast to centralized approaches which degrade and become
unusable.

CCS CONCEPTS

· Hardware → Enterprise level and data centers power is-

sues.

KEYWORDS

Power Management, Adaptive Systems

ACM Reference Format:

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann. 2022. Penelope:
Peer-to-peer Power Management. In 51st International Conference on Parallel
Processing (ICPP ’22), August 29-September 1, 2022, Bordeaux, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3545008.3545047

1 INTRODUCTION

One of the major problems facing the growth of exascale computing
setups is operating under power constraints [5, 21, 30]. The United
States Department of Energy identifies power as a key challenge,
citing the need for exascale systems to stay within a tight power
budget of 20-30 MW [3, 21, 30]. This tight power budget stems in
part from the monetary cost of power delivery and cooling capacity
[35]. Given that power is a limited resource, existingwork illustrates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’22, August 29-September 1, 2022, Bordeaux, France

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545047

how overprovisioning the systemÐhaving more nodes than can
run simultaneously under the power budgetÐcan greatly improve
application performance [33].

Overprovisioning, however, creates the possibility of violating
system-wide power budgets and causing serious damage to the
cluster, so some systematic approach is needed to maintain these
caps. A simple and widely-used method of system-wide powercap
enforcement is a fair, static allocation of power. Each node receives
an equal portion of the system-wide cap regardless of its usage.
While this approach trivially enforces the power budget with no
overhead, it fails to take advantage of the fact that a node will
likely have different power consumption patterns over the course
of its lifetime. Nodes running high CPU workloads will consume
more power, whereas nodes running heavy I/O workloads or simply
idling will consume less power, far below their assigned static cap.

Dynamic systems take advantage of the differences in power con-
sumption across workloads to achieve greater application perfor-
mance while maintaining the system-wide cap. Figure 1 illustrates
how dynamic systems shift unused power from nodes operating
under their cap to nodes operating at their cap. These transactions
are zero-sum: one node increases its cap by the exact amount that
is freed by the other node. As long as the initial assignment of
node-level powercaps is valid, power shifting will not violate the
system-wide power budget. The current state-of-the-art takes ad-
vantage of these patterns by launching a local decider on each node
in the cluster and establishing a central server to coordinate all
power management [17].

Each local decider operates in a classic feedback loop: it observes
its environment, chooses an appropriate response, implements this
choice, and repeats [23]. Every 𝑇 seconds, it compares its actual
power consumption (since the last iteration) against its assigned
node-level cap. If a node is consuming less than its cap, the local
decider sends the unused powercap to the server. If a node is con-
suming power close to its powercap, the decider requests power
from the server. The server then collects excess power from those
nodes operating under their cap and redistributes that excess to
nodes operating near their cap. This approach maintains system-
wide powercaps and allocates the total budget more efficiently in
order to improve application performance.

However, the reliance on a central server has two key limitations:
• Fault-ToleranceÐThe central server is a single point of failure

for the whole power management system. A node-level failure
or network partition would fully halt any power shifting for the
duration of the outage. In a large-scale, distributed environment
where failures are common occurrences [3, 21, 30], a centralized
approach cannot provide robust performance guarantees.

• ScalabilityÐAt high scale the number of clients simultane-
ously connecting to this server will cause performance degradation.
The server will become a bottleneck, as the time to process all the

Penelope: Peer-to-peer Power Management ICPP ’22, August 29-September 1, 2022, Bordeaux, France

A power management system that can be robust in these conditions
while improving application performance over static approaches
would be greatly beneficial to the throughput and energy efficiency
of large scale systems.

2.2 Power Assignment and Discovery

The processes of (1) locating and (2) redistributing excess power is
the key contribution of dynamic power management over simpler
static solutions. Power discoveryÐthe location of excess powerÐ
and power assignmentÐthe redistribution of excess power and the
modification of node-level capsÐcan serve to uniquely identify
different power allocation systems.

2.2.1 Power Assignment. We define power assignment as the mech-
anism by which node-level caps are set and potentially changed.
Under static systems, this is clear: caps are set at system launch by
some heuristic or central authority and then never altered.

Dynamic systems must define (1) how node-level caps are ini-
tially set and (2) how nodes modify their own cap. To the best of our
knowledge, all prior dynamic power management systems establish
a central authority. This authority has global knowledge and takes
responsibility for the initial assignment of node-level caps as well
as the collection and redistribution of excess power in the system.

2.2.2 Power Discovery. Power management systems do not need
to fully utilize the system-wide powercap. In other words, if 𝐶𝑖 is
the cap of node 𝑖 , and𝐶𝑠𝑦𝑠𝑡𝑒𝑚 is the system-wide cap, it is perfectly

acceptable for Δ := 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 −
𝑁∑

𝑖=0
𝐶𝑖 > 0. Dynamic systems aim

to locate this excess power in the cluster. Power discovery is the
means by which that location of excess power occurs. For example,
centralized approaches have a global cache of excess power with a
static address, meaning that every node knows where to find excess
power.

2.3 Case Studies

We now survey three existing power management systems. Fair
is a trivial static power capping solution which evenly splits a
system-wide cap among all the nodes in a cluster. SLURM is a state-
of-the-art job scheduler which implements a centralized power
management system [43, 46]. PoDD is a hierarchical power man-
agement system designed for a specific class of workloads called
coupled workloads [51].

2.3.1 Fair. Fair is a static power allocation system. Under Fair, each

node is assigned the same cap:
𝐶𝑠𝑦𝑠𝑡𝑒𝑚

𝑁
, where 𝑁 is the number of

nodes. Fair does not attempt to locate or redistribute excess power,
so it handles the notions of power assignment and power discovery
trivially. In our experimental evaluation, Fair is used as a baseline
model.

2.3.2 SLURM. SLURM is a state-of-the-art job scheduler for dis-
tributed systemswith a dynamic powermanagement system. SLURM

assigns each node an initial cap of
𝐶𝑠𝑦𝑠𝑡𝑒𝑚

𝑁
. It then launches a local

decider process on each node and a central server to handle all
requests. Each local decider monitors local power consumption
and sends information to the server based on a simple heuristic:

if the current power consumption, 𝑃𝑖 , is within 𝜖 of its node-level
powercap, 𝐶𝑖 , i.e. 𝑃𝑖 > 𝐶𝑖 − 𝜖 , where 𝜖 is a fixed power margin, the
local decider classifies the node as power-hungry, and it informs
the server of its state. Otherwise, if 𝑃𝑖 ≤ 𝐶𝑖 − 𝜖 , then the node is
classified as having excess power. In this case, the local decider
reduces its cap, setting 𝐶𝑖 = 𝑃𝑖 , and sends its state and the excess
power, Δ𝑖 := (𝐶𝑖 − 𝑃𝑖), to the server.

We observe first that power discovery is handled by the server.
The server is a global cache of all excess power, so power-hungry
nodes know where any excess power is held. A centralized solu-
tion easily handles power discovery. Power assignment is similarly
centralizedÐthe central server holds the excess and then takes a
percentage of the total excess and gives it to each requesting node.
Power shifting from one node to another must be proxied through
the server.

2.3.3 PoDD. PoDD is a hierarchical power management system
for coupled workloads: workloads in exascale systems that run
simultaneously rather than serially. These workloads are dependent
on one another, so these pairs of applications are only as fast as
their slowest member. As a result, PoDD observes that it is optimal
for both applications in the couple to finish at the same time, as the
runtime of the pair is most important.

PoDD approaches power management in a hierarchical way. It
runs each application in the couple for a few iterations, learns the
optimal initial node-level powercaps, and assigns theseÐa central-
ized process. It then launches a centralized power management
system to coordinate node-level power shifting similarly to SLURM.

PoDD has a centralized solution to power discovery. Excess
power is held and redistributed by the central server. PoDD has
a hierarchical solution to power assignment. It performs a cen-
tralized, top-level powercap assignment and then allows for local
refinement.

3 PENELOPE DESIGN AND

IMPLEMENTATION

Penelope is a distributed power management system which relies on
peer-to-peer transactions to shift power between nodes. Whereas
existing work relies on a central server to coordinate power shifting,
Penelope overcomes the challenges of fault-tolerance and scalability
in power management by splitting the responsibilities of a central
power management server among all the nodes in the cluster.

There are two components to Penelope on each node: a local
decider and a local power pool. The local decider classifies a node
as either being power-hungry or having excess. If power-hungry, it
queries a power pool searching for excess power. Otherwise, it adds
the excess power it has to its local power pool. The local power
pool is a cache of excess power and acts as a server, giving power
from its cache to power-hungry nodes.

We define a transaction as an exchange of power between a local
decider and a power pool. Power housed on a power pool has al-
ready been freed and transactions are atomic, so we can ensure that
no transaction increases the system’s total power usage beyond
the system-wide cap. Additionally, local deciders have information
about safe power ranges for the node on which they are running
and can ensure that nodes do not exceed that safe range. Because
power shifts through these atomic transactions we can make sure

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

that Penelope meets both necessary requirements of a power man-
agement system: (1) it enforces system-wide powercaps, and (2) it
makes sure nodes operate within safe power ranges.

We additionally integrate into Penelope amodified idea of urgency
proposed by Zhang and Hoffmann [50]. We discuss the implemen-
tation of this concept in subsequent sections, but here we describe
it at a high-level. The intuition behind urgency is as follows: over
the uptime of a system, a node, call it node A, may lower its cap
dramatically because it did not need power. Now suppose, either
due to a changed workload or to a different phase of its current
workload, node A suddenly becomes power-hungry. It is capped far
below its initial assignment, and if there is not any excess power in
the system this node will be unfairly throttled due to its previous
power needs while other nodes are operating above their initial cap,
having accessed the excess power that was previously released by
node A. To provide a means of recourse for node A to at least return
to its initial power level, we say that any node that (1) Penelope clas-
sifies as power-hungry and (2) has a powercap below its initial cap
has an urgent state, and if it sends power requests we say that these
are urgent requests. Non-urgent requests are subject to limitations,
where the power pool restricts the maximum amount of power that
the request can receiveÐan idea that will be discussed at length in
Section 3.2. Urgent requests, however, bypass this restriction and
are allowed access to as much excess power as they can locate until
the urgent node reaches its initial cap. Additionally, if there is no
excess power in the system, urgent requests induce nodes to release
power down to their initial cap, even if they are power-hungry,
thus artificially creating excess power which the urgent node can
access. These mechanisms allow urgent nodes to rapidly return
to their initial cap, ensuring that if there is no excess power in a
system, one node will not be unfairly throttled.

Zhang and Hoffmann use offline profiles to determine optimal
power assignments specifically for coupled workloads and use this
as the threshold for urgency rather than initial power cap [50]. We
adapt this idea for both a generalized application setup where we
do not have knowledge a priori of any workload profiles and for a
distributed environment.

3.1 Local Decider

The local decider is initialized with a few parameters: a pointer to
the local power pool that is running on the same node, the initial
powercap for the node, and a power margin 𝜖 .

As illustrated in Algorithm 1, the local decider operates in a
control loop at distinct time steps 𝑡 , with 𝑇 seconds between each
subsequent time step. The local decider first reads the average
power dissipated since the previous time step 𝑡−1. The local decider
compares this read power 𝑃𝑡 to 𝐶𝑡 , the powercap at time step 𝑡 . If
𝑃𝑡 is more than 𝜖 below𝐶𝑡 , the decider classifies the node as having
excess power. If 𝑃 is within the power margin 𝜖 of 𝐶𝑡 , the decider
classifies the node as power-hungry.

If the decider classifies the node as having excess, it calculates
the amount of excess it has (Δ), lowers its cap for the next time
step by Δ, and adds the corresponding amount to the local power
pool. Adding this excess to the local pool exposes it to other nodes,
so the local decider must lower its cap prior to adding to the local
power pool to maintain the the system-wide cap.

Algorithm 1: Local Decider Pseudocode

Function PenelopeLocalDecider(𝑝𝑜𝑜𝑙 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑝 , 𝜖):
𝐶0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑝 ;
𝑡 = 0 ;
while True do

𝑃 = 𝑔𝑒𝑡𝑃𝑜𝑤𝑒𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔 () ;
if 𝑃 < 𝐶𝑡 − 𝜖 then

// Current power reading is under cap

Δ = 𝐶𝑡 − 𝑃 ;
𝐶𝑡+1 = 𝐶𝑡 − Δ;
𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 + Δ;

else if 𝑃 > 𝐶𝑡 − 𝜖 then
if 𝑃𝑜𝑜𝑙 > 0 then

// getMaxSize defined in Algorithm 2

Δ = min(𝑃𝑜𝑜𝑙, 𝑔𝑒𝑡𝑀𝑎𝑥𝑆𝑖𝑧𝑒 (𝑃𝑜𝑜𝑙)) ;
𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 − Δ;
𝐶𝑡+1 = 𝐶𝑡 + Δ;

else
𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑐ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑑𝑒 () ;
if 𝐶𝑡 < 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑝 then

𝑢𝑟𝑔𝑒𝑛𝑐𝑦 = 1;
𝛼 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑝 −𝐶𝑡 ;
Δ = 𝑠𝑒𝑛𝑑𝑈𝑟𝑔𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑠𝑒𝑟𝑣𝑒𝑟, 𝛼) ;

else
𝑢𝑟𝑔𝑒𝑛𝑐𝑦 = 0;
Δ = 𝑠𝑒𝑛𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑠𝑒𝑟𝑣𝑒𝑟) ;

𝐶𝑡+1 = 𝐶𝑡 + Δ;

if 𝑢𝑟𝑔𝑒𝑛𝑐𝑦 == 0 ∧ 𝑙𝑜𝑐𝑎𝑙𝑈𝑟𝑔𝑒𝑛𝑐𝑦 == 1 then
Δ = 𝐶𝑡+1 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑝 ;
𝐶𝑡+1 = 𝐶𝑡+1 − Δ;
𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 + Δ;
𝑙𝑜𝑐𝑎𝑙𝑈𝑟𝑔𝑒𝑛𝑐𝑦 = 0;

𝑡 = 𝑡 + 1;

If the decider classifies the node as power-hungry, it first checks
the local power pool before querying other nodes. This allows nodes
to discover excess power whether it resides locally or externally.

If the local power pool yields nothing, the decider prepares
to query a different power pool. This peer-to-peer query is how
power assignment occurs in Penelope. Local deciders receive power
through transactions with power pools, so power assignment oc-
curs in a distributed, peer-to-peer manner. It chooses which node
to query at random. This random query is how Penelope handles
power discovery. Without prior knowledge of where power resides,
local deciders choose a node uniformly at random to locate power.

Before sending a request, the local decider determines if the
node is in an urgent state, defined as being both power-hungry
and operating below the initial cap. If urgent, the decider calculates
how much power is necessary for its cap to reach its initial cap
and sends this value to a power pool in an urgent request. If not
urgent, the decider simply sends a standard request. The power
pool handles urgent requests differently, which will be discussed at
greater length in Section 3.2.

If the decider receives any power in the transaction, it increases
its cap𝐶𝑡+1 by the corresponding amount. If it receives nothing, we
simply set 𝐶𝑡+1 = 𝐶𝑡 . Finally, the decider checks its 𝑙𝑜𝑐𝑎𝑙𝑈𝑟𝑔𝑒𝑛𝑐𝑦

flag. This flag is set when the local power pool receives an urgent
request. If this flag is set, and the node is not itself already in an
urgent state, the decider lowers its cap to the initial assigned cap,

Penelope: Peer-to-peer Power Management ICPP ’22, August 29-September 1, 2022, Bordeaux, France

and adds the excess to the power pool. As discussed earlier, this
mechanism frees up power that urgent nodes can access, allowing
them to reach their initial cap more quickly.

3.2 Power Pool

Algorithm 2: Power Pool Pseudocode

Function getMaxSize(𝑃𝑜𝑜𝑙):
𝑠𝑖𝑧𝑒 = 𝑇𝐸𝑁 _𝑃𝐸𝑅𝐶𝐸𝑁𝑇 ∗ 𝑃𝑜𝑜𝑙 ;
if 𝑠𝑖𝑧𝑒 > 𝑈𝑃𝑃𝐸𝑅_𝐿𝐼𝑀𝐼𝑇 then

return UPPER_LIMIT;

else if 𝑠𝑖𝑧𝑒 < 𝐿𝑂𝑊𝐸𝑅_𝐿𝐼𝑀𝐼𝑇 then
return LOWER_LIMIT;

else
return 𝑠𝑖𝑧𝑒 ;

Function PowerPool(𝑃𝑜𝑜𝑙):
while True do

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑔𝑒𝑡𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡 () ;
if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑢𝑟𝑔𝑒𝑛𝑐𝑦 == 𝑇𝑟𝑢𝑒 then

𝛼 = 𝑔𝑒𝑡𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦𝑃𝑜𝑤𝑒𝑟 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ;
Δ = min(𝑃𝑜𝑜𝑙, 𝛼) ;

else
𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 𝑔𝑒𝑡𝑀𝑎𝑥𝑆𝑖𝑧𝑒 (𝑃𝑜𝑜𝑙) ;
Δ = min(𝑃𝑜𝑜𝑙,𝑚𝑎𝑥𝑆𝑖𝑧𝑒) ;

𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 − Δ;
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = Δ;
𝑟𝑒𝑝𝑙𝑦𝑇𝑜𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) ;
𝑙𝑜𝑐𝑎𝑙𝑈𝑟𝑔𝑒𝑛𝑐𝑦 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑢𝑟𝑔𝑒𝑛𝑐𝑦;

In addition to the local decider, each node contains a local power
pool. The power pool acts as both a local cache of excess power
as well as a server, responding to requests for power from local
deciders operating on other nodes. The power pool operates in a
simple loop, illustrated in pseudocode in Algorithm 2. When the
power pool receives a request, it first checks the urgency attached.

If the request is urgent, the requesting node will have also sent
a value 𝛼 which represents how much power is needed for that
node to return to its initial cap. For urgent requests, the power pool
tries to give 𝛼 in response unless the size of the pool is too small,
in which case it will give all excess power it has stored.

If the request is not urgent, the power pool uses a simple heuris-
tic to determine the amount of power it will respond to this request
with. The algorithm calculates 10% of the total size of the pool,
capped above by UPPER_LIMIT and below by LOWER_LIMIT as
shown in 2. This provides a hard upper and lower bound for ex-
treme sized power pools while allowing for a gradual scaling of
transaction size when the pool has moderate size. Our system sets
UPPER_LIMIT to 30 watts and LOWER_LIMIT to 1 watt. So if the
pool size is over 300 it returns 30, and if below 10 it returns 1.

The power pool limits the rate of power distribution to ensure
roughly equal distribution and to prevent power oscillation. If trans-
actions are too large, it is possible that one node unfairly hoards
all excess power in the system. Limiting the rate allows multiple
requesters to be served, each receiving a smaller, equal amount of
power per transaction.

Large transaction sizes can also cause power oscillation. If too
much power is given in one transaction, the power-hungry node
will increase its cap by a large amount and may not be able to use

up its entire cap by the next time step. In the next iteration the
node will be classified as having excess and will lower its cap. In the
following iteration it will again be power-hungry and request power.
If it receives too much power again this process will repeat. When
factoring in the changing needs of the workload, this can cause
the powercap on a node to oscillate wildly. Limiting the amount
of power receivable in a transaction can dampen this oscillation,
allowing for the node to gradually increase its cap. This limit scales
with the size of the pool, so more power can be given out if there
is more excess, and the limits at 1 and 30 ensure that we always
give a nonzero amount of excess power and that even if the pool
becomes massive the size of transactions will be bounded.

At this point, based on urgency, the power pool has calculated Δ,
the amount of power it will respond to the request with. It reduces
the size of its pool by this amount and replies to the request with Δ.
Finally, it sets the 𝑙𝑜𝑐𝑎𝑙𝑈𝑟𝑔𝑒𝑛𝑐𝑦 flag based on the urgency of the
request. As noted in Section 3.1, this flag induces the local decider
to release power down to its initial cap.

The power pool and local decider encompass the entirety of
Penelope’s high level design. The local decider makes real-time
choices based on the current power consumption of the node. If
more power is needed, it queries first its local cache, and then into
the system to search for available power. The power pool acts as
a server to field these incoming requests and process them, and it
provides special privileges to nodes who urgently need power to
allow them to quickly return to their initial state.

3.3 Limitations and Assumptions

Penelope uses Intel’s Running Average Power Limiting (RAPL)
scheme to read and manipulate power and powercaps [12]. How-
ever, Penelope only requires an interface through which power can
be read and node-level powercaps can be set. Therefore, Penelope
easily be adapted to work with any power capping interface.

The local decider and local power pool both manipulate the
amount of excess power available. As a result, some care is needed
to ensure that changes to this value are atomic, otherwise system-
wide caps could be violated. Penelope guarantees this through the
use of a simple lock, but any form of synchronization would suffice.

Finally, we acknowledge that while Penelope is more robust in
faulty environments and at scale, centralized approaches will con-
verge faster than peer-to-peer power management systems at low
scale or when the central server is not a bottleneck because they
have a global server with total knowledge. Penelope effectively shifts
power without requiring a central server or a separate node to host
that server, and in the absence of faults or scale provides compa-
rable application performance speedup to SLURM, data which is
discussed in Section 4. However, there may be certain systems with
more specific guarantees in terms of integrity or scale than we
assume here, and on those systems a centralized approach may be
feasible and more efficient than a peer-to-peer approach.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We use the NAS Parallel Benchmark (NPB) suite version 3.4 [4].
This includes 10 applications, from which we omit Integer Sort (IS).
The applications compile with different classes (AśF) corresponding

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

[47], and certain approaches target resource discovery in edge
systems and large-scale IoT systems [39, 44]. Although a major
component for Penelope is the discovery of excess power, the need
for urgency; i.e. the need to take a resource away from nodes op-
erating without excess, is an added factor for power management
system that is not addressed by prior resource discovery algorithms.
To the best of our knowledge, Penelope’s distributed urgency is a
novel contribution.

6 CONCLUSION

With the increased use of large-scale distributed computing setups,
power management systems that can both maintain the integrity
of system-wide powercaps and improve mean application perfor-
mance are increasingly valuable. Static allocation methods such as
Fair are simple and widely used, but they fail to account for the
variable resource demands of workloads. Dynamic systems aim to
shift excess power in the system to power-hungry nodes, enforcing
system-wide caps while improving application performance. To
the best of our knowledge, all existing dynamic systems rely on a
central server to coordinate this power shifting, which means these
systems have a single point of failure and will develop a bottleneck
at scale. We present Penelope, a distributed power management
system which relies instead on peer-to-peer transactions to shift
power. Penelope does not have a single point of failure, as excess
power is stored on each client node rather than on a central server.
At large scale, a central server will become a bottleneck, delaying
the iteration timing of local deciders running on client nodes and
causing the system to more slowly shift power. Penelope’s power
redistribution time does not vary with scale and neither does the av-
erage response time of its servers. This is because, although under
the same load at scale, this load is split across all nodes, ensur-
ing that no single power pool is overburdened with requests and
guaranteeing that no single area of the network will be flooded
with messages. As frequency increases at scale the central server
becomes overburdened, as its mean server response time sharply
increases, whereas Penelope remains robust. In real world systems,
Penelope performs nearly as well as SLURM under nominal con-
ditions, and outperforms SLURM by 8ś15% in situations where
there is a fault to the server node. Penelope remains robust in faulty
environments and at scale and performs well in the absence of
these conditions, indicating that it can be used as a general purpose
power management system for computing setups of varying size
and integrity. We believe that this work illustrates the value and fea-
sibility of relying exclusively on peer-to-peer power management,
and we hope that this inspires further work into such approaches.

ACKNOWLEDGMENTS

Thisworkwas supported byNSF (grants CCF-2119184, CNS-1956180,
CNS-1952050, CCF-1823032, CNS-1764039), a DOE Early Career
Award (grant DESC0014195 0003) , andARO (grantW911NF1920321).

Results presented in this paperwere obtained using the Chameleon
testbed supported by the National Science Foundation.

REFERENCES
[1] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Her-

bein, Helgi I. IngÃ3lfsson, Joseph Koning, Tapasya Patki, Thomas R.W. Scogland,
Becky Springmeyer, and Michela Taufer. 2020. Flux: Overcoming scheduling

challenges for exascale workflows. Future Generation Computer Systems 110
(2020), 202ś213. https://doi.org/10.1016/j.future.2020.04.006

[2] Peter E Bailey, Aniruddha Marathe, David K Lowenthal, Barry Rountree, and Mar-
tin Schulz. 2015. Finding the limits of power-constrained application performance.
In SC. ACM, Austin Texas, 1ś12. https://doi.org/10.1145/2807591.2807637

[3] Pete Beckman, Ron Brightwell, Maya Gokhale, Bronis R. de Supinski, Steven
Hofmeyr, Sriram Krishnamoorthy, Mike Lang, Barney Maccabe, John Shalf, and
Marc Snir. 2012. Exascale Operating Systems and Runtime Software Report. (12
2012). https://doi.org/10.2172/1471119

[4] NAS Parallel Benchmark. [n.d.]. https://www.nas.nasa.gov/publications/npb.
html.

[5] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. 2008.
Exascale computing study: Technology challenges in achieving exascale systems.
DARPA IPTO, Tech. Rep 15 (2008).

[6] Stephanie Brink, Matthew Larsen, Hank Childs, and Barry Rountree. 2021. Eval-
uating adaptive and predictive power management strategies for optimizing
visualization performance on supercomputers. Parallel Comput. 104-105 (2021),
102782. https://doi.org/10.1016/j.parco.2021.102782

[7] Rolando Brondolin, Marco Arnaboldi, and Marco D. Santambrogio. 2020. Power
Consumption Management under a Low-Level Performance Constraint in the
Xen Hypervisor. SIGBED Rev. 17, 1 (July 2020), 42ś48. https://doi.org/10.1145/
3412821.3412828

[8] Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo, Giuseppe
Massari, Federico Reghenzani,William Fornaciari, Marina Zapater, David Atienza,
Ariel Oleksiak, Wojciech Piundefinedtek, and Jaume Abella. 2020. Predictive
Reliability and Fault Management in Exascale Systems: State of the Art and
Perspectives. ACM Comput. Surv. 53, 5, Article 95 (Sept. 2020), 32 pages. https:
//doi.org/10.1145/3403956

[9] J Chen, Alok Choudhary, S Feldman, B Hendrickson, CR Johnson, R Mount, V
Sarkar, V White, and D Williams. 2013. Synergistic Challenges in Data-Intensive
Science and Exascale Computing: DOE ASCAC Data Subcommittee Report. Depart-
ment of Energy Office of Science. Type: Report.

[10] Jian Chen and Lizy Kurian John. 2011. Predictive coordination of multiple on-chip
resources for chip multiprocessors. In ICS ’11. ACM Press, Tucson, Arizona, USA,
192ś201. https://doi.org/10.1145/1995896.1995927

[11] Anwesha Das, Frank Mueller, and Barry Rountree. 2020. Aarohi: Making Real-
Time Node Failure Prediction Feasible. In 2020 IPDPS. 1092ś1101. https://doi.
org/10.1109/IPDPS47924.2020.00115

[12] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. 2010. RAPL:
Memory power estimation and capping. In 2010 ACM/IEEE ISLPED. 189ś194.
https://doi.org/10.1145/1840845.1840883

[13] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch,
and Ricardo Bianchini. 2012. CoScale: Coordinating CPU and memory system
DVFS in server systems. In 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 143ś154. https://doi.org/10.1109/MICRO.2012.22

[14] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch,
and Ricardo Bianchini. 2012. MultiScale: memory system DVFS with multiple
memory controllers. In ISLPED ’12. ACM Press, Redondo Beach, California, USA,
297ś302. https://doi.org/10.1145/2333660.2333727

[15] Bruno Diniz, Dorgival Guedes, Wagner Meira Jr, and Ricardo Bianchini. 2007.
Limiting the power consumption of main memory. In ISCA ’07. ACM Press, San
Diego, California, USA, 290ś301. https://doi.org/10.1145/1250662.1250699

[16] Daniel Ellsworth, Tapasya Patki, Martin Schulz, Barry Rountree, and Allen
Malony. 2017. Simulating Power Scheduling at Scale (E2SC’17). Association
for Computing Machinery, New York, NY, USA, Article 2, 8 pages. https:
//doi.org/10.1145/3149412.3149414

[17] Daniel A Ellsworth, Allen D Malony, Barry Rountree, and Martin Schulz. 2015.
Dynamic power sharing for higher job throughput. In SC’15. IEEE, 1ś11. https:
//doi.org/10.1145/2807591.2807643

[18] Daniel A Ellsworth, Allen D Malony, Barry Rountree, and Martin Schulz. 2015.
POW: System-wide Dynamic Reallocation of Limited Power in HPC. In HPDC.
ACM, Portland Oregon USA, 145ś148. https://doi.org/10.1145/2749246.2749277

[19] Keiichiro Fukazawa, Masatsugu Ueda, Mutsumi Aoyagi, Tomonori Tsuhata, Ky-
ohei Yoshida, Aruta Uehara, Masakazu Kuze, Yuichi Inadomi, and Koji Inoue.
2014. Power consumption evaluation of an mhd simulation with cpu power
capping. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 612ś617. https://doi.org/10.1109/CCGrid.2014.47

[20] Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power tuning HPC jobs
on power-constrained systems. In 2016 PACT. IEEE, 179ś190. https://doi.org/10.
1145/2967938.2967961

[21] Neha Gholkar, FrankMueller, and Barry Rountree. 2019. Uncore Power Scavenger:
A Runtime for Uncore Power Conservation on HPC Systems (SC ’19). Association
for Computing Machinery, New York, NY, USA, Article 27, 23 pages. https:
//doi.org/10.1145/3295500.3356150

[22] Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. 2018.
PShifter: feedback-based dynamic power shifting within HPC jobs for perfor-
mance. InHPDC. ACM, TempeArizona, 106ś117. https://doi.org/10.1145/3208040.

Penelope: Peer-to-peer Power Management ICPP ’22, August 29-September 1, 2022, Bordeaux, France

3208047
[23] Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio, Jason E

Miller, Sabrina M Neuman, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal,
et al. 2012. Self-aware computing in the Angstrom processor. In DAC ’12. ACM
Press, 259ś264. https://doi.org/10.1145/2228360.2228409

[24] Henry Hoffmann andMartina Maggio. 2014. PCP: A Generalized Approach to Op-
timizing Performance Under Power Constraints through Resource Management.
In ICAC ’14. 241ś247.

[25] Connor Imes and Henry Hoffmann. 2016. Bard: A unified framework for
managing soft timing and power constraints. In AMOS. IEEE, 31ś38. https:
//doi.org/10.1109/SAMOS.2016.7818328

[26] Connor Imes, Steven Hofmeyr, and Henry Hoffmann. 2018. Energy-efficient Ap-
plication Resource Scheduling using Machine Learning Classifiers. In Proceedings
of the 47th International Conference on Parallel Processing. ACM, Eugene OR USA,
1ś11. https://doi.org/10.1145/3225058.3225088

[27] David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra,
Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, et al. 2013.
Multiphysics simulations: Challenges and opportunities. The International Journal
of High Performance Computing Applications 27, 1 (2013), 4ś83. https://doi.org/
10.1177/1094342012468181 arXiv:https://doi.org/10.1177/1094342012468181

[28] Mohammed G Khatib and Zvonimir Bandic. 2016. PCAP: Performance-aware
Power Capping for the Disk Drive in the Cloud. In FAST. USENIX Association,
Santa Clara, CA, 227ś240. https://www.usenix.org/conference/fast16/technical-
sessions/presentation/khatib

[29] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. 2008. Power capping: a
prelude to power shifting. Cluster Computing 11, 2 (June 2008), 183ś195. https:
//doi.org/10.1007/s10586-007-0045-4

[30] Matthias Maiterth, Torsten Wilde, David Lowenthal, Barry Rountree, Martin
Schulz, Jonathan Eastep, and Dieter Kranzlmüller. 2017. Power Aware High
Performance Computing: Challenges and Opportunities for Application and
System Developers Ð Survey Tutorial. In HPCS. 3ś10. https://doi.org/10.1109/
HPCS.2017.11

[31] Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing GPU Power and Fre-
quency Capping: A Case Study with the MuMMI Workflow. InWORKS. 31ś39.
https://doi.org/10.1109/WORKS49585.2019.00009

[32] Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing GPU Power and Fre-
quency Capping: A Case Study with the MuMMI Workflow. In WORKS. IEEE,
31ś39.

[33] Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz, and Bronis R
De Supinski. 2013. Exploring hardware overprovisioning in power-constrained,
high performance computing. In ICS. ACM Press, 173ś182. https://doi.org/10.
1145/2464996.2465009

[34] Tapasya Patki, David K Lowenthal, Anjana Sasidharan,MatthiasMaiterth, Barry L
Rountree, Martin Schulz, and Bronis R De Supinski. 2015. Practical Resource
Management in Power-Constrained, High Performance Computing. In HPDC.
ACM, Portland Oregon USA, 121ś132. https://doi.org/10.1145/2749246.2749262

[35] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No "power" struggles: coordinated multi-level power
management for the data center. ACM SIGARCH Computer Architecture News 36,
1 (March 2008), 48ś59. https://doi.org/10.1145/1353534.1346289

[36] Haris Ribic and Yu David Liu. 2016. AEQUITAS: Coordinated Energy Man-
agement Across Parallel Applications. In ICS. ACM, Istanbul Turkey, 1ś12.
https://doi.org/10.1145/2925426.2926260

[37] Barry Rountree, Dong H Ahn, Bronis R De Supinski, David K Lowenthal, and
Martin Schulz. 2012. Beyond DVFS: A first look at performance under a hardware-
enforced power bound. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. IEEE, 947ś953. https://doi.org/
10.1109/IPDPSW.2012.116

[38] Ryuichi Sakamoto, Tapasya Patki, Thang Cao, Masaaki Kondo, Koji Inoue, Masat-
sugu Ueda, Daniel Ellsworth, Barry Rountree, and Martin Schulz. 2018. Analyz-
ing Resource Trade-offs in Hardware Overprovisioned Supercomputers. In 2018
IPDPS. 526ś535. https://doi.org/10.1109/IPDPS.2018.00062

[39] Ahmed Salem, Theodoros Salonidis, Nirmit Desai, and Tamer Nadeem. 2017.
Kinaara: Distributed discovery and allocation of mobile edge resources. In MASS.
IEEE, 153ś161. https://doi.org/10.1109/MASS.2017.10

[40] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Maxi-
mizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power
Budget. In SC ’14. IEEE, 807ś818. https://doi.org/10.1109/SC.2014.71

[41] Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and Bronis
De Supinski. 2013. Optimizing power allocation to CPU and memory sub-
systems in overprovisioned HPC systems. In CLUSTER. IEEE, 1ś8. https:
//doi.org/10.1109/CLUSTER.2013.6702684

[42] Lee Savoie, David K. Lowenthal, Bronis R. De Supinski, Tanzima Islam, Kathryn
Mohror, Barry Rountree, and Martin Schulz. 2016. I/O Aware Power Shifting. In
IPDPS. IEEE, Chicago, IL, 740ś749. https://doi.org/10.1109/IPDPS.2016.15

[43] SLURM. [n.d.]. The SLURM Workload Manager. https://slurm.schedmd.com.

[44] Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi. 2017. Edge-Centric Dis-
tributed Discovery and Access in the Internet of Things. IEEE Internet of Things
Journal 5, 1 (2017), 425ś438. https://doi.org/10.1109/JIOT.2017.2767381

[45] ExaOSR Team. [n.d.]. Key Challenges for Exascale OS/R. https://collab.cels.anl.
gov/display/exaosr/Challenges.

[46] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux utility
for resource management. In Job Scheduling Strategies for Parallel Processing,
Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 44ś60.

[47] Javad Zarrin, Rui L Aguiar, and João Paulo Barraca. 2018. Resource discovery for
distributed computing systems: A comprehensive survey. J. Parallel and Distrib.
Comput. 113 (2018), 127ś166. https://doi.org/10.1016/j.jpdc.2017.11.010

[48] Huazhe Zhang. [n.d.]. A quantitative evaluation of the RAPL power control
system. ([n. d.]).

[49] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques. ACM
SIGPLAN Notices 51, 4 (June 2016), 545ś559. https://doi.org/10.1145/2954679.
2872375

[50] Huazhe Zhang and Henry Hoffmann. 2018. Performance & Energy Tradeoffs for
Dependent Distributed Applications Under System-wide Power Caps. In ICPP.
ACM, Eugene OR USA, 1ś11. https://doi.org/10.1145/3225058.3225098

[51] Huazhe Zhang and Henry Hoffmann. 2019. PoDD: power-capping dependent
distributed applications. In SC. ACM, Denver Colorado, 1ś23. https://doi.org/10.
1145/3295500.3356174

	Abstract
	1 Introduction
	2 Background
	2.1 Power Management
	2.2 Power Assignment and Discovery
	2.3 Case Studies

	3 Penelope Design and Implementation
	3.1 Local Decider
	3.2 Power Pool
	3.3 Limitations and Assumptions

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Penelope Overhead
	4.3 Performance Under Nominal Conditions
	4.4 Performance with Faulty Power Management
	4.5 Scalability Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

