Penelope: Peer-to-peer Power Management

Tapan Srivastava
University of Chicago
Chicago, IL, USA
tapansriv@uchicago.edu

ABSTRACT

Large scale distributed computing setups rely on power manage-
ment systems to enforce tight power budgets. Existing systems use
a central authority that redistributes excess power to power-hungry
nodes. This central authority, however, is both a single point of
failure and a critical bottleneck—especially at large scale. To address
these limitations we propose Penelope, a distributed power manage-
ment system which shifts power through peer-to-peer transactions,
ensuring that it remains robust in faulty environments and at large
scale. We implement Penelope and compare its achieved perfor-
mance to SLURM, a centralized power manager, under a variety
of power budgets. We find that under normal conditions SLURM
and Penelope achieve almost equivalent performance; however in
faulty environments, Penelope achieves 8-15% mean application
performance gains over SLURM. At large scale and with increas-
ing frequency of messages, Penelope maintains its performance
in contrast to centralized approaches which degrade and become
unusable.

CCS CONCEPTS

« Hardware — Enterprise level and data centers power is-
sues.

KEYWORDS
Power Management, Adaptive Systems

ACM Reference Format:

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann. 2022. Penelope:
Peer-to-peer Power Management. In 51st International Conference on Parallel
Processing (ICPP °22), August 29-September 1, 2022, Bordeaux, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3545008.3545047

1 INTRODUCTION

One of the major problems facing the growth of exascale computing
setups is operating under power constraints [5, 21, 30]. The United
States Department of Energy identifies power as a key challenge,
citing the need for exascale systems to stay within a tight power
budget of 20-30 MW [3, 21, 30]. This tight power budget stems in
part from the monetary cost of power delivery and cooling capacity
[35]. Given that power is a limited resource, existing work illustrates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9733-9/22/08...$15.00
https://doi.org/10.1145/3545008.3545047

Huazhe Zhang

Meta

Freemont, CA, USA
huazhe@fb.com

Henry Hoffmann
University of Chicago
Chicago, IL, USA
hankhoffmann@uchicago.edu

how overprovisioning the system—having more nodes than can
run simultaneously under the power budget—can greatly improve
application performance [33].

Overprovisioning, however, creates the possibility of violating
system-wide power budgets and causing serious damage to the
cluster, so some systematic approach is needed to maintain these
caps. A simple and widely-used method of system-wide powercap
enforcement is a fair, static allocation of power. Each node receives
an equal portion of the system-wide cap regardless of its usage.
While this approach trivially enforces the power budget with no
overhead, it fails to take advantage of the fact that a node will
likely have different power consumption patterns over the course
of its lifetime. Nodes running high CPU workloads will consume
more power, whereas nodes running heavy I/O workloads or simply
idling will consume less power, far below their assigned static cap.

Dynamic systems take advantage of the differences in power con-
sumption across workloads to achieve greater application perfor-
mance while maintaining the system-wide cap. Figure 1 illustrates
how dynamic systems shift unused power from nodes operating
under their cap to nodes operating at their cap. These transactions
are zero-sum: one node increases its cap by the exact amount that
is freed by the other node. As long as the initial assignment of
node-level powercaps is valid, power shifting will not violate the
system-wide power budget. The current state-of-the-art takes ad-
vantage of these patterns by launching a local decider on each node
in the cluster and establishing a central server to coordinate all
power management [17].

Each local decider operates in a classic feedback loop: it observes
its environment, chooses an appropriate response, implements this
choice, and repeats [23]. Every T seconds, it compares its actual
power consumption (since the last iteration) against its assigned
node-level cap. If a node is consuming less than its cap, the local
decider sends the unused powercap to the server. If a node is con-
suming power close to its powercap, the decider requests power
from the server. The server then collects excess power from those
nodes operating under their cap and redistributes that excess to
nodes operating near their cap. This approach maintains system-
wide powercaps and allocates the total budget more efficiently in
order to improve application performance.

However, the reliance on a central server has two key limitations:

e Fault-Tolerance—The central server is a single point of failure
for the whole power management system. A node-level failure
or network partition would fully halt any power shifting for the
duration of the outage. In a large-scale, distributed environment
where failures are common occurrences [3, 21, 30], a centralized
approach cannot provide robust performance guarantees.

o Scalability—At high scale the number of clients simultane-
ously connecting to this server will cause performance degradation.
The server will become a bottleneck, as the time to process all the

ICPP °22, August 29-September 1, 2022, Bordeaux, France

incoming events will, at some scale, surpass the T second period
that local deciders wait between iterations. Likewise as T decreases,
the problems at high scale amplify, resulting in an even greater mes-
sage load on an already overburdened server, causing suboptimal
power distribution and workload performance degradation.

To address these issues, we propose Penelope, a fault-tolerant
and scalable peer-to-peer power management system. Rather than
relying on a central server to coordinate power distribution, all
power shifting occurs through ad hoc transactions between nodes.
Each node holds a local cache of excess power, and instead of
querying the server for power, power-hungry nodes randomly
request power from other nodes in the system. Because Penelope
does not have a central coordinator it limits the size of transactions
to fairly spread out excess power in the system rather than having
a large amount of excess power accumulate on one node while
others starve. Additionally, Penelope implements a novel, distributed
version of urgency, which allows unfairly disadvantaged nodes who
are both power-hungry and operating below their initial assignment
to bypass the transaction limit and quickly return to their initial
powercap.

This approach has several benefits: (1) it does not have a single
point of failure, as power can still be shifted even if any given
node fails, (2) although the number of messages increases at scale,
these will be split among a growing number of nodes, ensuring that
the load on any one node is bounded, and (3) it does not require
withholding node(s) from the computing setup in order to operate
the central server.

We implement Penelope on a 21 node system and evaluate it
against two alternate power management systems: Fair and SLURM.
Fair statically allocates power evenly among all nodes in the system,
and SLURM implements a power management system that relies
on a central server to coordinate power distribution [43, 46]. All
results are normalized to Fair. We find that:

e In nominal environments, SLURM and Penelope yield nearly
the same mean performance gain over Fair, with SLURM achieving
only a 1.8% speedup over Penelope on average.

o In faulty environments Penelope improves mean application
performance by 8-15% over SLURM.

o In our simulations of large scale, Penelope quickly responds to
queries and effectively shifts power with respect to scale or itera-
tion frequency, while SLURM observes a linear increase in server
response time and is unable to effectively shift power as frequency
increases. We can estimate that at sufficient scale SLURM’s server
will be overburdened by the number of requests, slowing the rate
of power distribution in the system.

The key contribution of this paper is Penelope, a fully distributed
power management system. Penelope’s design and reliance on peer-
to-peer transactions allows it to be robust in faulty environments,
a common problem in distributed systems, especially at large scale
[3, 8, 11]. At large scale it will not bottleneck, and as local deciders
iterate faster it will not degrade, unlike centralized approaches. And
even without either of these conditions, Penelope performs equiva-
lently to SLURM. Penelope efficiently manages power at low scale
and without node faults, and it provides more robust performance
guarantees than existing work in high scale and faulty systems.

The aim of this paper and Penelope as a system is to evaluate the
feasibility and efficacy of peer-to-peer power management versus

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

centralized approaches. Although studied in several other contexts,
to the best of our knowledge this paper is the first to study peer-to-
peer design in power management. Peer-to-peer designs present
well-studied benefits over centralized approaches. The paper estab-
lishes that for dynamic power allocation a peer-to-peer approach
successfully and efficiently allocates power, results in as good or
better application performance versus centralized approaches, and
has benefits in fault tolerance and scalability that derive from its
decentralized design. Our goal was not to provide a survey of many
possible designs, but rather to show that a simple, initial peer-to-
peer approach could be successful. We feel that the simplicity of
its design, coupled with the performance and design benefits, is a
strength of this system. We hope that this leads to follow-on work
in peer-to-peer power management.

2 BACKGROUND

This section proposes the concepts of power assignment and power
discovery as identifying and distinguishing characteristics of dif-
ferent power management systems. It then covers case studies of
a few such management systems in terms of these concepts to
properly contextualize Penelope. However, it first discusses power
management at a deeper level, covering the necessary constraints
that power management systems must enforce while optimizing
for application performance.

2.1 Power Management

New cap
Power cap
N ﬂ h

Node A Node B Node A Node B
Figure 1: Shifting unused power to a power-hungry node.

Large computing setups, like exascale systems, will need to op-
erate on a tight power budget between 20-30MW [3]. While the
enforcement of this cap is vital to prevent damage and degradation,
powercaps have a proportional, albeit non-linear relationship to
application performance [19, 37]. Furthermore, each node has a
maximum power setting, over which we could observe damage to
the processor. Thus, we have two values to coordinate: system-wide
powercaps and node-level powercaps. We have two constraints on
these values: the sum of all node-level powercaps in the system
must be equal to or less than the system-wide powercap, and each
node-level powercap must be within a safe range for the node. As
long as these two constraints are met, we prevent power-related
damage and degradation.

While static allocation is the simplest way to enforce these con-
straints, dynamic approaches improve application performance by
modifying node-level caps in real time to respond to workload be-
havior. However, a major challenge facing exascale computing is
resilience, as tighter power budgets with more components will
cause more faults [3]; static methods have no overhead, and so
trivially overcome the challenges of fault-tolerance and scalability.

Penelope: Peer-to-peer Power Management

A power management system that can be robust in these conditions
while improving application performance over static approaches
would be greatly beneficial to the throughput and energy efficiency
of large scale systems.

2.2 Power Assignment and Discovery

The processes of (1) locating and (2) redistributing excess power is
the key contribution of dynamic power management over simpler
static solutions. Power discovery—the location of excess power—
and power assignment—the redistribution of excess power and the
modification of node-level caps—can serve to uniquely identify
different power allocation systems.

2.2.1 Power Assignment. We define power assignment as the mech-
anism by which node-level caps are set and potentially changed.
Under static systems, this is clear: caps are set at system launch by
some heuristic or central authority and then never altered.
Dynamic systems must define (1) how node-level caps are ini-
tially set and (2) how nodes modify their own cap. To the best of our
knowledge, all prior dynamic power management systems establish
a central authority. This authority has global knowledge and takes
responsibility for the initial assignment of node-level caps as well
as the collection and redistribution of excess power in the system.

2.2.2 Power Discovery. Power management systems do not need
to fully utilize the system-wide powercap. In other words, if C; is
the cap of node i, and Csyszem is the system-wide cap, it is perfectly

acceptable for A := Csystem — g C; > 0. Dynamic systems aim
to locate this excess power in tile? cluster. Power discovery is the
means by which that location of excess power occurs. For example,
centralized approaches have a global cache of excess power with a
static address, meaning that every node knows where to find excess
power.

2.3 Case Studies

We now survey three existing power management systems. Fair
is a trivial static power capping solution which evenly splits a
system-wide cap among all the nodes in a cluster. SLURM is a state-
of-the-art job scheduler which implements a centralized power
management system [43, 46]. PoDD is a hierarchical power man-
agement system designed for a specific class of workloads called
coupled workloads [51].

2.3.1 Fair. Fairis a static power allocation system. Under Fair, each

Csystem

node is assigned the same cap: , where N is the number of

nodes. Fair does not attempt to locate or redistribute excess power,
so it handles the notions of power assignment and power discovery
trivially. In our experimental evaluation, Fair is used as a baseline
model.

2.3.2 SLURM. SLURM is a state-of-the-art job scheduler for dis-
tributed systems with a dynamic power management system. SLURM

system

assigns each node an initial cap of . It then launches a local

decider process on each node and a central server to handle all

requests. Each local decider monitors local power consumption
and sends information to the server based on a simple heuristic:

ICPP °22, August 29-September 1, 2022, Bordeaux, France

if the current power consumption, P;, is within € of its node-level
powercap, Cj, i.e. P; > C; — €, where € is a fixed power margin, the
local decider classifies the node as power-hungry, and it informs
the server of its state. Otherwise, if P; < C; — €, then the node is
classified as having excess power. In this case, the local decider
reduces its cap, setting C; = P;, and sends its state and the excess
power, A; := (C; — P;), to the server.

We observe first that power discovery is handled by the server.
The server is a global cache of all excess power, so power-hungry
nodes know where any excess power is held. A centralized solu-
tion easily handles power discovery. Power assignment is similarly
centralized—the central server holds the excess and then takes a
percentage of the total excess and gives it to each requesting node.
Power shifting from one node to another must be proxied through
the server.

2.3.3 PoDD. PoDD is a hierarchical power management system
for coupled workloads: workloads in exascale systems that run
simultaneously rather than serially. These workloads are dependent
on one another, so these pairs of applications are only as fast as
their slowest member. As a result, PoDD observes that it is optimal
for both applications in the couple to finish at the same time, as the
runtime of the pair is most important.

PoDD approaches power management in a hierarchical way. It
runs each application in the couple for a few iterations, learns the
optimal initial node-level powercaps, and assigns these—a central-
ized process. It then launches a centralized power management
system to coordinate node-level power shifting similarly to SLURM.

PoDD has a centralized solution to power discovery. Excess
power is held and redistributed by the central server. PoDD has
a hierarchical solution to power assignment. It performs a cen-
tralized, top-level powercap assignment and then allows for local
refinement.

3 PENELOPE DESIGN AND
IMPLEMENTATION

Penelope is a distributed power management system which relies on
peer-to-peer transactions to shift power between nodes. Whereas
existing work relies on a central server to coordinate power shifting,
Penelope overcomes the challenges of fault-tolerance and scalability
in power management by splitting the responsibilities of a central
power management server among all the nodes in the cluster.

There are two components to Penelope on each node: a local
decider and a local power pool. The local decider classifies a node
as either being power-hungry or having excess. If power-hungry, it
queries a power pool searching for excess power. Otherwise, it adds
the excess power it has to its local power pool. The local power
pool is a cache of excess power and acts as a server, giving power
from its cache to power-hungry nodes.

We define a transaction as an exchange of power between a local
decider and a power pool. Power housed on a power pool has al-
ready been freed and transactions are atomic, so we can ensure that
no transaction increases the system’s total power usage beyond
the system-wide cap. Additionally, local deciders have information
about safe power ranges for the node on which they are running
and can ensure that nodes do not exceed that safe range. Because
power shifts through these atomic transactions we can make sure

ICPP °22, August 29-September 1, 2022, Bordeaux, France

that Penelope meets both necessary requirements of a power man-
agement system: (1) it enforces system-wide powercaps, and (2) it
makes sure nodes operate within safe power ranges.

We additionally integrate into Penelope a modified idea of urgency
proposed by Zhang and Hoffmann [50]. We discuss the implemen-
tation of this concept in subsequent sections, but here we describe
it at a high-level. The intuition behind urgency is as follows: over
the uptime of a system, a node, call it node A, may lower its cap
dramatically because it did not need power. Now suppose, either
due to a changed workload or to a different phase of its current
workload, node A suddenly becomes power-hungry. It is capped far
below its initial assignment, and if there is not any excess power in
the system this node will be unfairly throttled due to its previous
power needs while other nodes are operating above their initial cap,
having accessed the excess power that was previously released by
node A. To provide a means of recourse for node A to at least return
to its initial power level, we say that any node that (1) Penelope clas-
sifies as power-hungry and (2) has a powercap below its initial cap
has an urgent state, and if it sends power requests we say that these
are urgent requests. Non-urgent requests are subject to limitations,
where the power pool restricts the maximum amount of power that
the request can receive—an idea that will be discussed at length in
Section 3.2. Urgent requests, however, bypass this restriction and
are allowed access to as much excess power as they can locate until
the urgent node reaches its initial cap. Additionally, if there is no
excess power in the system, urgent requests induce nodes to release
power down to their initial cap, even if they are power-hungry,
thus artificially creating excess power which the urgent node can
access. These mechanisms allow urgent nodes to rapidly return
to their initial cap, ensuring that if there is no excess power in a
system, one node will not be unfairly throttled.

Zhang and Hoffmann use offline profiles to determine optimal
power assignments specifically for coupled workloads and use this
as the threshold for urgency rather than initial power cap [50]. We
adapt this idea for both a generalized application setup where we
do not have knowledge a priori of any workload profiles and for a
distributed environment.

3.1 Local Decider

The local decider is initialized with a few parameters: a pointer to
the local power pool that is running on the same node, the initial
powercap for the node, and a power margin €.

As illustrated in Algorithm 1, the local decider operates in a
control loop at distinct time steps ¢, with T seconds between each
subsequent time step. The local decider first reads the average
power dissipated since the previous time step ¢t —1. The local decider
compares this read power P; to C;, the powercap at time step t. If
P; is more than € below C;, the decider classifies the node as having
excess power. If P is within the power margin € of C;, the decider
classifies the node as power-hungry.

If the decider classifies the node as having excess, it calculates
the amount of excess it has (A), lowers its cap for the next time
step by A, and adds the corresponding amount to the local power
pool. Adding this excess to the local pool exposes it to other nodes,
so the local decider must lower its cap prior to adding to the local
power pool to maintain the the system-wide cap.

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

Algorithm 1: Local Decider Pseudocode

Function PenelopelLocalDecider (pool, initialCap, €):

Cy = initialCap;

t=0;

while True do

P = getPowerReading();

if P < C; — € then

// Current power reading is under cap

A=C; - P;

Cri1=Cr = I\

| Pool = Pool + A;

else if P > C; — € then

if Pool > 0 then
// getMaxSize defined in Algorithm 2
A = min(Pool, getMaxSize(Pool));
Pool = Pool — A;

| Cen=Cr+ A

else

server = chooseRandomNode();

if C; < initialCap then

urgency = 1;
a = initialCap — Cy;
A = sendUrgentRequest (server, a);

else
urgency = 0;
A = sendRequest (server);
| Cen=Cr+ A
if urgency == 0 A localUrgency == 1 then
A = Cyyq — initialCap;
Cr1=Cry1 — A
Pool = Pool + A;
| localUrgency = 0;

L t=t+1;

If the decider classifies the node as power-hungry, it first checks
the local power pool before querying other nodes. This allows nodes
to discover excess power whether it resides locally or externally.

If the local power pool yields nothing, the decider prepares
to query a different power pool. This peer-to-peer query is how
power assignment occurs in Penelope. Local deciders receive power
through transactions with power pools, so power assignment oc-
curs in a distributed, peer-to-peer manner. It chooses which node
to query at random. This random query is how Penelope handles
power discovery. Without prior knowledge of where power resides,
local deciders choose a node uniformly at random to locate power.

Before sending a request, the local decider determines if the
node is in an urgent state, defined as being both power-hungry
and operating below the initial cap. If urgent, the decider calculates
how much power is necessary for its cap to reach its initial cap
and sends this value to a power pool in an urgent request. If not
urgent, the decider simply sends a standard request. The power
pool handles urgent requests differently, which will be discussed at
greater length in Section 3.2.

If the decider receives any power in the transaction, it increases
its cap Ct41 by the corresponding amount. If it receives nothing, we
simply set Cr41 = C;. Finally, the decider checks its localUrgency
flag. This flag is set when the local power pool receives an urgent
request. If this flag is set, and the node is not itself already in an
urgent state, the decider lowers its cap to the initial assigned cap,

Penelope: Peer-to-peer Power Management

and adds the excess to the power pool. As discussed earlier, this
mechanism frees up power that urgent nodes can access, allowing
them to reach their initial cap more quickly.

3.2 Power Pool

Algorithm 2: Power Pool Pseudocode

Function getMaxSize (Pool):

size = TEN_PERCENT = Pool ;

if size > UPPER_LIMIT then
| return UPPER_LIMIT;

else if size < LOWER_LIMIT then
| return LOWER_LIMIT;

else
L return size;

Function PowerPool (Pool):
while True do
request = getIncomingRequest ();
if request.urgency == True then
a = getNecessaryPower (request);
L A = min(Pool, a);
else
maxSize = getMaxSize(Pool);
L A = min(Pool, maxSize);
Pool = Pool — A;
response = A;
replyToRequest (request, response);
localUrgency = request.urgency;

In addition to the local decider, each node contains a local power
pool. The power pool acts as both a local cache of excess power
as well as a server, responding to requests for power from local
deciders operating on other nodes. The power pool operates in a
simple loop, illustrated in pseudocode in Algorithm 2. When the
power pool receives a request, it first checks the urgency attached.

If the request is urgent, the requesting node will have also sent
a value a which represents how much power is needed for that
node to return to its initial cap. For urgent requests, the power pool
tries to give & in response unless the size of the pool is too small,
in which case it will give all excess power it has stored.

If the request is not urgent, the power pool uses a simple heuris-
tic to determine the amount of power it will respond to this request
with. The algorithm calculates 10% of the total size of the pool,
capped above by UPPER_LIMIT and below by LOWER_LIMIT as
shown in 2. This provides a hard upper and lower bound for ex-
treme sized power pools while allowing for a gradual scaling of
transaction size when the pool has moderate size. Our system sets
UPPER_LIMIT to 30 watts and LOWER_LIMIT to 1 watt. So if the
pool size is over 300 it returns 30, and if below 10 it returns 1.

The power pool limits the rate of power distribution to ensure
roughly equal distribution and to prevent power oscillation. If trans-
actions are too large, it is possible that one node unfairly hoards
all excess power in the system. Limiting the rate allows multiple
requesters to be served, each receiving a smaller, equal amount of
power per transaction.

Large transaction sizes can also cause power oscillation. If too
much power is given in one transaction, the power-hungry node
will increase its cap by a large amount and may not be able to use

ICPP °22, August 29-September 1, 2022, Bordeaux, France

up its entire cap by the next time step. In the next iteration the
node will be classified as having excess and will lower its cap. In the
following iteration it will again be power-hungry and request power.
If it receives too much power again this process will repeat. When
factoring in the changing needs of the workload, this can cause
the powercap on a node to oscillate wildly. Limiting the amount
of power receivable in a transaction can dampen this oscillation,
allowing for the node to gradually increase its cap. This limit scales
with the size of the pool, so more power can be given out if there
is more excess, and the limits at 1 and 30 ensure that we always
give a nonzero amount of excess power and that even if the pool
becomes massive the size of transactions will be bounded.

At this point, based on urgency, the power pool has calculated A,
the amount of power it will respond to the request with. It reduces
the size of its pool by this amount and replies to the request with A.
Finally, it sets the localUrgency flag based on the urgency of the
request. As noted in Section 3.1, this flag induces the local decider
to release power down to its initial cap.

The power pool and local decider encompass the entirety of
Penelope’s high level design. The local decider makes real-time
choices based on the current power consumption of the node. If
more power is needed, it queries first its local cache, and then into
the system to search for available power. The power pool acts as
a server to field these incoming requests and process them, and it
provides special privileges to nodes who urgently need power to
allow them to quickly return to their initial state.

3.3 Limitations and Assumptions

Penelope uses Intel’s Running Average Power Limiting (RAPL)
scheme to read and manipulate power and powercaps [12]. How-
ever, Penelope only requires an interface through which power can
be read and node-level powercaps can be set. Therefore, Penelope
easily be adapted to work with any power capping interface.

The local decider and local power pool both manipulate the
amount of excess power available. As a result, some care is needed
to ensure that changes to this value are atomic, otherwise system-
wide caps could be violated. Penelope guarantees this through the
use of a simple lock, but any form of synchronization would suffice.

Finally, we acknowledge that while Penelope is more robust in
faulty environments and at scale, centralized approaches will con-
verge faster than peer-to-peer power management systems at low
scale or when the central server is not a bottleneck because they
have a global server with total knowledge. Penelope effectively shifts
power without requiring a central server or a separate node to host
that server, and in the absence of faults or scale provides compa-
rable application performance speedup to SLURM, data which is
discussed in Section 4. However, there may be certain systems with
more specific guarantees in terms of integrity or scale than we
assume here, and on those systems a centralized approach may be
feasible and more efficient than a peer-to-peer approach.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We use the NAS Parallel Benchmark (NPB) suite version 3.4 [4].
This includes 10 applications, from which we omit Integer Sort (IS).
The applications compile with different classes (A-F) corresponding

ICPP °22, August 29-September 1, 2022, Bordeaux, France

to different test sizes. All benchmarks are compiled to class D to
get an appropriately long test runtime. IS does not compile past
level C, and at level C finishes significantly faster than the other
applications (under five seconds, whereas each other application
takes at least 40 seconds and all but one take at two minutes).

This benchmark contains a set of programs that are intended to
test the performance of parallel supercomputers. The applications
contain 5 kernels and 3 pseudo-applications, as well as benchmarks
for unstructured adaptive mesh and parallel I/O. These applications
have varying runtimes with different resource usage and power
needs. We test every unique combination of these 9 applications,
yielding 36 pairs. Our setup divides the cluster in half, running one
application on the first half and the other on the second. We define
the runtime of an experiment as the time necessary for all nodes to
complete their workloads. All applications run with 48 threads per
node, the maximum number of virtual cores on our test servers.

Additionally, we adapt the idea of prioritization proposed by
Zhang and Hoffmann [50] into a model of urgency as discussed in
Section 3, and we implement SLURM along with this centralized
version of urgency. Power-hungry nodes operating below their
initial cap send urgent requests to the central server. The server
gives power greedily to these urgent nodes until they reach their
initial cap. If the urgent cannot reach their initial cap, the central
server indicates this to other, non-urgent nodes and induces them
to release power down to their initial cap. Adapting this concept
for a distributed system is non-trivial, so we implement SLURM
in this way in order to compare Penelope’s distributed version of
urgency with the original, centralized version.

Our test system has 21 nodes. 20 of these are client nodes that
run actual applications, and 1 is used to host the server for SLURM.
Penelope and Fair use only the 20 client nodes. Each node is a
dual-socket server, with 2 Intel Skylake Xeon Gold 6126 CPUs.
The nominal clockspeed is 2.60 GHz. Each node has 256 GB of
RAM divided between dual memory controllers. All nodes support
Intel RAPL technology, which we utilize to set powercaps and read
power from hardware. Each processor has 12 physical cores with
hyperthreading, allowing for 48 virtual cores.

We measure runtime as the time necessary for all applications to
complete, and we use 1/runtime as our performance metric. We test
each combination of applications under Fair, SLURM, and Penelope,
and we normalize the performance of SLURM and Penelope to Fair.

We first evaluate the overhead of Penelope. We then test Fair,
SLURM, and Penelope under nominal conditions, specifically in the
absence of node failures or heavy network traffic. Next we test
these three systems under failing environments, when we induce a
failure to SLURM’s central server to observe the impact of node-level
failures. Finally, we simulate the impact of large scale on SLURM
and Penelope. We define two metrics, power redistribution time and
turnaround time. We plot these metrics versus the frequency at
which local deciders operate and versus simulated scale for both
SLURM and Penelope. We omit Fair because it does not redistribute
power nor cause any network traffic.

Under both normal and failing conditions, we compute the per-
formance under Fair, SLURM, and Penelope for each pair of applica-
tions under an initial powercap. We normalize the performance of
Penelope and SLURM to Fair, and we plot the geometric mean for
Penelope and SLURM across all pairs of applications under a given

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

initial cap, as well as the geometric mean across all application
pairs and initial powercaps.

4.2 Penelope Overhead

We first measure the overhead Penelope incurs on each node. To
evaluate this, we measure the runtime of each workload in the NAS
Parallel Benchmark [4] on a single node under a static cap. We
then run all the workloads again, but this time launching Penelope
on this node. This is a one node system, so no power is being
shared between nodes. We define overhead as the percent slowdown
of running with Penelope versus under a static cap. We observe
an average of 1.3% overhead across all workloads, indicating that
Penelope minimally impacts workload runtimes. We note that all
subsequent results include this overhead.

4.3 Performance Under Nominal Conditions

We start by running all 3 systems on our 21-node system in a fault-
free environment. This means that during the test there are no
node-level failures or severe network latency, so the integrity of
any node, including the one running SLURM’s server, is not tested
or compromised. All 3 systems begin by dividing the system-wide
cap evenly among all nodes in our system. We thus test 5 different
initial settings: 60, 70, 80, 90, and 100W per socket, with 2 sockets
per node. Each system enforces the system-wide cap constraint,
but the application performance varies.

Figure 2 shows that SLURM on average outperforms Penelope by
only 1.8% and never outperforms Penelope by more than 3% across
all choices of initial powercap. Because it is centralized SLURM
can make decisions based on total information, so at small scale
we expect it to have an advantage over a distributed approach.
However, this advantage is clearly limited.

Penelope addresses the limitations of centralized approaches un-
der failing conditions or at large scale, but even in the absence of
either of these factors we see that Penelope provides nearly identical
mean application performance to SLURM. We believe this shows
that Penelope can be used as a general purpose power management
system.

Performance Under Nominal Conditions Normalized to Fair
124 w7

114

105
104
102 11

1.0+

14
@

. Slurm
Em Penelope

performance
o
o

o
S

0.24

60W 70w sow 20W
Powercap per socket per Node

100W Geo. Mean

Figure 2: Performance Under Nominal Conditions

Penelope: Peer-to-peer Power Management

4.4 Performance with Faulty Power
Management

We next run the same test as above, but we induce a failure to
SLURM’s server partway through execution for each application
pair to observe the impact of a node-failure on SLURM’s perfor-
mance. As expected we see a sharp degradation, with Penelope ob-
serving an 8-15% improvement in mean application performance
over SLURM. Without the server node, even though every client is
properly functioning, there is no central authority that can shift
power. Effectively, this means that the assignment of powercaps
at the time of failure becomes a static assignment. However, these
node-level powercaps are uneven across the cluster, which could
throttle application performance worse than evenly divided assign-
ments. Under our experimental setup, only one application runs on
every node during a single test, but in a generalized environment
multiple workloads would run on the same hardware back to back.
If these workloads have drastically different power consumption
patterns, a failure to SLURM’s server could throttle application
performance even more than is indicated by our data.

Figure 3 shows the geometric mean of performance for each
system across all application pairs for each choice of initial cap.
SLURM performs on average worse than even the trivial solution,
Fair. Additionally, even though the server has died, the local decider
running on each client node is still functioning, which requires over-
head. In a real system, a fault to the server node would result in
a similar situation, where the overhead of running local decider
clients is still paid, but without any of the benefits of power shifting,
on top of the overhead of requiring an additional node to run the
coordinating server. In contrast, Penelope is not significantly per-
turbed by a client-node failure because Penelope relies exclusively
on peer-to-peer transactions to shift power and does not introduce
a single point of failure. As a result it is resilient to node-level faults.
After a critical mass of nodes have failed, Penelope’s performance
will begin to degrade, but this would be true for any dynamic power
management system, centralized or distributed.

A peer-to-peer design inherently benefits from increased fault-
tolerance and scalability due to the lack of central authority and
distributed nature of work in the system. Centralized designs do
not share these inherent benefits, and we have shown the impact
that this lack of implicit fault-tolerance can have on application
performance.

While centralized systems can use fallback servers to improve
their fault-tolerance, our goal is to evaluate a peer-to-peer design
in contrast to a centralized design. We show that a fully centralized
design is vulnerable to coordinator failures while a peer-to-peer
design remains effective. We acknowledge that we do not explore
all possible failure scenarios; however, we note that we induce a fail-
ure in each combination of applications, providing some variance.
We leave a comprehensive study of fault tolerance in centralized
systems for future work.

4.5 Scalability Analysis

The scalability of either SLURM or Penelope is dictated not just by
the number of nodes in the system but also by the frequency at
which local deciders iterate. Both SLURM and Penelope are imple-
mented such that their local deciders iterate once every second, but

ICPP °22, August 29-September 1, 2022, Bordeaux, France

this frequency is constrained in large part by how quickly RAPL
can enforce an assigned node-level cap. RAPL already converges
on average in under 0.5 seconds [48], and as power management
becomes increasingly important we expect RAPL and competing
technologies to reduce their overhead, so there is every reason to
expect that local decider frequency will increase in the future.

Because we do not have sufficient hardware, we simulate SLURM
and Penelope running at large scale. To implement this, we run
multiple local deciders, up to the number of cores to make sure they
can all run truly in parallel, on a single physical node simultaneously.
All simulated deciders can share with each other, whether or not
they reside on the same physical node. Local deciders no longer
interact with hardware, and instead use curated profiles of power
consumption over time for each application in the NPB benchmark.
Our simulation uses real power profiles but allows individual cores
to act as nodes would in a real system. We have a 45 node cluster
with 48 cores per node (with hyperthreading). We withhold 1 node
to operate the SLURM server. Each SLURM decider requires 1 core,
but each Penelope instance utilizes two threads to simultaneously
run a power pool and local decider. We can simulate 24 Penelope
instances per node, so on our 44 compute nodes, we can simulate
1056 total nodes.

Our setup, aside from using NPB application profiles, is anal-
ogous to the prior experiments: we iterate over all possible pairs
of applications, running one on the first half the cluster and the
other on the second half. We modify the profiles to look at a shorter
continuous set of power readings that occur around when one appli-
cation completes, allowing us to observe how our systems behave
when a large amount of power enters the system, as power should
move from the now idle nodes to those still running.

We define two metrics in our scaling analysis: power redistribu-
tion time and turnaround time.

Power Redistribution Time: This is the time necessary for
some percentage of excess power to be redistributed to power-
hungry nodes. Because we are unable to directly measure applica-
tion performance, we use power redistribution time to approximate
the efficacy of a power management system, as this metric repre-
sents the speed at which power is shifted in the system.

Performance Under Faulty Conditions Normalized to Fair
113

104 oo 057 006

14
@

s slurm
Emm Penelope

performance
o
o

0.4

0.2

60w 70w sow 20W
Powercap per socket per Node

100W Geo. Mean

Figure 3: Performance Under Faulty Conditions

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Turnaround Time: This is the average time a local decider
spends waiting for a response from a power pool. For SLURM this is
the server’s average response time. For Penelope this is the average
time needed to complete a transaction in the system. This metric
allows us to quantify potential bottleneck effects at scale.

We run two tests. First, we fix scale at the maximum we can
simulate reliably, 1056 nodes, and increase the frequency at which
local deciders iterate. Second, we fix the frequency at 1 iteration per
second and vary the scale, from 44 nodes to 1056. In all experiments,
we compute the value in question under all 36 pairs of applications
and plot the distribution of that value over these 36 combinations.

We note that in order to mitigate the increased power oscillation
at scale because of the significantly higher amount of excess power
available, we modify SLURM’s rate limiting scheme to account for
scale. We discuss power oscillation and its ramifications at greater
length in Section 3.2

Median Redistribution Time vs. Frequency (requests per second)

—— Slurm

—— Penelope
100 P

80

60 4

40 1

Power Redistribution Time (seconds)

0 20 40 60 80 100
Number of Requests per second

Figure 4: Median redistribution time (time to shift 50% of available power)
versus local decider frequency

Total Redistribution Time vs. Frequency (requests per second)

175 4

150 4

125

100 —— Slurm
—— Penelope
75

50

Power Redistribution Time (seconds)

T T T T T T
o 20 40 60 80 100
Number of Requests per second

Figure 5: Total redistribution time (time to shift 100% of available power) ver-
sus local decider frequency

4.5.1 Power Redistribution Time versus Frequency and versus Scale.
We first observe the impact of increased frequency and increased
scale on power redistribution time.

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

In Figure 5, near 20 requests per second, SLURM’s total redistribu-
tion time shoots up. This occurs because at this frequency SLURM’s
server begins dropping packets and is unable to redistribute all the
excess power, so we define its total redistribution time as the total
runtime of the experiment. However, if we look at the median redis-
tribution time—time to redistribute 50% of the available power—in
Figure 4, we see that Penelope rapidly improves its redistribution
time and converges to that of SLURM as frequency increases. A
relatively small increase in frequency causes a major reduction in
redistribution time, both in total and median, for Penelope, whereas
SLURM’s server degrades as frequency increases. Penelope remains
effective as frequency increases, as it quickly and fully redistributes
available power in the system.

We present in Figure 6 power redistribution versus scale for
both systems. From Figure 6, we observe that the trends for both
systems are unchanged as scale increases from 44 nodes to 1056.
What this indicates first is that at 1056 nodes with a one second
period, SLURM does not degrade; however, Penelope does not ei-
ther. As scale increases, we see that the gap in redistribution time
remains essentially unchanged, and as we have seen on real world
data Penelope and SLURM have extremely similar mean application
performances on 20 nodes when running real workloads.

4.5.2 Turnaround Time versus Frequency and versus Scale. We see
that frequency has a significant effect on turnaround time for
SLURM. Figure 7 shows how SLURM’s turnaround time approaches
nearly 25ms before leveling off and slightly declining—which occurs
at the point where the server begins dropping packets. Dropping
packets will absolutely prevent turnaround time from increasing
at the same pace. We note that the standard deviation increases as
frequency increases, even as mean turnaround time remains flatter.

When varying scale, Figure 8 shows how the response time for
the server is sharply increasing, but is still operating in the range
of tens of milliseconds, while clients are sending messages every
second. Because the turnaround time is still a small percentage of
the overall period, SLURM’s power redistribution time did not vary
versus scale.

However, the turnaround time stands to continue to increase
as scale increases, and once the turnaround time becomes a more

Median Redistribution Time vs. Scale

—— Slurm
140 e —— Penelope

120

100

80

60

40

Power Redistribution Time (seconds)

20

o 200 400 600 800 1000
Number of Nodes

Figure 6: Median redistribution time (time to shift 50% of available power)
versus scale

Penelope: Peer-to-peer Power Management

significant percentage of 1 second, SLURM will begin to observe
degradation in power redistribution time. We further measure the
average time needed to process a request by the server, which
was about 80-100 microseconds. The server processes requests
serially, so we can extrapolate that even at 80 microseconds, a
system of 12,500 nodes sending messages every second would force
the server to take 1 second to process all incoming requests, causing
compounding delays in the processing for each local decider.

As the iterating frequency increases, a smaller number of clients
would be able to overwhelm the server in this same way. At 1056
nodes, a frequency of about 11.8 iterations per second would be
enough to cause SLURM’s turnaround time to exceed the period
for the local decider. As scale increases, the frequency necessary to
reach this point will only decrease.

As frequency increases, SLURM’s server degrades both in re-
distribution time and turnaround time, while Penelope’s remains
robust and efficient. At large simulated scale, Penelope is able to shift
power just as well as at low scale, and has consistent and low turn-
around times. SLURM has asymptotically worse turnaround times,
and we can easily extrapolate the scale thresholds that would turn
the central server into a bottleneck for the whole system, greatly

Mean Turnaround Time vs. Frequency

—— Slurm

—— Penelope
25000

20000

15000 A

10000

5000

Average Turnaround Time (Microseconds)

] 20 40 60 80 100
Frequency of Requests

Figure 7: Mean turnaround time (time spent waiting for a server response)
versus local decider frequency

Mean Turnaround Time vs. Scale

—— Slurm
5000 —— Penelope

4000

3000

2000

1000 4

Average Turnaround Time (Microseconds)

0 200 400 600 800 1000
Number of Nodes

Figure 8: Mean turnaround time (time spent waiting for a server response)
versus scale

ICPP °22, August 29-September 1, 2022, Bordeaux, France

increasing its power redistribution time. The trend in SLURM’s
turnaround time illustrates that it is on an untenable trajectory.

5 RELATED WORK

There is a great deal of work developing systems that control power,
either through hardware or software. Early work controls one com-
ponent, like DRAM, disk, or DVFS [15, 28, 29], while later work co-
ordinates multiple components [10, 13, 14] or arbitrary components
to optimize performance by utilizing offline profiles [24-26]. Intel’s
RAPL tool and PUPIL provide a hardware and flexible software
approach respectively to read power and set powercaps [12, 49].
More recent work expands the breadth of power-capping work,
specializing in GPUs, modulating uncore frequency, or focusing
on certain systems like the Xen hypervisor [7, 21, 31]. However,
to the best of our knowledge, these approaches focus on power
management on a single node rather than on a larger cluster.

There has been a great deal of work concerning job scheduling in
HPC systems [2, 20, 36]. More recent work focuses on scheduling
for exascale [1] as well as on the effect of power and network
factors on application performance [32]. These works show the
continued importance of power management systems, but to the
best of our knowledge these prior approaches rely on a centralized
power management system.

More recently, because it is more efficient for large systems to
be hardware overprovisioned [33, 41], existing work proposes a
scheme to manage power and efficiently allocate resources and
nodes to workloads in overprovisioned systems [22, 34, 38, 40]. The
number of power management systems motivated the creation of a
simulator for different power scheduling strategies [16], and a re-
cently survey investigated these questions within data visualization
on supercomputers [6].

Fault-tolerance in HPC and exascale systems is a major problem.
Canal et al. survey the problem and some existing solutions, such
as predicting node failures in real-time [8, 11]. While these works
aim to mitigate the impact of node failures in large distributed
systems, Penelope’s distributed design grants fault-tolerance inher-
ently, ensuring that in the face of these node failures the system
can continue to shift power without any extra cost.

Works most similar to Penelope are those which aim to dynam-
ically reallocate node-level powercaps to improve performance.
Ellsworth et al. propose a centralized solution to power shifting
[17, 18]. Other work detects low-power I/O phases and leveraging
those phases to shift power via a central server towards applications
in computation phases [42]. Some related work specializes in power
shifting on coupled workloads. These are workloads which previ-
ously ran serially, but now run in parallel and communicate over a
network instead of through a file interface [9, 27, 45]. Zhang and
Hoffmann propose management schemes specifically targeting cou-
pled workloads [50, 51]. While these systems all dynamically shift
power to achieve better application performance, their reliance on a
central authority provides key limitations which Penelope addresses
through its distributed design.

Finally, we note that distributed power discovery is a hard prob-
lem, and we cite related work that has to do with other distributed
discovery problems and their solutions. Zarrin et al. survey existing
approaches to general resource discovery on distributed systems

ICPP °22, August 29-September 1, 2022, Bordeaux, France

[47], and certain approaches target resource discovery in edge
systems and large-scale IoT systems [39, 44]. Although a major
component for Penelope is the discovery of excess power, the need
for urgency; i.e. the need to take a resource away from nodes op-
erating without excess, is an added factor for power management
system that is not addressed by prior resource discovery algorithms.
To the best of our knowledge, Penelope’s distributed urgency is a
novel contribution.

6 CONCLUSION

With the increased use of large-scale distributed computing setups,
power management systems that can both maintain the integrity
of system-wide powercaps and improve mean application perfor-
mance are increasingly valuable. Static allocation methods such as
Fair are simple and widely used, but they fail to account for the
variable resource demands of workloads. Dynamic systems aim to
shift excess power in the system to power-hungry nodes, enforcing
system-wide caps while improving application performance. To
the best of our knowledge, all existing dynamic systems rely on a
central server to coordinate this power shifting, which means these
systems have a single point of failure and will develop a bottleneck
at scale. We present Penelope, a distributed power management
system which relies instead on peer-to-peer transactions to shift
power. Penelope does not have a single point of failure, as excess
power is stored on each client node rather than on a central server.
At large scale, a central server will become a bottleneck, delaying
the iteration timing of local deciders running on client nodes and
causing the system to more slowly shift power. Penelope’s power
redistribution time does not vary with scale and neither does the av-
erage response time of its servers. This is because, although under
the same load at scale, this load is split across all nodes, ensur-
ing that no single power pool is overburdened with requests and
guaranteeing that no single area of the network will be flooded
with messages. As frequency increases at scale the central server
becomes overburdened, as its mean server response time sharply
increases, whereas Penelope remains robust. In real world systems,
Penelope performs nearly as well as SLURM under nominal con-
ditions, and outperforms SLURM by 8-15% in situations where
there is a fault to the server node. Penelope remains robust in faulty
environments and at scale and performs well in the absence of
these conditions, indicating that it can be used as a general purpose
power management system for computing setups of varying size
and integrity. We believe that this work illustrates the value and fea-
sibility of relying exclusively on peer-to-peer power management,
and we hope that this inspires further work into such approaches.

ACKNOWLEDGMENTS

This work was supported by NSF (grants CCF-2119184, CNS-1956180,
CNS-1952050, CCF-1823032, CNS-1764039), a DOE Early Career
Award (grant DESC0014195 0003) , and ARO (grant W911NF1920321).

Results presented in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation.

REFERENCES

[1] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Her-
bein, Helgi I. IngA°lfsson, Joseph Koning, Tapasya Patki, Thomas RW. Scogland,
Becky Springmeyer, and Michela Taufer. 2020. Flux: Overcoming scheduling

[

[10

[11

[12]

(13]

[14

[15]

=
&

(17

[18

[19

[20

[21

[22

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann

challenges for exascale workflows. Future Generation Computer Systems 110
(2020), 202-213. https://doi.org/10.1016/j.future.2020.04.006

Peter E Bailey, Aniruddha Marathe, David K Lowenthal, Barry Rountree, and Mar-
tin Schulz. 2015. Finding the limits of power-constrained application performance.
In SC. ACM, Austin Texas, 1-12. https://doi.org/10.1145/2807591.2807637

Pete Beckman, Ron Brightwell, Maya Gokhale, Bronis R. de Supinski, Steven
Hofmeyr, Sriram Krishnamoorthy, Mike Lang, Barney Maccabe, John Shalf, and
Marc Snir. 2012. Exascale Operating Systems and Runtime Software Report. (12
2012). https://doi.org/10.2172/1471119

NAS Parallel Benchmark. [n.d.]. https://www.nas.nasa.gov/publications/npb.
html.

Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. 2008.
Exascale computing study: Technology challenges in achieving exascale systems.
DARPA IPTO, Tech. Rep 15 (2008).

Stephanie Brink, Matthew Larsen, Hank Childs, and Barry Rountree. 2021. Eval-
uating adaptive and predictive power management strategies for optimizing
visualization performance on supercomputers. Parallel Comput. 104-105 (2021),
102782. https://doi.org/10.1016/j.parco.2021.102782

Rolando Brondolin, Marco Arnaboldi, and Marco D. Santambrogio. 2020. Power
Consumption Management under a Low-Level Performance Constraint in the
Xen Hypervisor. SIGBED Rev. 17, 1 (July 2020), 42-48. https://doi.org/10.1145/
3412821.3412828

Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo, Giuseppe
Massari, Federico Reghenzani, William Fornaciari, Marina Zapater, David Atienza,
Ariel Oleksiak, Wojciech Piundefinedtek, and Jaume Abella. 2020. Predictive
Reliability and Fault Management in Exascale Systems: State of the Art and
Perspectives. ACM Comput. Surv. 53, 5, Article 95 (Sept. 2020), 32 pages. https:
//doi.org/10.1145/3403956

J Chen, Alok Choudhary, S Feldman, B Hendrickson, CR Johnson, R Mount, V
Sarkar, V White, and D Williams. 2013. Synergistic Challenges in Data-Intensive
Science and Exascale Computing: DOE ASCAC Data Subcommittee Report. Depart-
ment of Energy Office of Science. Type: Report.

Jian Chen and Lizy Kurian John. 2011. Predictive coordination of multiple on-chip
resources for chip multiprocessors. In ICS ’11. ACM Press, Tucson, Arizona, USA,
192-201. https://doi.org/10.1145/1995896.1995927

Anwesha Das, Frank Mueller, and Barry Rountree. 2020. Aarohi: Making Real-
Time Node Failure Prediction Feasible. In 2020 IPDPS. 1092-1101. https://doi.
org/10.1109/IPDPS47924.2020.00115

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. 2010. RAPL:
Memory power estimation and capping. In 2010 ACM/IEEE ISLPED. 189-194.
https://doi.org/10.1145/1840845.1840883

Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch,
and Ricardo Bianchini. 2012. CoScale: Coordinating CPU and memory system
DVFS in server systems. In 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 143-154. https://doi.org/10.1109/MICRO.2012.22
Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch,
and Ricardo Bianchini. 2012. MultiScale: memory system DVFS with multiple
memory controllers. In ISLPED ’12. ACM Press, Redondo Beach, California, USA,
297-302. https://doi.org/10.1145/2333660.2333727

Bruno Diniz, Dorgival Guedes, Wagner Meira Jr, and Ricardo Bianchini. 2007.
Limiting the power consumption of main memory. In ISCA °07. ACM Press, San
Diego, California, USA, 290-301. https://doi.org/10.1145/1250662.1250699
Daniel Ellsworth, Tapasya Patki, Martin Schulz, Barry Rountree, and Allen
Malony. 2017. Simulating Power Scheduling at Scale (E2SC’17). Association
for Computing Machinery, New York, NY, USA, Article 2, 8 pages. https:
//doi.org/10.1145/3149412.3149414

Daniel A Ellsworth, Allen D Malony, Barry Rountree, and Martin Schulz. 2015.
Dynamic power sharing for higher job throughput. In SC’15. IEEE, 1-11. https:
//doi.org/10.1145/2807591.2807643

Daniel A Ellsworth, Allen D Malony, Barry Rountree, and Martin Schulz. 2015.
POW: System-wide Dynamic Reallocation of Limited Power in HPC. In HPDC.
ACM, Portland Oregon USA, 145-148. https://doi.org/10.1145/2749246.2749277
Keiichiro Fukazawa, Masatsugu Ueda, Mutsumi Aoyagi, Tomonori Tsuhata, Ky-
ohei Yoshida, Aruta Uehara, Masakazu Kuze, Yuichi Inadomi, and Koji Inoue.
2014. Power consumption evaluation of an mhd simulation with cpu power
capping. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 612-617. https://doi.org/10.1109/CCGrid.2014.47

Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power tuning HPC jobs
on power-constrained systems. In 2016 PACT. IEEE, 179-190. https://doi.org/10.
1145/2967938.2967961

Neha Gholkar, Frank Mueller, and Barry Rountree. 2019. Uncore Power Scavenger:
A Runtime for Uncore Power Conservation on HPC Systems (SC ’19). Association
for Computing Machinery, New York, NY, USA, Article 27, 23 pages. https:
//doi.org/10.1145/3295500.3356150

Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. 2018.
PShifter: feedback-based dynamic power shifting within HPC jobs for perfor-
mance. In HPDC. ACM, Tempe Arizona, 106-117. https://doi.org/10.1145/3208040.

Penelope: Peer-to-peer Power Management

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30

(31

[32

[33]

[34]

[35]

[36]

[37]

[38

[42]

[43]

3208047

Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio, Jason E
Miller, Sabrina M Neuman, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal,
et al. 2012. Self-aware computing in the Angstrom processor. In DAC '12. ACM
Press, 259-264. https://doi.org/10.1145/2228360.2228409

Henry Hoffmann and Martina Maggio. 2014. PCP: A Generalized Approach to Op-
timizing Performance Under Power Constraints through Resource Management.
In ICAC ’14. 241-247.

Connor Imes and Henry Hoffmann. 2016. Bard: A unified framework for
managing soft timing and power constraints. In AMOS. IEEE, 31-38. https:
//doi.org/10.1109/SAMOS.2016.7818328

Connor Imes, Steven Hofmeyr, and Henry Hoffmann. 2018. Energy-efficient Ap-
plication Resource Scheduling using Machine Learning Classifiers. In Proceedings
of the 47th International Conference on Parallel Processing. ACM, Eugene OR USA,
1-11. https://doi.org/10.1145/3225058.3225088

David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra,
Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, et al. 2013.
Multiphysics simulations: Challenges and opportunities. The International Journal
of High Performance Computing Applications 27, 1 (2013), 4-83. https://doi.org/
10.1177/1094342012468181 arXiv:https://doi.org/10.1177/1094342012468181
Mohammed G Khatib and Zvonimir Bandic. 2016. PCAP: Performance-aware
Power Capping for the Disk Drive in the Cloud. In FAST. USENIX Association,
Santa Clara, CA, 227-240. https://www.usenix.org/conference/fast16/technical-
sessions/presentation/khatib

Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. 2008. Power capping: a
prelude to power shifting. Cluster Computing 11, 2 (June 2008), 183-195. https:
//doi.org/10.1007/s10586-007-0045-4

Matthias Maiterth, Torsten Wilde, David Lowenthal, Barry Rountree, Martin
Schulz, Jonathan Eastep, and Dieter Kranzlmiiller. 2017. Power Aware High
Performance Computing: Challenges and Opportunities for Application and
System Developers — Survey Tutorial. In HPCS. 3-10. https://doi.org/10.1109/
HPCS.2017.11

Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing GPU Power and Fre-
quency Capping: A Case Study with the MuMMI Workflow. In WORKS. 31-39.
https://doi.org/10.1109/WORKS49585.2019.00009

Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing GPU Power and Fre-
quency Capping: A Case Study with the MuMMI Workflow. In WORKS. IEEE,
31-39.

Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz, and Bronis R
De Supinski. 2013. Exploring hardware overprovisioning in power-constrained,
high performance computing. In ICS. ACM Press, 173-182. https://doi.org/10.
1145/2464996.2465009

Tapasya Patki, David K Lowenthal, Anjana Sasidharan, Matthias Maiterth, Barry L
Rountree, Martin Schulz, and Bronis R De Supinski. 2015. Practical Resource
Management in Power-Constrained, High Performance Computing. In HPDC.
ACM, Portland Oregon USA, 121-132. https://doi.org/10.1145/2749246.2749262
Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No "power" struggles: coordinated multi-level power
management for the data center. ACM SIGARCH Computer Architecture News 36,
1 (March 2008), 48-59. https://doi.org/10.1145/1353534.1346289

Haris Ribic and Yu David Liu. 2016. AEQUITAS: Coordinated Energy Man-
agement Across Parallel Applications. In ICS. ACM, Istanbul Turkey, 1-12.
https://doi.org/10.1145/2925426.2926260

Barry Rountree, Dong H Ahn, Bronis R De Supinski, David K Lowenthal, and
Martin Schulz. 2012. Beyond DVFS: A first look at performance under a hardware-
enforced power bound. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. IEEE, 947-953. https://doi.org/
10.1109/IPDPSW.2012.116

Ryuichi Sakamoto, Tapasya Patki, Thang Cao, Masaaki Kondo, Koji Inoue, Masat-
sugu Ueda, Daniel Ellsworth, Barry Rountree, and Martin Schulz. 2018. Analyz-
ing Resource Trade-offs in Hardware Overprovisioned Supercomputers. In 2018
IPDPS. 526-535. https://doi.org/10.1109/IPDPS.2018.00062

Ahmed Salem, Theodoros Salonidis, Nirmit Desai, and Tamer Nadeem. 2017.
Kinaara: Distributed discovery and allocation of mobile edge resources. In MASS.
IEEE, 153-161. https://doi.org/10.1109/MASS.2017.10

Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Maxi-
mizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power
Budget. In SC ’14. IEEE, 807-818. https://doi.org/10.1109/SC.2014.71

Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and Bronis
De Supinski. 2013. Optimizing power allocation to CPU and memory sub-
systems in overprovisioned HPC systems. In CLUSTER. IEEE, 1-8. https:
//doi.org/10.1109/CLUSTER.2013.6702684

Lee Savoie, David K. Lowenthal, Bronis R. De Supinski, Tanzima Islam, Kathryn
Mohror, Barry Rountree, and Martin Schulz. 2016. I/O Aware Power Shifting. In
IPDPS. IEEE, Chicago, IL, 740-749. https://doi.org/10.1109/IPDPS.2016.15
SLURM. [n.d.]. The SLURM Workload Manager. https://slurm.schedmd.com.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi. 2017. Edge-Centric Dis-
tributed Discovery and Access in the Internet of Things. IEEE Internet of Things
Journal 5, 1 (2017), 425-438. https://doi.org/10.1109/JI0T.2017.2767381
ExaOSR Team. [n.d.]. Key Challenges for Exascale OS/R. https://collab.cels.anl.
gov/display/exaosr/Challenges.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux utility
for resource management. In Job Scheduling Strategies for Parallel Processing,
Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 44-60.

[47] Javad Zarrin, Rui L Aguiar, and Jodo Paulo Barraca. 2018. Resource discovery for

distributed computing systems: A comprehensive survey. J. Parallel and Distrib.
Comput. 113 (2018), 127-166. https://doi.org/10.1016/j.jpdc.2017.11.010
Huazhe Zhang. [n.d.]. A quantitative evaluation of the RAPL power control
system. ([n.d.]).

Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques. ACM
SIGPLAN Notices 51, 4 (June 2016), 545-559. https://doi.org/10.1145/2954679.
2872375

Huazhe Zhang and Henry Hoffmann. 2018. Performance & Energy Tradeofs for
Dependent Distributed Applications Under System-wide Power Caps. In ICPP.
ACM, Eugene OR USA, 1-11. https://doi.org/10.1145/3225058.3225098

Huazhe Zhang and Henry Hoffmann. 2019. PoDD: power-capping dependent
distributed applications. In SC. ACM, Denver Colorado, 1-23. https://doi.org/10.
1145/3295500.3356174

	Abstract
	1 Introduction
	2 Background
	2.1 Power Management
	2.2 Power Assignment and Discovery
	2.3 Case Studies

	3 Penelope Design and Implementation
	3.1 Local Decider
	3.2 Power Pool
	3.3 Limitations and Assumptions

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Penelope Overhead
	4.3 Performance Under Nominal Conditions
	4.4 Performance with Faulty Power Management
	4.5 Scalability Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

